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REMARK ON SOME COMBINATORIAL CONSTRUCTION
OF RELATIVE INVARIANTS

By

Tatsuo KIMURA

It is a classical problem to determine the explicit form of relative invariants.
However, if it is too complicated, it seems more important to know the mathe-
matical structure of relative invariants than just to write down the all terms of
them. Hence, in this paper, we suggest to use some principle to construct rela-
tive invariants in § 1, and as examples, we shall construct some relative invariants

of GL(n,C) on /3\0” for all n=6 (See Propositions 4.1, 4.3, and 4.5), including
all relative invariants for n=6, 7, 8, 9. This work was done while the author
was visiting Europe, and he would like to express his hearty thanks to Prof. H.
Popp at Mannheim University in West Germany, and to Prof. D. Luna at Grenoble
University in France for their mathematical stimulation and encouragement. The
author also would like to express his hearty thanks to Prof. M. Sato who kindly
explained his works for n=6.

§1. Let p: G—GL(V) be a finite-dimensional rational representation of a
reductive algebraic group G, all defined over the complex number field C.

A homogeneous polynomial f(x) on V is called a relative invariant if there
exists a rational character X:G—C* satisfying f(p(g)x)=%(g)f(x) for all g€G
and xe V. Now let S(V) be the all homogeneous polynomials of degree » on V.
Then the group G acts on S(V) as (g¢)(x)§g¢(p(g)‘1x) for ¢=S7(V), g€ and
x€V. We denote this representation by p™. Since G is reductive, it is the
direct sum of irreducible representations: p‘”z(;Bp.‘,-”. We denote by W the
representation space of p{”: ST(V):G?W?’. Note that a homogeneous polynomial
f(x) is a relative invariant of degree r if and omly if f(x)eW{ for some W{’
satisfying dim W{=1. We say that p{” decomposes to p§¥ X p{? (r;+r,=r) and
denote this relation by p{~py? X pi? when p{” is one of the irreducible com-
ponents of the symmetric tensor of py® and p{?. This implies that the poly-
nomials ¢ in W{ can be obtained from those in W{? and W{?, i.e, ¢=; .0,

for some ¢, WP and §,€W§?. In such a way, we can reduce the problem of
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determination of a relative invariant to that of polynomials of lower degree.

§2. Since we shall deal examples for G=GL(n, C) in §3 and §4, here, we
shall review the Young diagram for GL(n, C). Let 4 be the set of the follow-
ing diagrams.

r————fl"‘_“

1 ]

Y= 2 ;o l<n, 0=fi= éﬂ}

I

Then it is well-known (See [1]) that, for a given irreducible representation
p of GL(n, C), there exists uniquely an integer m such that (g)=(det )™ p(g)
corresponds to one of the diagrams in 4.

If m is negative, we correspond the following diagram to 0.

—m
Ay

If m is positive, for example m=3, we correspond the following diagram to o-

%:] |
= - n o+

L]

[

Thus any irreducible representation of G=G L(n, C) corresponds uniquely to
one of the Young diagrams.

ExaMpLE 2.1. ~ corresponds to the following representation p. Let V be

the totality of nXn matrices X with tr X=0. Then G acts on V by o(@) X=
gXg* for gG and X V. Since

n—1

] ]
=n + | » this diagram [T| corresponds to

.
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p(g)=(det g)p(g), i.e, p(g)X=(det g)gXg~*! for g=CG and XeV.

ExampLE 2.2. [[] corresponds to the following representation p. Let V be

the totality of symmetric nXn matrices. Then G acts on V by p(g)X=gX'g

m
—A—

for geG and X<V. Hence L corresponds to p’ such that p’(g)X
n

=(det g)™-gX'g for geG and XeV. Similarly, | corresponds to the dual
Cod
m
—A |

representation of p. Hence ,J corresponds to p” such that p”(g)X

=(det g)™-tg™*Xg™* for g&G and X&V.

§3. Let wuy -+, u, be a basis of C*. Then G=GL(n, C) acts on C"

3
by (gus, -+, gun)=(uy, =, un)g for geG. Hence G acts on V=AC" by
o(@uiNusAup)=gu;ANgu;Agu,. From now on, we shall fix this triplet
(G, p, V) and let us consider its relative invariants.

We define the derivation 7?; (=1, -+, n) by

(31) 'gzj_‘(uj/\uk/\u;)-:&j-uk/\ul (k, [7‘:1)

Then, for an element x= (Z;kxi,-kui/\u,-/\uk of V, we define the polarization £ by
<<

n 0x . .
(3.2) £= 21 Yig where y,, -+, v, are indeterminants.
i= i

For a natural number m satisfying 2m-+1<n, we can define the homogeneous
polynomials

f;;;;'m—; (-x) (1§11y Ty 1m—1§m_1; 1§]2m+2<<]n§n)
m+2 " In

of degree m by

(3-3’) INEN-NE= 2 fll,tm_l (x)yil'.'yivn—lvjzm-%".:""* Ja
R mnd T iy Jom+2 " In
m

Jem+g-in
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where vj, .o in
In other words, we have
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ANjyr s /N AN, =0 (FUs /N Al

i 1 ax ax
1 m- l pa— .
(34) f}2 o (x)w XA dur, AN /\auim_l/\u]m“/\ Nibn
For n=2m+1, we put firim- l(x)—f“ Htm-1 (x)
INEN A= D frrime(2)yy ey, o
T [PTRRE P
PROPOSITION 3.1. (1) fl1 rtm-1 (,o(tln)x)—f”"f’1 im-1 ( ),
ie., fLl im-1 (tx)—t’” fir ”i'fffl, (x) for teC*.
Jem+2Jn
i "m 1 _ T Cligog gipthige 1
(2) f (p(c)x) FNPRLY Cjn f12m+2 (X)
¢, O
for ¢c=( °-. |=SL(n, C).
0 ¢,
(3) For r+#s, we have
LERRR 7 1
£t (dp(Ey)x)
l
m-1 . v n . .
— 22 TRk AT S P L FrThimen
= 125”1 fj2m+2’“'-ln (x) kzg}t”gs)kf» (x),

Jamaz T in
)
ik

where E,; denotes the matrix unit.

PROOF.
side of (3.4) becomes

(1) is obvious. (2): By the action of p(c), any term of the right-hand

c c Cc x u/\u/\u/\cccx ~u/\u/\
ky kg kg kikgkg iy 1,111,l iy
- Ac, S ) o o NU AU, AN Au,
'm-1*m-1*m—-1 ‘m-1'm-1'm-1 ‘m-1 tm—1 Jem+2 Jn
Ciy " Cimy
= (c.c ¢ c.crovC. €. C. el Nx )
Clomrs """ Cip 1 B2 ks i %y tm-1 tm—1 Jam+2 In”" kikoks
Cil Ci’m—l
= - /\u /\u /\x ,»u /\u »/\ /\u
Cigm+a """ Cin 17z 3 In
since € CaCaCuCiy ™ Cy =c; - Cp=1.

C.' C. e c
2 kg i Z1 Im—1 tm—1 Jom+2 in
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3): We put x=x(uy, ~, Un)=2 XijaUi N U; N\ Up.
Then we have

(35 S (o= xlgws, s gun =S gy, -, gun) TEL

dx
=S gug (g, -, gun) for g=(g)<G.

For g=expt E,;, we have

d & dlguy) 0% —up 95
3.6) dt p(g)xlz 0= k:l dt (gul, , 8Un)|t=e= U, A\ u

8

Similarly, by using (3.5), we have

0%x 0x

2
37 dt(au p(g)x)l; EUA g s for g=expt Ex.

Using (3.4)~(3.7), we have

1 Zm 1 _G i
(3.8 sz . (dp(En)X)w f]2 o ! (p(g)x}wlL 0
13
m-1 v
=% Gy 0 l’" 1(x)JrA where
=1 Jom+2 "
_ OxN, 9x 0 0x
(3.9) A_(“’A'aus)/\ NN T M A,
m=1 ox 0%x ox
+ l:ZI XA auil/\--~/\(u,/\vauil)/\~--/\a—ui—;—l/\ujz.wm/\---/\ujn.

We shall show that A=0 if s jom+s, ==, Ju. Since A is a multiple of w=
u;\---Au,, any non-zero term A contains u,, and hence we have

= Bu” ou au” ouy,,_,
+’j§=}: UsA aax o)A 5‘%/\ A /\—auaza’;” YA auaii—_;—/\ujwz/\---/\ujn
Y 3 e aauif”“(”m%%—ik)”“( 5 aau S S
A auaix A+ Ay, =0
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because the first and the second terms cancel each other and the last term is
clearly zero. Finally we shall show that

__M__fll 'Lm 1

Jom+e T
/\
j

Y

if s=j, for some k=2m+2, ---, n. Note that if

then
0
Us N\ Xs=UsN\NX (resp. us/\(g;f s—us/\ 3a; )
7 i
Then

ox 0x ox
A=—(un aM)/\ AR auim_l Attgy o A At A - Al
ESETY a”—/\/\(u/\ )/\/\a Atdgy A A A
=1 Ous, ou au” oui,_, Yiamss Ur/\e Ny

m-1

2‘[’“*“3/\'%]/\[(38;]) TG ﬁzauh Jnnl( auaix )”Aﬁg;xm]

ANUjyora/N o NUg /N N,

ox 0x
:——x/\a;ul‘l/\/\ F} o /\ujm,m/\-'-/\u,/\-“/\ujn
=—farinet (. Q.E.D.
Jom+er” in

REMARK 3.2. This proposition implies that SWV):SM(@) contains the fol-
[

lowing Young diagram.

(3.10)
2m-+1

(ITTTTTTTT]

This corresponds to the polynomials f tm- ; (x).
m+e "
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For example, it is known that

@.11) 52(E>: H o
u
i
[ N
(3.12) 53@): @ E: ® ® O
N
] M
(3.13) 54(E)= @ o D o0 ®
- - u u
| ] ] [T]
®] & o [0 & 4
o ] u |
L] -

§4. ExampLE (1) First let us consider the following polynomials of degree
m(m—1) for n=3m (m=2).

iy imey
@D Fixtnosy)
o1 -1 2 2 Fm—1 SMm=1
— et imey A £ e ot T tm—
= 2 S T g T O s, ()
e

where 1,=1i} for k=1, ---, m—1.
By Proposition 3.1, we have

1y tpeg — L Cimey piime
(4.2) Fr i ole)m)=— Fr i

Jpesdim Jpdm

71 Jm-1

¢c; 0
for e¢={ °-. 1=SL@3m, C).
Cym

4.3) Frmi(dp(Ep)x)

71
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!
Vv
.8,
S im

m-
g ”l Jl

vim= l(x)—Eﬁs” 1”,‘.,‘. (x) for r#s.
s ‘. Im-1

1

Therefore, (4.1) corresponds to the following decomposition.

m—1m—1 m -
P —r— r—" pr Py
1] 1] ]
(44) 3m—1 R ~ 92m+1 N X X 2m+41 N
- - —— |
- — m—1 j

Then, by (4.2) and (4.3), we see that the polynomial

4.5) Flx)= 2 Fl1 t’" 1(’6) F]1 ”""(x)
[P S tm-1
1 W Im- i
is a relative invariant of degree 2m(m—1) on /S\C“".
This (4.5) corresponds to the following decomposition.

2(m—1Ih
1 H)
1 m—1 Tm—1
46 N .
(4.6) n ~ 3m—1 <[] X 3m—1 <[]
EE T
1] L
m—1 m—1

ProPOSITION 4.1. There exists a relative invariant f(x) given by (4.5) of

degree 2m(m—1) on /3\03””.

REMARK 4.2. For m=2, there exists a relative invariant f(x) of degree 4 on

/s\Cs. In this case, we have 6X6 matrix ¢(x)=(F;;(x)) where F;;(x)=f¥x) in
(4.1), satisfying ¢(p(g)x)=det g-gd(x)g™* for g G L(6, C) (See Example 2.1). Then
we have tr ¢(x)=0 and f(x)==tr ¢(x)% In fact, ¢(x)* is a non-zero scalar matrix,

i.e., ¢(Jc)2=—(15—f(x)l6 (See [3]). This case has been investigated by M. Sato (See
2.

8
For m=3, there exists a relative invariant of degree 12 on AC®.
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ExaMpLE (II) Assume that there exists a relative invariant of degree r for

n=2m. This implies that S’(B\) contains 2/m such that 2mk=3r.
——————’
3, k
In particular, we have k:ﬁ eZ. For n=2m-+1, this implies that there exist

homogeneous polynomials F; .. ;,(x) of degree », symmetric with respect to indices

1y, -+, i, satisfying
1
47) Fipty(p(©)x)=———Fy .o, (1)
(5% ip
Ci1
for ¢=| . |eSL(xn, C),
Cn
k
(4.8) Filw-nik(dP(Ers)x):" le 5311-F1-1,...,X...,ik(x) for r+#s.
N 1

Now assume that 2=0 mod(m—1), i.e., k=qg(m—1) for some ¢q. Then, by
Proposition 3.1, (4.7) and (4.8), we can see that the homogeneous polynomial

il il i 4% _
49 foo= | B TR fEROR, ()
i iy o
. . . . 2m+1 .
is a relative invariant of degree »'=r-+4mq (z 2m—2"r> for n=2m-1. This
(4.9) corresponds to the following decomposition.
11 [ 1]
2m+1 ~ [ x-x [ x 2m
(4.10) -
I A
O O
. , (m—1)g

qni-

PRrROPOSITION 4.3. Assume that there exists a relative invariant of degree »

—
of (GLZ2m, C), \:‘!, /3\02’“). Then we have kZB—TEZ. If k=0 mod(m—1), then

— 2m 2m—+1
there exists a relative invariant f(x) given by (4.9) of degree r'=———7 of

om—2 "
(GL@m-+1, ©), : L ACETmY,

]

L

L]
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7 s
I, AC®™),
]

REMARK 4.4. For any relative invariant f(x) of (GL(@2m, C),

f(x)™ ! satisfies the condition in Proposition 4.3. For m=3 and r=4 (See Remark
4.2), we have Ek=2=0 mod(m—1), and hence, there exists a relative invariant

f(x) of degree 7 on /3\C7. It is known that any relative invariant on /3\C7 is of
the form c¢f(x)™ (ceC*, meZ) (See [2]). In this case, (3.10) corresponds to 7X7
symmetric matrices ¢(x)=(f"(x)) with f%(x) in (3.4), satisfying ¢(p(g)x)=

(det g)g-d(x)'g for g, and ESA(E) (See also (3.13)) corresponds to 7X7

symmetric matrices ¢*(x)=(F;;(x)) with F;;(x)= kZL a0 fhi(x) (e, (4.6) for m=2

and n=7), satisfying ¢*(p(g)x)=(det g)*-'g '¢*(x)g™* for g&( (See Example 2.2).
Put @(x)=¢(x)-¢*(x). Then we have @(p(g)x)=(det g)*- gD(x)g™* for g&G, and

flx)=tr @(x). In fact, @(x) is a non-zero scalar matrix: (Z)(Jc):%f(x)f7 (See [3]).

ExaMmpLE (III) Assume that there exists a relative invariant of degree » for

L
n=2m-+1. This implies that ST(Q) contains 2m~+1 such that 3r=
A e’
k

(@2m+1)k. In particular, we have k= —2—73%1 eZ. For n=2m-+2, this implies that
there exist homogeneous polynomials Fy, .., (x) of degree », symmetric with
respect to indices iy, .-+, i, satisfying (4.7) and (4.8) (for n=2m-+2). Now assume
that 2=0 mod(m—2), i.e., k=qg(m—2) for some ¢. Then we can define poly-
nomials

gl 8
(4.11) Fy "“"‘f] TR q(X)

Jem+3” Jz +3°

0 2
— L f‘1 A Zkll( )fll i 2k2 (x) f’;l- v:zm_Zkg,j%(x)

k1, kg=1 q12m+3 g-1/2m+3

il g
of degree mq for n=2m-+2. For n=2m-2, we denote it simply by Fv g""2(x).
Then, by Proposition 3.1, we have

C-l'”Ciq . 4 2

i lm 2 _ _tm-2 ot i e
4.12) Fa le@n="~ e, F72m+3 a(%)
Fime+s In

._.._.,_.
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Ci 0 )
for ¢={ *-. |eSL(n, C),
0 c¢a

(4.13) Fl% - % (d p(Er)x)

J2m

74

—25";, ;3 1’" 2(x) >0 bin -2 ]q(x) 0T 7S,

SJ‘U sz+
This implies that (4.11) corresponds to the following diagrams.

" m

|
|

r [TTT1] .

- L] ( [ 17
2m+2 q(m—2) ~ 2m+1 X X 2m41
(4.14) q

(TTTITT]
(ITTITTI

. \
e —

q
Then, by (4.7), (4.8), (4.12) and (4.13), one can see that

(4.15) fo= 3 Fi}""’i(’l’““x)'Fi},.W,ign_z(")

il 42 =
i tp o=

is a relative invariant of degree '=r-+mq ( (27nz—(f%)(_;h—)‘277’) on AC?™+2,

ProposiTION 4.5. Assume that there exists a relative invariant of degree 7

of (GL2m+1, C), Q, AC?™ ). Then we have k= 23+1 eZ. If k=0 mod
(m—2), then there eXIStS a relative invariant f(x) given by (4.15) of degree
i 2m—1) . H emee
= (Zm—!—l)(m 2 -r of (GLZ2m-+2, C), b&, /\C ).

REMARK 4.6. For m=3 and r=7 (See Remark 4.4), we have k=3=0 mod
(m—2), and hence there exists a relative invariant f(x) of degree »’=16 on /3\03.
It is known that any relative invariant of (GL(8, C), @, /3\08) is of the form

cf(x)™ with ceC” and meZ.
In this case, we can also use (4.4) for m=3 and the following decompositions

(4.16) and (4.17).
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[]

I
|

(4.16)

NEEE
NN

(4.67) ~

LLITTT

This implies that there exist 8X8 symmetric matrices ¢(x) (resp. ¢*(x)) whose
entries are homogeneous polynomials of degree 6 (resp. 10) satisfying ¢(p(g)x)=
(det 2)*- gd(x)'g (resp. ¢*(p(g)x)=(det g)*-*g " '¢*(x)g™") for g=GLE®8, C) (See Ex-
ample 2.2). Put @(x)=¢(x)¢*(x). Then we have @(p(g)x)=(det 2)°-gD(x)g™* for
geGL(E8, €) and f(x)=tr @(x). In fact, @(x) is a non-zero scalar matrix D(x)

1
=—8—f(x)-ls (See [3D).
Applying Proposition 4.3 for m=4 and r=16, we have k=6=0 mod(m—1),

3
and hence we can construct a relative invariant of degree 24 on AC”.

ExampLE (IV) (Relative invariants on j\C9). It is known that there exist
four independent relative invariants f,(x) of degree £ (k=12, 18, 24, 30) which

3
generate all relative invariants on AC® (See [4]). We have constructed F1a(x)
by Proposition 4.1 for m==3. We have also constructed a relative invariant f(x)

of degree 24 on /S\C9 by Proposition 4.3 (See Remark 4.6). For x,=u;Au.Aus+
UsAUs AN Ue—Us Alis Ay, We have f7*(x)=0 for all 7, j, k, and fH(xo)=rIix0)=
—fil(xg)=—fx=1 for 1€A,=11,2,3}, jeh=1{4,506 or i€d, jeA=
{7, 8,9} or icA,, jEA, and f}(x)=0 for other indices. Hence, by calculation,
we have f(x)=0 and fi(xo)#0, i.e., f(x)=S.(x) and f(x)#cf1(x)? for any c€C"*.
Now let us consider the following polynomials.

(4.18) Fosin= 3 fRn 20 f 000,

J1ded
17278 Eyo ko kg

By Proposition 3.1, these polynomials correspond to the following decomposition.
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[ 1] ] [ i
(4‘19) ~ : X : X :
] ] ]
Then, we have
(4.20) fre(x)= 5 Fais(g). Fiielsy),
igig g J1l2l3 1193
jlvjzrj3

This corresponds to the following decomposition.

[ 1] 1]

(4.21) ~ X

One can check that fig(xe)=—2-3%
Next let us consider the following Filizi“(x) and Fi‘izis(x).

(4.22) Fihs(= 3 ff*h).fi -7 0 ).
kikghs 171 272 373
j]jzjg

(4.23) Fass(n= 3 fis). £ (0. f % (n).
by by 2 3
i,

113

By Proposition 3.1, they correspond to the following decompositions respectively.

[ T [ ] [ ] [] ]

X

(4.24) ~

LITTTT
LITTTT

LTI

RN
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[T] ] 110 1]

X X

(4.25) ~

LT TTTTT

3
The existence of a relative invariant of degree 7 on AC" corresponds to the
following polynomials for n=09.

(4.26) F_ . ()*Efl“f fr ().

U AN iyiy” igigigt? tgigige
1213

st

This corresponds to the following decomposition.

N ]
(4.27) ~ H X x H
= N
Then, we have
(4.28) fao(x>—12 F'2 (). Fl‘ (). F iy i) -
= phshe et p gl ol P FRSY L (5D

kydy” kolg” kgis B igigigt? igigigs

In fact, one can check easily that fso(xe)=0 and fis(xo)f1s(x0)#0. This (4.28)
corresponds to the following decomposition.

[ 1] 1]

(4.29) ~ X X

REMARK 4.7. Formally, we can construct, for example,

flx)= % Fitisg). paileingy . po o (x).

T1ly,lplg, Lol
1t1 tater 133
1112 3

111213
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But it is identically zero since F (x)y=—F

iyiy, gy, igig 118y, gty Tgiy

(x).
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