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1. Introduction

Throughout this note, A stands for a basic left and right artinian ring, /

its Jacobson radical and {elf･･■, en) the complete set of orthogonal primitive

idempotents in A. Let ctj denote the composition length of HAetQiAej for

l^z, j^n. The matrix C(A)=(Cij) is called the left Cartan matrix of A.

Does gldimyl<co imply det C(A)=1? This problem has been partially

settled by several authors (e.g., Zacharia [7], Wilson [6], Burgess et al. [2],

Fuller and Zimmermann-Huisgen [5] and so on), but is stillopen. There is a

way to reduce the size of the matrix C(A). Namely, if projdimA./l0i//01<oo

and ExtkA(Ae1/Je1,Ae1/Je1)=0 for k>0, then gldimO. ―e1)A(l―e1)£g＼dimA+

proj dim^/gj and det C((l--e1)A(l―e1))~detC(A). This reduction was effectively

used by Zacharia [7] to show that gl dim A<2 implies det C(A)=1 (see also

Burgess et al. [2]). Unfortunately, as will be seen, Zacharia's reduction is not

necessarily applicable if gl dim .42:3.

The aim of this note is to provide another type of reduction. To do this,

we will generalize the notion of a heredity ideal which was firstintroduced by

Cline, Parshall and Scott [3]. We are interested in a two-sided ideal I of A

such that det C(A/I)=detC(A) (of course, we claim gldimyl//<oo whenever

gl dim^4<oo). We willshow that the trace ideal of a certain left^4-module enjoys

this property. We will prove the following

Theorem. Let Q be a torsionlessleft A-module and I its trace ideal. Sup-

pose the following conditions:

(a) D=EndA(Q) is a divisionring,

(b) the evaluation map Q0BHomx(Q, A)-*A is monic.

(c) Tor^(Tr Q, Q)―0 for k^2, where Tr is the transpose, and

(d) projdkru£?<°°.
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Then we have

(1) gldim^/I^gidim A+projdhruC?,

(2) gldim^L^gldim .4//+max{2, projdinuQ-f 1} and

(3) det CG4//)=det CG4).

It should be noted that the size of C(A/I) equals that of C(A) unless AQ

is projective. Note also that,if projdimAQ^l, the condition (c) is automatically

satisfied. In case AQ is projective, the ideal / is just a heredity ideal and the

statements (1) and (2) have been known (see Dlab and Ringel [4])*.

At present, we do not know whether gldimyl<oo ensures the existence

of a torsionlessleft
^4-module

which satisfies all the conditions in the above

theorem. Note however that, if this is always affirmative, so is the Cartan

determinant problem.

In case gl dim A^2, by Dlab and Ringel [4, Theorem 2], there always

exists a projective left A-module which satisfies the conditions (a) and (b) in

Theorem. Thus, our reduction yields a new proof of Zacharia's result [7].

Another example is the case of A being left serial. In that case, gldimA<oo

ensures the existence of a simple torsionless left A-module Q with proj dimAQ

5£1(cf. Burgess et al. [2, Lemma 3]).

In what follows, we will denote by mod A the category of all finitelygen-

erated left yl-modules, by ( )* the
^4-dual
functor, by Tr the transpose and, for

any Zemod A, by [X] its image in the Grothendieck group of mod A. Also,

for any module X, we will denote by ＼X＼its composition length. Then, for

any iGmod A, we may identify [X] with the integral column vector

We^e^iX], ■■■, ＼enAenenX＼).

2. Proof of Theorem

Let Q, I and D be as in Theorem. For any Zemod A, denote by ex:

Q(3DYLomA(Q, X)-+X the usual evaluation map and define ax: Q*<S>aX―>

EomA(Q, X) by ax(fRx)(q)=f(q)x for /£(?*, xeZ and q^Q. Note that

Im eP―IP for all projective Pernod A

We divide the proof into several steps. For the benefit of the reader, we

do not exclude the case of AQ being projective in the proofs of statements (1)

and (2).

We start with recalling a few well-known facts.

* After completing this note, the authors found that, in case AQ is projective, the

statement (3) has also been proved by Burgess, W.D. and Fuller, K.R., On quasihereditary

rings, Proc. Amer. Math. Soc. 106 (1989), 321-328.
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Claim 1. Ker s^emod/l// for all XemodA

Proof. Let Sgi(g)/teKer ex and g0/GQ0DQ*. Then

/(<?)( S qiRft)= 23 Hq)QiRft

= i}iqaQ(fRqi)Rfi

=?R(i>Q(/R4t)/i)
＼i=l /

= (7Rax(/R(il/≪(9i)))

=0
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Thus / annihilates Ker sx.

Claim 2. projdimA//X^projdirruX for all X^modA/I with Tot£(A/I, X)

=0 for k>0.

Proof. Let Zemod A/1 with Tor£(A/I, X)=0 for &>0. When the functor

A/IRa- is applied, the minimal projective resolution of AX yields a projective

resolution of A/iX.

Claim 3. proj dim^Z^gl dim ^4//+projdim^Q+l for all X(BmodA/I.

Proof. Note first that projdim^A//^projdimAQ+l. Since projdim^Z^

proj dimA/rZ+proi dimAA/I for all X<=modA/I, the assertion follows.

Claim 4. Suppose AQ is projective. Then P―I and Tor£(A/I, X)=0 for

all XemodA/I and k>0.

Proof. Since AI is projective, /=Im£7 = /2. Also, since h is projective,

proj dim (A/I)A<,1. It only remains to show Tovj(A/I, X)=Q for alliGmod A/I.

Let 0^>Y->.P―>Z->0 be an exact sequence in mod A with P projective. Suppose

IX=0. Then IPcY, thus IP=PP<zlY. Hence ToxiiA/L X)=0, as required.

Claim 5. Suppose AQ is not projective. Then Q*(£>aQ=O. Consequently,

P=0 and QeimodA/I.

Proof. Since EncU(Q) is a divisionring, the non-projectivity of AQ implies

that no non-zero /eEndU(Q) factors through projective modules. Thus, by

Auslander [1, Proposition 7.1], we conclude Q*6§AQ = Tori(Tr Q, 0)=O.
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Claim 6. Suppose AQ is not protective. Then Tor£(A/I, X)^Q(g)DTor£+1

(TrQ, X) for all Zemod^// and k>0.

Proof. Let Ig mod A/1. Note that ax=0. Thus, by Auslander [1, Pro-

position7.1],Q*RAX^Tori(Tr Q, X). Hence

TorfU//, X)szQRDQ*<8)AX

~QRDTori(TrQ,X).

For k^2, since Q* is a second syzygy of Tr Q, we have

ToriiA/I, X)sTorti(QRDQ*, X)

s&QRDTorti(Q*, X)

s*Q<S)DTori＼1(jTQ,X).

Claim 7. projdimx//X^ projdirruX+projdhruC? for allXemodA/I. Con-

sequently,gl dim A/If^gl dim yl+proj dim^Q-

Proof. In case AQ is projective,by Claims 2 and 4, the assertionfollows.

Suppose aQ is not projective.Then, by Claims 2, 5 and 6, prQJdimu/2Q<^

projdim^Q. Thus, it sufficesto show

projdim^//Z^proj dimxZ+proj 6.＼mAnQ

for allZemodyl//. Let Zemodyt// with prGJdimxX=m<oo. Note that,if

AX is projective,so is a/iX. So we may assume m>0. Let

fm fi
0 ―> Pm -+ > P1 ―* Po -^ ^ ―> 0

be the minimal projectiveresolutionof 4X Put

Bk=＼m(A/IRfk) and Z.-^Cok^/Kg)/*)

for l^kSm. Then Z0=Z and, by Claim 6,
JSms^//04Pm.

We have exact

sequences
0 ―> 5, ―> ^//0^A_: ―> Z*-i ―^ 0

for l<*k^m and, by Claim 6,

0
_> gR2)Tor^+1(Tr Q, X) ―> 2T*―･>5*

-^ 0

for l^^^m―1. Now, one can make an inductionon k toprove projdimA/iBm~k

^&+projdimy4//£>for l^k^m―1. Thus

projdiiruz/X^l+proj dim^//jBi

^m+projdim^//Q,
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as required.

Claim 8. gldim ^gldim^/Z+max {2, projdirruQ+1}.

Proof. Let Xemod A. Since

proj dimuX^max {proj dinu/Z, proj d＼mAX/IX},

by Claim 3, we have only to show

proj dhru/X^gl dim A/I-＼-max{2, projdiiru<2+ l}.

In case AQ is not projective,by Claims 3 and 5, the assertion follows. Suppose

AQ is projective. Then Ker sIX is a firstsyzygy of IX. Thus, by Claims 1 and

3, we get

proj dim^/Z^proj dim^ Ker £7x+ l

^gldim^//+2,

as required.

Claim 9. det C(4//)=det C(A).

Proof. Put Ci=＼DYiomA{Q, Aet)＼for l^i<,n. Since

QRdAomA(Q, Aet) _2i* Iet,

we have

ctlQl = Uetl

for 1 <;*■<;n.

Consider first the case of AQ being projective. We may assume Q=Aev

Then we have

ei^4gi -^> ejet

for l^iSn. Thus, since Cn=l, we have

detCU)=det([^1], [^le2],･･･, ＼_Aen1)

=det([^x], lAeA-c&Ae^, ･･･, [Aen~]-cn＼_Ael~])

=det(r^,l, XAe*~＼-＼Ie.＼･■■,[Aenl-[Ienl)

=det

l i 0

* i C{A/I)

]

=detC(i4//).

Suppose next that AQ is not projective. Let

0 ―> Pm ―> > P, ―+ Po ―> Q ―> 0
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be the minimal projective resolution of AQ. Put

di= S (-1)* IExt&Q, Aet/Jet)etAet|

for l</<n. Since

for all k^O, we have

[/>*]= 2 lExtKQ, ^ei//ef)M≪ilC^*3

[<?]=2(-l)≫[/Vl

Also, since by Claims 5 and 6 the functor A/I<g}A― acts exactly on the above

projective resolution, we have

[<?]=2(-l)*[iV/iY]

= Jhdi(lAei]-Uei1).
i=l

After permutation, we may assume di^O. Then

flddet C(A)=det(d1lAe1lf LAe2l, ･■■, ＼AenT)

=det ( S dtLAed, D4e2], - ,[4en])

=det([Q], D4e8], ･･･, D4eB])

=det ([<?], [Ag2]-c2[<?], ･■･, Ci4e≫:-cB[<?])

=det(sdf([^]-[Iei]), [i4e,]-C/e,],- ,[i4eB]-[/eB])

=det(rf1([Ae1]-[/e1]), D4e2]-[/e2], ･･･,[i4eB]-[/eB])

= d1detC(A/I).

Thus det C(i4//)=det C(A).

This finishes the proof of Theorem.

3. Concerning the existence

In this section, we will show that gldim^4<co ensures the existence of a

torsionless left y4-module which satisfiesthe conditions (a) and (b) in Theorem.

Such a module can be characterized by a certain type of torsion theory on mod A.
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Lemma 1. Let (2*,20 be a torsiontheory on mod A and QgEF a non-zero

module. Suppose that no proper factor module of Q belongs to $ and that

Cok/eff for all /eHom4(<3, X) with Jeff. Then £=EndA((?) is a division

ring and, for every ZGff, the evaluationmap Q^DYioTi＼A{Q,X)->X is monic.

Proof. Let 0^/eHoiru(£?, X) with ZgJ. We claim / is monic. Since

O^Im/eff, / induces Q^Im/. Thus / is monic. In particular,D=End^(Q)

is a division ring. Now the last assertion is a consequence of the following

Claim. Let Jeff and fu ･･■, /reHorru(Q, X) be linearly independent over

D. Then f=(fu ■■■, fr):RQ-^X is rnonic.

Proof. Replacing X by Im /, we may assume / is epic. Note that,if r―1,

the assertionhas been proved. Suppose r^2. Since fr is monic, we have the

followingcommutative diagram with exact rows:

0
>Kerf >0Q

<*l - , gr-t)
^ ^0

I

0 >Q
/r
>

(ft, -,/r-l)

X * Cok fT > 0

It is easy to see that gu ･･･,gr-i^YiomA{Q, Cok/7) are linearly independent

over D. Since Cok/rGff, by induction hypothesis, g=(glf ･･･, gr-i) is monic,

so is /.

Proposition 1. Let M be a left A-module with 2^inj dimAM=m<co. Let

Q be minimal with respect to inclusions in the class of all non-zero torsionless

X^modA with Exti(X, M)=0 for k^m-l. Then
JD=End^((Q)

is a division

ring and the evaluation map Q<^DUomA(Q, A)―*A is monic.

Proof. Since the functor Ext^(―, M) is left exact, there is a torsion

theory (2", 3) on mod A such that the torsionfree class £Fconsists of all Zg

mod
^4 with

Ext (X, M)=0. Since ^^.GEff,it suffices to check that Q enjoys

the properties in the above lemma.

Claim 1. No proper factor module of Q belongs to 9＼

Proof. Let 0->Q'->Q->Q"―>0 be an exact sequence in mod A with Q', Q"

non-zero. Applying the functor Hoiru(―,M), we get Ext%-＼Q', M)=
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Ext%(Q",M). Thus, by the minimalityof Q, we conclude ExV2(Q", M)=£0.

Claim 2. Cok/e£F for all/GHora4(Q, X) w^/z Ig?.

Proof. Let /eHom^(Q, X) with IgJ. We may assume /=£0. As in

the proof of Lemma 1, by Claim 1 we conclude / is monic. Now, the exact

sequence 0-^-≫X-*Cok /-^0 yieldsExt^Cok/, M)=0.

This finishesthe oroof of Prooosition1.

Remark. Suppose 2^gldim A-=m<oo and take AA as an M in the above

proposition. Then we have projdiiru^^m―2. Thus, if ra^3, Q satisfiesall

fhp'pnnrliHnticin Thpf≫rp>m

4. In case of algebras

Throughout this section, A is assumed to be a finitedimensional algebra

over an algebraically closed fieldF. Assume further that gldim.4<oo.

We intend to replace Q* by its submodules. As shown in the second sec-

tion, in case AQ is not projective,the condition (c) in Theorem can be replaced

by the condition that Tor£(Q*f Q)=0 for all k^O. So we are interested in a

pair of a left ^4-module Q and a right
^4-module

R such that there is a bilinear

monomorphism Q(g)FR―>A and Torf(R, Q)―0 for all &^Q. It should be noted

that the existence of a bilinear monomorphism QRFR^>A implies R isimbedded

info O*

Lemma 2. Let Q^modA and R a submodule of Q*. Let s: Q0FR--^A be

the induced bilinearmap and put /=Im s. Suppose that s is monic and that

Tor£(R,Q)--=Qfor all k^O. Then gldim A/I£l+gldim A+m'm{pw)dimAQ,

nrniHim J?A

Proof. We may assume projdim4≪5Ssprojdim RA. One can employ the

argument in the second section to conclude that.

pro]dIrru//X5Sl+projdim^+proj dimu<3

for all X^modA/I. The only differenceis that Tor&(A/I, X) may not vanish

where m = nroidim aX.

Proposition 2

a submodule of Q*.

Let QemodA be indecomposable and non-projectiveand R

Let s: Q0FR-^A be theinduced bilinearmap and put I―
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Ime. Suppose that e is monic and that TorfiR, Q)=0 for all k^O. Then

gl dim A/I<co and det CM//)=det C(A).

Proof. The first assertion follows from the above lemma. For the last

assertion, the argument in the second section remains valid in this setting.

Finally, as an example, we prove the following

Proposition 3. Let I=AaA with a^etAej. Suppose that the left multi-

plication map Xa: ejA-^eiA is monic and that Ja=0. Then gl dim A/I< 00 and

fat C(A /n=zfat. C(AY

Proof. Put Q~Aa and R=ejA. Since AQ is simple, EndA(Q)=F and

＼QF＼=1. Thus aQ(£)fRa^aIa- In case /=/, Q^Aet and i?=Q*. Hence, one

can apply Theorem to this case. Suppose *=£/. Then Toif(i?, Q)=0 for all

k^O. The firstassertion follows from Lemma 2. For the last assertion, either

AQ is protective or not, the argument in the second section is applicable.

5. Zacharia's reduction

In this final section, we review Zacharia's reduction [7]. His argument

remains valid in more general setting.

Proposition 4. Suppose thatExtkA(AeJJeu Ae1/Je1)=Q for k>0 and that

pi"0jdirru^4£i//£i<°o.Then we have

(1) gldim(l ―ex)A(X―e^gl&im A+piQ)<＼imAJeland

(2) detC((l-e1)Aa-e1))^detC(A).

Ppoof. Since Aex does not appear as a direct summand of any term in the

minimal oroiective resolution of AJe^, we have

proj dima-epxu-epCl ―0i)i4=proj dimu-ejAu-eiid―eJAei

=proj dimcl-epAa-ei)(l-e1)Je1

^projdim^/gx.

Hence, the firstassertion follows.

Consider now the last assertion. Put

dt= Xi-WlExtttAeJM, Aet/Jei)etAet＼
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for 1^/^n. Then, as in the second section,we have

Thus, since dx=1, we get

LAel/Je1l =

LAe1/Jell =

SdiD^]

i=2

Note that C((l―≪iM(l―eO) coincides with

Hence

the (1, l)th principal minor of C(A).

detCU)=det(C^e1], TAe%＼ - ,lAenl)

=det(D4e1]+ 2 dtlAed, ＼_A&2~＼
i=2

11 *

0 j C((l-e1)A(l-e1))

LAenl)

=detC((l-≪1)i4(l-ex)).

We end with giving an example of an algebra of global dimension three

for which Zacharia'sreductionis of no use.

Example. Let A be a subalgebra of (F)8,the 8x8 matrix algebra over a

fieldF. with the basiselements

01=

5

en

8

1=6

^36 + ^47 + ^58, 041 + 052, e71 + g82, 656 a^d 086 ,

where eo- are matrix units. Then gldim^4―3 and, for both 2=1 and 2,

Extl(Aei/Jei, Aet/Jei)^0. On the other hand, one can take AeJJex or Ae2/Aa

as a torsionless left A-module which satisfies all the conditions in Theorem.

We notice also that A does not have any heredity ideal.
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