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ARCWISE CONNECTEDNESS OF THE COMPLEMENT

IN A HYPERSPACE

By

HiroshiHosokawa

Abstract. The hyperspace C(X) of a continuum X is always

arcwise connected. In [6], S. B. Nadler Jr. and J. Quinn show that if

C{X) ―{Ai) is arcwise connected for each / = 1,2, then C(X)-

{A,,j42} is also arcwise connected. Nadler raised questions in his

book [5]: Is it stilltrue with the two sets A, and A, replaced by n

sets,n finite? What about countably many? What about a collection

{Ax : A e A} which is a compact zero-dimensional subset of the

hyperspace? In this paper we prove that if dczC(X) is a closed

countable subset, °ltis an arc component of an open set of C(X) and

C(X)-{A] is arcwise connected for each Aesi, then °li-^4 is

arcwise connected.

Key words and phrasses: continuum, hyperspace, order arc,

Whitney map, arcwise connectedness, indecomposable continuum,

decomposable continuum.
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1. Notation and Preliminary Lemmas

A continuum is a nonempty compact connected metric space. The letter X

will always denotes a nondegenerate continuum with a metric function d. Let Y

be a subcontinuum of X and£a positive number. The set N(Y;e) denotes the £-

neighborhood of Y in X, i.e.,N(Y;e) - {x e X: d(x,y) < £ for some y e Y] and Y£

denotes the component of the closure of N(Y;e) containing Y. The hyperspace

C(X) of X is the space of all subcontinuum of X with the Hausdorff metric Hd

defined by

HJ(A,B) = M{e>O:AczN(B;e) and BczN(A;e)}.

With thismetric, C(X) becomes a continuum. If Y is a subcontinuum of X, then
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we consider C(Y) as a subspace of C(X). For two subsets si and S& of C(X),

let Hd(s&,(3!>)= inf {/^(A, fi):A esi and fieS&}. A map is a continuous function.

Any map fi: C(X) ―≫[0,1] satisfying

(1) if AcB and A*<B,then ji(A)<ji(B),

(2) fi({x})= 0 for each x g X and ji(X) = 1

is called a Whitney map for C(X). Such a map always exists (see [7]). An order

arc is a map o :[a,fc]-≫C(X) such that if a<tQ<t^<b, then cr(f0)c cr(r,)and

o(tQ)±G(tx). Itis also called an order arc from a (a) to G(b).

If A, 5 are distinct elements of C(X), then there is an order arc from A to B

if and only if AcB (see [1]).

We often use the following lemmas which are easy to prove hence we omit

their proofs.

LEMMA 1. Let Y be a proper subcontinuum ofX. If thereis a subcontinuum

M ofX such that M nY ^(j)^M -Y, thenfor any £>Q and yeMnY, thereis a

subcontinuum N of M n K such that N r＼Y^ 0^ N -Y and y e TV.

The diameter of a subset A of X is denoted by 8(A), i.e.,S(A) = sup{d(x,y)

x,ye A}.

Remark. If d is a connected subset of C(X) such that Y e si and S(s&) < e

then s&<zC(YF).

LEMMA 2. If a subset (A,B,C,D)cC(X) satisfies AcSnCcSuCcD,

then Hd(B,C)< Hd(A,D). In particular, if G is an order arc, then S((j([a,b]))=

H,(o(a),a(b)).

Furthermore we need the following Krasinkiewiz-Nadler's Theorem

(Theorem 3.1 of [2]).

PROPOSITION 3. Let n:C(X)-> [0,1] be a Whitney map and A^,A2e/i '(*,),

where ?0 e [0,1]. Let K be a subcontinuum of A{n＼A2. Then there is a map

a:[0,l]-^/i"l(?0)nC(A1uA2) such that a(O) = A,, a(＼)= A2 and Kaa(t) for

all t 6 [0,1]. //A, ^ A2, ?/?en tt can be taken to be an emmbedding.

In fact Theorem 3.1 of [2] is much more general, and from its proof we

obtain the following lemma.

Lemma 4. Let u:C(X)―> [0,1] be a Whitney map and let A, B, C be
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subcontinua ofX such that AnBz)C. Then there is a map a :[0,1] -> /i"1(fl(A))

nC(AuB)such that a(0) = A,a(t) z> C for each te[0,l],and

if n(A) < n(B) then a{＼)a B,

if u(A) > u(B) then a(＼)z> B.

In the same paper they proved (Theorem 3.5 In [2]) that

Proposition 5.

map. Then there is

connected.

Let X be decomposable and fl: C(X) -^ [0,1] a Whitney

j0g[0, 1) such that if ^e[io,l], then U~l(s) is arcwise

The following proposition is Theorem 4.6 of [4]

PROPOSITION 6. // Y is a non-degenerate proper subcontinuum of X, then

thefollowing two statements are equivalent:

(1) C{X) ―{Y] is not arcwise connected.

(2) There is a dense subset D of Y such that if M is a subcontinuum of X

satisfying MnD^ih^ M -Y, then Mz>Y.

2. Bypass Lemma

Let K,LeC(X) and siczC(X). An arc from K to L in si is a map

a:[a,b]―>s£ such that a(a) = K and a(b) = L. If a is an embedding, then we

callit an embedding arc. Following is a key lemma.

LEMMA 7. Let Y be a nondegenerate proper subcontinuum of a continuum

X such that C(X)-{Y} is arcwise connected. Let a :[0,1] ―>C(X) be a map such

that a(l)=Y and a(t) g C(Y) - {Y} for each te[0,l). Then for a given e>0,

there is a map (5:[0,1]^ C{X)-{Y) such that a(0) = 0(0), Hd(a(t),P(t))<e for

each te[0,l]and 0(1)-7*0.

PROOF. First suppose that Y is indecomposable. Put £,=£/3. Since Ot is

continuous, there is t0 e [0,1) such that 8(a([to,＼])) < £,.Let A be the composant

of F such that a(t0) c A. By Lemma 1 and Proposition 6, there is a subcontinuum

M of yf| such that M-Y*<j)*Y-M and MnX^ij). We may assume that

M n> a(t0) ^ <j).(Because let A' be a composant of K different from A. Since M

is compact and Y - M *(j>,X' - M ^<p. Thus we can replace M by Myj N, where

N is a continuum contained in A such that M nN *(/)* N na(t0).). Let

cr:|>n,ll-≫ C(X) be an order arc from a(tn) to Mua(rn).Then
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5(a([to,＼]))= Hd{a(to),Mva(to))ZHtl(a(tQ),Yet)

<Hll(a(t0),Y) + Hd(Y,Ye])<2er

Define an arc 8 in C(X) by

ja(?) if fe[O,fo],
＼a(t)
if te(to,l}.

Clearly /3 is continuous and its image does not contain Y. If t&[Q,t0], then

Hd (a(t),j3(0) = 0 . Suppose that ? e (r0,1].Then since a(t0) = ^(r0),

Hd (a(t),(3(t))< Hd (a(t),a(t0))+ Hd (j3(t0),P(t))

<S(a([to,l})) + S(G([to,l]))<3£]=£.

For the second case, suppose that Fis decomposable. Put e. =e/5 and let a

be a Whitney map for C(X). By Proposition 5, there is s0 < ji(Y) such that if

s g[50,jU(F)],then jTx(s) n C(Y) is arcwise connected. Moreover s0 can be taken

so that 8(fi~＼[so,l])r＼C(Y))<e]. Since (X is continuous, there is foe[O,l) such

that
jU(cr([ro,l]))c[5o,l].

For simplicity,put 5, =/z(a(70)). By Proposition 6 and

Lemma 1, there is a subcontinuum M of K , such that M―Y^<b^Y ―M and

M r＼Y jt(j).There are two cases.

(i) Suppose there is Ae/i~'(s,)nC(Y) such that AnM*</>*F-(AuM).

Put ?,=(fo+l)/2 and let a, :[ro,r,]-> ^'(i|)nC(F) be an arc from a(t0) to A

(such an arc exists since s0 < s] < /n(Y)) and a2 :[fpl]-> C(X) an order arc from

A to AkjM. Note that <5(a9([?,,1]))< 2e.. Define an arc B in C(X) by

a(t) if te[O,to],

a,(r) if re(ro,r,],

o2{t) if fe(r,,l].

Cl

H

early P is continuous and P(t)*Y for each fe[0,l]. If te[O,tQ], then

d(a(t),p(t))
= 0 .Suppose t e [to,tl].Then since

p([to,t])a
ju"1(5,)n C(Y),

Hd (a(t),P(t)) < Hd (a(t),a(t0)) + Hd (p(tQ),
p(t))

<5(a[/0,l])) + %-|(i,)nC(F))<2£l<£.

Finally suppose t e [?,,!].Then

Hd (a(t), P(t)) < Hd (ait), a(tx)) + Hd (a(r,), j3(r,))+ Hd (pit,), j8(0)

< £>(≪([>,,1])) + 2e, + 5(cr2([r,,1])) < e, + 2e, + 2e, = 5e, = e.

(ii) Suppose that for each A e fi^is^n C(Y), Ar＼M*<j) implies Y cAu M.

In this case, each element of }A~＼s^)r＼CiY) intersects M. In particular,
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oc(tQ)n＼At & (f).Considering an order arc from M to MvjY , we can enlarge M

and hence we can assume ji(M)>sx. By Lemma 4, there is a map

o{:{t{vtx}-^ ji~＼sx)r＼C{YKjM) from a(t0) to d,(7,)<zM , where f,=(fo+l)/2.

Let <r2:[r,,l]―>C(X) be an order arc from a,(7,) to M. Define an arc (3 in

rCY) hv

a{t) if te[O,to],

(7,(0 if re(/,,?,]

<72(0 if re(/,,!].

As in case (i), fi satisfiesall the required conditions.

Now we prove the main lemma.

BYPASS LEMMA 8. Let Y be a subcontinuum of X such that C(X)-{Y} is

arcwise connected and let a :[0,1]―>C(X) be an arc such that a(t) = Y if and

only ift = 1/2. Then for each £>0 and each a, b, where 0<a<l/2<b <l, there

is a map B: [0,1] -≫C(X)-{Y} such that a(t) = Bit) for all rerO,fl]u[^ll and

Hd (a(t), j3(t))<e for all te [0,1]

Proof. If Y = X, then X is decomposable (by Theorem 11.4 and Corollary

11.8 of [5]). Let fi be a Whitney map for C(X). By Proposition 5, there is

s0 e[0,l) such that fi~](s)is arcwise connected for each s e [.so,l].Moreover .so

can be chosen so that 5(u ]lSn.U))<£/2. Since (X is continuous, there exist

numbers to,t]

two

such that a<to<U2<tl<b,jn(a(tQ)) = n(a(tl))e[so,l] and

5(a([tQ, f,]))<e/2. Put fi(a(to)) = sx. Then since s,e[.so,l], there is a map

o-:[f0,f,]->ju"' (*i) from a(r0) to ≪(*,). Define an arc j8 in C(X)-{F}by

If te(ro,f,),then

W)
if re(/0,f,).

d (a(t), 0(0) < Hd (a(t), a(t0)) + Hd (a(t0), a(t))

<S(a([tQ,ti])) + 8(fi~](si))<£/2 + £/2 = £.

Therefore /3satisfiestherequiredconditions.

Next suppose thatYis a proper subcontinuum of X. Put e,=e/4. There exist

two numbers to,t{such that a <t0 < 111 <?, < b and <5(a([fo,f,]))<£ Note that
a([ro,f,])cC(ye

|).
If ff([/0,l/2])cC(y), then by Lemma 7,

there is a map

(7:[rn,l/2]-≫C(K )-m such that o{tn) = a(tn＼o(＼l2)-Y*<b and H,Aa(t),

cT(f))<£,for each f [f0,l/2].If a([fo,l/2])- C(Y) *<p , then put a = a＼[t-v..,,̂ ^
.uvu .
CL≪o,i,^.j.ii uufo,wzj;-ctr;*0, then put <r= a|[ro,l/2]

There is r e (t0,1/2) such that o(r)- Y± 0 ^ yf|-a(r). Let
T:[r,l/2]-* C(X) be
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an order arc from a(r) to V .Define Bn :[/,,!/21 -> C(X) bv

a{t) if re[fo,r],

T(r) if te(r, 1/2]

It is easy to see that Hd(a(t),P0(t))<4e] for each ?e[?0,l/2].

As in the same way, we can find a map /5,:[1/2,?,]―≫ C(X) such that

j3,(l/2) = yC|,j8I(f,)= a(r1) and //(/(a(?),j3,(?))<4£, for each t e [1/2,?,]. Then the

arc B defined by

Pit)

(a(t) if fe[O,?o]u[r,,l]

=
jj80(0
if fe[fo,l/2],

Ia(O
if ^[l/2,r,]

satisfies the required conditions

3. Arcwlse Connectedness of the Complement

Let ^ be a closed subset of C(X) such that C(X)-{Y] is arcwise connected

for each Y e <&. We will show thatif ^ is a finiteset,then its complement is also

arcwise connected. Using this,we show that the same is fold if ^ is a closed

countable set. If s&c%(X) and £>0, then we wright the £-neighborhood of

^.inC(X)by N(d;e).

THEOREM 9. Let °Ube a finitesubset of C(X) such that C(X)-{Y} is arcwise

connected for each Y g ^ and let a :[0,1]―>C(X) be an arc from K to L, where

K,L<= C(X)- <& .Then for each e > 0, there is a map p :[0,1] -> C(X)- ^ from K

to L such that J3([0,ll)c N(a([0,l]);£).

Proof. If AT = L, then we can take (3 to be a constant map. Hence let us

suppose K^L. There is an embedding a': [0,1] ―≫a([0,1]) such that a(t)

= a'(t) for t - 0,1. Therefore we can assume that (X is an embedding arc and

hence a"1 (^) is a finite set. Let a^i0^) = {tx,t2,･■■,t,,},where 0 < ti< tM < 1 for

/ = l,2,---,n-l.

(i) Suppose n = 1 and without loss of generality, assume ?,=l/2. Put

a(l/2)=Y. Then a([0,l]) and ^,=^-{F} are closed and disjoint. Put

5 = //(/(a([0,l]),(^1) and £,= min{£,c>}. Then e,>0. Applying Bypass Lemma,

there is a map P:[Q,1]->C(X)-{Y) from A" to L such that Hd(a(t＼p(t))< e,. By

the choice of £,,/3satisfies the required conditions.

(ii) Suppose it> 2and the Theorem holds for n = k-＼. Let a"'(^) = {f,,f2,

･･･,^} where 0 < t < f,, < 1 for i-l,2,---,k-l. Put 5 = Hd(a[t0,l]),^ -{a(tk)} and
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e, = min {e/2,8}, where t0 =(tk_l+tk)/2. Then partially applying Bypass

Lemma, there is a map /J,:[0,1] -≫C(X) such that a|[0,f0] = /J,|[O,fo],a(l)= 0,(1),

H,(a(t),B,(t))<e, and j8,([0,1]) does not contain a(tk). Let a, be an embedding

arc from K to L such that a ,([O,l])c= j3,([0,11). Then it is easy to see that the

image of a, intersects at most n - 1 elements of RU. Therefore by the inductive

hypothesis, there is an arc f3 from K to L in C(X)- <& such that

)8([0,l])c Ma,([0,ll);e/2). Hence B is a required arc.

COROLLARY 10. Let ^ be a dosed subset of C(X) and let si be an arc

component of C(X)-&. If <2/is a finitesubset of C(X) such that C(X)-{Y} is

arcwise connected for each Y e ^ . then si―^ is arcwise connected.

PROOF. Let K, L be arbitrary elements of sl-°U. There is a map

a:[0,l]-≫,s4 from K to L. Put E = (＼l2)Hd{a([Q,Y＼)&). Then e>0 and hence

by Theorem 9, there is a map p :[0,1] -≫C(X)- <2/from if to L such that/3([0,1])

c7V(a([0,!]);£).By the definitionof e,/V(a([0,l]);e)n ^ = 0. Therefore p is an

arc in d-^ from JTtoL.

Let A' denote the derived set of the space A. The derived set of A of order

A is defined by

A(I)=A', Aln+l)=(Aln))' and Aa)=nn<xA(n)

if A is a limit ordinal (see [3]).

We say that a triple {3^,^,^} is admissible if 3^ is a closed subset of

C(X),s& is an arc component of C(X)-3F, °Uis a closed countable subset of C(X)

such that (^fY^ ―(Fl is arrwise rnnnectp.d for sarh Fp^

THEOREM 11. If {9,si,ty] is admissible, then si-^J is arcwise connected.

PROOF. First observe that the least ordinal v such that ^'"^^ (such an

ordinal v exists since ^ does not contain perfect sets) is not a limit ordinal.

Therefore there is the least ordinal X such that ^(X)=(j). Denote such the ordinal

X by AC?/). To prove the Theorem, we shall proceed by transfiniteinduction on

A(<2/).

If A{^S) =0,then ^ is a finiteset. Hence Theorem follows from Corollary

10.

Suppose that the Theorem holds for any admissible triple ffiM,^} such that

A((2/)<A.Let {^M,^} be an admissible triplesuch that A(<2/)= X and let K, L

be arbitrary elements of si―^H. It is sufficientto show that there is an arc from

Kto L in d-%. Since (2/a+1)=0,(2/a>is a finiteset. Therefore by Corollary 10,
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there is a map a :[0,l] -≫s£- ^<A) from A" to L. Put e = (l/2)#rf(a([0

l]),<toa)),(tol=(to-N((toa);e),&l=RKjN((toa);£),where N(＼X);e) is the closure of

N(ayUK,£) in C(X),and let six be the arc component of C(X)-&1 containing K

(and hence L). Note that 5i,C64. The triple {&?,,s&,,^,} is admissible and

yi(^,)<A. Hence

･si,-^,. Since sil

by inductive hypothesis, there is an arc from K to L in

- <&,czsi- <& and K, L are arbitrary elements of &-%&-<&

is arcwise connected.

COROLLARY 12. // °Mis a countable closed subset of C(X) such that

C(X)-{Y} is arcwise connected for each Ye°)l,then C(X)- ^ is arcwise

connected.
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