

Some bounds for the spectral radius of a coxeter transformation

著者	de la Pena J.A., Takane M.
journal or	Tsukuba journal of mathematics
publication title	
volume	17
number	1
page range	193-200
year	1993-06
URL	http://hdl.handle.net/2241/7273

SOME BOUNDS FOR THE SPECTRAL RADIUS OF A COXETER TRANSFORMATION

By

J. A. de la PEÑA and M. TAKANE

Let Δ be a finite quiver (=oriented, connected graph) without oriented cycles. Let k be any field. The path algebra $k[\Delta]$ is a hereditary algebra, see [7]. The study of this kind of algebras had played a central role in the development of the Representation Theory of Algebras, see [6, 4, 13, 11].

For a representation X of $k[\Delta]$, we denote by $\underline{\dim} X = (\underline{\dim}_k X(i))_{i \in \Delta_0}$ the dimension vector of X, where Δ_0 is the set of vertices of Δ . The *Coxeter* matrix ϕ_{Δ} satisfies

$$\underline{\dim}\,\tau X = (\underline{\dim}\,X)\phi_{\Delta}$$

where τX denotes the Auslander-Reiten translate of the non-projective indecomposable representation X. The spectral radius $\rho(\phi_{\Delta})$ of the Coxeter matrix ϕ_{Δ} , contains relevant information about the behaviour of the translation τ , see [5, 11].

In this work, we consider some elementary relations between the spectral radii $\rho(\phi_{\bar{\Delta}})$ and $\rho(\phi_{\Delta})$ for a *Galois covering* $\pi: \bar{\Delta} \rightarrow \Delta$. In particular, we show that for any covering $\pi: \bar{\Delta} \rightarrow \Delta$ defined by the action of a residually finite group and any finite subgraph F of $\bar{\Delta}$, we have $\rho(\phi_F) \leq \rho(\phi_{\Delta})$.

In [12], we have explored the relations between the spectral radii $r(\Delta)$ and $r(\overline{\Delta})$ of the adjacency matrices $A_{\overline{\Delta}}$ and A_{Δ} , for a Galois covering $\pi: \overline{\Delta} \to \Delta$. In section 2, we show how to use these results to get some interesting bounds for $\rho(\phi_{\Delta})$.

Finally, we get some applications. In relation with a problem posed by Kerner, we show that

$$rac{g(\Delta)}{
ho(\phi_{\Delta})} \leq rac{|\Delta_0|}{2},$$

where $g(\Delta) = |\Delta_1| - |\Delta_0| + 1$ denotes the genus of the underlying graph of Δ .

1. Galois covering and Coxeter matrices.

1.1. Let n be the number of vertices of the quiver Δ .

Received October 14, 1991. Revised July 17, 1992.

For each vertex $i \in \Delta_0$, we denote by P_i the indecomposable projective $k[\Delta]$ -module associated with i.

The Cartan matrix C_{Δ} of $k[\Delta]$ is the $n \times n$ -matrix whose *i*-th column is the dimension vector $(\underline{\dim} P_i)^T$. This matrix is invertible.

The Coxeter matrix ϕ_{Δ} of $k[\Delta]$ is defined as

$$\phi_{\Delta} = -C_{\Delta}^{-T}C_{\Delta}$$
,

where M^T denotes the transpose of M. We consider ϕ_{Δ} as a linear map, $\phi_{\Delta}: C^{\Delta_0} \rightarrow C^{\Delta_0}, \ \phi_{\Delta}(v) = v \phi_{\Delta}$. We recall that ϕ_{Δ} is characterized by $\phi_{\Delta}(\underline{\dim} P_i) = -\underline{\dim} I_i$, where I_i denotes the indecomposable injective $k[\Delta]$ -module associated with i.

1.2. The spectrum Spec (ϕ_{Δ}) of ϕ_{Δ} is the set of eigenvalues of ϕ_{Δ} . The spectral radius $\rho(\phi_{\Delta})$ is

 $\rho(\phi_{\Delta}) = \max\{|\lambda|; \lambda \text{ is an eigenvalue of } \phi_{\Delta}\}.$

By [5, 11], $\rho(\phi_{\Delta})$ is an eigenvalue of ϕ_{Δ} and there exists a corresponding eigenvector y^+ with non-negative coordinates.

As observed in [14], given a full subquiver Δ' of Δ , we get $\rho(\phi_{\Delta'}) \leq \rho(\phi_{\Delta})$.

1.3. Let $\pi: \overline{\Delta} \to \Delta$ be an onto morphism of quivers. Then π is said to be a *Galois covering* defined by the action of a group G if the following is satisfied:

i) G is a group of automorphisms of $\overline{\Delta}$, acting freely on $\overline{\Delta}$; that is, if g(i)=i (resp. $g(\alpha)=\alpha$) for some vertex *i* (resp. arrow α), then g=1.

ii) For any $g \in G$, $\pi g = \pi$.

iii) For any vertex *i* (resp. arrow α) of $\overline{\Delta}$, $\pi^{-1}\pi(i)=Gi$ (resp. $\pi^{-1}\pi(\alpha)=G\alpha$).

A Galois covering $\pi: \overline{\Delta} \to \Delta$, induces a Galois covering of algebras $k(\pi): k[\overline{\Delta}] \to k[\Delta]$. Conversely, a Galois covering functor $F: k[\overline{\Delta}] \to k[\Delta]$ induces a Galois covering of quivers, see [8, 2].

1.4. Let $\pi: \overline{\Delta} \to \Delta$ be a Galois covering defined by the action of a group G. Let $F = k(\pi): k[\overline{\Delta}] \to k[\Delta]$ be the induced functor. Following [8, 2], we can define the *push-down* functor, $F_{\lambda}: \mod k[\overline{\Delta}] \to \mod k[\Delta]$, and the *pull-up* functor, $F : \mod k[\Delta] \to \operatorname{Mod} k[\overline{\Delta}]$. In case the group G is finite, we get induced linear maps

 $f_{\lambda}: C^{\bar{\Delta}_0} \longrightarrow C^{\Delta_0} \quad \text{with } f_{\lambda}(v)(\pi(i)) = \sum_{g \in G} v(g(i))$

and

$$f: C^{\overline{\Delta}_0} \longrightarrow C^{\Delta_0}$$
 with $f.(z)(i) = z(\pi(i))$.

We observe that

Some Bounds for the Spectral Radius

 $\phi_{\Delta}f_{\lambda} = f_{\lambda}\phi_{\bar{\Delta}}$ [evaluate in the basis {dim P_i ; $i \in \bar{\Delta}_0$ }]

and

$$\phi_{\Delta} f = f \cdot \phi_{\overline{\Delta}}$$
 [evaluate in the basis {dim P_j ; $j \in \Delta_0$ }],

see also [2].

1.5. PROPOSITION. Let $\pi: \overline{\Delta} \to \Delta$ be a Galois covering defined by the action of a finite group G. Then Spec $(\phi_{\overline{\Delta}}) \subset \text{Spec}(\phi_{\Delta})$ and $\rho(\phi_{\Delta}) = \rho(\phi_{\overline{\Delta}})$.

PROOF. Let $\lambda \in \text{Spec}(\phi_{\Delta})$. Let $0 \neq x \in C^{\Delta_0}$ be such that $\phi_{\Delta}(x) = \lambda x$. Consider the vector $0 \neq \bar{x} = f.(x) \in C^{\overline{\Delta}_0}$. By (1.4), $\phi_{\overline{\Delta}}(\bar{x}) = \lambda \bar{x}$. Hence, $\lambda \in \text{Spec}(\phi_{\overline{\Delta}})$. In particular, $\rho(\phi_{\Delta}) \leq \rho)\phi_{\overline{\Delta}}$.

Since the eigenvector $y^+ \in C^{\bar{\Lambda}_0}$ has non-negative coordinates, then $0 \neq f_{\lambda}(y^+) \in C^{\Lambda_0}$. By (1.4), this is an eigenvector of ϕ_{Λ} with eignvalue $\rho(\phi_{\bar{\Lambda}})$. Therefore, $\rho(\phi_{\Lambda}) = \rho(\phi_{\bar{\Lambda}})$.

1.6. PROPOSITION. Let $\pi: \overline{\Delta} \to \Delta$ be a Galois covering defined by the action of a residually finite group G. Let F be any finite induced subquiver of $\widetilde{\Delta}$, then $\rho(\phi_F) \leq \rho(\phi_{\Delta})$.

PROOF. First, we show the existence of a factorization of π

where π' and $\bar{\pi}$ are Galois coverings, Δ' is finite, $\bar{\pi}(F)$ is a full subquiver of Δ' , and the induced morphism $\bar{\pi} | : F \to \Delta'$ is injective. Indeed, the set $S = \{g \in G ; g \neq 1, g(F'_0) \cap F'_0 \neq \emptyset\}$ is finite, where F' is the full induced subquiver of $\bar{\Delta}$ with set of vertices $F_0 \cup \{i \in \bar{\Delta}_0; \text{ there exists } j \in F_0 \text{ such that } i \text{ and } j \text{ joined}$ by an arrow in $\bar{\Delta}\}$. Since G acts freely on $\bar{\Delta}$. Hence there exists a normal subgroup $H \triangleleft G$ with finite index and such that $S \cap H = \emptyset$. The covering $\bar{\pi}: \bar{\Delta} \to \Delta'$ defined by the action of H satisfies the desired properties.

By (1.2) and (1.5), we have

$$\rho(\phi_F) = \rho(\phi_{\pi(F)}) \leq \rho(\phi_{\Delta'}) = \rho(\phi_{\Delta}).$$

1.7. COROLLARY. Let $\pi: \tilde{\Delta} \to \Delta$ be the universal Galois covering of Δ . For any finite induced subquiver F of Δ' , we have $\rho(\phi_F) \leq \rho(\phi_{\Delta})$.

PROOF. The universal covering π is defined by the action of a free group II (the fundamental group). Thus π is residually finite.

2. Coxeter matrices and adjacency matrices.

2.1. Let Δ be a finite quiver as above and $\pi: \overline{\Delta} \to \Delta$ be a Galois covering. The set of vertices $\overline{\Delta}_0$ is at most countable, thus we assume that either $\widetilde{\Delta}_0 = \{1, \dots, n\}$ for some $n \in \mathbb{N}$ or $\widetilde{\Delta}_0 = \mathbb{N}$. The *adjacency matrix* of $\overline{\Delta}$, $A_{\overline{\Delta}} = (a_{ij})$ is the matrix whose (i, j)-th entry a_{ij} is the number of edges between the vertices i and j if $i \neq j$ and a_{ii} is twice the number of loops at i. Similarly we define the adjacency matrix A_{Δ} . Following [10, 12], we consider $A_{\overline{\Delta}}$ as a linear operator $A_{\overline{\Delta}}: l_{\overline{\Delta}}^2 \to l_{\overline{\Delta}}^2$, where $l_{\overline{\Delta}}^2$ is the Hilbert space of all sequences $(x_i)_{i \in \overline{\Delta}_0}$ of complex numbers such that $\sum_{i \in \overline{\Delta}_0} |x_i|^2$ converges.

We recall that the spectrum $\rho(\overline{\Delta})$ of the quiver $\overline{\Delta}$ is the set of complex numbers λ such that $A_{\overline{\Delta}} - \lambda I$ is not an invertible operator, where I denotes the identity operator in $l_{\overline{\Delta}}^2$. The spectral radius $r(\overline{\Delta})$ of $\overline{\Delta}$ is defined as $r(\overline{\Delta}) =$ $\sup\{|\lambda|: \lambda \in \sigma(\overline{\Delta})\}$.

THEOREM [10, 12]. Let $\pi: \overline{\Delta} \to \Delta$ be a Galois covering of Δ . Then i) $r(\overline{\Delta}) = \sup\{r(F); F \text{ is a finite induced subquiver of } \overline{\Delta}\}$ ii) $r(\overline{\Delta}) \leq r(\Delta)$.

2.2. We recall now a basic relation between the spectral radius $\rho(\phi_{\Delta})$ of the Coxeter matrix and the spectral radius $r(\Delta)$ of the adjacency matrix A_{Δ} .

PROPOSITION [11]. Assume that Δ is a finite tree, whose underlying graph is not a Dynkin type. Then there exists a real number $\lambda \ge 1$ such that

$$r(\Delta) = \lambda + \lambda^{-1}$$
 and $\rho(\phi_{\Delta}) = \lambda^2$.

Sketch of the proof: For any $\mu \neq 0$, we have

det
$$(\mu^2 I - \phi_{\Delta}) = \mu^n \det ((\mu + \mu^{-1}) I - A_{\Delta})$$
.

Hence μ^2 is an eigenvalue of ϕ_{Δ} if and only if $\mu + \mu^{-1}$ is an eigenvalue of A_{Δ} . Moreover, by [1], $1 \leq \rho(\phi_{\Delta})$ is an eigenvalue of ϕ_{Δ} .

2.3. We show how to use the above results to get lower bounds for $\rho(\phi_{\Delta})$ for a general quiver Δ .

THEOREM. Let Δ be a finite quiver without oriented cycles, whose underly-

ing graph is not of Dynkin type. Let $\pi: \tilde{\Delta} \rightarrow \Delta$ be the universal covering. Then there is a real number $\lambda \ge 1$ such that

$$r(\tilde{\Delta}) = \lambda + \lambda^{-1}$$
 and $\rho(\phi_{\Delta}) \geq \lambda^2$.

PROOF. If Δ is a tree, the result is just (2.2). If Δ is a cycle, then the underlying graph of $\tilde{\Delta}$ is of the form

···· · ____ · ___ ·

Therefore, $r(\tilde{\Delta})=2$ and $\rho(\phi_{\Delta})=1$.

Assume that Δ is not a tree nor a cycle. Then there is a sequence $(F_m)_m$ of induced finite subquivers of $\tilde{\Delta}$, such that the underlying graph of F_m is not of Dynkin type, F_m is contained in F_{m+1} and $\lim_{m\to\infty} r(F_m)=r(\tilde{\Delta})$.

Since $\tilde{\Delta}$ is an infinite tree, for each $m \in \mathbb{N}$ there is a real number $\lambda_m \ge 1$ such that $r(F_m) = \lambda_m + \lambda_m^{-1}$ and $\rho(\phi_{F_m}) = \lambda_m^2$. By (2.1), $(\lambda_m)_m$ is a bounded squence. Let $\lambda = \sup_m \{\lambda_m\}$. Hence $r(\tilde{\Delta}) = \lambda + \lambda^{-1}$ and by (1.6)

$$\lambda^2 = \sup_{m} \{ \rho(\phi_{F_m}) \} \leq \rho(\phi_{\Delta}) .$$

2.4. We get an explicit bound for $\rho(\phi_{\Delta})$ as an application of (2.3).

PROPOSITION. Let Δ be a quiver without vertices of degree 1. Let M_{Δ} be the maximum of the degrees of vertices of Δ . Then

$$\rho(\phi_{\Delta}) \geq M_{\Delta} - 1$$
.

PROOF. Let $\pi: \tilde{\Delta} \to \Delta$ be the universal covering of Δ . It is not hard to see that $\tilde{\Delta}$ contains an induced subquiver with underlying graph S_M , where $M = M_{\Delta}$.

In (2.5) we will show that $r(S_M) = (M-1)^{1/2} + (M-1)^{-1/2}$. By (2.1), $r(S_M) \leq r(\tilde{\Delta})$. Therefore, the result follows by (2.3).

COROLLARY. Let Δ be a quiver and denote by Δ' the maximal induced subquiver of Δ without vertices of degree 1. Then $\rho(\phi_{\Delta}) \ge M_{\Delta'} - 1$.

The bound of the proposition does not hold in the general situation. For *example*:

2.5. LEMMA. Let S_t be the infinite graph defined in (2.4), then $r(S_t) = (t-1)^{1/2} + (t-1)^{-1/2}$.

PROOF. The case t=2 is well known. Assume $t \ge 3$. For any $n \in N$, consider the finite star $S_t^{(n)}$

Let L_n be the graph $\frac{1}{1} - \frac{1}{2} \cdots - \frac{1}{n}$.

Let $p_n(x)$ (resp. $q_n(x)$) be the characteristic polynomial of the adjacency matrix of $S_t^{(n)}$ (resp. L_n). An easy calculation shows that $p_n = xq_n^t - tq_{n-1}q_n^{t-1}$.

Let $x=\mu+\mu^{-1}$, then $q_n(x)=(\mu-\mu^{-1})^{-1}(\mu^{n+1}-\mu^{-n-1})$. This can be deduced by induction using [9]. Hence,

$$p_n(x) = \frac{1}{(\mu - \mu^{-1})} q_n^{t-1}(x) [\mu^n(\mu^2 - (t-1)) + \mu^{-n-2}((t-1)\mu^2 - 1)].$$

Let $\mu_0 = (t-1)^{1/2}$ and $2 < \lambda_0 = \mu_0 + \mu_0^{-1}$. Then for any $\lambda \ge \lambda_0$, we have $p_n(\lambda) > 0$. From this we deduce that

$$r(S_t) = \sup_{n} \{r(S_t^{(n)})\} \leq \lambda_0$$

If $2 < \lambda < \lambda_0$ with $\lambda = \mu + \mu^{-1}$, then we may assume that $1 < \mu < \mu_0$, and $p_n(\lambda) < 0$ for *n* big enough. Hence, $r(S_t) = \lambda_0$.

For results similar to this lemma see [9].

3. A relation between $g(\Delta)$ and $\rho(\phi_{\Delta})$.

3.1. Let Δ be a finite quiver. The genus $g(\Delta)$ of Δ is the rank of the fundamental group of Δ . It is well known that

$$g(\Delta) = |\Delta_1| - |\Delta_0| + 1$$
 ,

where Δ_1 is the set of arrows of Δ .

Recently, O. Kerner asked if there was some constant upper bound for the ratio $g(\Delta)/\rho(\phi_{\Delta})$ (in fact, he asked for a bound of the ratio dim $H_1(k[\Delta])/\rho(\phi_{\Delta})$, where $H_1(k[\Delta])$ denotes the first cohomology group of $k[\Delta]$. It is known that $g(\Delta) \leq \dim H_1(k[\Delta])$). We answer this question in the negative and we give a linear bound in the number of vertices $|\Delta_0|$.

3.2. Consider Galois coverings $\pi_n: \Delta_n \rightarrow \Delta$ as follows

where Δ_n has 4n vertices. By (1.5), $\rho(\phi_{\Delta_n}) = \rho(\phi_{\Delta}) = 7 + 4\sqrt{3}$. On the other hand $g(\Delta_n) = 4n+1$, which shows that $g(\Delta_n)/\rho(\phi_{\Delta_n})$ grows linearly with $|(\Delta_n)_0|$.

3.3. PROPOSITION. Let Δ be a finite quiver. Then

$$\frac{g(\Delta)}{\rho(\phi_{\Delta})} \leq \frac{|\Delta_0|}{2}$$

PROOF. Let Δ' be the maximal induced subquiver of Δ without vertices of degree 1. Clearly, $g(\Delta')=g(\Delta)$. By (1.2), $g(\Delta)/\rho(\phi_{\Delta}) \leq g(\Delta')/\rho(\phi_{\Delta'})$ and $|\Delta'_0|/2 \leq |\Delta_0|/2$.

Therefore, we may assume that Δ has not vertices of degree 1.

Let M_{Δ} be the maximal of the degrees of vertices of Δ . By (2.4), $\rho(\phi_{\Delta}) \ge M_{\Delta} - 1$.

On the other hand, $|\Delta_1| = \frac{1}{2} \sum_{i \in \Delta_0} \text{degree } (i) \leq \frac{M_{\Delta} |\Delta_0|}{2}$.

Therefore,

$$g(\Delta) = |\Delta_1| - |\Delta_0| + 1 \leq \frac{(M_{\Delta} - 2)|\Delta_0| + 2}{2}.$$

Hence

J. A, de la PEÑA and M. TAKANE

$$\frac{g(\Delta)}{\rho(\phi_{\Delta})} \leq \frac{(M_{\Delta} - 2)|\Delta_{0}| + 2}{2(M_{\Delta} - 1)} \leq \frac{|\Delta_{0}|}{2}.$$

REMARK. The bound in (3.3) is in general not optimum. Easy calculations provide some improvements. For example, if $M_{\Delta}=3$ and $|\Delta_0| \ge 6$, then $g(\Delta)/\rho(\phi_{\Delta}) \le |\Delta_0|/3$.

Bibliograqhy

- [1] A'Campo, N., Sur les valeurs propres de la transformation de Coxeter, Invent. Math. 33 (1976), 61-67.
- [2] Bongartz, K. and Gabriel, P., Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378.
- [3] Cvetković, D. M., Doob, M. and Sachs, H., Spectra of graphs. Academic Press, New York (1979).
- [4] Dlab, V. and Ringel, C. M., Indecomposable representations of graphs and algebras. Memoirs Amer. Math. Soc. 173 (1976).
- [5] Dlab, V. and Ringel, C. M., Eigenvalues of Coxeter transformations and the Gelfand-Kirillov dimension of the preprojective algebras, Proceedings of the Amer. Math. Soc., Vol. 83, No. 2 (1981), 228-232.
- [6] Gabriel, P., Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71-103.
- [7] Gabriel, P., Auslander-Reiten sequences and representation-finite algebras. In: Representation of Algebras, LNM 488, Berlin-Heidelberg-New York (1975), 1-71.
- [8] Gabriel, P., The universal covering of a representation-finite algebra, Proc. Puebla 1980, Springer Lecture Notes 903 (1981), 68-105.
- [9] Hoffman, A. J. and Smith, J. H., On the Spectral Radii of Topologically Equivalent Graphs. In: Recent advances in Graph Theory (ed. M. Fiedler), Academia Praha (1975), 273-281.
- [10] Mohar, B., The spectrum of an infinite graph, Linear Algebra Appl. 48 (1982), 245-256.
- [11] de la Peña, J. A. and Takane, M., Spectral properties of Coxeter transformations and applications, Arch. Math., Vol. 55 (1990), 120-134.
- [12] de la Peña, J.A. and Takane, M., The Spectral radius of the Galois covering of a finite graph, Linear Algebra Appl., 160 (1992), 175-188.
- [13] Ringel, C. M., Finite dimensional algebras of wild representation type, Math. Z.
 161 (1978), 235-255.
- [14] Xi, C., On wild hereditary algebras with the small growth number, Comm. Alg. 18 (1990), 3413-3422.

Instituto de Matemáticas, UNAM Ciudad Universitaria México 04510, D.F. MEXICO FAX (5) 548 94 99