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1. Introduction.

In [1], P. E. Bland has studied the strongly M-projective module and the

strongly M-projective cover. As their general notions, we define the strongly

37-projectivemodule and the strongly 7/-projectivecover for any class ^cMod-i?,

(for the definitions,refer to section 2) and by considering the pre-torsion theory

associated with the radical tv,(f,(/ffl)=n{Ker(/)|/eHomfl(/CB, MR＼ MR<=r/} for

any right i?-module KR), we shall show that the above notions can be translated

into the new notions weakly codivisible module and weakly codivisible cover

with respect to (2",£F)associated with the radical tv and that new or generalized

results are obtained. Through all the sections, we shall generalize the results of

P. E. Bland [1], M. L. Teply [7] and K. M. Rangaswarmy [4].

In [1, Proposition 5] and [1, Proposition 6], it is proved that if Cog (MR) is

closed under factors, then

(1) BR has a strongly M-projective cover iff B/B- Ann (MR) has a projective

cover as an R/Ann (MR)-module.

(2) Every R-module has a strongly M-projective cover iff R/Ann(MR) is a

right perfect ring.

But we shall show in Corollaries 8, 9 that these statements are valid without

the above assumption on Cog(MR).

By [1, Proposition 7], if MR is an injective module, then any strongly M-

projective module is codivisible with respect to the hereditary torsion theory

cogenerated by MR. So we shall characterize under what conditions about the

pre-torsion theory (£Tt,£T£)associated with the radical t a strongly 77-projective

module is codivisible.

We have equivalent conditions in Theorem 12 that
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(1) // B/B-t{R) is a projective R/t{R)-moduk, then BR is a codivisiblemodule.

(2) Any weakly codivisiblemodule (resp. strongly rj-projective module) is a

codivisiblemodule.

(3) A-t(R)r＼KR=O for any weakly-codivisible module AR and its submodule

KR such that KR^3t. {i.e. t{AR) has no non-zero torsion-free submodule.)

(4) t(BR)=BRr＼t(AR) for any codivisiblemodule AR and its submodule BR.

(5) M- t{R) has no non-zero torsion-free submodule for any {cyclic) module

MR.

These conditions are deep related to a pseudo-hereditary pre-torsion theory.

In fact, conditions in Theorem 12 hold iff (3t, 3t) is a pseudo-hereditary pre-

torsion theory (Theorem 14). Furthermore this implies it holds the converse of

[4, Theorem 8] which asserts if (£T,3) is a pseudo-hereditary torsion theory,

then B/B-t{R) is a projective R/t{R)-module iff BR is a codivisible module.

Hence our result Theorem 12 proves that [1, Proposition 7] and [4, Theorem 8]

are essentially the same contents.

As an immediate consequence, we have the following generalization of [4,

Corollary 15] that any i?-module is codivisibleiff R/t{R) is a semi-simple Artinian

ring and (£Tt,3t) is pseudo-hereditary. We shall also generalize the result [4,

Theorem 81 on the pseudo-hereditaryness in a torsion theory to those in a pre-

torsion theory associated with a radical (Theorem 13).

In the final section, we study a module MR such that MR-t{R)=MR. It is

proved in [7, Lemma 3] and [4, Corollary 9] that if (£T,3) is a pseudo-hereditary

torsiontheory, MR- t{R)=-MR implies that MR is codivisible.We shall,however, show

that MR- t{R)=MR for a torsion theory (3, 3) iff MR is torsion and has a coiocali-

zation with respect to {3, 3). In fact, this result is valid under more weaker

situation that {3, 3) is a pre-torsion theory such that A/t(BR) is codivisible for

any codivisible module AR and BRdAR (Theorem 17). As an application, we

obtain the equivalent conditions which are a generalization of [7, Corollary 1]

and [7, Proposition 1] ;

(1) R/t{R) is a semi-perfect ring.

(2) Every simple R-module has a codivisiblecover.

(3) Every simple R/t{R)-module has a codivisible cover as an R-module.

(Corollary 18).

We shall,at the same time, another proof of Theorem of K. Ohtake that

every module has the colocalizationiff the torsion-free class 3 is closed under

factors and extensions (Corollary 19).
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2. Definitions.

Let R be a ring with unit and Mod-/? the category of unitairight i?-modules

For 75/CMod-i?, we denote "Cog(y)"={MR＼MRC.JJLi for some Li<=7]}, i.e. the

class cogenerated by rj, and "Ann(iy)" = n{Ann(Mfi)|Mr(e.t]}. MReMod-R k

called "strongly ^-projective" if HomR(MR, ―) preserves the exactness of every

short exact sequence 0-+KR―*LR―*HR-^0 such that LR=JJ.Li for some Li^rj. A

"strongly ^-project!ve cover" of NR means a strongly ^-projective module Pj

with an epimorphism PR-≫NR~+0 whose kernel is small and ^-independent in PR

Here a submodule KRdLR is called "57-independent" in LR if, for any non-zerc

K%dKR, the canonical map

HomR(LR> MR) ― > Hom*(#t Affi)

is non-zero for some MfieCog(>?). In the case that rjconsists of a single element

MR, the above definitions coincide with the original definitionsof strongly M-

projective module and strongly M-projective covers in [1].

For a subfunctor t of the identity functor on Mod-i? which is called a "pre-

radical", we denote

3"t= {M^e Mod-i? i t(MR)=Ms} and

2t={MReiMod-R＼t(MR)=O}

whose elements are said to be "torsion" and "torsion-free" respectively. A pre-

radical t is called a "radical" if t{M/t{MR)R)―O for any MBe Mod-i? and is

"idempotent" if t(t(MR))=t(MR) for any M^e Mod-i?. We callthe pair (£Tt,3t)

a "pre-torsion theory" (resp. "torsion theory") if t is a radical(resp.idempotent

radical). For a detail,refer to [6]. For rjdMod-i?, we define a pre-radical "£9"

by

tv(KR)=r＼{Ker(f)＼f^EomR(KR, MR), MR^rj]

for any A'^e Mod-i?. Clearly it is a radical. In [2] H. Katayama has remarked

that any radical t is represented as t= tv for some ^cMod-i?.

A module MR is "codivisible" (resp. "weakly-codivisible") if HomR(MR, ―)

preserves the exactness of every short exact sequence O-^KR―>LR->HR―>0 such

that KR<E.3t (resp. LR^3t). Clearly a codivisible module is a weakly codivisible

module. A "codivisible cover" of MR means a codivisible PR with an epimor-

phism PR―>MR-*O whose kernel is small in PR and torsion-free. An epimorphism

/"･ Pr-^Mr-^-0 is called a "weakly codivisible cover" of MR if PR is weakly

codivisible,Ker (/) is small in PR and t(PR)r＼＼Ler{f)―O. In the case that tis a

radical,if a module MR has a codivisiblecover, then it has a weakly codivisible
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cover (for the proof, see Lemma 11). A "eolocalization" of MR is an i?-homo-

morphism /: PR―>MR such that PR is torsion codivisibleand Ker(/) & Cok(/)

e£F<. For a detail,see [3] and [5]. A codivisible cover, a weakly codivisible

cover and a colocalization of MR are unique up to the isomorphism if they exist

(for the proof, see Lemma 6).

A pre-torsion theory (£T,3) is called "pseudo-hereditary" (resp. "hereditary";

if anv submodule of t(Rr>)freso. MpG?) is torsion.

3. Basic Property for Radicals.

Proposition 1. Let t be a pre-radical. t is a radical iff t= tv for some

7]dMod-R.

In this case, 3t=Coe(ri) and t= ta..

Proof. "If part" is clear. So we assume t is a radical and we put ?y―£F4.

Let MfleMod-/?, KR^3t and f^UomR(MR, KR). f induces t{f): t(MR)->t(KR)

and t(KR)=O since KR^3t, so f(t(MR))=0, hence t(MR)dtv(.MR). We consider

the canonical map i: MR-*MR/t(MR)R> then i(tv(MR))=O since M/t{MR)^3t.

So tv(MR)dt(MR). Thus /= f,. Next we prove S^CogC^). Let MijGCogC^).

Then there are L^-q, ie/ such that MRQJJi(=iLi, hence tv(MR)=O, thus MR<=3t.

Assume MR^3t. For every O^xgMr, there is L^e 57and /^: MR-^LX such

that fx(x)^zO, which means II/z : Affl―*IIo*a;e.≪-jB^'a;is a monomorphism, thus

MfleCog(^).

Corollary 2. Le/ (3*,£F)&e the pre-torsion theory associated with a radical

t and r] a subclass of Mod-i? such that t= tv. Then the following properties hold.

(1) t(RR)=Ann (57)=Ann (£F).

(2) MR-t(RR)Ct(MR) for any MR^Mod-R.

(3) 3" is closed under factors, direct sums and extensions.

(4) For any MfieModi? and KRdMR such that KR^3, if t(MR)r＼KR is a

direct summand of Mb. then /(MVlrA/C;?―0.

Proof. Proof of (1). By Proposition 1, t(RB)=tcf(RB). So

tv(R)=r＼{Ker(f)＼f<EHomR(RR, MR), MR^V}

= r＼{Ann (m) |m e M/e, Mfl e ??}

= n{Ann(M≪)|Mfle57} .

Proof of (2). For any xeMB, we define /: RR―>MR by f(r)=x-r for every

re/?. Since x-t(RR)=f(t(RR)) and f{t{RR))dt{MR), M-t(RR)Ct(MR).

Proof of (3). Since f= f≪,t(MR)=MR iff Hom*(A/fl, iCfl)=O for any irss£F.
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Homfi(―,KR) is a rightexact functor,so (3) holds.

Proof of (4). We put MR=(t(MR)nKRWM% for some M%dMR. t{MR)

= KWR)r＼KR)RHM%)=t(M%)<zM% Hence HMR)r＼KR=t(MR)r＼KRr＼M%=0.

Remark : The proof of (2) is valid under the assumption that t is a pre-

radical. The above proofs of (2) and (4) are suggested by the refree.

4. Weakly Codivisible Modules and Strongly 7/-Projective Modules.

In this section, we study basic properties of weakly codivisible modules and

strongly 37-projectivemodules.

Proposition 3. Let (£T,£F)be the pre-torsion theory associated with a radical

t. Then it holds that

(1) // AR is weakly codivisible with respect to (£T,3), then A/A-t(R) is a

projective R/t(R)-module.

(2) // AR is weakly codivisible, then t(AR)=AR- t(R).

(3) Let O-^AR-^BR―>CR^O be an exact sequence. If CR is codivisible, then

t(AR)=UBR)r＼AR.

Proof. Proof of (1). We put / an epimorphism *£(B(R/t(R))R-*A/A-KR)R

―>O and j the canonicalmap AR―*A/A-t(R)R-*O. We consider the next dia-

gram with exact rows:

0 ―> A■t(RR)R―> AR -^A/A-t(R)R―^O

O ―* Ker (/)≪―^ Y,R(R/t(R)) ―> A/A-t(R)R ―* 0 .

By assumption, thereis g: AR-~>J](&(R/t(R))Rsuch thatj=fg. By Corallary2,

g(A-t(R))=O. So thereis g : A/A-t(R)R-+ "ER(R/t(R))R such that #=£./. Since

j―fg―fgj and 7 is an epimorphism, l=fg, which means A/A-t(R)R is a direct

summand of T,R(R/t(R))R) hence ^4/^4-f(i?)is a projectivei?//(i?)-module.

Proof of (2). A-t(R)dt(AR) by Corollary2, so fG4/,4-f(fl))=fG4*)M･*(#),

but /UM-f(/?))=O by (1),hence t{AR)=AR-t{RR).

Proof of (3). Since t(AR)(Zt(BR),t(B/t(AR))=t(BR)/t(AR). On the other

hand, the exact sequence 0―>A/t(AR)R^>-B/t(AR)R-^CR->0 splitssince CR is

codivisibleand AR/t{AR)^3, so we put B/t(AR)=A/t(A)RC for CR(ZB/t(AR)R.

Since a radicalcommutes with the directsums, we have

t(BR)/t(AR)=t(BR/t{AR))

= t(AR/UARmt(CR)
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= t(CR)dCR.

Thus (ARr＼t(BR))/t(AR)=(AR/t(AR))n(t(BR)/t(AR))=O,i.e

ARrM(BR)=t(AR).

Remark : (1) in the above proposition is a generalization of [4, Corollary 7].

Theorem 4. Let t be a radical,(2*,£F)the corresponding pre-torsion theory

and y]a subclass of Mod-i? such that t= tv. Then the following statements are

equivalent for M^eMod-i?.

(1) M/M-t(R) is a projective R/t{R)-module.

(2) M/M- Ann (r?)is a projective R/Ann (rj)-module.

(3) MR is weakly codivisiblewith respect to (2",3).

(4) MR is a strongly -q-projectivemodule.

Proof. Clearly (1) and (2) are equivalent by Corollary 2. (3) implies (1) is

proved by Proposition 3.
i

(1) implies (3). Let O-*Ar-+Br--*Cr-*O be an exact sequence such that

BR&3 and f:MR-*CR. BR-t(R)=O by Corollary 2, so CR-t(R)=O, hence

f(MR-t(R))"=f(MR)-t(R)=O. It induces f:M/M-t(R)R―CR such that f-fj

where j: MR-*M/M-t(R)R is the canonical map. Clearly / and i are RJt(R)-

homomorphisms, so there is an i?-homomorphism h: M/M- t(R)R―>BR such that

f―ih since M/M-t(R) is a projective i?/£(i?)-module. Thus f=i(hj), so (3) holds.

(3) implies (4). It holds since 7]d3t―Cog (rj)by Proposition 1.
i

(4) implies (3). Let O―>AR-^BR―>CR--*O be an exact sequence such that

Br^S and f:MR―*CR any i?-homomorphism. By Proposition 1, £F=Cog (tj),

hence there are Li^ij (ie/) for some index set / such that BRdJJiGILi. We

consider the following commutative diagram with exact rows;

0―>AR-^ BR

f1

i

MRu

V

―>0

0 ―> AR ―≫ UU ―> IT^M* -^ O .

By assumption, there is an i?-homomorphism g: MR-*TLLi such that kf=jg.

Since BR is a fibre product (i.e. pull back) of (k, j),there is an i?-homomorphism

/: MR―>BR such that /=f/. Thus MR is weakly codivisible.
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Corollary 5. For a pre-torsion theory (2*, 20, the following statements are

equivalent.

(1) Every R-module is a weakly codivisiblemodule.

(2) R/t(R) is a semi-simple Artinian ring.

Proof. This is a direct consequence of Theorem 4.

Theorem 7 generalizes [1, Proposition 5] and shows thatitis proved without

the assumption in [1] that Cog({M}) is closed under factors. Before proving the

theorem, we prove the following lemma.

Lemma 6. Let y be a subclass of Mod-i? and M^eMod-i?. Then it holds that

(1) A submodule LR of MR is rj-independent in MR iff tTj{MR)r＼LR―O.

(2) An epimorphism PR―*MR is a strongly rj-projective cover of MR iff it is

a weakly codivisible cover.

(3) A strongly yj-projective cover of MR is unique up to the isomorphism if

it exists.

Proof. (1) and (2) are clear by definitionsand Theorem 4.
k f I g

Proof of (3). Let O-*KR-+AB-^>MR-+ 0 and O--*LR-*BR->MR-^O be strong-

ly 57-projectIvecovers of MR. Since LR is ^-independent in BR, there exists an

i?-homomorphism h : BR->]J.i3IMi for some M^r) and an index set / such that

h ･I is a monomorphism. So we have a commutative diagram with exact rows;

k

0-^> KR ―^AR

I

0―> LR ―>

/

BR ―>
I*
/

MR ―>0

Mr >0

0 ―> hl{LR) ―* HMi ―* (UMi)/hl(LR) ―^ 0

where ; is the canonical map and A* and h are induced maps of h. Since ^4B

is strongly 77-projective,there exists an i?-homomorphisrn p : AR-^TiMi sunh that

jp―hf. By the fact that A* is an isomorphism, BR is a fibre product of (j, h).

So there is an i?-homomorphism s: AR^BR such that f=gs. Since g is a minimal

epimorphism, s is an epimorphism. Clearly Ker (s)ClKR, so Ker(s) is small and

^-independent in AR. Repeating the same discussion as above, we can show

that s is a splittingepimorphism. Hence s is an isomorphism since Ker (s) is

small in AR.



210 Masahisa Sato

Theorem 7. Let rj he a subclass of Mod-i? and t―t^a radical. The follow-

ing assertions are equivalent for a given BReMod-R.

(1) BR has a strongly rj-projectivecover.

(2) BR has a weakly codivisiblecover.

(3) B/B-Ann(7j) has a projective cover as an R/Ann (r/)-module.

(4) B/B-t(R) has a projective cover as an R/t(R)-module.

Proof. (1) and (2) are equivalent by Lemma 6. Also (3) and (4) are equivalent

by Corollary 2.

(2) implies (4). Let 0-^>KR-*AR^>BR-+0 be a weakly codivisible cover of

BR. By Proposition 3, t(AR)=AR-t(R), hence A-t(R)RnKR=O. So we have a

commutative diagram with exact rows;

0―+KR―* An

＼ ＼

―>n

0―*KR ―>A/A- t(R)R―*■B/B- t(R)R―* 0

By Theorem 4, A/A-t(R) is a projectivei?/f(i?)-module.Since an epimorphic

image of a small submodule is small,KR is smallin A/A-t(R). Hence thelower

sequence of the above diagram is a projectivecover of B/B-t{R) as an R/t(R)-

module.

(4) implies (2). Let O-*K-*Q-*B/B-t(R)-*O be a projectivecover of

B/B-t{R) as an i?//(i?)-module.We considerthese modules as R-modules and

put (AR, g,f) a fibreproduct of QR-*B/B- t(R)Rand BR-^B/B-t{R)R. We have

a commutative diagram with exact rows and columns;

o

I

0―*K%

If

O > Kn >

We firstshow Ker (/) =AR-t(R)

Ker(/)*
I

u

Qr
I

0

£

g

0

1

B-t(R)R―>0

BR―>0
I

B/B-t(R)R―>0

I

O

f(A-t(R))=f(AR)-t(R)

=Q*-t(R)

― 0,
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so AR-t(RR)RcKer(f).

Thus g(A-t(R))=-g(A-t(R))

^g(AR)-t(R)

= BR- t(R).

Since g is an isomorphism, A- t(R)~Ker(/). By thisfact,Q and A/A-t(R) are

isomorphic as i?-modules, hence as J?/^(/?)-modules.Here Q is a projective

i?/^(i?)-module,so AR is a weakly codivisiblemodule by Theorem 4. Next we

show K% (-Ker(g)) is smallin AR. Assume K%+LR―AR for LRClAR. Then

K%-t(R)+L-t(R)=A-t(R). But K-t(R)=O, so K*-t(R)=O, thus L-t(R)=A-t(R),

hence Ker(f)=A-t(R)=L-t(R)c:LR. On the other hand, f(K%)+f(L£=f(AB)

= QR, which means f(LR)=QR since /Cris smallin (^ and f(K%)=KR. Since /

is an epimorphism, LR+Ker (f)R―AR, thus ^=^4^. Last we show t(AR)r＼,K%―0.

t(AB)=AB't(R) by Proposition3, so O=Ker(f)=K%r＼Kcr(f)B=K%r＼(AB't(R))B

=K%r＼t(AR)R. This completes the proof of the theorem.

By Theorem 7, we get following corollaries.

Corollary 8. The following statementsare equivalentfor MfleMod-i? and

BR =Mod-R.

(1) BR has a stronglyM-projectivecover.

(2) B/B-t{R) has a projectivecover as an R/Ann (MR)-module.

Remark : This fairly generalizes both [1, Proposition 5] and [4, Theorem

10] as we state before.

Corollary 9. Let rj be a subclass of Mod-i?. Then we have next equivalent

conditions.

(1) Every R-module in Mod-i? has a strongly rj-projectivecover.

(2) R/Ann(r/) is a right perfect ring.

Remark : This is also a generalization of [1, Theorem 6] and [4, Theorem

11].

By applying Theorem 7 only to finitelygenerated modules, we have (c.f.[4,

Theorem 121)

Corollary 10. The following statements are equivalent.

(1) Every finitelygenerated (resp. cyclic) R-module has a strongly v-projec
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tive cover.

(2) Every finitelygenerated (resp. cyclic)R-module has a weakly codivisible

cover.

(3) R/Arm (in)is a semi-perfect rins.

5. A Pseudo-Hereditary Pre-Torsion Theory.

From Proposition 3, it is easily seen that when BR is codivisible with

respect to (£Tj,3t), then B/B-t(R) is a projective /?/f(7?)-module. On the other

hand, [4, Theorem 8] has shown that the converse of the above result holds if

(£T£,£Ft)is a pseudo-hereditary torsion theory.

Under the assumption that t is a radical, we shall first study equivalent

conditions for which the converse of the above result holds. In fact, we

shall prove that the converse holds iff(3*t,3t) is a pseudo-hereditary pre-torsion

theory. This result means that the equivalent conditions of [1, Proposition 7]

are nothing but a paraphrase of our result in the special case that (£T,3) is a

hereditary torsion theory.

Lemma 11. Let (£T,£F)be a pre-torsion theory with the radical t. Then it

holds that

(1) // AR is weakly codivisiblewith respect to (£T,3) and BRCt(AR), then

A/BR is weakly codivisible.

(2) For any MR^Mod-R, there is an exact sequence O-+KR-*AR-*MR-+O

such that AR is weakly codivisibleand KR^3.

(3) For any MR^Mod-R, there is an exact sequence 0 ―>KR-^>AR―>MR-*0

such that AR is weakly codivisibleand t(AR)r＼KR―O.

Proof. Proof of (1). Let s: KR-*LR^O be an epimorphism such that

KR<^3. Assume f: A/BR-*LR is an 7?-homomorphism. Since AR is weakly

codivisible,there is /: AR-^KR such that sf―fp where p is the canonical map

AR-^AIBR. f(BR)df(t(AR))=O since t(AR)=AR-t(RR) by Proposition 3, so

f(BR)=O, thus there is an i?-homomorphism g: A/BR-^KR such that f=gp.

fp―sf―sgp and p is an epimorphism. This shows f=sg, as was to be shown.

Proof of (2) and (3). We consider an exact sequence O^Ker(f)R-+PR

-+MR--*O such that PR is projective. The exact sequence 0-≫Ker(/)/f(Ker(/))B

-+P/t(Ker(f))R^>MR-+O satisfies(2) by (1). The exact sequence

O ―^ Ker (/)/(Ker (f)nt(PR))R ―> F/(Ker (/Jn/C^))* ―* MR ―> O

satisfies(3) by (1).
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Remark : (3) in Lemma 11 Is a generalization of [1, Lemma 1],

Theorem 12. Let (£T,£F)be a pre-torsion theory with the radical t and rj a

subclass of Mod-J? such that t―tv. The following statements are equivalent.

(1) // M/M-t(R) is a projective R/t(R)-module, then MR is a codivisible

module with respect to (£T,£F).

(2) Every weakly codivisiblemodule is codivisible.

(2)* Every strongly rj-projectivemodule is codivisible.

(3) For every weakly codivisible module AR) AR-t(R)Rr＼KR=O for any

torsion-free submodule KR of AR.

(3)* For every codivisiblemodule AR,

(a) (AR-t(R))Rr＼KR―O for any torsion-free submodule KR of AR.

(b) AR/t(BR) is codivisiblefor any BRCZAR.

(4) For every weakly codivisiblemodule AR, t(AR)R has no non-zero torsion-

free submodule.

(4)* For every codivisiblemodule AR,

(a) t(AR)R has no non-zero torsion-free submodule.

(b) AR/t(BR) is codivisiblefor any BRdAR.

(5) For every weakly codivisible module AR, t(BR)R―t(AR)Rr＼BR for every

submodule BR(ZAR.

(5)* For every codivisiblemodule AR, t{BR)R―t{AR)Rr＼BR for every submodule

BR(ZAR.

(6) For any M^eMod-i?, MR-t(R)R has no non-zero torsion-free submodule.

(7) For any cyclic module CR,CR-t{R)R has no non-zero torsion-free sub-

module.

(*) In these cases (1)―(7),for any MR^Mod-R, there is an exact sequence

O ―≫KR―>AR―>MR―>0 such that AR is codivisibleand KR<^3.

Furthermore the property (b) of (3)* or (4)* is equivalent that t(t(BR))=t{BR)

by Proposition 3, (3).

Proof. The equivalences of (1),(2) and (2)* hold by Theorem 4.

(2) implies (3). The exact sequence

0 ―>A-t{R)Rr＼KR ―> AR ―> AR/(A-t(R)Rr＼KR)R ―> O

splitssince A/(A-t(R)r＼K)R is codivisibleby Lemma 11, (1) and the assumption.

Thus A-t(R)Rr＼KR=O by Corollary 2.

The equivalence of (3) and (4) holds since t(AR)=AR-t{R) by Proposition 3.

(6) implies (4). It is clear.

(4) implies (6). By Lemma 11, there exists an exact sequence O-^KB―>AR
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-*MR-*0 such that AR is weakly codivisibleand t(AR)Rr＼KR=O. So we have a

commutative diagram with exact rows;

O ―> A≫>t(R)≫r＼KR―> An- UK)* ―> M≪-HR)≫―> O
a

KR

Since t(AR)=AR-t(R) by Proposition3, A

non-zero torsion-freesubmoduie.

(5)implies(5)*. It is clear.

a

ar

R

M ,0

■t(R)R~MR-t(R)R, so MR-t(R)R has no

(5)* implies (1). Let AR be a codivisible module and a submodule BR of AR.

Then by assumption, it holds

t(t{BR))=t(AR)Rnt(BR)R

= KBR)R

since

t(AR)Z)t(BR),

so

fGBs)ea＼

Using this fact, there is an exact sequence 0->KR―>PR-*MR-≫0 such that

PR is codivisible and KR<=3 by similar way in Lemma 11. t(PR)Rr＼KR=t(KR)=O

by assumption, so we have a commutative diagram with exact rows;

Q ≫J(R >. pR > MR
__ _> Q

I I I

O > KR ―> PR/P- t(R)R ―> AVM- /(/?)*―> 0 .

Since MR/M-t(R) is a projective i?/?(i?)-module, the lower row sequence splits

as i?-modules, hence so does the upper row sequence. Thus MR is codivisible.

(4) implies (5). We remark A/t(BR) is weakly codivisible by Lemma 11, (1).

{t{AR)Rr＼BR)/t{BR)dt{AR)/t{BR)^t(A/t{BR))

and

(t(AR)Rr＼BR)/t(BR)ClBR/t(BR).

By assumption, {t{AR)r＼BR)/t{BR)~O since it is torsion-free. Hence t(AR)R

r＼BR=t(BR).

The equivalence of (3)* and (4)* is clear.

(1) and (3) imply (3)* is also clear.

(4)* implies (5)*. It is proved similarly as (4) implies (5).

(6) implies (7). It is clear.

(7) implies (6). We first show that if MR is finitely generated, then MR has

the property (6) by induction on the number of generators of MR. By assumption,

it holds in case n = l. Assume n^l, MR=m1R+ ･･･+mn^+wn+ii? and KR is a
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torsion-free submodule of MB-t{R).

mn+1t(R)R^KR<E3

and

mn+1t(R)Br＼KBc:(mn+1R)' t(RR),

hence

mn+1W)Rr＼KR=O .

So

KRR(mn+1t(RR))c:MR-t(R)

and

KR=(KRQ)(mn+1t(R)))/mn+1t(RR)

dMR-t(RR)/mn+1t(RR)

=(m1-R+-+mn-R)-t{RR)

where

mi=mi+mn+it(R), i=l, ･■■, n .

By induction hypothesis, KR―O. Let MR^Mod-R and KR a torsion-free sub

module of MR-t(R). For any k^KR, it has an expansion k=m1t1-＼-■■･+mntt

for some m,i^MR and ti^t(R), i=l, ■■■,n. So kRd{m1R+ ■■■-＼-mnR)-t(R) anc

kR<^$, thus kRR=O. Hence KR―O. This completes the proof of the theoreir

Remark : In the proof of this theorem, the simplificationof the proof that

(2) implies (3),(4) implies (5) are suggested by the refree.

We recall the definition of a pseudo-hereditary pre-torsion theory that any

submodule of t(RR)R is torsion. We have the following theorem (c.f. Theorem

12).

Theorem 13. Let (2*,£F)be a pre-torsion theory with the radical t. Then

the following assertions are equivalent.

(1) (£T,£F)is the pseudo-hereditary pre-torsion theory.

(2) For every M^eMod-i?, any submodule of MR-t{RR) is torsion.

(3) For every weakly codivisible module AR, any submodule of t{AR)R is

torsion.

(3)* For every codivisiblemodule AR, any submodule of t(AR)R is torsion.

(4) For a module MR such that t(MR)=MR-t(RR), any submodule of t(MR)R

is torsion.

(5) For a module MR such that t(MR)=MR-t(R), t(NR)=t(MR)r＼NR for every

NRdMR.

Proof. (4) implies (3),(3) implies (3)*,(2) implies (1) are clear.

(3) implies (2). By a similar way in Lemma 11, (3) using the assumption,
/

there is an exact sequence 0―>KR-*AR-->MR->0 such that AR is codivisibleand
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KRrM(AR)=O.

(5) implies

r＼NR=N*
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Thus t(AR)=AR-t{R)^MR-t(R).

(4). Let NRct(MR)^MR-t(R).

Hence (2) holds.

By assumption, t(NR)=t(MR)R

(1) implies (5). t(NR)(Zt(MR)Rr＼NR is clear. Assume x^t{MR)Rr＼NR and

decompose

for m＼x)^MR and t*ix)Gt(R) since x^MR-t(R). We put

/:S,0P*―≫f(A/≪)≪rM*
via

―y1 CTkx,mi-x)t(--x)r＼'―£jx＼jLji=1'iii<■i I x)

―"V rr―Zjx-^'x

for rxG.RR. Clearly / is an epimorphism, so it is sufficientto show any submodule

of Tii=iRt{R) is torsion since Px^Hi=iRt{R) and 2* is closed under factors and

direct sums. As we proved in Corollary 2, £Tis closed under extensions. So a

similar proof in [7, Lemma 31 gives this fact by induction.

The next is a generalizationof a result[4, Theorem 8].

Theorem 14. The propertiesin Theorem 12 and Theorem 13 are equivalent.

Proof. (3) in Theorem 13 implies(4) in Theorem 12 is clear,so we shall

prove that (7) in Theorem 12 implies (1) in Theorem 13. Let LRdt(R)R.

L/t{LR)^3 and L/t(LR)CZ(R/t(LR))-t(R).By assumption (7), L/t(LR)= O, thus

LK=t(L*).

Next corollary is a generalization of [4, Corollary 15].

Corollary 15. Let (2", 3) be a pre-torsion theory with the radical t. Then

the following assertions are equivalent.

(1) Every R-module is codivisible with respect to (2*, E).

(2) (a) R/t(R) is a semi-simple Artinian ring, and

(b) (2*, £T)is pseudo-hereditary.

Proof. (1) implies (2). (1) satisfies the property Theorem 12, (1). Hence
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(2*, £?)is pseudo-hereditary by Theorem 14. (a) is clear from Corollary 5.

(2) implies (1). It is clear from Corollary 5, Theorem 12, Theorem 13

and Theorem 14.

Next we give an example, which shows (a) and (b) in Corollary 15 are

independent.

Example: We put Z a ring of integers, ^―{Z/pZ} and t―tv where p is

a prime number. Then

(1) (2"(,£F£)is not pseudo-hereditary.

(2) Z/t(Z) is a semi-simple Artinian ring.

(3) Every Z-module is a weakly codivisiblemodule.

(4) Z/i&Z has not codivisiblecover.

Since t{Z)=pZ, t(pZ)=p2Z^t(Z) and Z/t(Z) is a field. Hence (1),(2) and (3)

hold by Theorem 7 and Corollary 5. UZ/pZ has a codivisibl cover, then it must

be of the form 0 ―pZ/p2Z-^Z/p2Z ― Z/pZ~^O. But Z/p2Z is not codivisibleby

Proposition 3 since t(p2Z)=p3Zi-p2Z.

By Corollary 9, if every i?-rnodule has a codivisiblecover, then R/t(R) is a

right perfect ring. So on the analogy of Corollary 15, we propose the next

conjecture.

Conjecture. (*) // every right R-module has a codivisiblecover with respect

to a pre-torsion theory (£T,3), then (3", 3) is pseudo-hereditary.

6. The modules MR-t(RR)=-MR.

M. L. Teply in [7] has proved that for a pseudo-hereditary torsion theory

(£T,£F),MR is codivisibleif MR-t(RR)=MR. In this section, we shall characterize

those modules MR such that MR-t(RR)=MR by the notion of the colocalizationof

n mnrhilR

Lemma 16. Let (£T,3) be a pre-torsion theory with the radical t. The

following assertions are equivalent for a given R-module MR.

(1) HomR(t(MR)R, LR/TR)=O for any TRdLR^3.

(2) t(MR)GST and t{MR) is weakly codivisible.

(3) t(MR)'t(RR)=t(MR).

Proof. (1) implies (2). By Proposition 1, t= ts. Hence t(MR)<=sr since

UomR(t(MR)R> LR)―O for any LReSF. The weakly codivisibility of t(MR) is clear.



218 Masahisa Sato

(2) implies (3). By Proposition 3, t{t(MR))=t(MR)-t(RR). But t(MR)<=ST,

t(t(MR))=t(MR). So t(MR)=t(MR)-t(RR).

(3) implies (1). Assume/ eHom*(t(MR)R, LR/TR). t(MR)―t(MR)-t(RR) implies

f(t(MR))=f(t(MB))-t(Ra). But f{t{MR))CLLR/TR and {LR/TR)-t(.RR)={LR-t{RR)

+ TR)/TR=O. Thus/-0.

Theorem 17. Let (£T,3) be a pre-torsion theory with the radical t such that

if AR is codivisible,then A/t(BR)R is codivisible for any BRCAR. Then the

following statements are equivalent.

(1) MR has the colocalization.

(2) EomR(t(MR)R, LR/TR)=O for any TRdLR^EF.

(3) if(Afs)e£Tand t(MR) is weakly codivisible.

(4) t{MR)-t(RR)=t(MR＼

Proof. The equivalences of (2),(3) and (4) are proved by Lemma 16.

(1) implies (4). Let /: C(MR)-*MR be a colocalizationof MR. C(MR)^3: and

is codivisible, hence C(MR)=t(C{MR))=C(MR)-t(RR) by Proposition 3, hence

f{C(MR))=f{C(MR))-t{RR)dMR' t{RR)CLt(MR). On the other hand, MRlf(C{MR))^3,

hence O=t{MR/f{C(MR)))=t{MR)/f{C{MR)). Thus t{MR)df(C{MR)), so t(MR)

=f(C(MR)) and t{MR)=t{MR)-t(RR).

(2) implies (1). We consider an exact sequence 0―>KR-+PR-+t(MR)R-*0

such that PR is projective. Since t(PR/t(KR))=t(PR)/t(KR), we have a commut-

ative diagram with exact rows and columns;

0

I

0

I

0 ―> (KRnt(PR))/t(KR)R ―^ t(PR)/t(KR)R
i

0 > KR/t(KR)R ■ -*

I

O―> (KR+t(PR))/t(PR)R ―>
I

O

0

I

Ira (fi)*―+O

l{
f
lj
■

PRft{KR)R ―> t(MR)R ―* 0
1 I*

PR/t{PR)R ―>CokU)R-^O
1

0

I

o

By assumption, k = O. Hence lm(fi) = t(MR). So (KR^t(PR))/t(PR)=PR/t(PR).

Here PR/t(PR) is weakly codivisibleby Lemma 11, so the left column sequence

splits,hence so does the middle column sequence. Thus t(PR)/t(KR) is a direct

summand of PR/t(KR). But PR/t(KR) is codivisibleby assumption, hence t(PR)/t(KR)

is codivisible. Furthermore
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^mpR)it{KRmt{pR/t{pR))

= t(t(PR/t(KR))).

Clearly this Isomorphism is an injection t{i),hence t(PR/t(KR))―t(t(PR/t(KR))).

Thus it is torsion. This shows f: t(Pid/t(K^)R-*MR is a colocalizationof M≫.

The next corollary is a generalization of [7, Proposition 1] and [7, Corollary

1].

Corollary 18. Under same assumption as in Theorem 17, the following

assertions are equivalent.

(1) R/t{R) is a semi-perfect ring.

(2) Every simple R-module has a codivisiblecover.

(3) Every simple R/t(R)-module has a codivisiblecover as an R-module.

Proof. (1) implies (2). Assume SR to be a simple i?-module. If SR- t(RR)=SR:

then SR=t(SR)―SR-t{RR). Hence SR has a colocalizationby Theorem 17. This

is a codivisible cover of SR. If SR-t(RR)~O, then S is a simple R/t(R)-module.

By assumption (1), S has a projective cover as an R/t(R)-module, say 0―>K―*F

―>S-*O. Since P is a direct summand of a direct sum of R/t(R) as an R/t{R)-

-module, so is as an i?-module. Thus PR is a codivisiblei?-module since a direct

sum of R/t(R) is codivisibleby assumption. So the above exact sequence is a

codivisiblecover of SR as an i?-module.

(2) implies (3). It is clear.
/

(3) implies (1). Let S be a simple i?//(i?)-module and O-*KR-^ PR-^SR-*O

a codivisiblecover of SR as an i?-module. Since t{PR)=PR*t(R) by Proposition

3, f(t(PR))^f{PR)-KR)=SR-t(R)=O, hence O-*(KR+t{PR))/t(PR)-^PR/t(PR)^S

-≫O is an exact sequence as an R/t(R)-module. By Theorem 4, P/t(PR) is a

projective i?/*(i?)-module, hence the above sequence is a projective cover of S as

an R/t(R)-m.odule. Thus R/t(R) is a semi-perfect ring.

Corollary 19. (K. Ohtake)

Let (3*, 3) be a pre-torsion theory with the radical t. Then the following

statements are equivalent.

(1) Every R-module has a colocalization.

(2) £Fis closed under factors and extensions.

Proof. (2)implies (1). In this case, t must be an idempotent radical, so it is
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clear from Theorem 17.

(1) implies (2). By Theorem 17, t(MR)<=3: for any MR^Mod-R because in

the proof that (1) implies (4) the codivisibilityof AR is not necessary. Hence t is

an idempotent radical,so 3 is closed under extensions. Thus the assumption of

Theorem 17 is satisfied. Hence (2) holds by Theorem 17 since HomR(t(LR/TR)R,

LR/TR)=O for any TRdLRG^.
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