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1. Introduction.

This paper deals with the Dirichlet problem
(D ——_i Dj(a;(x, w)Du)+c(x)u=b(x, u, Du) in Q,
T j=n

(2) u(x)=¢(x) on 6Q,

in a bounded domain QCR, with the boundary 6Q of class C? and a function
¢ which, in general, is not a trace of an element from the space W2Q). We
consider two cases: g L“(@Q) (Section 3 and 4) and o= L*0Q) (Section 5).

In case where ¢<=L=(0Q) we establish some existence theorems for the
problem (1), (2) under the assumption that the nonlinearity b(x, u, p) grows
quadratically in p. In recent years the problem (1), (2), with the nonlinearity
b growing quadratically in p, has attracted some interest (see [1], [2], [7] and
the references given there). In paper [1] the existence result was established
in the space W“Z(Q)«”\L”(Q) (that is, ¢=0 on 0Q). The results of [2] show
that under suitable assumptions on b(x, u, p) one can also obtain unbounded
solutions in W*"*Q). The use of a weighted Sobolev space in [7] allowed one
to obtain an existence theorem for the problem (1), (2) with ¢=L=(@Q). In the
case where ¢=L*0Q), we assume that the nonlinearity has a linear growth in
p. The present paper is a generalization of [7].

The paper 1s organized as follows. In Section 2 we assemble definitions,
assumptions and some terminology adopted in this work. Lemma I, proved in
this section, justifies our approach to the problem (1), (2) with the nonlinearity
growing quadratically in p. Section 3 contains the main existence result of
this paper which is closely related to Theorem 2.1 in [1] and Theorem 2 in
[7]. The existence result in [1] was proved for more general quasilinear
elliptic equations under the assumption of the existence of bounded sub and
supersolutions but it can be applied only to the boundary data from HY%9Q).
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The paper [7] contains some generalizations of this result for the problem (1),
(2) with ¢ in L=(@Q). The method used in this paper requires the existence
of bounded sequences of sub and supersolutions. The aim of this section is to
relax this hypothesis by requiring the local boundedness of sequences of sub
and supersolutions. In Section 4 we briefly discuss the existence of positive
solutions of the problem (1), (2) with a;; depending also on a gradient of u.
In the final Section 5, we solve the Dirichlet problem with the L*-boundary
data. Finally, we point out that the methods used in this paper are not new
and have appeared in [1], [2], [7], [8] and [12].

2. Preliminaries.
Throughout this paper we make the following assumptions:
(A) There exists a constant 7>0 such that

e % a:i(x, H&L;=r§|*

i 1

for all £eR, and (x, HeQxR. We also assume that a,;EC(QXR), ay=ay
G, j=1, -+, n) and that a;(-, )eCQ) for each t=R with bounded partial
derivatives D;a;;i{(x,t) on OXR (G, =1, -, n). Moreover, we assume that
ce L=(Q).
(B) The nonlinearity b(x, #, p) satisfies the Carathéodory conditions, i.e.
(i) for each (t, p)& RXR,, the function x—b(x, t, p) is measurable on Q.
(ii) for a.e. x=(Q, the function (¢, p)—b(x, t, p) is continuous on RXR,.
We also assume there exist a constant B>0 and a non-negative function
fe L=~(Q) such that

@ [b(x, t, P)I=f()+B(t"+1p1%)

for all (x, ¢, p)EQXRXR, and some 0<r<1.
We briefly recall that a function v Wi (Q) is said to be a weak solution
of (1) if u satisfies

(4) SQ(i,]’i:laij(x, u)DiuDjl)+C(x)uU>dx:SQb(x’ u, Du)vdx

for every veCY(Q) with compact support in Q.

In Sections 3 and 4 we consider the Dirichlet problem (1), (2) with ¢<
L=@0Q). In general, functions from L=(@Q) are not traces of elements from
Wr*Q). Therefore we cannot expect a solution of (1), (2) to belong to W*"*(Q)
The results of papers [3], [4]1, [5], [6], (7], [18] and [19] show that the
suitable Sobolev space in our situation 1s
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W o@={u; u=Wit(Q) and EQIDu<x>12r<x>dx+gou<x>2dx<oo},
where »(x)=dist (x, 0Q), equipped with the norm
nunéﬂ,wzgg|Du(x>12r<x>dx+gqu<x>2dx .

The explain in what sense the solution recovers the boundary function ¢, we
need some definitions and terminology.

It follows from the regularity of the boundary 0Q that there is a number
0,>0 such that for 6=(0, d,] the domain

Qs=QN{x; min|x—y|>d}

yedQ

with the boundary 9Q; possesses the following property: to each x,=dQ there
is a unique x4x,)=0Q; such that xs(x,)=x,—0v(x,), where v(x,) is the out-
ward normal to 6Q at x,, The above relation gives a one-to-one mapping of
class C!, of 9Q onto 0Q;.

According to Lemma 14.16 in [10], the distance »(x) belongs to CZ(C)—Q,;D)
if 0, is sufficiently small. We denote by p(x) the extension of the function
r(x) into Q satisfying the following properties : o(x)=r(x) for xEQ'—Q(;o, s
C¥Q), 0(x)Z300/4 in Qs), T7'r(X)Sp(X)Z7.r(x) in Q for some constant 7,>0,
0Qs={x; p(x)=0} for d=(0, §,] and finally 0Q={x; p(x)=0}.

We need the following result which justifies our approach to the Dirichlet
problem (1), (2).

LEMMA 1. Let u be a weak solution in Wi2(Q) of (1) such that
(5) [ | Do) P+ Dr(wdx+ | uerdx<en,
then there exists {< L*0Q) such that

lim Saq(u(xa(x))—C(x))zdsrzo ,

PROOF. First we observe that by the hypothesis (5), u belongs to W”(Q).
The same result was proved in [5] (see Theorem 2) under the assumption that
b grows linearly in p. This proof can be adapted without any difficulty to
the present situation. We only sketch the main steps of the proof. Let us
define

u(x)(o(x)=8)  on Qs,
v(x)={

0 on Q—0Q;.
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It follows from (5) and the assumption (3) on b(x, ¢, p) that v is a legitimate
test function in (4). Integrating by parts we obtain
n u(zx)
Sa% i%]::So a;;(x, 8)sdsD;p(x)dS,

ulx)

% S a;i(x, s)sdsD;;p(x)dx
Q5 1. j=1J0

==
g%gum i} D;a;i(x, s)sdsD;p(x)dx
+|

jz"_ a.i(x, WDuDu(p—8)dx

Q5 t.j=1

+SQQc(x)u2(p-—5)dx——S%b(x, u, Du)u(p—0)dx .

Here the values of u on 6Q; are understood in the sense of traces (see [13],
chap. 6). Using the assumptions on a; and b we derive the following estimate

n

ulx)
. < 2d x
oié’s%lga% wzlgo es s)sdsDiijpdSI:CI[Squ(x) dx

+§Q| Du(x)|2<u<x>2+1>p<x>dx+SQu(x>2p<x>dx

Al o o+ ueoirPotodz ]

for some constants C,>0 and 0<3,<8, Hence, by the ellipticity assumption

sup0<5;5‘,ga%u(x)2d5x<oo. Consequently the set of functions

{157 5 aues, 9dsDip(xaDsp(endS.; 0055, |

» j=1

is bounded in L*@Q). As in Lemma 2 from [5] we show that there exists a
function B L*0Q) such that

uzry) n
177 8 aataa, 91dsDip(xaD;0(xs)

0 i, j=1

converges weakly to 8 in L%0Q). Repeating the argument of Lemma 3 from
[5] we show that the weak convergence can be replaced by the strong con-
vergence in L*@Q). Finally, following the argument used in the proof of
Theorem 1 in [5] we conclude the existence of {=L*0Q) satisfying the asser-
tion of our lemma. We point out here that the following relation holds be-
tween { and f8
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SCu)ivél aifx, s)dsD,;p(x)D;p(x)=B(x)

¢
a.e. on 0Q.
Lemma 1 suggests the following approach to the Dirichlet problem (1), (2).
Let ¢=L=(0Q). A weak solution ueW}2(Q) of (1) is a solution of the
Dirichlet problem with the boundary condition (2) if

©®) tim || CuCro(0)—g(x)1dS,=0.

3. Existence of solutions of the Dirichlet problem (1), (2).

In this section, using the method of sub and supersolutions we establish
the existence theorem for the problem (1), (2).

We briefly recall the definitions of sub and supersolution.

Let ¢=H'@Q). A function @=W"*Q) is a subsolution of (1) if ¢(x)<
¢(x) on 0Q in the sense of trace in H'%6(Q) and

SQ nZ} a(x, (D)Di@Djvdx+SQc(x)(Dv dxgng(x, @, DOywdx
i,J=1

for all nonnegative ve C'(Q) with compact support in Q.
A supersolution is defined by reversing the inequality sign in the above
definition.

THEOREM 1. Suppose that c(x)=c, in Q for some ¢,>0, ¢ L=0Q), and
that there exists a sequence of C'(0Q)-functions {¢,} such that limkmgag[gik(x)_

$(x)1*dS.=0 and such that for each k the Dirichlet problem (1), (2), with ¢=g¢.,
admits a subsolution @,(x) and a supersolution ¥ (x) in W'=(Q) satisfying
D (x)S¥(x) on Q. Moreover, we suppose that both sequences {@,} and {¥,}
are locally uniformly bounded in L~(Q). Then the problem (1), (2) admits a
solution uEW"Z(Q) satisfying the estimate

% ngDu<x>|2<u<x>2+1>e“<r>2r<x>dx+§Qu<x>2e“<f>2r<x>dx

+ supg e“wﬂdsng,S eTH@3 S + M,
0<6s81J0Q5 aQ

for some constants M, >0, M,>0, T>0 and 0<4,<4,.

PROOF. Let {¢.} be sequence of C!(0Q) functions satisfying the hypotheses
of our theorem. Then it follows from [1] that for each % the problem (1), (2)
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with u(x)=¢(x) on 6Q has a solution U, sWAQNL=(Q) and such that
8 q)k(x)éuk(x)éwk(x) Q
for each k. Let us define

v(x)=u,(x)e'*+*p(x)

for some t>0. It is clear that v is a legitimate test function in (4) and on
substitution we obtain

9 S En ais(x, uk)Diuijuke‘“ipdx
Q t.j=1
ZtSQ ‘jznﬂ ais(x, uk)Di“ijukuiemipdx

+SQ ‘ ﬁl aix, uk)Diu,,uke“‘Zijpdx+SQc(x)u’ie‘”zkpdx

s j=
:Sgb(x, U, Duk)uke”ipdx .

Let us denote the first three integrals of the left side of (9) by Ji, /. and /s,
respectively. If follows from (A) that

(10) ];—l—]z;?’"l[sqlDuk!ze“‘ipdx-}thSQlDuklzuie‘"’ipdx].
Integrating by parts we get

(1) 7=\

r 2
0 JE__]I ai(x, up)Diusuge**D;pdx

n Up 52
:SQ ingi(go a;(x, s)set ds)Djpdx

3 SukDiai,-(x, s)set**dsD;pdx

0

5

:_S % kaa,-,-(x, s)se**dsD;pD;pdS,
S 3 S:ka”(x, s)se*dsDy;pdx
|

7 Up
@ i.j2=150 Dyaiy(x, s)se'**dsDpdx.

Combining (10), (11) and the assumptions (A) and (B) we derive from (9) that
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(12) r—ISQwuk|2etu‘ipdx+2tr'lgqmuk|Zu,%et"“kpdx-+c03Quzew%pdx
gCl[t“S e”‘”‘idSz%—t‘lS e“‘idx%—g Iuk]e“‘?@pdx:l
aQ Q Q

+B[§Q|Duk lzlukle‘“zkpdx%—gqluk \ "“e‘“ipdd,

where a constant C,>0 depends only on n, 7, supglpl, supe|D*p|, supgxz
ID:a*y(x, w)| (G, j=1, -, n), | fll. and n. Using the Young inequality we de-
duce from (12) that

r

-1
Tyl Dusttersbods+ (21— TN | Dusuted pu

(13) o

2

Co 2 tu? oArs: 1% -15 tu? S tu }
—i—ZSQuke kpdxzcz[t SaQe kdS;+t & rdx+ & kodx |,

where C,>0 depends on C,, ¢,, r and B. Now taking as a test function in 4
up(x)e #®*(p(x)—d) on Q;,
v(x)=
0 on Q—Qs,

and integrating by parts and letting 6 -0 we get the following estimate

o1 tul < S 2 tul
(14) iy Ogyg%ﬂa%e 8.7 | Dualtedpdx

Hlelo| ute'™kpdx+2tr\ |Duyluge'*kpdx
Q Q
+C3[f'1SQ@‘"idx+Sqi Up| e‘”ipdx}

+B[§Qmuk|2|uk1e”ipdx+§qluk|1+re“‘ipdx},

where C,>0 is a constant of the same nature as C,.
Let us set

:_l‘ tul _1_ tp2 S tu?
K= tSQ“’ bdx+ tSaQe dS:+| ehods.

Applying the Young inequality we derive from (13) and (14) that

By
2

7! tul 1 g | 2,2 tul
TSQH)MIZ(Z kpdx+(2tr )Q|Duk[ uge** pdx

2!1 2 zu‘z —-14-1 S tu’
+2gquke kpodx 47t 03131 a%e kdS,
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SCK+lell| ubpdx
++B) | Dus e pd+@r+B)| | DuslPutehodr,
for some C,>0 independent of t>>0. Letting t=7T>B??/2 and combining the
last estimate with (13) we arrive at the inequality

(15) SQlDuk ]ZeT“Z’epdx—{-SQ | Dug|®uze™™% od x

+ uie”zk dx-+ sup T4 dS, < C,K
0
Q [}

0050,

for some constant C;>0. To estimate the integrals Sqe“idx and Sqe”%epdx

we observe that by the local boundedness of {@,} and {¥',} we obtain

g eT"zdx:S e“idx+g i dx <4, supg el ¢ dS, +M@,),
Jo Q b

@-Qs, @, [BELH

for some constant M (4,)>0. In a similar way we estimate Sqe“%pdx. Choos-

ing 0, sufficiently small we obtain

(16) SQIDuklzeTuide’{'SQ[Duk\ZH%GTu%pdﬂc

+{ ugerehode+ supg eTuidsng,g 9 4S, + L,
Je 00<8,J0Q5 aQ

for some constants L, >0 and L,>0.

In the second step of the proof we show that for each open set ¢;, with
Q.CQ, there exists ¢,>>0 such that the sequence {u,} is bounded in W"**¥((Q,).
Since the argument of this claim was used in the proof of Theorem 2.1 in [1]
and Theorem 2 in [6], we only sketch the proof of this fact. Let § be a C>-
function with properties 6(x)=1 on B(0, 1/2), (x)=0 on R,— B(0, 1/2) and
0<6(x)<1 on R,, where B(x,, r) denotes an open ball of radius » and centered
at x,. Let Q, be an open set such that §,CQ,C@,CQ. We assign to each
Xo=Q; a number R(x,) defined by

R(xo)=sup{R; R&[0, ), B(xo, RYCQ:}.

Since Q is bounded, R(x,) is bounded independently of x,. If R<R(x,) we
define Ox(x)=0(x—x,/R) and set

U"<x)=0R(X)2(uk—K)e‘“‘k—K)Z
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with

1
[{——- TBCCT;R—)‘SB(IU,R) M},(X)d./\, .

Since the sequences }@,} and {¥',} are bounded in L=(Q,), the estimate (8)
implies that the sequence {u,} is bounded in L*(Q,). Using v, as a test func-
tion in (4) and choosing ¢ sufficiently large we arrive at the inequality
oM .
|Duy|*dz< 5L (1K dx+S g,
o

- RZ .\B(IQ,R) B(zx

an |

B(xy. R/2)
where M,;>0 is a constant independent of R and k and g(x) is a bounded
function on Q,. Let 1/s=1/n-+1/2 if 1/n+1/2<1and s=1 if 1/n+1/2=1. By
the Sobolev embedding theorem we derive from (17) that

1

A_S 1
[ B(xo, R/2)|J)BC20. R

2/
2 M. 2
| Dy dxg.%(‘B(xO, R>|SB<ID,R> | Dy dx)

M,
Bt Bl 24
where M,>0 and M,>0 are constants independent of R and 2. Now by a
standard argument with the aid of Gehring’s Lemma [10] (see also Proposition
5.1 in [9]) we can show that there exists ¢>0 such that {Du,} is bounded in
L**(w) for each open set w with ®C,. We note here that ¢ depends on @Q,.
We now observe that by Fatou’s lemma we may assume that the sequence

SaQeT"’idSAC is bounded. Consequently, by (16) the sequence {u,} is bounded in

Wr2(Q). Therefore we may assume that there exists usWr Q) such that u,
converges to u weakly in W"%Q). Moreover, by virture of Theorem 14.11 in
[16] we may also assume that u, converges to u in L*Q) and a.e. on Q.
Using the boundedness of {Du,} in L***(w) for each wCQ, with @CQ and e=
¢(w), one can show that for each open set w, with ®CQ, there exists a sub-
sequence {u,,} such that Du,  convergesto Du in L*w) (for details see [7]).
It is now obvious that u is a weak solution of (1) and that the estimates (7)
asserted by our theorem holds for u. It remains to show that u satisfies the
boundary condition (2) in the sense of L%-convergence. According to Lemma

1, there exists C& L¥@Q) such that limgﬂggaQ[u(xg)—C(x)]QdSr:0. Therefore it

suffices to show that {=¢ a.e. on 8Q. The proof of this fact is similar to the
corresponding part of Theorem 2 in [7] and therefore is omitted.

REMARK. Inspection of the proof of Theorem 1 shows that the assertion
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of this theorem remains true for a boundary data satisfying
S eT¢(z)2dSz<00,
aQ

where T is a constant satisfying T >B%*y?/4. Obviously this condition holds
for bounded functions and one can give examples of unbounded functions satis-
fying this condition.

To illustrate Theorem 1 let us consider the problem (1), (2) with &(x, u, Du)
=f(x)—|Dul’g(x, u), where fcl>(Q), g=L~(QXR) and g(x, u)u=0 for all
(x, W) €@XR. Moreover, we assume that there exists functions A;;=CYQ)

such that

o) lim a.(x, w)=A(x)
and

(ii) lim D,a;(x, u)=D,Ay(x)

| % =00

(¢, =1, -, n) uniformly on Q. Let ¢ L=(0Q) and let {¢;} be a sequence of
CY@Q)-functions such that

tim || [9()—gu(x)]dS.= 0.
For each k the Dirichlet problem
— 3 Ditautx, wDa+eu=f(x)] inQ,

u(x)=|¢s(x) on dQ,

has a solution @,=W"Y(Q)"\L=(Q), which by the maximum principle in non
negative on Q. Since g(x, @,)=0 on Q, @, is a supersolution of the problem
1), (2). A subsolution ¥, is determined as a solution of the problem

— 33, Diau(x, wDa)+e(xu=—|f(x)] in Q

u(x)=—1¢x(x)| on 9Q .

As in [6] one can show that the sequences {®@,} and {¥,} are bounded in
W1(Q). We sketch the proof of this fact here for {@,}. Using as a test
function

{ Dp(x)p(x)—8) x=Qs,
v(x)=
0 on Q_QB)

integrating by parts and letting 6—0, we get



Existence results for quasilinear dirichlet problem 305

SQ i%l aij(x’ q)k>Di¢ij®k‘0d]C

1 n 0% 1 n (Dz
:—~S 25 aux, s)dsDipD,-pdSI—FESQ ES 2%, $)dsDypdx
0

2Je i5=1)o i, 5=1
n o7
+SQ zg *Diaa(x, s)dsDjpdx—ch(x)(D%pdx—{—SQ\f(x)l(l)kpdx.
1, j= 0
It is now clear that to show the boundedness of {@,} in Wh2Q) it is sufficient
to show that this sequence is bounded in L*Q). In the contrary case we may
assume that limy_.|®@llreey=00. Letting v,=@,]®;|lz2q, the above identity
shows that {v,} is bounded in VT/"Q(Q). Since W”(Q) is compactly embedded
in L¥Q) (see [16]), we may assume that v,—v weakly in Wr2(Q), strongly in
L¥Q) and a.e. on Q. As in [6] we can show that v satisfies the equation

— 3 DAAMDD)+exw=0 in Q.

According to [3] or [4], v must have trace {& L*0Q), in the sense that v(x;)
—Z in L*0Q) as —0. It is now a routine to show that {=0 on 0Q, that is,
veW”(Q). Since ¢=0 on @ we get v=0, and this contradicts the fact that
lwllzecpy=1. If we additionally assume that Dyaj;eL*(QXR) (4, j=1, -+, n)
then @,cW'=(Q) for each k.

It is worth mentioning that Theorem 1 is closely related to Theorem 2
from [7]. However, applying the latter to our example, we can only conclude
the existence of a solution for ¢= L>=(0Q) with small norm and some additional
restriction on the coefficient c.

4. Nonnegative solutions.

The objective of this section is to establish the existence of nonnegative
solutions. To achieve this we assume the existence of nonnegative subsolutions
and supersolutions. This assumption allows to consider the quasilinear equa-
tions with the coefficients a;; depending also on Du.

In this section we assume that the coefficients a;(x, u, p) ¢, j=1, =, n)
are defined and continuous on QX RX R, and satisfy the ellipticity condition
from Section 2 (see asumption (A)). The functions a,;(x, u, 0) have bounded
partial derivatives D;a;;(x, u, 0) on @X R (i, j=1, ---, n) and moreover

18) lau(x, 1, D)—aifx, u, O)] gw@%—l G, j=1, -, n)

for all (x, u, p)eQXRXR, and for some constant A>0. The nonlinearity
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satisfies the assumption (B) from Section (2).
We derive here the existence result for the Dirichlet problem

(19) -, 1231 (Dja;f(x, u, Du)D;u)+c(x)u=>b(x, u, Du) in Q,

(20) w(x)=¢(x) on 0Q .

To proceed further we observe first that Lemma 1 continues to hold for weak
solutions u=Wi,%(Q) of (19) satisfying the condition (5) of Lemma 1. Indeed,
using the same test function as in the proof of Lemma 1 we arrive at the
identity

XDQO %1 , a;i(x, s, 0)sdsD;pD;pdS,

?‘n‘—_‘l S“(” (%, s, 0)sdsD,;pdx

+

L

=]

SQO iélguml) aifx, s, 0)sdsD;pdx
S é“u@ u, Du)D;uDu(p—3d)dx
)

+\ 3 [ayx, u, Du)—ay(x, u, 0)1DuuD;odx
=

—i—SQac(x)uZ(p——b‘)dx—-So_b(x, u, Du)u(p—ad)dx .

By virtue of the assumption (18) the fourth integral on the right side can be
estimated by

sup[Dp(x)anAS luldx.
Q Q
It is now a routine to show that

sup S lu(x)]|2dS,<oo .
0856y

Repeating the argument of the proof of Lemma 1 (see also Theorem 1 in [5])
one can show that there exists {& L%0Q) such that lima_,og Cu(xs)—L(x)1%dS,
=0.

THEOREM 2. Suppose that c(x)zc, on Q for some co>0. Let ¢ be a non-
negative function in L=(0Q) and suppose that there exists a sequence of CY00Q)-
functions {¢.} with limk,mgaQ[ngk(x)—'gb(x)]”de=0 and such that for each k the
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Dirichlet problem (19), (20) with ¢=q¢, admits a subsolution @, and a supersolu-
tion ¥, in Wh=(Q) satisfving 0< @ (x)<¥(x) on Q for each k. Moreover we
suppose that the sequence {¥',} is locally uniformly bounded in L*(Q). Then the
problem (19), (20) admits a solution wcWik(Q) satisfying the estimate

(21) SQIDu(x)}Ze”(’”r(x)dx+SQu(x)eT“<’”r(x)dx
+ supg e”‘“dSI;’M,S DS, + M,
0<8<5;J3Q;5 9Q

for some constants M,>0, M,>0 and 0<d=<0,.

PrOOF. The proof is similar to that of Theorem 1. We only give the
proof of the analogue of the energy estimate (16).

Let {¢.} be sequence of C'(@Q)-functions satisfying the hypotheses of the
theorem. According of Theorem 2.1 in [1] for each k the Dirichlet problem
(19), (20), with ¢=¢, admits a solution ucW"(Q)N\L=(Q) such that

D(0)=u ()T (x) on Q.
Taking as a test function
U(x):etuk(l‘)p(x)

for some >0 we obtain

(22) tSQ i?”;l aij(x; Up, Duk)Diuk])jukelukpdx

+S 3 au(x, us, ODsuset*D,0dx

Q i,5=1

+S % La(x, up, Dup)—a;(x, up, 001D;uret**D;pd x

Q 5
+SQCuke‘”kpdx=SQb(x, Uy, Dugle™rpdx .

Let us denote the first three integrals on the left side by J,, /. and [,, respec--
tively. We then have

23) ]{gz‘r“‘SQ\Duklze”‘kpdx
and by the assumption (18)

(24) /ol <An® sup IDp(x)lgqe“‘kdx.

Integrating by parts we obtain
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n
(25) Jz=~SaQ iélgo *au(x, s, 0)et*dsD,pD;pd x

ay

_SQ iél g:kau’(% s, 0)e**dsD;;pdx .

e

) SukDiaij(x, s, 0)et*dsD;pd x

0

It follows from (22), (23). (24) and (25) that

(tr“—B)S |Du,,|ﬂewkpdx+-cig Upet pd x
Q 2Je
§7’t“g et91dS, + c,S thdx
aQ Q
for some C,>0 independent of ¢. Similarly using as a test function

e+ (p(x)—0) on @y,
u(x)=
0 on Q—Q;,
we arrive at the estimate

sup SaQewde,g CQ[SQ 1 Duy | ze”‘kpdx+Squke‘"kpdx+gqe‘”kpdx}

0058y

for some C,>0 independent of #. Finally, using Lemma 2, we deduce from the
last two estimates, as in the proof of Theorem 1, the estimate (21).

REMARK. If b(x, 0,0)<0 on @, then we can take @,=0 (k=1, 2, ---) as
subsolutions and to guarantee the existence of a nontrivial solution we can
assume that either b(x, 0, 0) or ¢ is not identically equal to 0.

We conclude this section with the following comment. Theorem 1, unlike
Theorem 2, has been proved for the equation (1) with the coefficients a,; inde-
pendent of Du. Comparing the proofs of these theorems we see that the de-
pendence of a;; on Du would lead, in the derivation of the energy estimate
(16), to an extra term

S él Lai(x, u, Du)—a(x, u, 0)]1D;uue'**D;pdx .

Q i, j=

Assuming (18), this term can be estimated by n2AS01ule‘”2dx and we were

unable to get the estimate (16) in this situation.
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5. The Dirichlet preblem with L’-boundary data.

In this section we extend our method to solve the problem (1), (2) with
¢=L%0Q). However, we must introduce more restrictive assumptions on the
nonlinearity 5. We consider the equation (1) with ¢(x)=0 on @Q, that is,

] —fE Dya;{x, w)D;u)+b(x, u, Du)=0 in Q,
%, j=1

with the boundary condition (2), where ¢ = L*0Q).
We assume that b(x, u, p) satisfies the Carathéodory conditions and

(29) 16(x, u, PI=F)+Bul+1pD)

for all (x, u, p)EQ@XRXR,, where f=L¥Q) and B>0 is a constant.

We point out here that, according to Theorem 1 in [5], if u is a solution
in WI'Z(Q) of (1’) then there exists {< L%0Q) such that (6) holds. Obviously
this result justifies our approach to the problem (1’) (2) with the boundary
condition (2) understood by the relation (6).

THEOREM 3. Let ¢eu(a©‘) and suppose that there exists a sequence of
CY0Q)-functions {¢,} such that limkaaQ[gﬁ,;(x)f¢(x)]2d5r:0 and such that for

each k the Dirichlet problem (1’), (2), with ¢=q¢,, admits a subsolution @, and a
supersolution ¥, in W=(Q) satisfying @ (x)<¢,(x)S¥ (x) on Q. Moreover, we
assume that both sequences {@,} and {¥,} are locally uniformly bounded in
L>(Q). Then the problem ('), (2) admits a solution ueW”(Q) satisfying the

estimate

27) SQ fDu(x)| Zr(x)dx+SQu(x)2dx+02}1§%1S6Q6u(x)2d51

§M1§aq¢(x)2dsz+M2
for some constanis M;>0, M,>0 and 0<3,<6,.

ProOOF. The proof is similar to the proofs of Theorem 1 and 2. We only
change test functions. First, it follows from [1] that for each % the problem
(17, (2), with u(x)=¢,(x) on 0@, has a solution u,=W"¥Q)NL~(Q) such that

Du()Lu()ZTW(x) on Q.

Taking v(x)=u,(x)p(x) as a test function we obtain, integrating by parts, that
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n n )%
SQ 2 ayx, uk)Diuij'lede:*l“g 3] S‘Pkai,(x, s)dsD;pD;p0dS,
ij

2 )89 i.521 )o
n cul
+SQ i,?%lgn aif%, s)dsDy;pdx
1 n (u}
+*S > g D;a;(x, S)dSD,;de—S bx, uy, Duk)ukpdx
2Je 551 )0 P

Using the ellipticity, (6) and the Young inequality we arrive at the estimate

< 2 2 2 2
(28) SqlDuk\pdx:Cl[SaQ deH—Squkdx +SQf dx —|~Squkpdx},
where C,>0 is a constant. Similarly the use of the test function

{ up(x)(p(x)—0) on Qs,
v(x)=

0 on @—Qs,
yields the estimate

(29) sup SaQécg[SQlDuk\zpdx +gQuzdx —}—SQu%pdx +SQ fdx].

035y

The estimates (28) and (29) combined together give

(30) SQIDuklzpdx+ sup Sa%u%dSrgCa[gQuidx +SQu,§pdx+SQ fzdx]

0<0<0;

for some constant C,>0. We now observe that for each —1<p¢=<1 we have

1
51+#

2t < s 2 2 Al
Sou”‘o drs 1+‘UOEyéglgaQaukdsz+SQ5]ukp dx

£ ot

2 "
i 33, S M o7

where M:supkzlsup%luk(x)? Hence taking 4, sufficiently small we get from
(29) that

2 2 2
@31 f, 10wt pdx+0§ysglga%ukdszgc4jaQ¢kds.t+c,5

for some constants C,>0 and C;>0. On the other hand, according to Lemma
1 in [4], we have for 0<d<d,/2

S u%dSz;’KH uidx—i—dg u%dSﬁ—dS \Duklzpdx},

Q5 Q5 Q5 Q
for all 0<d8<d, where K>0 is a constant independent of %, §, d and 4,. Com-
bining this with the estimate (31) we obtain (27). The estimate (27) shows
that the sequence {u,} is bounded in Wt2Q). Consequently we may assume
that u, converges weakly in W"%Q) to a function u. By virtue of Theorem
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14.11 in [16] we may also assume that u, converges to u in L*Q) and a.e. on
Q. 1t is clear that » is a solution of (1’). By Theorem 2 in [5] » has a trace
(= L*9Q) in the sense of the L-convergence (see (6)). It is now a routine to
show that {=¢ a.e. on dQ (for more details see the proof of Theorem 3 in [5]).

Remark. Examination of the proof of Theorem 3 shows that the assump-
tion (26) on the growth of the nonlinearity b can be replaced by

[b(x, u, P = f()+Br(x)=*|p|+r(x)#lul)
for all (x, u, p)SQXRXR,, where « and B are constants such that 0<a<1
and 0<B3<2.
We close up this paper with an example illustrating the use of Theorem 3.
Let

where fp??cL*Q) for some 2<6<3, F is a measurable function such that
[F(x)| <Br(x)"® on @ with 0<a<1 and g=L*(R) with gx)u=0 on R. We
assume that a,; satisfy the conditions (i) and (ii) (see the example following
Theorem 1) and moreover D,a;=L(QXR). Let {¢.} be a C'-sequence con-
verging to ¢ in L%0Q). Since f, in general, is not in L%Q), we take a
sequence {f;} in L>(Q) such that SQf%p"dXHSQpr”dx as [—oo. First, we

consider for each /=1 the Dirichlet problem
(32) «‘:V‘_‘le(ai,»(x, w)Du)+by(x, u, Du)=0 in
i, 4=

33) u(x)=¢(x) 09Q,

where by(x, u, Du)=f(x)—v/|Du|*+1g(u)F(x). To solve the problem (32), (33)
we construct a sequence of supersolutions {¥'}} (subsolutions {@}}) obtained as
solutions of the Dirichlet problem

—, 3 Diautx, wDa)=|fix)| i Q, (resp. —|f(x)])

u(x)=g¢x(x) on dQ. resp. —|Ps(x)]

Using the assumptions (1) and (i) we can show that {@}} and {¥'}} are bounded
in W-¥Q) independently of % and /. Moreover, both sequences are locally
uniformly bounded in L=(Q). By Theorem 3 for each / the problem (32), (33)
has a solution u,=W'%(Q). It is clear that we may assume that lim,_ .@4x)
=, and lim,_.¥ix)=¥(x) a.e. on Q with {@,} and {¥,} bounded in L*Q).
We also have for each /
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D (0)<u(x)X¥,(x) a.e.on Q.

Using this inequality and repeating the estimates from the proof Theorem 3

one can show that

SqlDqudx—{-Squ%dx—l- sup SaQu%dszgMl(SaQWde-i—gqfﬁpﬁdx)-i-Mz

038y

for some constants M,>0, M,>0and §,>0. Obviously this estimate implies the
solvability of the problem (32), (33) with b replaced by b,.
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