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1. All spaces considered in thispaper are assumed to be metric. A continuum

means a compact connected space and a map means a continuous function. The

letter X will always denote a continuum. Let C(X) denote the hyperspace of

all non-empty subcontinua of X with the Hausdorff metric (see [7]). Whitney

[10] proved that for every continuum X there exists a map pt: C(X)-*[0> +°°)

satisfying

(1) if A, B^C(X) and A^B, then pt(A)S^(B) and

(2) fii({x})=0 for every iel

We shall callany map from C(X) to [0, +oo) satsfying the above conditions

(1) and (2) a Whitney map for C(X).

Nadler [7] introduced the concept of a strong Whitney-revesible property.

Let P be a topological property. We say that P is a strong Whitney-reversible

property provided whenever X is a continuum such that pr＼t) has the property

P for some Whitney map pt for C{X) and every 0<t^fi(X), then so does X.

Moreover he has shown that some topological properties are strong Whitney-

reversible properties. For example hereditary indecomposability and local con-

nectedness are such properties.

We refer readers to see [1] and [7] for the shape theory and the hyperspace

theory respectively if necesary.

2. We shall show that some topologlcal properties are strong Whitney-

reversible properties.

Theorem 1. Let pi be a Whitney map for C(X). If there is a sequence

{tn} n'^1 in (0, n(X)~] such that tn―*0 as n^+oo and fx~＼tn)is an FAR for

each n = l, 2, 3, ･･･, then X is also an FAR.

Hence the property of being an FAR is a strong Whitney-reversible property.

Proof. Let M be an arbitrary ANR and /: X―>M be an arbitrary map.

Since M is an ANR and we can identify X with p.~1(Q)―{{x)＼x^X}, there are
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an open neighborhood U of X and a map /: U―>M such that f＼X=f. The

there is an integer n^l such that [i~＼[Q,tn~])dU. Since p.~1{tn)is an FAF

f＼pt"1(tn)―O>where 0 is a constant map. Hence there exists a ma

g :[i'KUn, ft(Xyj)-*M such that g＼fi~＼tn)=f＼fi~＼tn).Now we can define a ma;

h : C(X)-+M as the following formula;

hlft'KLO, tn-])=f＼fr＼l0,tn}) and

h＼it-＼[.tn,p(X)l)=g.

Since C(X) is an FAR (see [3]), h^O. Hence f=h＼X^0. Therefore X is ai

FAR.

Remark 1. By the example of Petrus [8] the converse of Theorem 1 h

false.

Remark 2. By the proof of Theorem 1 the property of being acyclic is j

strong Whitney-reversible property. But it is not Whitney property (see [5]) bj

the same example of Petrus [8].

Theorem 2. Let fi be a Whitney map for C{X). Let $ be a classof compac,

connected polyhedra. If there is a sequence ＼tn}n^l in (0, ix{X)~＼such tha＼

tn-*0 as n―≫+oo and fi~＼tn)is an hereditarily indecomposable ty-likecontinuun

{see [6]) for each n=＼, 2, 3, ･･･, then X is also an hereditarily indecomposabh

%-like continuum.

Hence the property of being an hereditarily indecomposable ty-likecontinuum

is a strong Whitney-reversible property.

Rroof. By [7] X is hereditarilyindecomposable. Hence it is sufficient tc

show that X is $$-like. Without loss of generality we may assume that the

sequence {tn} n^l is decreasing. Now for each n=l, 2, 3, ･･･ we define a

function rjn:X―>n~l{tn) such that x^r]n(x)^iJ.~l(tn)for every xeX Since X

is hereditarily indecomposable, for each n=l, 2, 3, ･･･,rj is well-defined and

continuous (see [2]). Similarily for each n=l, 2, 3, ･･･ we can define a map

pn: pr＼tn+i)-^[i~＼tn)such that Adpn(A) for each A^pr＼tn+1). Then

{[T＼tn), Pn} is an inverse sequence of $P-likecontinua and onto bonding maps.

Moreover we hold that pn^n+i=y]n for each n = l, 2, 3, ･･･. Then it is clear that

X is homeomorphic to the invese limit lim {/u~Ktn),pn}. Therefore X is $~like.

In particular the convese of the result of Krasinkiewicz (4.2.[4]) is hold.

COROLLARY 1. Let u be a Whitney map for C(X). If there exists a sequence
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{tn} n^l in (0, fi(X)~]such that tn-*0 as n-^+oo and p.~＼tn)is an hereditary

indecomposable tree-likecontinum for each n=l, 2, 3, ･･･, then X is also an heredi

tarily indecomposable tree-likecontinuum.

The next lemma Is usefull for our results.

Lemma (Krasinkiewicz and Nadler [5]). Let p be a Whitney map for C(X)

If X contains an n-odd (n^3), there exists to>O such that fi~＼t0)contains ai

(n ―l)-disk.

Theorem 3. Let pt be a Whitney map for C(X). If dim ju~1(0=w< + °°fo＼

every £e(0,fJt(X)]and one of the following conditions is satisfied,then dim Xf^n

(1) dimX< + oo,

(2) fi~＼t)is locally connected for every £e(0,[x(X)~＼,

(3) fi~＼t)is hereditarily indecomposable for every £e(0,[i(X)~].

Proof. First we shall show the case (1). The following inequality is clearh

hold.

dimC(Z)^l+max{dim//-1(OUe[0, ^(Z)]}<+oo.

Then by the result of Rogers [9] dim X^dim fx~＼t)for some /e(0, fi(.X)~＼

Hence dim X^n.

Next we shall the case (2). Then X is locally connected by [7]. I]

dim X^2, for every m^3 X contains an (m+l)-odd. But by Lemma this faci

contradicts the assumption. Hence dim X― 1.

In the case (3) by the same way of the proof of Theorem 2 we can show

that dim X<n.

Corollary 2. Let p. be a Whitney map for C(X). If fi'1^)islocally connected

and dimpi~＼t)^n< + co for every £e(0,//(X)], then X is a finitegraph. In

particular if dim fi~1(t)=lfor every £e(0, fi{X)~＼,X is an arc or a circle.

Proof. By the proof of Theorem 3 X is one-dimensional and locally connected.

If X has infinitelymany ramification points or a point with an infiniteorder, for

every m>l X contains (m+l)-odd. Then by Lemma dim fi~＼t)>n for some

£e(0,[i(X)~].This contradicts our assumption. Hence X has at most finitely

many ramification points and the order of each point of X is finite. Therefore

X is a finite graph.

The following corollary is an easy conseauence of Theorem 1 and Corollarv 2.
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Corollary 3. Let p. be a Whitney map for C(X). If p.-＼t)is locally

connected, dim /i"1(0= ^<+°° and an FAR for every ?e(0, (i(X)~],X is a tree.

In particular if dim fi"1(t)=l for every /e(0, fi(X)'],X is an arc.

Remark 3. Corollary 1 also can be proved by Theorem 1, Theorem 3 and

the fact that hereditary indecomposability is a strong Whitney-reversible property.

Remark 4. The author does not know whether the conditions of Theorem

3 are essential. But it seems not to be essential.

Related to Theorem 1 the following problem is open.

Problem. Is the property of being an FANR or a movable continuum a

strons Whitney-reversible trotertv ?
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