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Let A be a finite quiver (=oriented, connected graph) without oriented
cycles. Let b be any field. The path algebra k[A] is a hereditary algebra,
see [7]. The study of this kind of algebras had played a central role in the
development of the Representation Theory of Algebras, see [6, 4, 13, 11].

For a representation X of k[A], we denote by dim X=(dim,X(é)):ca, the
dimension vector of X, where A, is the set of vertices of A. The Coxeter
matrix ¢a satisfies

dim <X =(dim X)ga
where X denotes the Auslander-Reiten translate of the non-projective indecom-
posable representation X. The spectral radius p(¢a) of the Coxeter matrix ¢a,
contains relevant information about the bshaviour of the translation z, see [5,
117.

In this work, we consider some elementary relations between the spectral
radii p(@z) and p(ga) for a Galois covering m:A—A. In particular, we show
that for any covering «:A—A defined by the action of a residually finite group
and any finite subgraph F of A, we have p(¢r)<p(da).

In [12], we have explored the relations between the spectral radii r(A) and
7(A) of the adjacency matrices Az and Aa, for a Galois covering =: A—A. In
section 2, we show how to use these results to get some interesting bounds for
o(Pa).

Finally, we get some applications. In relation with a problem posed by
Kerner, we show that

gd) _ 14|
o(da) ™ 27
where g(A)=|A,| —|A,]+1 denotes the genus of the underlying graph of A.

1. Galois covering and Coxeter matrices.

1.1. Let n be the number of vertices of the quiver A.
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For each vertex :=A,, we denote by P; the indecomposable projective 2[A]-
module associated with 7.

The Cartan matrix Cp of k[A] is the nXn-matrix whose 7-th column is
the dimension vector (dim P;)?. This matrix is invertible.

The Coxeter matrix ¢ of k[A] is defined as

¢A: -CKTCA H

where M7” denotes the transpose of M. We consider ¢a as a linear map,
@a: ClosCh, @r(v)=vgs. We recall that ¢, is characterized by ¢a(dim P))=
—dim I;, where [; denotes the indecomposable injective k[A]-module associated
with 7,

1.2. The spectrum Spec (¢a) of ¢, is the set of eigenvalues of ¢a. The
spectral radius p(@a) is

p(@a)=max{|4|; 4 is an eigenvalue of @a}.

By [5, 117, p(¢a) is an eigenvalue of ¢ and there exists a corresponding eigen-
vector y* with non-negative coordinates.
As observed in [14], given a full subquiver A’ of A, we get p(¢a)=<p(@s).

1.3. Let =:A—A be an onto morphism of quivers. Then = is said to be
a Galois covering defined by the action of a group G if the following is satisfied :

i) G is a group of automorphisms of A, acting freely on A; that is, if
g(H)=1 (resp. g(a)=a) for some vertex 7 (resp. arrow a), then g=1.

ii)y For any g=G, ng=mn.

iiiy For any vertex i (resp. arrow a) of A, n~'z(})=G1 (resp. n 'n(a)=Ga).

A Galois covering 7 : A—A, induces a Galois covering of algebras k(z): k[A]
—E[A]. Conversely, a Galois covering functor F: k[A]—~[A] induces a Galois
covering of quivers, see [8, 2].

1.4, Let m:A—A be a Galois covering defined by the action of a group G.
Let F=k(n): F[A]—k[A] be the induced functor. Following [8, 2], we can
define the push-down functor, F;:mod 2[Al—mod £[A], and the pull-up functor,
F.: mod k[A]—Mod £[A]. In case the group G is finite, we get induced linear
maps _

fr1:CP — Ch  with fl(v)(ﬂ(i))=g§(}v(g(i))

and
f.rC% — C%  with f.(2)@)=2(x()).

We observe that
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éaf1=/1¢s [evaluate in the basis {dim P;; i<A,}]
and
osf.=f.¢z [evaluate in the basis {dim P;; j=A,}],

see also [2].

1.5. PROPOSITION. Let m:A—A be a Galois covering defined by the action
of a finite group G. Then Spec (¢z)=Spec (§a) and plpa)=p(Pz).

PROOF. Let 1<Spec (§a). Let 0+ x=C4 be such that ¢a(x)=21x. Consider
the vector 0#%i=/f.(x)eC%. By (1.4), ¢x(x)=1%. Hence, 1=Spec(¢z). In
particular, p(@a)=0)¢a).

Since the eigenvector y*<C? has non-negative coordinates, then 0= f;(y*)
=C%. By (1.4), this is an eigenvector of ¢, with eignvalue o(d5). There-
fore, p(¢a)=p($z)- O

1.6. PROPOSITION. Let 7:A—A be a Galois covering defined by the action
of a residually finite group G. Let F be any finite induced subquiver of A, then

0@ r)=0(ga).

PRrOOF. First, we show the existence of a factorization of =

-

’

T

B «— D

A
7
where =’ and 7 are Galois coverings, A’ is finite, z(F) is a full subquiver of
A’, and the induced morphism #|: F—A’ is injective. Indeed, the set S=
{g=G; g#l1, g(F)NFi# @} is finite, where F’ is the full induced subquiver
of A with set of vertices F,\U {i<A,; there exists j& F, such that i and ; joined
by an arrow in A}. Since G acts freely on A. Hence there exists a normal
subgroup H<G with finite index and such that SN"H=@. The covering z:A
—A’ defined by the action of H satisfies the desired properties.
By (1.2) and (1.5), we have

(@ r)=p(@zm)=p(Pa)=p(Pa).
O

1.7. COROLLARY. Let m:A—A be the umversal Galois covering of A. For
any finite induced subquiver F of A’, we have o(¢p)=< p(Pn).
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PrOOF. The universal covering = is defined by the action of a free group
Il (the fundamental group). Thus r is residually finite. O

2. Coxeter matrices and adjacency matrices.

2.1. Let A be a finite quiver as above and z=:A—A be a Galois covering.
The set of vertices A, is at most countable, thus we assume that either A,=
{1, ---, n} for some n=N or A,=N. The adjacency matrix of A, Az=(a;;) is
the matrix whose (i, 7)-th entry a; is the number of edges between the vertices
i and j if i#7 and a;; is twice the number of loops at 7. Similarly we define
the adjacency matrix As. Following [10, 12], we consider Az as a linear
operator Agz: l%—»l%, where l.z_ is the Hilbert space of all sequences (x:)es, Of

complex numbers such that 2] | x;]® converges.
i€h,
We recall that the spectrum o(A) of the quiver A is the set of complex
numbers 2 such that Az—A/ is not an invertible operator, where I denotes the
identity operator in (2. The spectral radius r(A) of A is defined as r(A)=

sup{l2| : A€ a(A)}.

THEOREM [10, 12]. Let m: A—A be a Galois covering of A. Then
) r@A)=sup{r(F); Fis a fimte induced subquiver of A}
i) rA)=r). O

2.2. We recall now a basic relation between the spectral radius p(@a) of
the Coxeter matrix and the spectral radius 7(A) of the adjacency matrix Aa.

PROPOSITION [117. Assume that A is a finite tree, whose underlying graph
is not a Dynkin type. Then there exists a real number A=1 such thai

r(A)=A4+2"" and p(Pa)=4*.
Sketch of the proof: For any p+0, we have
det (p2—@a)=p" det (p+pHI—As) .

Hence p* is an eigenvalue of ¢, if and only if x+p™ is an eigenvalue of
Ax. Moreover, by [1], 1<p(¢a) is an eigenvalue of ¢@a. O

2.3. We show how to use the above results to get lower bounds for p(ga)
for a general quiver A.

THEOREM. Let A be a finite quiver without oriented cycles, whose underly-
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ing graph is not of Dynkin type. Let m: A—A be the universal covering. Then
there is a real number A=1 such that

rB)y=4+1"" and p(ga)=4%.

Proor. If A is a tree, the result is just (2.2). If A is a cycle, then the
underlying graph of A is of the form

Therefore, »(A)=2 and p(¢s)=1.

Assume that A is not a tree nor a cycle. Then there is a sequence (Fi)n
of induced finite subquivers of A, such that the underlying graph of F, is not
of Dynkin type, F, is contained in F,., and }ninlr(Fm):r(ﬁ).

Since A is an infinite tree, for each me&N there is a real numbel 1,>1
such that #(Fp)=A4r+47' and p(¢r,)=4%h. By (2.1), (An)x is a bounded squence.
Let A=sup{lx}. Hence »(A)=A+21"! and by (1.6)

A=sup{p(pr )} <p(ga) .

2.4. We get an explicit bound for p(¢a) as an application of (2.3).

PROPOSITION. Let A be a quiver without vertices of degree 1. Let Ma be
the maximum of the degrees of vertices of A. Then

p(ga)=Ma—1.

PrROOF. Let 7:A—A be the universal covering of A. It is not hard to see
that A contains an induced subquiver with underlying graph S, where M=M,.

M .
SM: ...._.._./

In (2.5) we will show that »(Sy)=(M—1)"24+(M—1)"12,
By (2.1), »(Sx)<#(A). Therefore, the result follows by (2.3). d

COROLLARY. Let A be a quiver and denote by A’ the maximal induced sub-
quiver of A without vertices of degree 1. Then p(ga)=My —1. O
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The bound of the proposition does not hold in the general situation. For
example :

/N
A: + p($a)=1.8832 .- <2=M,—1.
N
2.5. LEMMA. Let S, be the infinite graph defined in (2.4), then r(S;)=
(=1 =1,

PrROOF. The case =2 is well known. Assume {=3. For any n=N, con-
sider the finite star S{®

ya @, m)

Q1,2
/.é, 1)
(ggmmaqv\‘

L@ DN\
@2

AN
2, n)°
Let L, be the graph R REEr

Let p,(x) (resp. ¢.(x)) be the characteristic polynomial of the adjacency
matrix of S{™ (resp. L,). An easy calculation shows that p,=xq¢,—1tq,-1g%""

Let x=p+p, then g,(x)=(pg—p ) (p**'—p "*). This can be deduced
by induction using [93. Hence,

__71
=

Let po=0@—1)""* and 2<2,=p,+p,'. Then for any 1=4,, we have p,(2)>0.
From this we deduce that

¢ (L (e — = 1)+t — D — D).

T’(S;)ZSL}P {r(SfN} <4,

If 2<2<4, with A=p+p™', then we may assume that 1<p<pg, and p,(4)
<0 for n big enough. Hence, #(S,)=A4,. O

For results similar to this lemma see [9].
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3. A relation between g(A) and p(ga).

3.1. Let A be a finite quiver. The genus g(A) of A is the rank of the
fundamental group of A. It is well known that

gA)=14, =14 +1,

where A, is the set of arrows of A.

Recently, O. Kerner asked if there was some constant upper bound for the
ratio g(A)/p(¢a) (in fact, he asked for a bound of the ratio dim H,(k[A])/p(@a),
where H,(k[A]) denotes the first cohomology group of R[A]. It is known that
g(A)<dim H(k[A]). We answer this question in the negative and we give a
linear bound in the number of vertices |A,l.

3.2. Consider Galois coverings =, : A,—A as follows

LN L
An- l.l, l.l Tn A://,«v;\\.
I

N

where A, has 4n vertices. By (1.5), p(¢A”):‘D(¢A):7+4\/§——. On the other
hand g(A,)=4n-+1, which shows that g(4,)/p(¢a,) grows linearly with [(A,)l.

3.3. PROPOSITION. Let A be a finite quiver. Then
84) _ 14

plgy) = 2
PROOF. Let A’ be the maximal induced subquiver of A without vertices of
degree 1. Clearly, g(A)=g(4). By (1.2), g(4)/p($a)=g(A")/p($a’) and [Asl/2
=14,1/2.
Therefore, we may assume that A has not vertices of degree 1.
Let M be the maximal of the degrees of vertices of A. By (2.4), p(¢a)=
My—1.

On the other hand, IAIL— 3 degree (< MalBol A‘Ao ,

Therefore,

(Ms=2)| 4| +2

g)=1Ai] =14 | +1= 5

Hence
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84) _ (Ma—2)|4,]+2 _ |4,
elgn) ™  2AMy—1) T 2 ¢ 0

REMARK. The bound in (3.3) is in general not optimum. Easy calculations
provide some improvements. For example, if My=3 and A} =6, then
g(4)/ p(ga)<14,1/3.
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