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Intreduction

Let X be a smooth, proper algebraic variety over an algebraically ciosea
field k, and let L be an ample, projectively normal invertible sheaf on X. ¢:
X—P? denotes the embedding of X corresponding to the complete linear system
[L], and C denotes the affine cone over ¢ (X). We denote by D¢ the deforma-
tion functor of C from the category of artin local k-algebras with residue field
k to the category of sets. Then since the affine ring of C has a natural grad-
ing, the k-vector space Ti=D.(k[e]) of first order deformations of C has a
natural graded structure

b= @ Tew) .

vezZ

When dim X=2, Schiessinger [6] showed that if L is sufficiently ample on X,
then TL(»)=0 for all v#0. In the case of dim X=1, Mumford [Z] proved that
Ty()=0 for all y=0, if X is non-hyperelliptic of genus=3 and if L is sufficiently
ample on X. Moreover, he showed that if X and L are respectively the rational
curve P! and the invertible sheaf ©pi(d) for d=3, then Th(»)=0 for all v=—1
and dim, TL(—1)=2d—4. Applying Mumford’s techniques to the case of elliptic
curves, Pinkham [3] showed that if X is an elliptic curve and L is an invertible
sheaf on X of degree d=5, then Th(¥)=0 for »>0, dim, Tt0)=1, dim, T,(—1)
=d and TL(v)=0 for v=<—2. Moreover, he gave a complete description of T¢

in the following cases:
1) X=#P" and L=0p:(d) for d=3,
2) X is the elliptic curve Z3+Z3-+Z3=0 in P? and L=0p2)|x.

In this paper we shall compute the dimension of the k-vector space of first
order deformations of the affine cone C over a projectively normal hyperelliptic
curve of genus g=2. In the case g3, our results are only partial. Our main
theorem is the following: let the characteristic of k be different from 2 and let
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X be a hyperelliptic curve of genus g=2 whose function field K(X)=k(x, y) is
the extension of k(x) determined by the equation

y2=X(x—1)(x—a1)(x—az) (X —agg-y),

where ay, as, ++, Azpy arve 2g—1 distinct elements of k different from 0 and 1.
Let w: X—P* be the morphism corresponding to the inclusion map k(x)—k(x, )
and let L be the sheaf 0x(dQ.) where Q. is the branch point =20, 1)) on X.
If d=Max{4g—3, 2g+3}, then

1) Te=Tu(—DDBT0),
2) dim, TH{—1)=(g—Dg(g+1) and dim, T:(0)=4g—3.
In the case g=2, we get more explicit results: if d=7, then
D Tt=Te(—=DPT:0),
2) dim, TE(—1)=6 and dim, T5(0)=5,
and if d=6 (resp. 5), then
D) Te=TH—2)DTH—-DDBTH0),
2) dim, TH(—2)=1 (resp. 2), dim; Tk(—1)=6 and dim, T5(0)=5.

In particular, in the cases d=5, 6 and 7, we will give a k-basis for Tk explicitly.
The author would like to thank Dr. T. Sekiguchi for his kind suggestions
useful for proving Proposition 1.4.

Notation.

Throughout this paper we will use the following notation without further
warning.

We denote by % an algebraically closed field and by P" the n-dimensional
projective space over k. Moreover, we denote by X a smooth, proper algebraic
variety over k and by L an ample, projectively normal invertible sheaf on X.
oL X—P" denotes the embedding of X corresponding to the complete linear
system |[L| and C denotes the affine cone over ¢, (X). In this paper or(X) is
always identified with X through ¢r. We denote by J1y the normal sheaf of X,
by I'x the tangent sheaf of X and by Q4 the canonical sheaf on X. For any
Ox-module F and any veZ, we write Fu)=FRL". X(X, F) denotes the Euler
characteristic of the sheaf F on X and h%(X, F) denotes the dimension of the k-
vector space (X, F). For a scheme C over a field K, we denote by 7T} the
K-vector space of first order deformations of C.
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1. First order deformations of cones over projectively normal curves.

We first recall the natural grading on 7% due to Schlessinger [6] in terms
of cohomology on X. We have the standard exact sequences of Ox-modules:

0—> Oy —> LD —5 Tpp |y —= 0 (1.1)
and
0 —> Ty —> Tpnl g —> Ty —> 0. (12)

Then Schlessinger showed that the following sequence is exact.

3 HYX, Lot s S HY(X, 915(v) —> Th —>0.

y=—00 y=

This gives a natural grading on T¢ by
TL(v)=coker (H*(X, (L**)#"+b)y — H(X, J1x(v))). (1.3)

In this section, we are concerned with the l-demensional case. g and d are
respectively the genus of X and the degree of L. The following remark is due
to Mumford [2].

REMARK 1.1. If the degree d of L is larger than 4g—4, then we have
L(v)=0 for all v>0.
In the case v=0, using the standard exact sequences (1.1) and (1.2) we can
compute the dimension of the k-vector space T¢(0).

PROPOSITION 1.2. If g=2 and d=2g—1, then we get dim, Tt(0)=4g—3.

ProoF. The exact sequences (1.1) and (1.2) induce the long exact sequences

f
0 —> HOx) —> H(L®"*P) —> HYT'pn|y) —> H'Ox) —>

HNL2 ) —> HY(Tpa| x) —> 0
and

h
0 —> HYT x) —> HTpn|x) —> H(91x) —> H (T x) —> H Lpn|x) —>
HYJ1x) —> 0,
respectively. Two equalities H(9 x)=0 and H*(L®*"*V)=0 come from our as-
sumption g=2 and d=2g—1. Since the dimension of Imf is (n+1)*—1, we get

KT x)=(n+1)24+4g—4. The formula (1.3) leads us to the following commutative
diagram :
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H(L® ) —e HI1y) —= TH0) —= 0

N/

HYTpnlx)

such that the row is exact and £ is injective where f and h are the maps in
the above long exact sequences. Therefore we get

dim, TH(0)=h"(I1x)—dim; Im f=4g—3. Q.E.D.

Now we recall Mumford’s results in [2]. Let p;: XXX-— X be the i-th
projection for i=1, 2, and let 4 be the diagonal of XX X. Mumford showed that

clv)=coker (H(X, R*pou[ pH(R2xRL)IQL*) —>
HX, R pos[ pHR2x QL R0 5, x(24)IRLY),

for all veZ. If d=2g+1, then Rpo[pHR2yQRLY]=0 and R°p.[p¥ 2 RLY)
®Ox.x(24)]=0, hence using the Leray spectral sequence for p, we get

a(y)
Tt(v)y=coker (HI(XX X, pHRxRQL VR pFL**1) —>
HY XXX, pH(2xQL NQ L 'R0 5. x(24))),

for all ye 7.

LemMMA 13. If g=1 and d=2g-+1, then a(v) is injective for all y=-—1,
where a(v) is the map in the above formula.

ProOOF. It suffices to check that the composite of the maps

HYX, (L2 0) —> HUX, Tpn| xQL*) —> H(X, Tx(v))

is injective for all v<—1. The standard exact sequences (1.1) and (1.2) induce
exact sequences

HY(X, L) — HX, (L**")*™*D) —> HYX, Tpa| xQLY)
and
H(X, Ix(v)) — H"X, Tpa| xQL") —> HAX, T1x(»)),

respectively. If g=1 and d=2g+41, we get HYX, 9y()=0 for all v<—1. On
the other hand, for any v=<—1 we have H%X, [")=0. Hence the map

HY(X, (L*#1)P040) — > HO(X, 915()

is injective. Q. E.D.
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Manipulating the Leray spectral sequence for p,, we can give an upper
bound for dim, Ti(—1) when X is hypereiliptic.

PROPOSITION 14. If X is a hyperelliptic curve of genus g=2 and if the
degree d of L is larger than or equal to 3g—1, then we have
dim, Tt(—1)=(g—Dg(g+D.
In particular, if g=2 and d=5 then we gel
dim, TH(—1)=6.

PrOOF. Let @4 be the cokernel of the natural inclusion map Ox.x(—A4)—
Oxxx. For any veZ we have an exact sequence of Ox.y-modules

0 —> PHRxQL HRO(v—1)d) — pH2xQL HQO0W4) —
H2xQL Q0w HR0s — 0. (L4)
Using this exact sequence (1.4) inductively, we see
UX XX, pH2x QL Q0(g H=UXX X, pf(2xQL))+
SUXKX, pHOXOL VOGO, .
Since we have
H{X XX, pHR2:QL HQOwHRO )=H 4, pH(2xQL ™| ,Q0w)| 1)
=Hi{X, Q7*QL™Y),

we get
UXXX, pH2xQL QOO H=XX, L*QL™)

=—2g—1Dv+g—d—1 (1.5)
for all v=1. Since the Kiinneth formula shows
XXX, pHE2xQL N=(g—1)Nd+1—g),
combining this with (1.5) we get
UX KX, pHRxQL Q0(gd)=—(g—Dglg+)—(d+1—-g).
On the other hand, we have
UXX X, pHO2xRL)@0(gd)=—h (XXX, pHLx QL HQ0(gd)) .

Indeed, D[ p¥(2xQL HR0E(g4)]1=0, because by the assumption d=3g—1 one sees
that for any closed point x of X

H(p7(x), (pH2xQL HR0(gM)| ps1ca)=H (X, 2xQL7Q0x(gx))=0.
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Hence we get

HY(XXX, pH(Q2xQLNQ0(gd)=H'(X, pux[ pH(2xKRL HRO(ghH])=0.

Moreover, the support of R'pu[pF(2xQL HYR0(gd)] is a finite set, because we
have

dim; R*p1[ pH(Q2x QL NR0(gd)].R(Ox, =/mx, z)=
M (pri(x), (PT(Qx®L"1)®O(gA))Ipl—xm)zhl(X, Ox(gx))=
if x is a branch point for the double

h(X, 2xQ0x(—gx))= { covering =: X —> P
0 otherwise.

Therefore we get
HY(X, R py [ pH( 2 QL HQ0(gHD=0.
Let us consider the Leray spectral sequence
ER =HP(X, R*pulpl(2: DL R0(gdH]) =
HP(XXX, pF(R2xQL)RO(gd)=EP*

for p; and pF(2xRL HR0O(gd). Since X is l-dimensional we get E3°=FE}2=0(.
Hence by the exact sequence of terms of low degree we have E?=0. Since
Ei=0 for 1=0 or i=2, we get

UX XX, pH2xQLNRQ0(gM)=—h (XXX, pH2xRL HR0(gd)) .
Now the exact sequence (1.4) induces the following exact sequence :
HY(X XX, pH(Q2xQLQ00NHR0,) —> H(XX X, pH2xQLHQ0(v—1)4)) —
H'( XXX, pH2xQL HKQ0wd).
Since for any y=1
HY(XX X, pt(R2xQL HRQ0wHR0H=H"(X, 25*QL =0,
we get
R(XXX, pH(2xQL NQ0CA)=I (XXX, pHL2:QLQ0(gd)).
By Lemma 1.3, we see
dim; TH(—1)=h"(XX X, pF(R2xQL HR0Q2A)—~h(XX X, p¥(Q2xQL™)
S—UXXX, pHRLQLHR0(gd)—h (X, 2xQL H=(g—1)g(g+1).

If g=2 and d=5, then the above inequality is obviously an equality and wefget
dim, TH(—1)=6. Q.E.D.
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2. The proof of T}(—2)=0 using the equations defining hyperelliptic
curves.

In this section, first, when a homogeneous ideal I of a polynomial ring P
and its generators are explicitly given, a natural grading on the space T} of
first order deformations of C=Spec P/I is defined. Specifically, let P=
K[ X, X, -+, X,] be a polynomial ring over a field K, and let IC P be an ideal
generated by homogeneous elements f,(1=<i<N) of degree d;,. We set B=P/]
and C=Spec B. Then we will apply the definition of a natural grading on T}
obtained by Pinkham [3] to the above case.

REMARK 2.1. Let R={(r,, -, ra)& PV| ;ﬂflri f:=0} be the relation P-module
for fy, -+, fv and let R,, -+, Ry be a system of generators of the P-module R.
For a fixed N-tuple (gy, -+, gy)EPY, a map ¢’ from I to B defined by ghiff
N
»—>iE=lhigi+I with Ay, -+, hy€ P is well-defined if and onmly if R;-¥(gy, -, gn)
=0 mod/ for all j=1, ---, M. In this case, a homomorphism 8: I/I*~B of B-
modules is determined by ié hifi+I2Hii h;g;+1I, and any element of Homg(I/I?, B)

is given in this manner.
Now we introduce a grading for the B-module Homg(I/I2, B).

DEFINITION 2.2. Let us take @=Homp(I/I?, B) such that 6(f;+I1%)=g,+I
with homogeneous elements g; for all i=1, .-, N. Now we set pi=-+oo if
g€/ and p,=deg g; if g;<€I. Then (y,, -, px) depends only on 6 and does
not depend on the choice of the set {g;} of homogeneous elements. We grade
elements of Homg(///2B) as follows: the above element 6 is homogeneous of
degree v if py=v+d; or +co for any i=1, ---, N. Then v depends only on ¢
and does not depend on the choice of the system {f;} of homogeneous generators
of the ideal I. This defines a structure of a graded B-module on Homjg(I/I2, B).

REMARK 2.3. Let D be the B-submodule of Homg(I//I? B) generated by the
homomorphisms dy, day, =, dy of B-modules where d,: [/I>—B is defined
by sending h-+1*—0h/0X,+I with hel for all =0, 1, ---, n. Then we have the
exact sequence of K-vector spaces ([5]):

@
0 —> D — Homg(//I?, B) — Tt — 0. (2.1)

Since the d, are homogeneous of degree —1, the above exact sequence (2.1)
defines a natural grading on T} as follows :



324 Jiryo KOMEDA

DEFINITION 2.4. For any veZ, we denote by TL(v) the image of the »-th
graded piece of Homp(//I?, B) by the homomorphism @ in (2.1). This gives a
grading on T%.

By this definition we see easily:

REMARK 2.5. If d=Max{d;|i=1, ---, N}, then we get Th(»)=0 for all vy<—d.

REMARK 2.6 This grading is of course the same one which was obtained
by Schlessinger in the projectively normal case and which was described in
section 1.

Henceforth we specialize ourselves to the situation where C is the affine
cone over a projectively normal hyperelliptic curve X over k. We are in the
following situation:

NOTATION 2.7. Let the characteristic of 2 be different from 2, let X be a
hyperelliptic curve of genus g=2 whose function field K(X)=Fk(x, y) is the
extension of k(x) determined by the equation

V=x(x—D(x—a)(x—az) - (x—sg-1),

where a, @, -+, Q- are 2g—1 distinct elements of k different from 0 and 1,
and let 7: X—P! be the morphism corresponding to the inclusion map k(x)—
E(x, v). L is the invertible sheaf 0x(dQ.) with d=2g+1 where Q. is the
branch point 770, 1)) on X. Since dim, (X, L)=d+1—g, we see easily that
Y, Xy, v, xHET2EDy ]y e g T3 form a k-basis of I'(X, L), where [ Jis
the Gauss symbol. ¢;: X—P%#=Proj k[ X,, Xi, -+, Xo-p] Is the embedding
such that L=¢}(0pa-.(1)) and that the sections y, xy, -, xb@-28-D/2y 10 x e
xt4/2 correspond to ¢F(X,), 0F(Xy), -, ¢¥(Xq-,) respectively under this isomor-
phism. Let I be the largest homogeneous ideal defining the subvariety ¢ (X)
of P4-f with the decomposition /=@ I, into the direct sum of homogeneous

vz0
pieces. If we set

*r—Dr—a)c—m) - (1= )= %, aix',

then we have a.,.,=1 and a,=aa, - @y #0.
Now we give a system of generators of the ideal I. If we apply the results
in [1] and [4] to our case, we see:

REMARK 2.8. For any d=2g--2, the ideal I is generated by [, and dim,/,
=(d*~Q2g+Dd+g*—g)/2.
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PROPOSITION 2.9. Set f;;=X,X;— X1 X;-1 for 02i£d—g—2 and 1+25j=
d—g, and set |=[(d—2g—-1)/2]. If d=2g-+2, then the ideal I is generated by

(A) [:0Zi=1-2, i+2=5<)),

(B) fil+lsi=d—g—2, i+2=j=d—g),

(C) [fi,00=i=sl-1, [+25j=d—g),

(D) gn0=m=d—Q2g+2), where for 0=m=[—g—1

2g+1
gn=XoXpn—Xi1, 21 aiXivmeret,
iz
for [—g=m=l
2g+1 l-m+g

J— 4 N
gm*“XOXm”“Xd~g. > az‘)ﬁi+7n~g+<1-<—J>d>/z—“-Xz+1 > 0 Xiimries
i=l-m+g+1 i=1

for [+1=m=l+g—1
2g+1 I-m+g

-
gin:)&m»lXL_Xd—g_ > A Xiim-gra-ccndyz—Xie1 2 @ Xismeie1s
i=l-m+g+1 i=1

and for l+g=m=d—2g-+2)
2g+1
Zn=Xm-1 Xi—Xaog 20 @:Xism-gic-c-Dd/2+

i=1

ProoF. Trivial relations among =y, xy, -+, x0¢-28-0/2y 10z ... x0d/2
2g+1 . .
induce (A), (B) and (C). The equation y*= El a;x% induces (D). It is easy to
&=

check that the above polynomals are linearly independent and that the number

of them is equal to (d*-2g+1)d-+g*—g)/2. By Remark 2.8, they generate the

ideal I. : Q.E.D.
Applying Definition 2.4 to our case, we get the following:

PropOSITION 2.10. (0) If d=2g-+2, then we have Tt(v)=0 for all v=—3.
(1) Moreover if d=2g+3, then we get TE(—2)=0.
ProOF. If one combines Remark 2.8 with Remark 2.5, Tt(v) is zero for all
v=-—3. In the proof of (1) we will use the notation in Proposition 2.9. Since
R?,j::l J-—lfk.i+1_Xifk,j+kai,j:0

for all 0=k<i<j—1=d—g—1, we have the following relations:
a) for 0=i=/-2 and i+2=55=]

R}—l,l+2:Xl+1fi,j'_"Xj»-1fi,l&—ZJT"XifjAl,L+2:0;
b) for [+1=i=Zd—g—2 and 1+2=j=<d—g
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Rg,j:Xj—lfO.i+1—Xifu,j+1Y0fi,j:O;
¢) for 0=i=</—1 and [+2=5j<d—g—1
R}-l,d—g:Xd~g—1fi,j“Xj-1fi,d—g+Xifj—1.d»g:0-

Moreover, we have the relations
28+1

T ni1=—X18m+ Xogmi1—Xofo, me1+ Xiaa g:l aifo, temer+2=0

for all 0=m=[—g—2. Similarly, we get the relations T n.; forall [—g—1<m
=d—2g—3. We write an element r= PV as
(ri0=i=l—2, 1+2=5 =1 IH1Si<d—g—2, i+25j=d—g;
O=i=l—1, [+2=5)j=d—g), ra(0=m=d—2g-2)),
where P=Fk[X,, X, -+, X4-,] and N=(d*—(2g+1)d+g*>—g)/2. For any relation
H=3 h;fi;+ 2 hngn=0, we call h=(hy;; hy) the element of P¥ corresponding

to the relation H. Let #%;(resp. % m+1) be the element of P¥ corresponding to
the relation R% ;(resp. TS, m+1)-

For any element §=T4(—2), there exists a homogeneous element @&
Homg(I/I?, B) of degree —2 such that £ is the image of by the homomorphism
@ in (21) Since elements of Homg(I/I?, B) are given by N-tuples of elements
of B, which we write as row vectors, we can think of 6 as (ci;+1; cnt+I)
whose entries are homogeneous of degree 0. If we set ¢=(c;;; cm)E PY, then
by Remark 2.1 we get the following :

7ii e fe= mod [ for 0=i<[—2 and {+2=< <1,

7% ;'¢=0 mod I for [+1=i<d—g—2 and i+2<;<d—g,
7i-1,4-¢g-"'¢=0 mod I for 0=:i<[—1 and [+2<j<d—g—1,
to. mer'c=0 mod I for 0=m=<d-—2g-3.

Hence we get ¢;;=0 and if d=2g+3 we have ¢,=0. Therefore § is the zero
map, that is to say, £=0. Hence we have T5(—2)=0. Q.E.D.
By Remark 1.1 and Propositions 1.2, 1.4 and 2.10, we get

THEOREM 2.11. Let the notation be as in Notation 2.7. If d=Max{4g—3,
2g-+3}, then we have

D Tt=Tt{—DPTLO),

2) dim, Te(—D=(g—Dglg+1) and dim, TE(0)=4g—3.

In particular, if g=2 we get dim, TE(—1)=6.
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REMARK 2.12. In the case g=3, the estimate dim,7Ti(—1)< <(g—1)glg+1)
given in Theorem 2.11 is not sharp. For example, if g=3 and d=9, 10, by
calculation we get dim, Ts(—1)=8<24.

3. A P--basis for T} in the cases g=2 and d=5, 6, 7.
In this section we use the notation in Notation 2.7 and assume that g=2.
Looking at a k-basis for T} we compute its dimension in the cases d=5, 6.
3.1. A system of generaiors of the ideal I.
1) The case d=5. I is generated by fi, /. and f;, where
Fi== X3 X+ X X3+ 0, X X3+ 0. X, Xo Xo+ 0, X3 X+ a, X3X,, fo=X, Xo— X3,
Ji=XiXo—Xi—a, Xo X3—a; X, Xi—a, X, Xo Xs—a, X2X, .
If we apply Proposition 2.9 to the cases g=2 and d=6, 7, we get the following :
2) The case d=6. I is generated by f,, f,, /. and f,, where
[1=XX— X3, [r=XX,— X, X, , fi=X,X,— X2,
F =X~ X Xi—a. XX, —a: X, X~ a, X, X, —a, X, X .
3) The case d=7. [ is generated by fi, fo, -+, fs, Where
[1=XX— X5, [i=Xo Xs— X Xy, [i=X: X,— X2, fi=X,X,— X, X,
[i=XX— X X, [=X Xs— X X,
Fi= X=X X —a. X X, — ;X Xs— 0, X, X — 0, X, X,
]’,;:X(,Xl—X§~a4X4X5—af,XsXB—aZXZXG—a,leX4 .

We set N=3 if d=5 and N=(d*—5d+2)/2 if d=6,7. Let R={(g,, -, gn)
€ PY| iE:giszO} be the relation P-module, where P is the polynomial ring
k[ X,, X, -+, X4_5] over k. Then elementary computations show the following :

3.2. A system of generators of the relation P-module.

1) The case d=b5. r; and r, form a system of generators of R, where

r=(Xs, Xi+a: X, X;+a, X%, X)), ro=(Xs, Xi—a . Xi—a,X. X, X,).
2) The case d=6. 7y, -+, r; form a system of generators of R, where
r=(X;, =X, X3, 0), r;=(X,, —X;, X, 0), ra=(—f4, 0, 0, 1),
7e=0, —f4 0, f2), rs=(0, 0, —f4 f3) .
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3) The case d=V. r,, ---, r;, form a system of generators of R, where
=Xy =Xy, Xp, 0, -, 0), ro=(X;, —X,, X;, 0, ---, 0),
r3=(X,, 0, 0, X,, —X,,0,0,0), r,=(X,, 0, 0, X,, —X,, 0,0, 0),
r5=(0, Xo, 0, X, 0, —X,, 0, 0), r,=(0, X, 0, X;, 0, —X,, 0, 0),

re=(0, 0, 0, 4, X5, 0. XoFa.X;, a, X0+ X5, — X, Xp),
r=(a: X;+a.Xs, a,X,+X;, 0, X,, 0, 0, —X;, X)),
ran=(—a;X; 0, a,.Xo+X;, 0, X, 0, —X,, X5),
712=(0, —a,X;, —a, X,—a.X; 0,0, X;,, —X,, X,).

Let @:Homp, (I/I?, P/I)—T} be the homomorphism in (2.1). Elements of
Homp,;(I/1?, P/I) are N-tuples of elements of P/I, which we write as row
vectors. Then using Remark 1.1 and Definition 2.4, it is easy, albeit tedious, to
check the following :

3.3. A k-basic for Té.

1) The case d=5. We have Ti(=TH—2)BTL—1DDTEO0). The images of
6, and 6, by @ form a k-basis of T4(—2). The images of X,0,, V.6, X.0, X604,
Xi0;, and 6, by @ form a k-basis of T4—1). The images of X,X.8,, X, X.0,,
X, X0, X, X0, and X0, by @ form a k-basis of T°L0). Here

91:(_‘X2, 0, Xa), 0.=(X,, 0, — X, 0;=(0, X,, —Xg’f"a4X§+azX1X3)-

Therefore we get dim,Ti=13.

2) The case d=6. We have T¢=TH—2)PTH—1ETH0). The image of
0, forms a k-basis of T4(—2). The images of X4, X,0,, X.0,, X.0,, 0, and
0, form a k-basis of T¢(—1). The images of X, X0, X,X.0,, X0, X.0, and X0,
form a k-basis of T4(0). Here

0,=(0, 0, 0, 1), 0:=(X;, 0, — X, 0), 6,=(X;, X;, 0, 0).

Therefore we get dim,Ti=12.

3) The case d=7. We have T{(=TH—1)PTEO0). The images of 6, O, 0,
0, 0; and 6, form a k-basis of T4(—1). The images of X,0,, X.0,, Xofs Xofs
and X,/ form a k-basis of T§(0). Here

0.=(X,, 0, —X;, 0, X3, 0, a, X;, —a,X3), 8,=(0, X,, X4, 0, 0, Xi, X, —a.Xy),
032(07 -, 0, X, X)), 0,0, ---, 0, Xo, X)), 65:(0; e, 0, Xy, X)),
0:=(0, -, 0, X,, X).
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Therefore we get dim,Té=11.
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