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FIELDS IN HIGHER ORDER LAGRANGE SPACES

By

Radu Miron and Gheorghe Atanasiu

Abstract. In this paper we shall give an introduction to the

geometry of higher order Lagrange spaces.The gravitationalfield,

Einstein equations, as well as the electromagnetic fields and

generalizedMaxwell equations,are pointed out,too.

Introduction.

Recently, we studied the higher order Lagrange spaces L{k)n=(M,L), [10-

14], founded on the notions of k-osculator bundle (OsckM,K,M), regular

Lagrangian LiOsc^M ―>R, Euler-Lagrange equations E,-(L) = 0 and the

geometrical model (Qsc*M,G,F), where G is the Sasaki liftof the fundamental

tensor field g- of the space L{k)n and F is the natural F(3,l) structure on

Osc*M.

But, gtj can be considered as the gravitational potentials. Therefore, the

Einstein equations of G with respect to the canonical metrical connection of

[}k)n give us the Einstein equations of the higher order Lagrange space [}k)n.

The law of conservation is established, too.

We define the electromagnetic potentials as being the covariant components

of the Liouville d-vector fields and we obtain the electromagnetic tensors given

by (6.2). The generalized Maxwell equations are established, too.

1. Preliminaries. The k-osculator bundle.

In this section, we need the results established in the previous papers [10-

14].

Let M be a real n-dimensional C°°-manifold and (OsckM,K,M) its k-

osculator bundle, where k is a natural number. The canonical local coordinates

on the total space E = OsckM are denoted by (x' ,y{i)i,---,y(k)i).A coordinate

transformation (x',y{l)',---,y(k)')―>(x',y(l)i,---,y(k)i)on E is given by
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a nonlinear connection on E and J is the k-tangent structure [10],

N, N,= J(NQ),---,Nk,= J(N._2) are k distributions geometrically

defined on E, everyone of local dimension n. Let us consider the distribution Vk

on E locally generated by the vector fields

space to £ at a point u e E is given by the direct sum of the vector spaces:

Tu(E) = No(u)RNl(u)R---@Nk_i(u)RVk(u)yu<=E.

An adapted basis to the direct decomposition (1.2) is given by

s
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The systems of functions A^('1)J.,---,A^('A.)J.are called the coefficients of the

nonlinear connection N.

The dual basis of the basis (1.3) can be given in the form



where

(1.6)
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Syw = dyw + MlWrdxr

Sy =dyw'+M'dyWr+Ml2)rdx'

% =dylk)i+M'dyik-l)r+--. + Mik)rdx'
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The systems of functions M' .,...,M'(k)jare called the dual coefficients of the

nonlinear connection N. There are some relations between the coefficients and

the dual coefficients of N, [10].

Let r(1),...,F(/:)be the Liouville vector fields on E. These vector fields are

linearly independent on E and have the property r(*-1)= J(F^),...,

r^ = j(r^).

In the adapted basis (1.3), the vectorial field rik) can be put in the form

(1.7) r(*) = 7(')/_A_

The coefficients z°

(1.7)'

z

zll)i=yil＼

+ 2z(2)l

2z(2)'=2y{2)i+M

kztk)i

can be written in the form

(1.8)

(1.8)' (k +1)6*

+ ... + kz{k)i
d

dya)<

s

)',---,z(k)ifrom (1.7) are given by

■'■
v(1)r

= kylk>iHk-l)M'y<k-l)r+... + Mik_l)ry≪)r

With respect to (1.1) we have z{a)i =^jzia)j,(a = 1,･･･,&). Consequently,

{V)i,---,z(k)iare d-vector fields. They will be called the Liouville d-vectorfields.

(k)
A /c-spray on E is a vector field S e X(E) which has the property JS =T. It

C- V(D' -£- + ...+foOt)' Y.

d

dyik)l

With respect to (1.1) its coefficients G' transform as follows:

;&< rfc(k)i= (t + 1)|.G,_(y,U5_ +

+ 7v{2)J -＼■ + ･･･+ kv{k)i― )
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A &-spray S, with the coefficientsG', is equivalent to the &-paths of the

equations

(1.9)
1 dk+lxl

(* + l)! dtk+x
+ G'(x 1 dkx)-o

Clearly, (1.9) give us the integral curves of the vector field S.

We repeat an important result,proved in the paper [10]:

THEOREM 1.1. If S is a k -spray,having the coefficientsG'',then the

systems of functions M') ■,･■■,M[k)jfrom the following equalities:

(1.10)

Mlw

Kv

and we give the following

(2.1)

(2.2)

dG'

1}

d2L

dy{k)idy(k)i

dy{k)]

~~2
(SM'+M'(l),M'),

i^jiSM'^j+M^M^),

are the dual coefficientsof a nonlinear connection determined only by the k

spray S.

2. Higher order Lagrange spaces.

We consider the manifold:

E = {(x,y°＼---,yu<))eOsckM＼rank＼＼yw＼＼ =

DEFINITION 2.1. A differentiable Lagrangian of order fcona C°°-manifold

M is a function L: E ―>R, differentiable on E and continuous in the points of E

where y{1)lare nuls.

It follows that

g,c*,y＼...,/*>) = !

is a symmetric ≪i-tensorfieldof type (o, 2) on E.

We say that the differentiableLagrangian L is a regular if

mnk＼＼giJ(x,y0),...,y(k))＼＼ = n , on E.
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DEFINITION 2.2. We call a Lagrange space of order k a pair L(k)n=(M,L),

where L is a regular Lagrangian of order k and the d-tensor field g- from (2.1)

has a constant signature on E.

In the case k = 1 this definition reduces to that of the Lagrange space

Ln =(M,L), [15].

The function L of the space L{k}"is called the fundamental function and the

d-tensor field gtjfrom (2.1) the fundamental (or metric) tensor field of L(k)n.

We denote by gij(x,y(]),--',y{k)),the contravariant tensor field of the

fundamental tensor gAx,/'>,･･･,y(k)),i.e. girgrj=8j

EXAMPLE. Let R" = (M,yij(x)) be a Riemannian space and Prol*Rn its

prolongation of order k, given in our paper [11]. We consider the Liouville d-

vector field z(k)lconstructed by means of the canonical nonlinear connection of

the space Prolk R". Then

(2.3) L(x,y(i) ... v(*k

is a regular Lagrangian of order k on E, having gtj=yij as the fundamental

tensor field.Thus Lw" = (M,L) with the Lagrangian (2.3) is a Lagrange space of

order k.

Therefore we have:

THEOREM 2.1. If the base manifold M is paracompact, then there exist

Lagrange spaces of order k,L(k)"=(M,L).

3. Varlational problem for the Lagraegians of order k.

Let L'.E-tR be a differentiable Lagrangian of order ^ and

c: te[0,1]―>(x'(t))eM a smooth parametrized curve, such that ImcaU,U

being the domain of a local chartof the differentiablemanifold M.

The extension c* to E of the curve c is given by the mapping:

(3.1) c*:f [O,ll-≫(jc''m
1 dkx'

―(0,-,- (t))en~l(U)

(3.2)

k＼ dtk

The integral of action of the Lagrangian L along the curve c is given by

1( s. ri
J(
dx 1 dkx^i.

The variational problem regarding the integral of action /(c) leads to the
o

Euler-Lagrange equations £,-(L)= 0, [12, 13]:
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are of the form (1.9), where
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The curves c which verify the equations (3.3) are called the extremal curves

of the integral action /(c).

Now we remark that

dL

dy(k~ni

gijkEj(L) = O

1 Wk)J)

y dx' y dy([)i

dyik)i

along the curve c*, (3.1), is a d-covector fieldon E, which depends only on the

Lagrangian L.

Then we can prove:

THEOREM 3.1 In the Lagrange space of order k,L(k)"

differentialequations

BL }

dy(k-])j＼

+ ---+ ky(k)i
d

They determine k paths, which depend only on the fundamental function L.

Consequently, Theorem 3.1 shows us that there is a &-spray S with the

coefficients G' in (3.6) and (3.7). It will be called canonical for the space L(k)".

Now, applying Theorem 1.1, we get:

THEOREM 3.2. For every Lagrange space of order k,l}k)"=(M,L), there

exist nonlinear connections determined only by the fundamental function L.

One of them has the dual coefficients(1.10), where S is the canonical &-spray

and G' are Its coefficients(3.6), (3.7).

The nonlinear connection N from the last theorem is called canonical for the

space L{k)n.

From now, we shall consider, for L(k)n,only the canonical nonlinear
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connection N
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4. The geometrical model H(k+1)n=(OsckM,G,F).

For the study of the most important geometrical propertiesof the Lagrange

space of order k,L(k)n,we willintroduce the so-calledgeometrical model. In

this respect,let us consider the adapted basis (1.3) and its dual basis (1.5)

constructed with the canonicalnonlinear connection N.

Hence, the Sasaki AMift, [12], of the fundamental tensor fieldg~of the

soace l}k)"is

(4.1) G = g.-dx1 R dxj + g..8yil)j RSyiUj +■■■+ g..Sy(k)i R Sy(k)j

We can formulate:

THEOREM 4.1. The space (E,G) is a pseudo-Riemannian one and it is

determined only by the fundamental function L of the Lagrange space of order

k,L{k)n.

Now, let F be the F(3,l) structureinduced by the canonical nonlinear

rr＼nm(*rtiir＼t＼M-

(4.2) F( _
S
_

8x'

) = F( ) =
_5_

Sx1
F(
8

) = 0,(a = 1,...,* -1)

d

dy(k)i

d

dy(k)i

We can prove, without difficulties:

8y{a)l

THEOREM 4.2. The structure F has the properties:

1°.F Is globally defined on E.

T. Im F = NoRVk,KerF = NsR---RNk_].

3°.rank F = 2n.

4°.F3+F = Q, (i.e. F is an F(3,l)-structure).

5°.F depends only on the Lagrangian L.

6°.The pair (G, F) is a metrical F(3,l) structure.

Consequently, the pair (OsckM,(G,F)) is a metrical F(3,l) space determined

only by the fundamental function L of llk)n and is denoted by

fj(k+＼)n=(OsckM,G,F).. It will be called the geometrical model of the Lagrange

space of order k. Therefore, the geometry of L(k)"is the geometry of the

geometrical model H<k+l)".It can be studied by means of the methods used in

the study of the total space of the k-osculator bundle, [11, 13].

For instance, the yV-linear connection D on E with the properties

DVG = DyF = DYJ = 0,VX g X(E), is characterized by the conditions:
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a) The coefficientsof D are given by DT(N) = (l!jm,C'{l)jm,...,C'(k)jm),only.

b) The h- and va-covariant derivatives of the metric tensor gtj of the space

L(k)n,with respect to D, satisfy

(4.3)

where

(a)

£ =0 e-＼ = 0, (a =

6|/' js rS

We have

(4.4)

Jm _
1

oms(
6'is ■

f" = ― gms(―2M―
(a)ij 2 Sy(a)j

1,...,*),

= 1,...,*)

Sy"""

THEOREM 4.3. The following properties hold:

1°.If N is the canonical nonlinear connection of the Lagrange space of

order k, l}k)n= (M, L), then there exist metrical //-linear connections D on

Qsc*M which depend only on the fundamental function L.

2°.There exists only one metrical AMinear connection D in L(k)nwhose h-

torsion Tm-,j and uft-torsion S(ma)ij(a= l,---,k) vanish. The coefficients

CF(N) = (lJjm,C'(l)jm,---,C{k)jm)of D are given by the generalized Christoffel

symbols

8S.y Sgu ,

Sx1 8xs
h

^-4u≪
gy≪X)i §y(a)S

3°.The TV-linear connection with the coefficients(4.4) depends only on the

fundamental function L of the space Lik)".

The proof of thisimportant theorem was given in the paper [12]. CT(N). is

the canonical metrical connection of the considered Lagrange space.

Now, we remark that the whole geometrical theory of the Lagrange space of

order k,L(k)n=(M,L), can be based on the canonical metrical connection

CT(N).

5. The gravitational field.

Let us consider the canonical metrical connection CF(N), with the

coefficients WjmC[X)jm,---,C'(k)jm)given in the formula (4.4). The fundamental

tensor field gi](x,yw,---,y(k))of the Lagrange space of order k,Lik)n=(M,L), is

compatible to CT(N). The conditions of compatibility are in (4.3).

Let H(k+V)n=(E,G,F) be the geometrical model of the space L(*)B.
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Now, in a fixedlocal coordinateson E we consider every component of gtj

as a gravitational potential. Hence we can take the equations of the

gravitationalfieldas follows:

DEFINITION 5.1. The Einstein equations of the geometrical model

H(k+l}"=(E,G,F), endowed with the canonical connection D, are the Einstein

equations of the Lagrange space of order k, Lik)n.

Let R be the curvature tensor of the canonical connection D, Ric R its

Ricci tensor and R the scalar curvature of R .Then the Einstein equation of the

space H{k+X)nare expressed by

(5.1) RicR--RG = K;f,

where K is a constant and ,T is the energy-momentum tensor field.

With respect to the direct decomposition (1.2), determined by the canonical

nonlinear connection N, the curvature tensor has the following essential

components:

R(X",Y")Z" =iDHx,DY"]ZH-DiHxHyH ZH

(5.2) R(XH,Yv")ZH=[D;,DvY")ZH-D^HYVaZH - £ D*Hya]ZH,

R{Xv＼YVa)ZH.

If we take XH
_5_

ID?

xv>

,£>"≪]Z"-i D＼

8

#03)i'

of Ric R in this adapted basis:

(5.3)

(P

<p=l
[XVP,YVa]

ZH,a<f3(a,(3 = l,---,k)

!,-･･,&)and we denote the components

D _ Dl pi _ p V p ― P S
^ij "-i j.s'r(a)ij r(a)i js'r(a)ij r(a)i si

p' _ p v p2 _ p s o

1 (aP)ij A (a)8)i >' ' (aP)ij 1 (ap)i sj' u(a

and the scalar curvature R:

(5.3)

)ij ~ °(a)i js

R = gv(Rii + sWi + - + s{k)ii)

then we obtain from (5.1) in the adapted basis

THEOREM 5.1. The Einstein equations of the Lagrange space of order k

L(k)n,corresponding to the canonical metricalconnection CT(N) are given by



146

(5.4)

S(a)ij
~
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Rg≫

2

= xT P
1

A1(a)y'
P2 = -xT2
I≪x)ij Ai(a)y

Rgij -x*(a)ij>
UaB)ij X＼aB)ij'"(aB)ij X＼aB)ij'

where T^,---,^^ are J-tensor fields.They are the components of the energy

momentum tensor fieldin the adapted basis.

Also, we can prove:

THEOREM 5.2. The law of conservation,with respect to CT(N) in L(A)",is

given by

(5.5)

where R'j

(Ri―RS'jh +
i
^9)J＼^

Z <p=l

(c' _ _ ≫/)' ＼|<^)_ p2' _ y

JL <p=＼

= g'sRy,, etc.

o,

p2' l(<f)+ y pi f - q

<p=B+i

6. Electromagnetic fields

Let z(1)(,---,z(k)lbe the Liouville cf-vectorfields(1.7)' constructed by means

of the canonical nonlinear connection N. Then the d-covector fields

(6 H 7(1)-= g 7li)j■■■7(k)-= g z(k)j

depend only on the fundamental function L of the Lagrange space of order k.

Therefore, in the preferential local coordinates the covariant d-vector fields

z(i)l,---,z(k)lwill be called electromagnetic potentials.The rf-tensors

(6.2) F%=|(
8z(a)

8xJ

&(g),

)./
Ji ~ 2

&(a),- 8z{a)j
V

Sy(l))i

will be called the electromagnetic tensor fieldsof the space L(k)".

Obviously, it is necessary to prove that F{a)y,and f(aP)jiare <i-tensor fields

on E. In this respect we shall consider the deflection tensors of the canonical

metrical connection CT(N). These are:

(6.3) Dla)ij=zWi＼j,dlaP)ij=zia)iff＼

where ,,i"and ,|(^ are, respectively, the h - and vfl- covariant derivatives

with respect to CT{N). The covariant deflections tensors are given by

(6.3)' D(%- = gisD^j,d^＼j = gjW'j.
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Then, we have:
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PROPOSITION 6.1. The electromagnetic tensor fields (6.2) have the

following expressions:

(6.4) Fia)ji=hl>a)ij-Dia)ji),faP)ji=hdiaP)ij-diaP)ji).

We shall see that the electromagnetic tensor fields F(a＼jand /(0%- satisfy

some laws of conservations - called the generalized Maxwell equations. Indeed,

the covariant deflection tensors D{a),>■,d(al3)</satisfy the Ricci identities with

respect to CT(N). Using these identities it follows:

THEOREM 6.1. The electromagnetic tensor fields F(a)'$,■,f(ap)<,■of the space

L(*)n satisfy the following generalized Maxwell equations

2(f p/|9+/Y i,b + ^ <?pi')-p(/,p,(?)k tiripq-Ld irR(0)p(l),
<p=i

9ff(≪0) i<r) , f(aP) i(r) , f(≪/8) i(r)＼_^ ＼7(a)rp
^＼J pi＼q ■""J i?l/7 Ti ^1/ ''~9t/(/,/>,?)l<i r(Pr)ripq

-(d(aP) C -d(ay) Cr }-＼U ir^(y)pq U iry-(B)pq>

k

I

<p=＼

j(a≪P)

irFi£L
(r*/*).

J( f(≫P) .(j8) , MaP) A?) , rice/}) ＼(P)＼=fl J^^C
^yJ pi＼q ^J iq＼p ^ J qp＼i > au(i,p,q) K °(a)ripq

Using the Bianchi identities of CT(N) we can prove:

THEOREM 6.2. If the canonical metricalconnection D is torsionless,then

the electromagnetic tensors F{a)ji,f^ji verify the following generalized

Maxwell equations:

^ in＼a+P pq＼i+ r qi]p~U≫
I7<≪) ＼(P) . r(≪) dP) , j-.(a) ,(P) , f(aP) , MaP) , Map)

r ip＼q "･" " pq＼i ''" r qi＼p "*" / >P＼i~T"J Pi＼i "+" / 9'b

/-(a/3) ,(y) , /-(a/3) ,(/) /-(a/3) ,(y) _ q /y , Ox

= 0,
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/･(a/3) ,(P) Map) . Up) r(aP) ,(0) _ q

J ip＼q J pqli J qi＼p

A good example is given by the Lagrange space of order k, l!k)",with the

fundamental function L from (2.3). Of course it has /,-,･(*)as gravitational

potentials. Its Einstein equations are those classical and the electromagnetic

tensors vanish.

In the particular case k = 1 all the previous theory reduces to that given for

the Lagrange space Ln(M,L). It can be find in the book [151.
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