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Introduction

Let X be a smooth, proper algebraic variety over an algebraically aoseo.

field k, and let L be an ample, projectively normal invertible sheaf on X. <pL:

X-^Pk denotes the embedding of X corresponding to the complete linear system

＼L＼,and C denotes the affine cone over <pL(X). We denote by Dc the deforma-

tion functor of C from the category of artin local ^-algebras with residue field

k to the category of sets. Then since the affine ring of C has a natural grad-

ing, the &-vector space Tk=Z)c(&[e]) of first order deformations of C has a

natural graded structure

Tb= c Th(v).
vez

When dim X^2, Schlessinger [6] showed that if L is sufficientlyample on X,

then Th(v)=Q for all y^O. In the case of dimZ=l, Mumford [2] proved that

Tlc(v)=0 for all vi=0, if X is non-hypereliiptic of genus^S and if L is sufficiently

ample on X. Moreover, he showed that if X and L are respectively the rational

curve P1 and the invertible sheaf OP＼(d)for rf^3, then Th(v)=0 for all v^―1

and dim* Th(―l)=2d― 4. Applying Mumford's techniques to the case of elliptic

curves, Pinkham [3] showed that if X is an ellipticcurve and L is an invertible

sheaf on X of degree d^5, then Tb(v)=Q for v>0; dim* Tfc(0)= l, dimfcT{;(―1)

= d and Tc(v)'-=0 for v^―2. Moreover, he gave a complete description of Tc

in the following cases:

1) X=P* and L=OPi(d) for d^3,

2) X is the ellipticcurve Z30+Zi+Zl=0 in P2 and L=OP2(2)＼x.

In this paper we shall compute the dimension of the ^-vector space of first

order deformations of the affine cone C over a projectively normal hyperelliptic

curve of genus g^2. In the case g^3, our results are only partial. Our main

theorem is the following : let the characteristicof k be different from 2 and let
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X be a hyperellipticcurve of genus g^2 whose function field K(X)=k(x, y) is

the extension of k(x) determined by the equation

yz―x(x ―l)(x―a])(x―a2) ■■■(*―a2,_i),

where au a2) ･･･,a2g-i are 2g―l distinctelements of k different from 0 and 1.

Let 7t: X―>PX be the morphism corresponding to the inclusion map k(x)-^k(x, y)

and let L be the sheaf OxidQ^) where Q^ is the branch point ^-^(O, 1)) on X.

If d^ Max {4£-3, 2g+3}, then

i) Tb=m-mTb(o),

2) dimkTh(-D^(g-l)g(g+l) and dim, TK0)=4^-3.

In the case g~2, we get more explicitresults: if d^J, then

i) n=TK-Dcn(o),

2) dimkTh(-l)=6 and dimkTb(0)=5,

and if d=6 (resp. 5), then

i) n=n(-2)en(-Dcn(0),

2) dimkTb(-2)=l (resp. 2), dim* TK-1)=6 and dim* Tfc(0)=5.

In particular, in the cases d―5, 6 and 7, we will give a k-basisfor Tb explicitly.

The author would like to thank Dr. T. Sekiguchi for his kind suggestions

useful for Drovine Prooosition 1.4.

Notation.

Throughout this paper we will use the following notation without further

warning.

We denote by k an algebraically closed fieldand by Fn the n-dimensional

projective space over k. Moreover, we denote by X a smooth, proper algebraic

variety over k and by L an ample, projectively normal invertible sheaf on X.

<pL: X-*Pn denotes the embedding of X corresponding to the complete linear

system ＼L＼and C denotes the affine cone over <pL(X). In this paper <pL(X) is

always identified with X through <pL. We denote by Jlx the normal sheaf of X,

by &x the tangent sheaf of X and by Qx the canonical sheaf on X. For any

Ox-module F and any v^Z, we write F(v)―F(2)LV. X(X, F) denotes the Euler

characteristicof the sheaf F on X and hl{X, F) denotes the dimension of the k-

vector space H%X, F). For a scheme C over a fieldK, we denote by Th the

/T-vector soace of firstorder deformations of C.
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1. First order deformations of cones over projectively normal curves.

We firstrecall the natural grading on Txc due to Schlessinger [6] in terms

of cohomology on X. We have the standard exact sequences of Ox-modules:

0―>OX―≫LR<n+1>―>2>n|x―>0 (1.1)

and

0 > ETv > 2Vr,I v ->m v > 0 . (1.2)

Then Schlessingershowed that the followingsequence is exact.

S H＼X, Lv+1Tin+l) ―> Jl H＼x, mx{v)) -^ n ―> o

This gives a natural grading on Th by

Th(v)=coker (H＼X, (L"+1)R<*+1>)-^ H＼X, mx(v))). (1.3)

In thissection,we are concerned with the 1-demensional case,g and d are

respectivelythe genus of X and the degree of L. The following remark is due

to Mumford [21.

Remark 1.1. If the degree d of L Is larger than 4^―4, then we have

Tb(v)=0 for all y>0.

In the case v=0, using the standard exact sequences (1.1) and (1.2) we can

compute the dimension of the ^-vector space T]c(0).

Proposition 1.2. // g^2 and d~^2g―l, then we get dinu Th(0)=4g―3.

Proof. The exact sequences (1.1) and (1.2)induce the long exact sequences

0 ―> H＼OX) ―> HXL°<n+1>) ―> H＼<ErPn|x) ―> H＼OX) ―>

HKL*in+1>) ―■≫i/^S-pn Ix) "^ 0

and

0 ― //°(3-x)―> //0(£TFn|x) ―* H≫(3ZX)―≫ //X^x) ―* im*- Ix) ―

HKmx)-^Q,

respectively. Two equalitiesi/°(2"x)=0 and H1(L(BCn+1))―Q come from our as-

sumption g'^2 and rf^2^―1. Since the dimension of Im/ is (n + 1)2―1, we get

h°(Jlx)=(n + iy2'+4g―4. The formula (1.3)leads us to the following commutative

diagram:
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* H＼mx) *- Th(O) ** 0

#a(a>≫|x)

such that the row is exact and h is injective where / and h are the maps in

the above long exact sequences. Therefore we get

dim, TJ;(0)=/20(^T)-dim, Im f=4e-3 . Q. E. D.

Now we recall Mumford's results in [2]. Let pt: XXX-+X be the i-th

projection for i= 1, 2, and let J be the diagonal of XxX. Mumford showed that

TKv)=coker (H°(X, i?^2*[/>f(i2x(g)/^](g)//+1) ―>

H＼X, R1p^LpUQxRL-')ROx,x{2A)-]RL^)),

for all yeZ. If d^2g+l, then R°p2*LPf(Ox<S>L-1)l=Q and R0p2*Lpt(Q_xRL-1)

R0xxx(2^)]=O, hence using the Leray spectral sequence for pz we get

Th(v)=cokev(H＼XxX, pf(QxRL-1)Rptlv+1)
°^

H＼XXX, pKRxRL^)RptlS+1ROXy,x{2m,

for nil ,J(=Z

Lemma 1.3. // g^l and d^2g+l, then a(v) is injective for all v^―l,

where a(v) is the map in the above formula.

Proof. It sufficesto check that the composite of the maps

H°(X, (L-≫)R(n+1))― > H°(X, XPn＼xRLtl) ―> H＼X, mx(v))

is injective for all v^ ―1. The standard exact sequences (1.1) and (1.2) induce

exact sequences

H＼X, V) ―> H＼X, (Lv+Tcn+1>) ―> H＼X, SPn |
XRLV)

and

H＼X, £Tx(v))―> H＼X, ZPn |XRV) ―> H＼X, mx(v)),

respectively. If ^1 and d~^2g+l, we get H＼X, £T^(y))=0 for all y^-1. On

the other hand, for any vS~-1 we have H°(X, L")=Q. Hence the map

H＼X, (Lv+T(n+1)) ―> H°(X, mx(v))

is iniective. Q. E. D.
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Manipulating the Leray spectral sequence for pu we can give an upper

bound for dim^ Tc(―1) when X is hypereiliptic.

Proposition 1.4. // X is a hypereiliptic curve of genus g^2 and if the

degree d of L is larger than or equal to 3g―1, then we have

In particular, if g-~2 and d^o then we get

dim*7fc(-l)=6.

Proof. Let Oj be the cokernel of the natural inclusion map OXxx(―A)~*

Ojxj. For any ugZ we have an exact sequence of C^xx-modules

0 ―> pKOx^L-^Odv-m ―> p^QxRL'l)RO{vA) ―>

p?(Qx(3L-1)RcXvJ)(30j ―> 0. (1.4)

Using this exact sequence (1.4)inductively, we see

X(XxX, pKRxRL^)(g)0{gj)=l(XxX, pf(QxRL-1))+

%X(XXX, pKQxRL-l)RO{vA)ROA).

Since we have

=H＼X, Q^^L-1),

we get

1{XXX, pKQx^L-^OivJ^Oj^KX, Q^L-1)

= -2(g-＼)v+g-d-l (1.5)

for all ySil. Since the Kiinneth formula shows

1{XXX, pWx^L-^^g-lXd + l-g),

combining this with (1.5) we get

X(XXX, ^f(i2x(8)L-1)0O(^))=-(^-l)^-+l)-(rf + l-^) ･

On the other hand, we have

X(XxX, pWxRL-1)RO(gA))=-h＼XxX, pKQ*RL-1)RO(gA)).

Indeed, p2*£p*(Q'xRL~l)RO(gA)~]―{),because by the assumption d^ig―l one sees

that for any closed point x of X

H＼p~2Kx),{pKQx<2)L-1)RcKgA))＼p.-Hx>)=H＼X, QxRL-^Ox(gx))^.
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Hence we get

H＼XxX, pf(QxRL-1)RO(g4))=H＼X, /≫2*[/)f(^0L-1)(g)O(^J)])=O.

Moreover, the support of R1 pi*[_p*(Qx<S>L~1)(8)O(gd)1is a finite set, because we

have

dimkR1p1*£p?(QxRL-1)(g)0(gd)-]x(%>(Ox,x/mx,x)=

h＼PT＼x),{pKQxRL-v)RO(gA))＼plu*>)=h}{X, Ox(gx))=

(1 if x is a branch point for the double

covering re: X-―> PK
0 otherwise.

Therefore we get

H＼X, Rlp^lpKQxRL-')RO{gA)-])={).

Let us consider the Leray spectral sequence

e＼-*=h*(x, R*p*＼:pKQxRL-i)Ro(gm =>

H*>+KXXX, pf(Qx0L-i)^O(gJ)) = Ep+q

for px and pfiQx^L-^OigJ). Since X is 1-dimensional we get El-°=E°2-2=0.

Hence by the exact sequence of terms of low degree we have £2=0. Since

Ei=0 for i―0 or i^2, we get

X(XxX, pKRxRL-')RQ{gA))=-h＼XxX, pt(QxRL-1)RO(g4)).

Now the exact sequence (1.4)induces the following exact sequence:

H＼XxX, pf(Qx<8>L-1)<8)O(vA)<8)OA)―*H＼XxX, pfiQx^L-^Odv-DJ)) ―>

H＼XxX, p?(QxRL-1)RO(yA)).

Since for any y^l

H°(XxX, pf(i3x(g)L-1)(g)(?(vJ)(^Oj)=//0(Z,fi1i-"(g)L-1)=0,

we get

h＼XxX, pf(QxRL-1)(g)O(2J))^hXXxX, pKD^L-^OigJ)).

By Lemma 1.3, we see

dimkTU-l)=h＼XxX, p*{QxRL-')^O{2A))-h＼XxX, pKOxR^1))

S-KXxX, pXQxRL-1)Ro(gA))-hKX, Q&L-^Cg-Dgig+l).

If g―2 and d^5, then the above inequality is obviously an equality and wefget

dimkTb(-l)=6. Q.E.D.
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2. The proof of Tlc(―2)=Q using the equations defining hyperelliptic

curves.

In this section, first,when a homogeneous ideal / of a polynomial ring P

and its generators are explicitly given, a natural grading on the space Th of

first order deformations of C=Spec P/I is defined. Specifically,let P=

K＼_Xa,Xlf ■■■, Xn~]be a polynomial ring over a fieldK, and let IdP be an idea!

generated by homogeneous elements ft(l^i^N) of degree di. We set B―P/I

and C=Spec B. Then we will apply the definition of a natural grading on Th

obtained bv Pinkham T31 to the above case.

Remark 2.1. Let R={(ru ―,rN)^PN＼
N

rifi―ty be the relation P-moduIe

for fu ･･･,fN and let R,, ･･･, RM be a system of generators of the P-module R

For a fixed iV-tuple (gu ■■■, gN)^PN, a map 0' from I to B defined by
N

i=

N2
hift

higi+I with hi, ･･･, hN^P is well-defined if and only if Rj'＼gu ･･･,gN)

=0 mod/ for all /=!, ―, M In this case, a homomorphism d: I/P―≫B of B

iV N
modules is determined by 2 hifi+P^^htgi+I, and any element of HomB(///2, B)

is given in thismanner.

Now we introduce a grading for the 5-module HomB(///2,B).

Definition 2.2. Let us take 0eHoms(///2, B) such that 6{fiJrP)=giJrI

with homogeneous elements gi for all i―1, ･･･, N. Now we set pii―+ oo if

^£/ and fii―deggi if gi$L Then (/i1?･･･, //jv)depends only on d and does

not depend on the choice of the set {gi} of homogeneous elements. We grade

elements of Ylom.B{I/PB) as follows: the above element d is homogeneous of

degree v if jii―v+di or +00 for any i=l, ■■･,N. Then v depends only on 6

and does not depend on the choice of the system {/*} of homogeneous generators

of the ideal /. This defines a structure of a graded ^-module on Homs(///2, B).

Remark 2.3. Let D be the 5-submodule of HomB(///2, B) generated by the

homomorphisms dw, d^, ･･■,d^ of ^-modules where den ' I/P-*B is defined

by sending h+P-^dh/dXi+I with Ae/ for all 1=0, 1, ･･･,n. Then we have the

exact sequence of A"-vector spaces ([5]):

0

0 ―> d ―> HomB(///2? B) ―> Tb ―> 0. (2.1)

Since the den are homogeneous of degree ―1, the above exact sequence (2.1)

defines a natural grading on Th as follows:
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Definition 2.4. For any yeZ, we denote by Tlc{v) the image of the v-th

graded piece of HomB(///2, B) by the homoraorphism 0 in (2.1). This gives a

grading on Tlc.

By this definition we see easily:

Remark 2.5. If d=Max＼dAi= 1, ･■■.N). then we get Th(v)―-0for allv<― d.

Remark 2.6 This grading is of course the same one which was obtained

by SchSessingerin the projectivelynormal case and which was described in

section1.

Henceforth we specializeourselves to the situationwhere C is the affine

cone over a projectivelynormal hyperellipticcurve X over k. We are in the

following situation:

Notation 2.7. Let the characteristic of k be different from 2, let X be a

hyperelliptic curve of genus g~^2 whose function field K(X)=k(x, y) is the

extension of k(x) determined by the equation

y2=x(x~l)(x―a1)(x―a2) ■■■(*―a2*-i),

where au a2, ■■■, azg-i are 2g―l distinct elements of k different from 0 and 1,

and let it: X-+P1 be the morphism corresponding to the inclusion map k(x)-+

k(x, y). L is the invertible sheaf Ox(dQ≪) with d^2g-＼-l where QK is the

branch point ^((O, 1)) on X. Since dimftF(Z, L)=d + l―g, we see easily that

y, xy, ■■■,xiu-2g-1')l21y, 1, x, - , xw/2] form a ^-basis of F(Z, L), where [ ] is

the Gauss symbol. <pL: X―>P'l~e―Pro]k[XQ, Xlt ･･･, Xd^g~] is the embedding

such that L^tptippa-gO)) and that the sections y, xy, ･･-, jcC(d-8e~1)/2:ij>,1, x, ･･-,

jj.cs/2]correspond to cp*(X0), <pt{Xi), ■■■,<pt(Xd^g) respectively under this isomor-

phism. Let / be the largest homogeneous ideal defining the subvariety <pL(X)

of pd-e wjtj1 tjie decomposition 7=0/,, into the direct sum of homogeneous

pieces. If we set

xCx ―lYx―aiYx―a*) ･･･(x ―aait-i)=

25 + 1
s

<=1

fliX" ,

then we have a2g+i=l and ai=a^a% ■■■o^-i^O.

Now we give a system of generators of the ideal /. If we apply the results

in [1] and [41 to our case, we see:

Remark 2.8. For any d'^2g-＼-2,the ideal / is generated by fz and dim* 72

= (d*-(2g+i)d + g*-g)/2.
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Proposition 2.9. Set fi^XiXj-X^X^ for O^i^d-g-2 and i+2:gj^

d―g, and set l―[_{d―2g―1)/2], // rf^2^+2, then the ideal I is generated by

(A) M0^i^l-2, z+2^7^/),

(B) Ml+l^i^d-g-2, i+2£j£d-g),

(C) /i/O^i^Z-1, l+2^j^d-g),

(D) ^m(0^m^f/-(2^+2)), w/igre /or 0£m^l-g-l

2g+l
gm = X0Xm- Xi +i 2 O-iXi+m+i+1,

i=l

/or l―g^m^l

2g +l

i=l-m + g + l

for 1+l^nvSl+g―l

l-m + g

2-1 di^i+m + l + 1 >

･zg+l l-m+g

gm ― Am-iXi X<i-g S fli^i+m-j+(i-(-l)ii)/2 Xi + i Zj Q-iXuin + l + 1 j
i=l-m + g +l i=l

and for lJrg^m^d―(2g-{-2)

2g +l

gm ― Xm-iXi Xd-g Z-i G.iXi+m-g+(.l-<.-l')d-)/2･

Proof. Trivial relations among y, xy, ■･■,x^d~28~1)l'21y,I, x, ■･■, xld'21

induce (A), (B) and (C). The equation y%= 2 aixi induces (D). It is easy to

check that the above polynomals are linearly independent and that the number

of them is equal to (d2―(2g+l)d + g2―g)/2. By Remark 2.8, they generate the

ideal /. ■ Q. E. D.

Applying Definition 2.4 to our case, we get the following:

Proposition 2.10. (0) // d^2g+2, then we have Th(v)=0 for all v^-3.

(I) Moreover if d^2g-＼-3, then we get Th(―2)―0.

Proof. If one combines Remark 2.8 with Remark 2.5,Tlc{v)Is zero for all

v^―3. In the proof of (1) we will use the notation in Proposition 2.9. Since

Rki:j―Xj-ifk,i+i―Xifk,j-^-Xkfi,j―0

for all QSk<i<j―l^d―g―l, we have the following relations:

a) for 0^i^/-2 and i+2£j^l

b) for l+l^i-^d-g-2 and i+2£j^d-g
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c) for 0^i^/-l and l+2Sj£d~g-l

Moreover, we have the relations

1 m, m +l― X.igm-＼-Xogm + x XofO: m +i + Xl + 1 Q-iJO, i+m + l + 2 ―
0

for all 0^m^l―g―2. Similarly, we get the relations T°m,m+1for all /―g―l^m

^d ―2g―3. We write an element r<^PN as

(r*/0^i^/-2, f+2^;^/; /+l^i^d-#-2, i+2^j^d-g;

where P=^[Z0, Z1; ･･･,Zd_J and N=(dz-(2g-{-l)d+g2-g)/2. For any relation

H=J}hijfij+'Z!lhmgm:=Q, we call h={hij) hm) the element of PN corresponding

to the relation H. Let rf,(resp. t°m,m+1)be the element of PN corresponding to

the relation i?f,j(resp. T%,,m+1).

For any element |eT^(―2), there exists a homogeneous element 0e

Hom^^//2, 5) of degree ―2 such that £is the image of 8 by the homomorphism

0 in (2.1) Since elements of HomB(I/P, B) are given by //-tuples of elements

of B, which we write as row vectors, we can think of 6 as (c^+Z; cm-＼-I)

whose entries are homogeneous of degree 0. If we set c=(cii; cm)^PN, then

by Remark 2.1 we get the following:

rj.ui+i^c^ mod/ for 0^i^/-2 and i+2^;^/,

rlj-'c^O modi for l+l^i^d-g-2 and z+2^;^rf-^,

rj_li(W-£c= O mod/ for 0^f^/-l and l+2^j^d-g-l,

tom,m+iJc= O mod/ for 0^m^rf-2^-3.

Hence we get Cu=0 and if d^2g+3 we have cm=0. Therefore 6 is the zero

map, that is to say, £=0. Hence we have Th(―2)=0.

By Remark 1.1 and Propositions 1.2,1.4 and 2.10, we get

Q.E.D

Theorem 2.11. Let the.notation be as in Notation 2.7. // <i^Max{4g-―3,

2gJr3}, then we have

1) Th=Tb(-lWTh(O),

2) dimkTb(-m(g―l)g(g + l) and dimkTb(0)=4g-3 .

In particular, if s=2 we get dim* TU―1)―6.
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Remark 2.12.In the case g^3, the estimate dimkTh(―l)£(g―l)g(g+l)

given in Theorem 2.11is not sharp. For example, if £=3 and d=9, 10, by

ralr.niflrtnnws tretdim ..T^(―T)=8<'24.

3. A &--basis for Th in the cases g―2 and d=5, 6, 7.

In this section we use the notation in Notation 2.7 and assume that g―2.

Looking at a &-basis for Tlc we compute its dimension in the cases d=5, 6.

3.1. A system of generators of the ideal I.

1) The case d―5. /is generated by fu f2 and f3, where

f^-XlXi+XsXl+atXiXl+a^XtXtXs+atXlXs+aiXlX^f^XJs-Xl,

f^X20X2-Xl-aiX2Xl-a3X1XI-a2X1X2X3-a1X21X3.

If we apply Proposition 2.9 to the cases g―2 and d―6, 7, we get the following:

2) The case d=6. /is generated by fu f2) f% and fit where

/i―XiX3―Xl, f2=XiXi―X2X3, fs^=X2Xi―X3,

fi―Xo―X3Xi―a 4X2X4―a3X1Xi―a2XiXs―a＼XxX2.

3) The case d―7. I is generated by f1} f2) ■■■,f8, where

/i―A2A4 X3, f2=X2X5 X3X4, f3:=XsX&―Xi, f4=X0X3―XiX2,

/5= AoA4 ―A1A3 ,f6=X0X5 X1Xi ,

f7^=Xl~~XiX5―aiX3X5―a3X2X5― 02^2^4―01^2-^3,

fs= AnX-i―Xs― CLa.Xa.Xr―(LuXzXf.―fl?J8As―fliXX .

We set N=3 if d=5 and N=(d'2-5d+2)/2 if d=6, 7. Let R={(g1, ･･■,gN)

N
<^PN＼ S£f/i=O} be the relation P-module, where P is the polynomial ring

k＼_X0,Xu ･･■,Xd.<^＼over k. Then elementary computations show the following

3.2. A system of generators of the relation P-module.

1) The case d―5. r2 and r2 form a system of generators of R, where

r^(X2, Xt+asXA+a.Xl X,), ra=(Xs, Xl-a.Xl-a^X,, Xt).

2) The case d=6. ru ■■･,r5 form a system of generators of R, where

ri=(Xt, -X2> X≫ 0), r.z=(X4> -Xu X2> 0),r,=(-/4, 0, 0, f,),

rd=(0. -ft, 0. f,),rB=(0. 0. -/4, A) .
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3) The case d=7. ru ･･･, riz form a system of generators of R, where

ri={Xit -Xit Xs, 0, ■-, 0), r^{X5, -XA, Xs, 0, - , 0),

ra=(X0, 0, 0, X3, -X2, 0, 0, 0), r<=(Xlt 0, 0, X4, -X%, 0, 0, 0),

rB=(0, Xo, 0, Xit 0, -X2, 0, 0), r6=(0, X1? 0, A'B, 0, -X3, 0, 0),

r7=(0, 0, Zo, 0, Z4, -Xa, 0, 0), r8=(0, 0, Xlf 0, Z5, -~-Z4,0, 0),

r9=(0, 0, 0, a3J5, fl^+a^s, fl2Z2+X5, -X3, Xo),

rlo=(a1Z2+a4X5, a2Xt+X5, 0, Xo, 0, 0, -X3, X2),

rn=(-a3X6, 0, a2X2+ZB! 0, Xo, 0, -Xt, X,),

r12=(0, -asXB, -axXi-a.iXt, 0, 0, Zo, -^6, AT4).

Let #: HomP//(///2, P/I)-*Tc be the homomorphism in (2.1). Elements of

Hoirtp/ j(I/P, P/I) are Af-tuples of elements of P/I, which we write as row

vectors. Then using Remark 1.1 and Definition 2.4, it is easy, albeit tedious, to

check the following:

3.3. A k-basic for TXG.

1) The case d=5. We have T£=T£(-2)cT£(-l)cT£(0). The images of

61 and d2 by 0 form a &-basis of T£(-2). The images of XQ6l7 xA, XA, XZ61;

XA, and 6S by 0 form a &-basis of T≪*(-l). The images of X0XA, X,XA,

XiXA, Zs^! and X0d3 by ^ form a £-basisof Th(0). Here

^=(-^2, 0, X3), <?2=(X!, 0, ~X2), 08=(O, Z2, -A-g+fl^l+a^Zs).

Therefore we get dimfeT^=13.

2) The case d=6. We have T^=T^(-2)cTi(-l)0T^(O). The image of

0! forms a &-basis of T^(-2). The images of XA, X2#x, Xs^, XA, 02 and

^8 form a fc-basisof TU.―1). The images of XiXj^,, X2X8^!, X＼0U XO02 and X06s

form a ^-basis of T£(0). Here

^=(0, 0, 0, 1), <?2=(X1, 0, -X8, 0),08=(X2, X8, 0, 0).

Therefore we get dimAT^=12.

3) The case d=7. We have Tb=Tb(-l)RTh(0). The images of ^, 0%,0t,

0if 65 and ds form a ^-basis of T&(―1). The images of X^2, Xa6>6,X2^,3>XA

and X4^6 form a £~basisof Tc(0). Here

^=(X8, 0, -X8, 0, Xlf 0, a4X6, -axX,), <?2=(0, X8, Xt, 0, 0, X,, XB, -a2X8),

^8=(0, ■･･, 0, Xo, X,), <?4=(0,■-, 0, X2, X8), <?6=(0,■-, 0, X8, X4),

0≪=(O. -. 0. X. X).
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Therefore we get dimfeT^―11

329

References

[ 1 ] Mumford, D., Varieties defined by quadratic equations, Questioni sulle varieta

algebriche, Corsi dal C.I.M.E., Edizioni Cremonese, Roma, (1969), 29-100.

[2] Mumford, D., A remark on the paper of M. Schlessinger, Rice Univ. Studies, 59

(1973), 113-117.

[ 3 ] Pinkham, H. C, Deformations of algebraic varieties with Gm action, Asterisque,

20 (1974), 1-131.

[4] Saint-Donat, B., Sur ies equations definissant une courbe algebrique, C.R. Acad.

Sci. Paris, 274 (1972), 324-327, 487-489.

[ 5 ] Schaps, M., Deformations of Cohen-Macaulay schemes of codimension 2 and non-

singular deformations of space curves, Amer. J.Math. 99 (4) (1977), 669-685.

[6] Schlessinger, M., On rigid singularities,Rice Univ. Studies, 59 (1973), 147-162.

Institute of Mathematics

University of Tsukuba

Ibaraki, Japan


