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If the number of lattice sites is odd, a quantum particle hopping on a bipartite lattice with random hopping
between the two sublattices only is guaranteed to have an eigenstate at zero energy. We show that the local-
ization length of this eigenstate depends strongly on the boundaries of the lattice, and can take values anywhere
between the mean free path and infinity. The same dependence on boundary conditions is seen in the conduc-
tance of such a lattice if it is connected to electron reservoirs via narrow leads. For any nonzero energy, the
dependence on boundary conditions is removed for sufficiently large system sizes.
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I. INTRODUCTION

Zero modes, wave functions at zero energy, often aris
problems when a quantum particle moves in a backgro
with a nontrivial topological structure.1–31 Quantum fluctua-
tions associated to these zero modes have dramatic phy
consequences. They appear both in field theories, relate
chiral and parity anomalies,1 and in lattice regularization o
field theories,2 and have applications to a wide range of are
in physics: Chiral symmetry breaking in~111!-space-time
quantum electrodynamics,3 edge states along the boundary
a disk threaded by a magnetic flux,4,5 singular contributions
to the Hall conductance from electrons hopping on a squ
lattice in the presence of a uniform magnetic field,6 super-
conductivity of a cosmic string,7 localization of a fractional
charge at a domain wall in a charge-density wave,8–13 induc-
tion of a persistent mass current in3He-A,14–16 antiphase
boundaries in narrow-gap semiconductors,17 surface18

~edge19,20! states in a superconductor withdx22y2(1 idxy)
symmetry or in a chiralp-wave21 superconductor, edge state
in nanographite ribbon junctions,22 and itinerant-electron fer
romagnetism in the repulsive Hubbard model.23

Related nontrivial topological structures can also exis
random matrix theory32 and in the problem of Anderson lo
calization when the disorder possesses a special symm
In this context, an almost half a century old example is t
of a one-dimensional chain with link disorder.33 Here, zero
energy corresponds to the center of the energy band, an
eigenfunction with zero energy is guaranteed to exist if
number of sites in the chain is odd.25 In the thermodynamic
0163-1829/2002/66~1!/014204~11!/$20.00 66 0142
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limit, the density of states33 and the localization length34,35

are singular at zero energy, whereas correlation function
the local density of states36,37 are algebraic functions. This
anomalous behavior is an example of a strongly rand
critical point.38 Its origin is rooted in the stochastic propertie
of the zero modes supported by the Dirac equation in o
space dimension in the background of a white-noise co
lated random mass.36,37,39More recently, a two-dimensiona
random Dirac Hamiltonian with white-noise correlate
U(1)3SU(N) random vector potential was shown to b
critical at zero energy.40,41 As with the stochastic model o
Dyson, this critical behavior can be ascribed to the stocha
properties of zero modes supported by Dirac equations
two-space dimensions in the background of white-noise c
related random vector potentials.42–44

While the critical behavior of the~continuum! Dirac equa-
tion is related to zero modes in the infinite system, the ex
tence of zero modes for Dyson’s stochastic model of a qu
tum particle hopping on a bipartite lattice with link disord
can also occur for a finite system size. In terms of fermio
creation (ci

†) and annihilation (cj ) operators, the Hamil-
tonian for this system is

H5(
i , j

t i j ci
†cj , ~1.1!

where i and j label the lattice sites on a cartesian grid ind
dimensions, say, and the hopping matrix elementst i j are
nonzero for nearest neighbors only. Examples of bipar
lattices are depicted in Fig. 1. In general, thet i j will have a
©2002 The American Physical Society04-1
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P. W. BROUWERet al. PHYSICAL REVIEW B 66, 014204 ~2002!
small random component in addition to an averaget which
sets the width of the spectrum ofH. In this paper we refer to
Eq. ~1.1! with the random t i j as the ‘‘random hopping
model.’’ The special case when it is only the phase of
hopping amplitudet i j that is random is also known as th
random flux problem.

For the Hamiltonian~1.1!, the existence of the zero mode
follows from the existence of a ‘‘sublattice’’~or ‘‘chiral’’ !
symmetry. This symmetry follows when the lattice is divid
into two sublatticesA andB such that the hopping matrixt i j
only connects sites from the two sublattices, but not sites
the same sublattice. For the example of Fig. 1, the sublatt
A andB correspond to the white and black sites, respectiv
In a matrix form and after a relabeling of indices, the eige
value problemHuc&5«uc& can be rewritten as

«S cA

cB
D 5S 0 tAB

tAB
† 0 D S cA

cB
D , ~1.2!

where cA and cB denote the wave function on the lattic
sites of the sublatticesA andB, respectively, and the matri
tAB has the matrix elementst i j with i PA and j PB. Then,
denoting the number of sites in the sublatticesA andB by NA
and NB , counting dimensions in Eq.~1.2! immediately
yields that the number of linearly independent zero mode
uNA2NBu.27 To see this, note that ifNA.NB , cA obeys an
underdetermined set of linear equations, whilecB obeys an
overdetermined set of equations.~For all lattices shown in
Fig. 1, there is one zero mode with support on sublatticeA.!

FIG. 1. Three examples of a lattice with different bounda
conditions. The sublatticesA and B correspond to the white an
black sites, respectively. In all three examples, the numberNA of
sites on sublatticeA is one more than the numberNB of sites on
sublatticeB. ~a! Conventional rectangular shaped wire withN53
and oddL@N. ~b! Boundary conditions with respect to~a! have
been changed by adding a white site to the left and adding a b
site to the right.~c! Boundary conditions with respect to~a! have
been changed by adding a pair of white and black sites to the
01420
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Addition or removal of a single site changes the numb
of zero modes, as it changes the differenceuNA2NBu be-
tween the numbers of sites in the two sublattices. At
same time, the singular behavior of the density of states
the localization length in the random hopping model in t
thermodynamic limit are considered ‘‘intrinsic’’ propertie
i.e., they are derived from continuum models and should
depend on boundary conditions of the lattice. Hence, wh
both the existence of zero modes for lattices with bounda
and the singular behavior of the localization length are ma
festations of the same sublattice symmetry, they are so
very different ways. One might even ask to what extent
localization length of zero modes is representative for
‘‘intrinsic’’ localization length of the random hopping prob
lem or random flux problem on a lattice without boundarie
This is the question addressed in this paper.

Our answer is that the localization length of the ze
modes for lattices with boundaries is not an ‘‘intrinsic’’ prop
erty of the random hopping model. After a brief review
the transfer-matrix formalism in Sec. II A, we support th
conclusion in Sec. II B by analytical and numerical soluti
of the problem in the case of a wire geometry: Depending
the boundary conditions, zero modes exhibit a range of
calization lengths, the smallest one being of the order of
mean free path. In Sec. II C we then show that this extre
sensitivity to boundary conditions is an anomaly correspo
ing to the special case«50. Forany energy«Þ0 there is a
unique localization length if the system size is sufficien
large. For sufficiently small«, this unique localization length
coincides with the largest of the possible localization leng
at «50. We discuss higher dimensional examples in Sec.
and conclude in Sec. IV.

II. QUASI-ONE-DIMENSIONAL GEOMETRY

In this section we consider a two-dimensional lattice,N
sites wide andL sites long withL@N. Examples forN53
are given in Fig. 1 whereby sites on sublatticesA andB are
colored in white and black, respectively. The number of z
modes equalsuNA2NBu. For definiteness, we assumeNA
.NB , so that all zero modes have support on sublatticeA.

In this section, we will compare zero modes in wire g
ometries with different boundary conditions at the two en
of the wire, as is shown, e.g., in Fig. 1. We will establish th
the localization length of these zero modes cannot be thou
of as being intrinsic, i.e., independent of the boundary c
ditions even as the thermodynamic limitL→` is taken. We
will then turn our attention to finite energies and, suppor
by a numerical solution of the problem, argue that an intr
sic localization length at arbitrarily small but finite energi
does indeed exist. The order in which the limitsL→` and
«→0 are taken is thus essential for the extraction of an
trinsic localization length at zero energy.

The sublattice symmetry singles out the band cente
that, under an appropriate choice of boundary conditions
exact energy eigenfunction at that energy can be constru
for any realization of the disorder. This is not true of a
finite energy« in a closed and finite system. Therefore w
will proceed in two steps. We first compare the localizati
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ZERO MODES IN THE RANDOM HOPPING MODEL PHYSICAL REVIEW B66, 014204 ~2002!
length of zero modes in a closed system with the exponen
decay lengths for transmission probability of plane waves
an open system and establish that they are equal. Then
study how the transmission probability of plane waves
changed when the energy becomes finite. In both steps
use the transfer-matrix formalism, which can deal with op
and closed systems in a unified way.

A. Transfer-matrix formalism in an unbounded wire

1. Plane-wave representation

In the absence of disorder, the eigenfunctions of
Schrödinger equation~1.1! in a wire geometry as depicted i
Fig. 2 are plane waves. At zero energy, there areN indepen-
dent wave functions for plane waves traveling to the rig
and N independent wave functions traveling to the left. A
arbitrary wave function can be expanded in the basis of pl
waves. In the presence of disorder, the plane-wave expan
coefficientsan , n51, . . . ,2N acquire a dependence on th
positiony along the wire. The relation between thean(y) at
different positions along the wire can be expressed thro
the transfer matrixM,

an~y!5 (
m51

2N

Mnm~y,y8!am~y8!. ~2.1!

Current conservation and the sublattice symmetry imply t
M can be parametrized as45

M5S U 0

0 U
D S coshX sinhX

sinhX coshX
D S V 0

0 V
D . ~2.2!

The 232 grading displayed here is that of right and le
moving plane waves. TheN3N matricesU and V are uni-
tary (b52), symplectic (b54), and orthogonal (b51)
when the hopping amplitudes are complex, real quaterni
and real valued, respectively. TheN3N matrix X
5diag(x1 , . . . ,xN) is real valued and diagonal. In the a
sence of the sublattice symmetry, the transfer matrix ha
similar parametrization.46 The main difference between th
cases with and without sublattice symmetry is that with
sublattice symmetry thexn can always be chosen positiv
while with sublattice symmetry both positive and negativexn
appear.

The localization properties of the disordered wire are
coded in the transfer matrixM. They are dominated by th
diagonal matrixX in Eq. ~2.2!. The distribution of thexn at

FIG. 2. Disordered quantum wire of even lengthL ~dotted re-
gion! coupled to left and right reservoirs through leads of the sa
width as the wire. We have chosen leads without transverse hop
for technical convenience.
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zero energy has been studied in Ref. 45 for the case of a
with random hopping only. In terms of the mean free patl
of the wire, it was found that

xn5
L

jn
, n51, . . . ,N, ~2.3!

if L@Nl, up to fluctuations of relative order (Nl/L)21/2,
where the Lyapunov exponents 1/jn ~the inverse localization
lengths! are given by~to leading and subleading order inN,
see Ref. 47!

1

jn
5

b~N1122n!

~bN122b!l
, n51, . . . ,N. ~2.4!

For an infinite wire, the conductance is given by

G5
2e2

h (
n51

N

cosh22xn[
2e2

h
g. ~2.5!

Hence, for an infinite wire it is only the smallest in magn
tude of the Lyapunov exponents that governs the expone
decay of the conductance. Its inverse is thus identified w
the localization lengthj of the system,

j5H ~bN122b!l /b for N even,

` for N odd.
~2.6!

As we will find below that all localization lengthsjn can
serve as localization lengths for zero modes in a finite-si
wire, we will refer to their maximumj as the localization
length for an infinite wire.

2. Site representation

An alternative representation for the transfer matrix is o
tained using a site representation for the wave function
stead of an expansion in plane waves. The sublattice sym
try becomes manifest in the site representation if the wa
function elements are arranged inN-component vectorscy
containing elements of one sublattice only. In that notati
the Schro¨dinger equation~1.1! reads

«cy5Tycy111Ty21
† cy21 . ~2.7!

The indexy labels the coordinate along the wire and t
N-component vectorscy contain wave-function elements o
sites of sublatticeA if y is odd and of sublatticeB if y is even.
A possible choice for the vectorscy is shown in Fig. 3. The
N3N matricesTy contain the hopping amplitudes betwee
adjacent sites.

The solution of Eq.~2.7! can be represented in terms of
transfer matrix as well,

e
ng
4-3
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S cy

cy21
D 5M~y,y8!S cy8

cy821
D ,

M~y,y8!5 )
m5y8

y21 F S Tm
21 0

0 1
D S « 2Tm21

†

1 0
D G . ~2.8!

We note that, if y2y8.0 is even, the transfer matri
M(y,y8) is block diagonal at zero energy. In that cas
M(y,y8) can be parametrized as

M~y,y8!5S UeXV 0

0 Ty21
21†Ue2XVTy821

† D . ~2.9!

Here U and V are orthogonal~unitary, symplectic! matrices
for b51 (b52,4) andX is a diagonal matrix. The gradin
used in Eq.~2.9! corresponds to the division into sublattic
A andB. As the transfer matrices of Eqs.~2.8! and~2.1! are
related by a simple basis transformation, the distribution
the eigenvaluesxn of the matrixX is also given by Eqs.~2.3!
and ~2.4! above. Hence, as long as we are interested in
Lyapunov exponents only, we can choose freely between
site representation~2.8! and the plane-wave representati
~2.2!.

B. Bounded wires: Zero energy

1. Wave functions

Zero modes are solutions to Schro¨dinger equation~1.2! at
zero energy. To see how they are constructed, let us
inspect the case of Fig. 1~b! in detail. In this case, the zer
mode is a wave function with support on the white sites on
To construct it, we start with three initial values~seeds! for
wave function on the three leftmost white sites. We n
construct the wave function on all other sites in the sa
way as one finds the transfer matrix in site representa
~2.8!: By applying Schro¨dinger equation to the leftmos
black site of the middle row one obtains the value of t
wave function on the penultimate leftmost white site of t
middle row. Repeating this process column by column for

FIG. 3. Choice of the vectorscy of Eq. ~2.7!.
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black sites that have a white site to its right, we can constr
a wave function supported on all white sites. For it to be
zero mode, the Schro¨dinger equation must also be satisfie
on the two rightmost black sites that were not used to pro
gate the wave function on the white sites. For Fig. 1~b! these
are the two rightmost black sites. Application of Schro¨dinger
equation on each of those sites yields two linear constra
for the wave function elements on the rightmost white sit
Both constraints can be satisfied since they are impleme
linearly on the three seeds of the wave function on the
end.

This example suggests a three-step recursive metho
obtain zero modes. First, the zero mode has support on
sublattice only. Second,N independent numbers that mak
up theN-component vectorcAL are assigned to the value
taken by the wave function on the leftmost sites of each r
that belong to sublatticeA. Solution of the Schro¨dinger equa-
tion on all sites of sublatticeB except for those without a
white nearest neighbor to their left or right~i.e., except for
sites of sublatticeB that are at the left or right ends of a row!
allows to propagate recursively the wave function to the ri
column by column. The rightmostN values of the wave
function thus constructed build the vectorcAR . The relation
between the vectorscAL andcAR that is thus obtained can b
expressed as

cAR5McAL . ~2.10!

The N3N matrix M is nothing but the counterpart to th
upper left block of the transfer matrix in site representatio
Hence, by Eq.~2.9!, it has the polar decomposition

M5UeXV, ~2.11!

whereU andV are orthogonal~unitary, symplectic! matrices
for b51 (b52,4), andX is a diagonal matrix with eigen
valuesxn whose statistics are given by Eqs.~2.3! and ~2.4!
above.

Third, in order to have a true zero mode, the Schro¨dinger
equation must be obeyed on the remainingNBL and NBR
black sites that do not have white nearest neighbors to t
left and right, respectively. This givesNBL independent con-
straints to be satisfied by the elements ofcAL andNBR inde-
pendent constraints to be satisfied by the elements ofcAR .
As Eq. ~2.10! allows for N independent solutions, the num
ber of independent zero modes is equal to

NA2NB5N2~NBL1NBR!. ~2.12!

The equalityNA2NB5N2(NBL1NBR) followed since the
lattice topology is such that the only black sites without l
or right white nearest neighbors are located at the far left
far right ends of the wire, respectively. We emphasize t
the criterion~2.12! for the existenceof zero modes does no
rely on the quasi-one-dimensional assumptionN!L or on
the assumption that there be only one ‘‘transverse’’ directi
The only ingredients needed for Eq.~2.12! to hold are the
boundary conditions at the end of the disordered region,
the topology of the ‘‘wire.’’ The simplifying feature brough
by the quasi-one-dimensional limitN/L!1, is that the sta-
4-4
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ZERO MODES IN THE RANDOM HOPPING MODEL PHYSICAL REVIEW B66, 014204 ~2002!
tistical properties of the transfer matrixM in Eq. ~2.10! are
known. We will exploit this knowledge below.

How do the wave-function elements at the left and rig
ends of the wire compare? To answer this question, we
look at the geometric meanf of cAL andcAR ,

f5e1X/2VcAL5e2X/2U†cAR . ~2.13!

In terms of this geometric mean, theNBL constraints oncAL
and theNBR constraints oncAR can be written in the form

S CBLe2X/2

CBRe1X/2Df50, ~2.14!

whereCBL and CBR are (NBL3N) and (NBR3N) matrices
with coefficients of order unity, respectively. In the localiz
regime L@Nl, the xn are spaced by an amount of ord
L/Nl@1, so that the coefficients in Eq.~2.14! differ consid-
erably in magnitude. To see what simplifications this brin
about, we look at the first row of Eq.~2.14!,

~CBL!11e
2x1/2f11•••1~CBL!1Ne2xN/2fN50.

~2.15!

According to Eqs. ~2.3! and ~2.4!, the coefficient
(CBL)1ne2xn/2 is a random number that fluctuates arou
e2L/(2jn). Since by Eq.~2.4! xN is smaller than all otherxn
by an amount of at leastL/Nl@1, we thus find that the
left-hand side of Eq.~2.15! is dominated by the last term, s
that we concludefN50, with exponential accuracy. Extend
ing this argument to the firstNBL and the lastNBR rows of
Eq. ~2.14! we infer that

fn50, n5N2NBL11, . . . ,N,

fn50, n51, . . . ,NBR , ~2.16!

respectively, again to exponential accuracy. Conversely,
only nonzero elements off are fn with n5NBR
11, . . . ,N2NBL , to exponential accuracy, so that, by E
~2.13!, the only localization lengths available to the ze
modes arejn with n5NBR11, . . . ,N2NBL .48 In our nota-
tions, a negative localization length corresponds to a w
function exponentially localized near the left end of the w
~since thenucALu@ucARu in that case!, while a positive lo-
calization lengths correspond to a wave function expon
tially localized near the right end of the wire. A diverge
localization length~which can occur for oddN) signals a
zero mode that is critical (ucALu and ucARu comparable in
magnitude to exponential accuracy!.

We have verified this scenario by numerical implemen
tion of above recursive construction of zero modes in geo
etries depicted in Fig. 1 for various choices ofN and of
boundary conditions.49 The agreement found is excellent.

2. Transmission probability

A different method to probe the effect of boundary co
ditions on the localization length of the random hoppi
model is via the transmission probability of a lattice coup
to electron reservoirs via ideal leads. Boundary conditio
01420
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play a role once the width of the leads issmaller than the
width of the sample lattice, as is shown, e.g., in Figs. 4,
and 6.

With ideal leads attached to the left and right ends, z
modes with support on sublatticeA can coexist with zero
modes with support on sublatticeB. In fact, since a traveling
wave at zero energy has support on both sublattices, con
tance through the sample is only possible if both types
zero modes exist.50 Using the same arguments as for the ze
modes in a closed system, the possible localization leng
for zero modes in the presence of leads can be found f
counting the number of end points belonging to each sub
tice. More precisely, letNBL andNBR be the number of sites
of sublatticeB without a white nearest neighbor to their le
and right, respectively. For all geometries under consid
ation,NBL (NBR) match the number of end points on the le
~right! end of the wire that belong to sublatticeB ~sites con-
nected to leads are excluded here!. Now, the quasi-one-
dimensional localization lengths of the zero modes with s
port on sublatticeA are jNBR11 , . . . ,jN2NBL

. Similarly, the
available quasi-one-dimensional localization lengths for z
modes with support on sublatticeB arejNAR11 , . . . ,jN2NAL

,

whereNAL (NAR) denotes the numbers of end points on t
left ~right! end of the wire that belong to sublatticeA ~again,
sites connected to leads are here excluded!. Whether or not
the quasi-one-dimensional limit applies, ifNBL1NBR>N or
NAL1NAR>N, there are no zero modes with support on su
latticeA or B, respectively, and hence no traveling waves a
no conductance through the sample. If bothNBL1NBR,N
andNAL1NAR,N, there is a finite conductance through th
sample. In that case, the quasi-one-dimensional expone
decay length of the conductance, denotedj* , is the shorter
one of the maximum of the decay lengths for zero-modes
the two sublattices. We give in Tables I and II the valu
taken byj* for the four geometries of Fig. 5 and the thre
geometries of Fig. 6, respectively.

Thus, we find that the same range of localization leng
shows up in the exponential decay of wave functions in
closed system and of the conductanceG in an open system
when the wire is coupled to the electron reservoirs via po
contacts. This is in stark contrast to the case of an ‘‘infinit
quantum wire~i.e., a wire without point contacts at both end
as depicted in Fig. 2!, where only the largest localizatio

FIG. 4. Example of a disordered quantum wire of even lengtL
~dotted region! coupled to left and right reservoirs via point con
tacts. In this example the number of left end points on sublatticA
is NAL52 and the number of right end points on sublatticeB is
NBR52. The number of right end pointsNAR on sublatticeA van-
ishes as does the number of left end pointsNBL on sublatticeB. If
L is chosen to be odd,NAL5NAR52 whereasNBL5NBR50. When
L is odd, a zero mode can only be supported on sublatticeA and the
conductance must vanish identically.
4-5
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length determines the conductance. It is also in contras
the case of a quantum wire with standard diagonal disor
where the boundary conditions have no effect on the ex
nential decay length of the conductance.

Again, we have verified this scenario and found excell
agreement between numerics and theoretical expectatio

C. Bounded wires: Nonzero energy

To study the importance of boundary conditions at fin
energy, we have calculated numerically the conductance
lattice with random hopping amplitudes and point contacts
a function of energy using the recursive Green-funct
method.51,52 In our numerical simulations we chose rea
valued nearest-neighbor hopping amplitudest i j in the disor-
dered region uniformly and independently in the intervals

FIG. 5. Four different bounded wiresN55 sites wide andL
sites long. In all casesL is chosen even and the wire is connected
the reservoirs by single-channel leads. The boundary conditions
specified by ~a! NAL5NAR5NBL5NBR52. ~b! NAL5NBR51,
NBL5NAR53. ~c! NAL5NBR50, NBL5NAR54. ~d! NAL50,
NAR53, NBL54, NBR51.
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2d,tij,11d for hopping in the longitudinal direction an
t(12d),t i j ,t(11d) in the transverse direction, withd
50.2 andt50.6. With this choice the mean free pathl is
about 65 lattice spacings, as can be estimated from a fi
^ ln g& vs L for large L and large energy« ('1022). In the
perfect leads we taked50 andt50. The numerical data are
obtained after averaging over 105 samples. The size of erro
bars for^ ln g& is estimated to be less than 1%. A more d
tailed account of our implementation of the recursive Gre
function method can be found in Refs. 53 and 54. The d

re

FIG. 6. Three different bounded wiresN56 sites wide andL
sites long. In all casesL is chosen even and the wire is connected
the reservoirs by single-channel leads. The boundary conditions
specified by~a! NAL5NBR52, NBL5NAR53. ~b! NAL5NBR51,
NBL5NAR54. ~c! NAL5NBR50, NBL5NAR55.

TABLE I. Maximum localization lengthsjA* and jB* , of zero
modes on sublatticesA and B, respectively, for the four differen
geometries depicted in Fig. 5. The minimum ofjA* andjB* , denoted
j* , controls the conductance. The entryjA* 50 for geometry~d!
indicates that no zero mode is supported on sublatticeA. Corre-
spondingly, the conductance vanishes at zero energy in this ge
etry as is implied by the vanishing localization lengthj* 50.

Fig. 5 NAL NAR NBL NBR jA* jB* j*

~a! 2 2 2 2 j3 j3 `

~b! 1 3 3 1 j2 uj4u 6l /2
~c! 0 4 4 0 j1 uj5u 6l /4
~d! 0 3 4 1 0 uj4u 0
4-6
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order strength in the numerical calculations presented he
chosen the same as in Ref. 54, so that a comparison o
results is possible.

We have calculated̂ln g& vs L for four different boundary
conditions for a quantum wire of widthN55 and three dif-
ferent boundary conditions for a quantum wire of widthN
56. The boundary conditions are shown in Figs. 5 and
Our results are shown in Figs. 7, 8, 9, and 10.

Upon increasing the energy away from the band cen
«50, a crossover from the chiral~orthogonal! symmetry
class to the standard~orthogonal! symmetry class is expecte
to take place. For wires without point contacts at the left a
right ends, this crossover was studied by three of the aut
in Ref. 54. There, we found that the crossover to the stand
orthogonal class happens for«;«c , where

«c5
\vF

N2l
~2.17!

is the Thouless energy for a localization volume of line
dimension ;Nl. ~The relevant localization length is th

TABLE II. Maximum localization lengthsjA* and jB* , of zero
modes on sublatticesA and B, respectively, for the three differen
geometries depicted in Fig. 6. The minimum ofjA* andjB* , denoted
j* , controls the conductance.

Fig. 6 NAL NAR NBL NBR jA* jB* j*

~a! 2 3 3 2 j3 uj4u 7l /1
~b! 1 4 4 1 j2 uj5u 7l /3
~c! 0 5 5 0 j1 uj6u 7l /5
01420
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smaller one of the localization lengths in the chiral and st
dard symmetry classes!. For our calculations we estimat
that, with the Fermi velocity given byvF'2 in units of the
longitudinal mean hopping amplitude,«c'1023 for N55
and N56. The largest energy we consider in our calcu
tions, «51022, is well inside the standard orthogonal clas
see Fig. 10. For that largest energy, the four or three cur
of ^ ln g& vs L/ l in Figs. 7 and 8, respectively, that correspo
to the different boundary conditions are indistinguishab
The same conclusion can be reached from Fig. 9, from wh
one can infer the Lyapunov exponents

1

j
52

1

2

d^ ln g&
dL

, L@Nl, ~2.18!

or from Fig. 10, where we showed the energy dependenc
^ ln g& at a fixed length. This agrees with the convention
understanding that, in the absence of the sublattice sym
try, the localization length is an intrinsic property of the wir
and hence boundary independent.

The two other energies we considered («51026 and
1029) are both much smaller than«c , i.e., well inside the
chiral class. For short lengths, we see the samestrongdepen-
dence on boundary conditions that was predicted for the z
modes in the preceding sections. A quantitative verificat
of the predictions is found from Fig. 9, where the resca
Lyapunov exponents

2
~N11!l

2

d^ ln g&
dL

take even integer values for oddN and odd integer values fo
evenN for shortL ~but still L@Nl!, in agreement with Eq.
e

d
-
e

-
y

t
-

FIG. 7. Dependence on th
wire lengthL, L always even, of
^ ln g& for a quantum wire with
random hopping only, connecte
to the reservoirs via single
channel ideal leads, and with th
boundary conditions specified in
Fig. 5. The quantum wire isN
55 sites wide. The curves repre
sent different values of the energ
« and different choices for the
boundary conditions at the lef
and right ends of the wire, as de
picted in Fig. 5.
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~2.4! with b51. For larger lengths, however, the dependen
on the boundary conditions is lifted, and the Lyapunov e
ponents are the same for all boundary conditions consid
as is illustrated in Fig. 9 at energy«51029. For a suffi-
ciently large length of the wire and upon decreasing the
ergy, 2(N11)ld^ ln g&/2dL approaches 0 forN55 and 1
for N56, irrespective of the boundary conditions. Aga
this is well illustrated by Fig. 9 at energy«51029. Alterna-
tively, for N55 ~oddN) and energy«51029, ^ ln g& in Figs.

FIG. 8. Dependence on the wire lengthL, L always even, of
^ ln g& for a quantum wire with random hopping only, connected
the reservoirs via single-channel ideal leads, and with the boun
conditions specified in Fig. 6. The quantum wire isN56 sites wide.
The curves represent different values of the energy« and different
choices for the boundary conditions at the left and right ends of
wire as depicted in Fig. 6.
01420
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7~b! and 7~c! is found to depend linearly on length for sma
L with a boundary-condition-dependent slope, while^ ln g&
has a curvature consistent with a (L/Nl)1/2 dependence, as i
appropriate for critical conductance statistics. For energ«
51026 the L dependence of̂ln g& is linear for largeL, but
with a localization length that is significantly larger than f
«51022. Such an enhanced localization length is charac
istic of the crossover between the chiral and standard cla
for a quantum wire without boundaries.54 For N56 ~evenN)
and energies«51029, 1026, ^ ln g& in Figs. 8~a!–8~c! de-
creases linearly with length, but with different slopes f
small and largeL. These slopes correspond to exponen
localization controlled by a boundary-condition-depend
zero mode and to exponential localization in the chiral
thogonal class~or, strictly speaking, the crossover betwe
the chiral and standard orthogonal classes! in an infinite
wire, respectively. ~Note, however, the large energy
dependent crossover lengths and the nonmonotonous le
dependence of the Lyapunov exponents at intermed
length scales in Figs. 7–10.! Hence, from the numerical cal
culations we conclude that for a finite energy, the Lyapun

ry

e

FIG. 9. Lyapunov exponentsd^ ln g&/dL for the curves shown in
Figs. 7~upper panel! and 8~lower panel!.
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ZERO MODES IN THE RANDOM HOPPING MODEL PHYSICAL REVIEW B66, 014204 ~2002!
exponents lose their dependence on the boundary condi
if the wire is sufficiently long. The typical conductance itse
exp(̂ ln g&), retains astrong dependence on the bounda
conditions for sufficiently long wires through its exponent
prefactor as is illustrated by Figs. 7 and 8. However,
slope of ^ ln g& as a function ofL/Nl in the regimeL/Nl
@1 is independent of the boundary conditions.

The length scales where the Lyapunov exponents beg
cross over from the boundary-condition-dependent va
characteristic of the zero modes to the ‘‘intrinsic’’~smallest!
Lyapunov exponent can be estimated as the length sc
where the Thouless energy«Th (L)5g(L)D(L) is equal to
the energy «, with g(L);exp(22L/ujnu) the typical
boundary-dependent dimensionless conductance of the
(n51, . . . ,N) andD(L)5\vF /NL the mean level spacing
of a wire with lengthL. Hence,

L«,n;ujnu lnS \vF

NL«,n« D , n51, . . . ,N. ~2.19!

No useful crossover length can be defined for the bound
condition of Fig. 5~d!, where the zero-energy conductance

FIG. 10. Crossover as a function of energy for a fixed len
L520l of the wire of ^ ln g& for N55 ~upper panel! and N56
~lower panel!. All traces saturate to differentfinite values at very
low energies except for trace~d! of the upper panel for which the
conductance vanishes at the band center.
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the wire is zero@see Table I and the downturn of the trac
with energies «51026,1029 for sufficiently small wire
lengths in Fig. 7~d!#. Equation~2.19! implies that the shorter
ujnu disappear at shorter wire lengths than the largerujnu. All
dependence on boundary conditions is removed and only
smallest of the Lyapunov exponents survives for leng
larger than the second largest of theL«,n , i.e., beyondL«

[L«,(N21)/2 for N odd and beyondL«[L«,(N22)/2 for N
even. This is well illustrated in Figs. 9, where the short
localization length~corresponding to the highest Lyapuno
exponent! disappears first, to be followed by the secon
shortest localization length at a wire size that is roughly
factor 2 (N55) or 5/3 (N56) larger ~see Tables I and II,
respectively!.

To summarize, while the exponential decay length of
conductance depends on the boundary conditions for«50
even in the limitL→`, the exponential decay of the condu
tance is governed by the ‘‘intrinsic’’~largest! localization
length j for any finite energy« different from zero. In this
sense, the remarkable dependence of the zero-mode loca
tion lengths and of the zero-energy conductance on boun
conditions can be considered as an anomaly belonging to
case of energy being exactly equal to zero, not as somet
representative of the thermodynamic limit of the rando
hopping model.

III. HIGHER DIMENSIONAL EXAMPLES

The examples we have discussed so far pertain to a qu
one-dimensional geometry. We would like to close with e
amples of lattices that are extended in two or more dim
sions. For the three lattices shown in Fig. 11, three differ
scenarios apply to the zero-energy conductance between
left and right leads.

For the lattice of Fig. 11~a!, the conductance decays e
ponentially with a decay length of the order of the mean f
path of the system as can be seen by direct simulation of
conductance or by constructing recursively zero modes
each sublattices. In the latter case, a seed value is assi
first to the leftmost~rightmost! black ~white! site having a
pair of white ~black! nearest-neighbor sites in the directio
orthogonal to the leads. The Schro¨dinger equation is then
solved on the white~black! sites moving to the right~left!
column by column. The zero mode on black sites is ex
nentially localized near the right contact and the zero mo
on white sites is exponentially localized near the left cont
with a localization length of the order of the mean free pa
The exponentially small conductance at the band cente
found in all ‘‘diamondlike’’ structures of the form of Fig
11~a!, irrespective of dimensionality and disorder strength

One possible generalization of the diamondlike geome
of Fig. 11~a! is to couple sites on the lower left and upp
right edges of the diamond to the reservoirs. In this case,
number of zero-modes scales with the width of the leads.
each seed on one edge corresponds a zero mode exp
tially localized about itsvis-á-vis on the opposite edge. Lin
ear superposition of these zero modes yield traveling wa
on the edges that are exponentially localized in the direc

h
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orthogonal to the edges. This is reminiscent of the Call
Harvey effect1 in field theory.

For the ‘‘square’’ lattice of Fig. 11~c!, the conductance is
zero, as this geometry does not allow a zero mode on
black sites according to the arguments of Sec. II B.~Recall
that the condition of quasi-one-dimensionality is not need
to establish the conditions for the existence of zero mod!

Finally, the lattice of Fig. 11~b! has zero modes on whit
sites and on black sites that are believed to be critical~i.e.,
not exponentially localized!. This is not surprising in a quasi
one-dimensional geometry for which the lattice only exten
in the longitudinal direction, as can be seen using the a
ments of Sec. II B. More surprising is that the critical natu
of the zero mode seems not to depend on the transve
extension. Verge´s in Ref. 55 has studied numerically the co
ductance distribution in the geometry of Fig. 11~b! for a
square lattice made up of up to 7993799 sites. His conclu-
sion is that the probability distribution in the geometry

FIG. 11. Three examples of two-dimensional lattices that h
different size dependencies of the conductance, see text.
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Fig. 11~b! is best fitted by the conductance distribution of
thick quantum wire with an odd numberN of channels de-
rived in Ref. 54. He thus concludes that the critical ze
mode in the two-dimensional geometry of Fig. 11~b! is
quasi-one-dimensional in nature.

IV. CONCLUSIONS

In this paper we have investigated the dependence
boundary conditions of localization properties of the rand
hopping problem at the band center and its vicinity. At fin
energies, localization properties are intrinsic, i.e., indep
dent of boundary conditions in the thermodynamic limit. R
markably, this is not true anymore precisely at the band c
ter where both the transmission probability of a disorde
region connected to reservoirs by single channel leads
the spatial decay of zero modes in closed systems are hi
sensitive to the choice of boundary conditions even as
thermodynamic limit is taken. This sensitivity to bounda
conditions was quantified analytically in quasi-on
dimensional geometries. In particular, the conditions un
which zero modes are critical were given. In higher dime
sions, one must rely on numerical simulations to study loc
ization properties of zero modes. However, the task is so
how simplified by an explicit recursive construction of ze
modes that we showed applies to a large class of geomet
It is an interesting open problem to determine conditions
criticality of zero-modes beyond quasi-one-dimensional
ometries and whether a field-theoretical description of intr
sic critical properties in terms of critical zero modes in t
spirit of Refs. 44, 36, 39, and 37 applies to the tw
dimensional random hopping problem.
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