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Recently, the smoothed correlation between the density of eigenvalues of Hermitian random ma-
trices was found to be universal, that is, independent of the probability distribution from which the
random matrices are taken. We study this universal correlation numerically by ensemble averaging,
using the Monte Carlo sampling method. Although the density of eigenvalues and the “bare” cor-
relation between the density of eigenvalues are certainly not universal, we find that the smoothed
correlation indeed shows a universal behavior. The orthogonal and the symplectic ensembles are
also studied numerically. The smoothed correlation is shown to be universal in these cases.

PACS number(s): 05.40.+j, 05.45.+b

‘We examine numerically the universal behavior of the
correlation between the density of eigenvalues of random
matrices discovered recently by Brézin and Zee [1-3]. Let
¢ be N x N Hermitian matrices taken from the proba-
bility distribution

P($) = 5 expl-NTV (4], M

where V(¢) is an even polynomial of ¢. Namely, the
unitary ensemble is considered here. The density of the
eigenvalues p(A) and the correlation of the eigenvalues
p(p,v) are defined respectively by

1 N
p(A) = <z‘v‘ _Zé(/\ - /\i)>, (2)

1 & 1 &
p(#ﬂ/)=<Nzé(u—/\i)-ﬁz5(v—/\i)>, 3)

where () is an ensemble average and A; denotes the ith
eigenvalue of ¢. The connected part of the correlation
function is defined by

pe(p,v) = p(p,v) — p()p(v). (4)

The density p(A) has long been known to depend in
detail on the distribution P(¢), i.e., V(¢) [4], as might
be expected. Brézin and Zee [1] proposed an ansatz for
the asymptotic behavior of the orthogonal polynomials
for any V and as a result were able to determine the
connected correlation function in the large IV limit. They
found that p.(u, V) oscillates wildly as a function of y and
v and depends on V in detail, again as might be expected.
But perhaps surprisingly, they found that when these
oscillations were smoothed over, the smoothed connected
correlation p_™°°th(; 1) had the universal form

1
pcsmooth(u,y) — _mf(p,/a,y/a), (5)
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where the universal function

1 (1 —zy)

f(wy y) (.’B _ y)2 /(1 — 1‘2)(1 — '!/2)
did not depend on V. Here a denotes half of the width of
the spectrum of eigenvalues. [For simplicity, we assume
here that V(¢) is an even polynomial in ¢ and so the
spectrum is symmetric about the origin.] The width of
the spectrum depends in a rather complicated way on V'
[4].

More precisely, the smoothed connected correlation
pS™o°th (1, 1) is defined as the connected correlation av-
eraged over intervals dp and dv much less than O(1)
but larger than O(1/N), so that Eq. (5) is valid where
|u—v|,|£a—u|, and | £ a — v| are larger than O(1/N).
The universality of the function f has since been verified
by Beenakker [5], by Eynard [6], and by Forrester et al.
[7] using other methods.

(6)
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FIG. 1. Density of the eigenvalues for the probability dis-
tribution (1). The parameters (v2,v4,ve) are (a) (0.46, 0.25,
0.21), (b) (0.87, 0.36, 0.68), (c) (—0.70, —0.89, 0.91), (d)
(5.77, —5.37, 5.62), (e) (3.32, —3.72, 5.20), and (f) (0.0271,
—4.63, 2.55).
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FIG. 2. Smoothed connected correlation
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where z and y are the scaling variables. The parameters
(v2,v4,ve) are the same as in Fig. 1. The solid line repre-
sents Eq. (5).

In this paper we study numerically the correlation be-
tween the density of eigenvalues of large random matri-
ces. The purpose of this study consists of (i) verifying
the conclusion of Brézin and Zee and (ii) analyzing those
situations not tractable numerically.

We will take V(¢) to be

V($) = v2¢* + vad* + v60°. (7

We choose the matrix size N to be 100 and performed the
ensemble average by Monte Carlo (MC) method with im-
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FIG. 3. Smoothed connected correlation
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where =z and y are the scaling variables. The parameters
(v2,v4,ve) are the same as in Fig. 1. The solid line repre-
sents Eq. (5).
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FIG. 4. Smoothed connected correlations
ﬂ(:l) - y)ZﬁCsmooth(m’ y)|z=0

for (a) orthogonal (8=1), (b) unitary (8=2), and (c) symplec-
tic (8=4) ensembles, where = and y are the scaling variables.
The unitary ensemble is plotted for comparison to other en-
sembles. The parameters (vz,vs, ve) are (0.0757, —2.24, 6.15)
and the matrix size NV is 100. The solid line represents Eq. (9).

portance sampling. In the calculation, 106 MC samples
are taken.

First, we calculate the density and the correlation for
three sets of vy, v4, and vg. The result for the density is
displayed in Fiig. 1, which shows clearly that it is not uni-
versal. The smoothed connected correlation function are
also not universal. Now let us multiply the smoothed con-
nected correlation by a? and express the result in terms
of the scaling variables * = p/a and y = v/a,
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FIG. 5. Smoothed connected correlations

Bz — y)2ﬁcsm°°th(z, Y)le=0.5

for (a) orthogonal (8=1), (b) unitary (8=2), and (c) symplec-
tic (8=4) ensembles, where z and y are the scaling variables.
The unitary ensemble is plotted for comparison to other en-
sembles. The parameters (vz,vs,v6) and N are the same as
in Fig. 4. The solid line represents Eq. (9).
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FIG. 6. Smoothed connected correlation

Bz ~ y)*p ™ (2, y)|a=0

for the probability distribution (10), where z and y are the
scaling variables. 3 is 1.5, the parameters (v2,v4,ve) are
(0.0757, —2.24, 6.15), and the matrix size N is 100. The
solid line represents Eq. (9).

ﬁcsmOOth(fL‘, y) — azpcsmOOth(ll«7 1/). (8)
Quite dramatically, all the curves now fall on the same
universal curve, as shown in Figs. 2 and 3. The numer-
ical errors grow near the edge of the spectra. We take
smoothing intervals §u and év to be around 0.25, which
satisfy the smoothing conditions. We estimate the error
bars to be the standard deviation of the results divided
into several parts. The error bars are of the MC sampling
since they decrease as 1/v/N.

Analytically, it is easiest to deal with Hermitian ma-
trices (unitary ensembles). Numerically, however, we can
easily treat the cases of real symmetric matrices (orthog-
onal ensembles) and quaternion-real, self-dual matrices
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FIG. 7. Smoothed connected correlation

ﬂ(l‘ - y)2ﬁcsm°0th(17 y) |w=0.5

for the probability distribution (10), where z and y are the
scaling variables. The parameters 3, (vz,v4,v6), and N are
the same as in Fig. 6. The solid line represents Eq. (9).
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FIG. 8. Density of the eigenvalues for the unitary ensemble
(B8=2) with the probability distribution (1). The parameters
(v2,v4,ve) are (0.0757, —2.24, 6.15). The matrix size N is
(a) 5, (b) 10, (c) 25, and (d) 100. The dashed line is the
analytical result in the large N limit [4].

(symplectic ensembles). Using the functional derivative
method Beenakker [5] obtained

pcsmooth(u,y) — “__1_“f(u/a,u/a), (9)

BN2r2q2
where 3 is 1, 2, and 4 for orthogonal, unitary, and sym-
plectic ensembles, respectively. It cannot be justified eas-
ily since there is no explicit procedure for smoothing.
Our numerical results presented in Figs. 4 and 5, how-
ever, support his prediction. Again, we choose §u and
év to be around 0.25. As for the 3 dependence, the MC
errors become large as 3 increases.
Indeed, random matrix models, as pointed out by
Dyson and others, have a gas analog. The distribution
of eigenvalues has the form

p(W)

1.5

u

FIG. 9. Density of the eigenvalues for the symplectic en-
semble (3=4) with the probability distribution (1). The pa-
rameters (vz,va,ve) are the same as in Fig. 8. The matrix
size N is (a) 5, (b) 10, (c) 25, and (d) 100. The dashed line
is the analytical result in the large N limit [4].
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FIG. 11. Connected correlations BN?(z — ¥)?pe(z, y)|e=o
for the symplectic ensemble (8=4) with the probability dis-
tribution (1). The parameters (vz,va4,ve) are the same as in
Fig. 8. The matrix size N is (a) 5, (b) 10, and (c) 25 (data out-
side y = +0.3 are omitted). The solid line represents Eq. (9).

FIG. 10. Connected correlations SN2(z — y)?fc(z,¥)|s=0
for the unitary ensemble (3=2) with the probability distribu-
tion (1). The parameters (v, v4, ve) are the same as in Fig. 8.
The matrix size N is (a) 5, (b) 10, and (c) 25. The solid line

represents Eq. (9).
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- FIG. 12. Smoothed
connected correlation

(2 _ y)2ﬁcsmooth(z’y)lz=0 for
the probability distribu-
tion (11), where z and y are the
scaling variables. The param-
eters (v2,va, Ve, W2, Was, We) are
(a) (1.23, 7.90, 0.290, —0.385,
2.57, 2.80), (b) (3.19, —5.35,
5.66, —6.28, —9.55, 6.77) and
(c) (7.45, 5.67, 8.94, 3.14,
—0.0231, 8.75). The solid line
represents Eq. (5).
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P(A,A2,...,AN)

- % exp (—N SVA) Y mlx - ,\,-1) . (10)

1<J

The variables \; may then be interpreted as the position
of the ith gas molecule on the real axis. We can study
the density and the density-density correlation of this
gas without necessarily restricting to the values 8 =1, 2,
and 4. For general (3, however, we are not aware of any
correspondence to the matrix models. In Figs. 6 and 7,
we show the results for 8 = 1.5, which support Eq. (9).
Numerically, we can also study the approach to the
large IV limit. We study the density and the correlation
for some relatively small values of N. Analytic results
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FIG. 13. Smoothed connected correlation

(1 — v)%p ™ (1, 1) =0 for the Wigner class distribution.
The solid line represents Eq. (9).
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for such small N are evidently difficult, if not impossible,
to obtain. We calculate the eigenvalue density and cor-
relations for N=5, 10, 25, and 100. We performed the
MC calculations for =1, 2, and 4 and the results for
the density are displayed in Figs. 8 and 9, for =2 and
4, respectively. They show that, as N becomes large,
the oscillation amplitudes of the eigenvalue density de-
crease (including the case § = 1). The oscillations seem
to vanish in the large N limit, as is known analytically.
Concerning the 8 dependence, the oscillations become
large as B increases (including the case 8 = 1). There-
fore, when considering the large IV limit, we may have to
choose larger N for =4 to have the same accuracy as
for =1 or 2.

The results for the connected correlations are plotted
in Figs. 10 and 11 for =2 and 4, respectively. They show

0.00015 . f ———r
0.0001 |
1
1
=
2 0.00005 |
2
£
8 0 o8 a-s
g
)
a
a
= -0.00005 [
|
3 1
=
-0.0001 1
-0.00015 + = . . . L
-3 2 1 0 1 2 3
A%
FIG. 14. Smoothed connected correlation
(1 — v)%p 2™ (4, V)| =1 for the Wigner class distribution.

The solid line represents Eq. (9).
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oscillatory behavior for all N examined. The oscillation
amplitude remains finite, except the factor N2 (includ-
ing the case B = 1). As for particular case 3=2, the os-
cillation period is predicted to be of the order N~! from
the orthogonal polynomial method. [1] Our results shown
in Fig. 10 are consistent with the prediction. The oscilla-
tions become large as [ increases. It may be interesting
to study and understand these oscillations analytically.

Brézin and Zee [2] have also considered the more gen-
eral probability distribution

P($) = S exp{-NTV($) - [TW ()} (1)

with polynomials of the Hermitian matrices V(¢) and
W(¢). They showed that in the large N limit the distri-
bution of eigenvalues for the ensemble with the distribu-
tion (11) can be mapped onto that for the ensemble with
the distribution (1).

We verify this universal behavior numerically. We take

V(¢) and W(¢) to

V($) = vagp? + vad® + vee®,
W(¢) = wag? + wad* + wed®. (12)

Again, we choose N to be 100 and take 105 MC sam-
ples. We calculate for three sets of these parameters.
The results are shown in Fig. 12. It supports the univer-
sal correlation (5), although the accuracy is not as good
as the distribution (1).

The density of the eigenvalue is separated into two
parts in some parameter region. If only quadratic and
quartic terms of V' in the distribution (1) are consid-
ered, the separation occurs when vy, < —24/v, for the

unitary ensemble [8]. Moreover, within one region, the
connected correlations of the eigenvalues was shown to
obey the universal behavior. The numerical calculations
in this parameter region agree with the theoretical pre-
diction to the extent that they agreed in the previous
nonseparated cases.

Brézin and Zee [3] have also discussed the correlation
for what they called the Wigner class [9]. Here the ran-
dom matrices are constructed by letting each element of
the matrix be taken from a random distribution. As an
example, we may consider a random matrix whose ele-
ments are chosen to be either +1/\/1V or —1/\/N, sub-
ject to the requirement that the matrix is real symmetric.
The density of eigenvalues is known to obey semicircle
law. The correlation function for this class of random
matrices was shown to be universal, that is, independent
of the random distribution, by a diagrammatic method.
Here we study this universality numerically. The results
are shown in Figs. 13 and 14. The smoothing intervals du
and dv are 0.2. Again, the numerical results do not follow
the universal correlation (9) near the edge as expected.
The MC errors are less than those of the previous non-
Wigner class. Quite probably, the connected correlations
near the edge are positive.
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