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1. Introduction.

In [1], P.E. Bland has studied the strongly M-projective module and the
strongly M-projective cover. As their general notions, we define the strongly
n-projective module and the strongly 7-projective cover for any class 7CMod-R,
(for the definitions, refer to section 2) and by considering the pre-torsion theory
associated with the radical t,, ({,(Kp=nN {Ker(f)|feHomg(Kg Mzg), Mrsy} for
any right R-module Kjz), we shall show that the above notions can be translated
into the new notions weakly codivisible module and weakly codivisible cover
with respect to (I, &) associated with the radical ¢, and that new or generalized
results are obtained. Through all the sections, we shall generalize the results of
P.E. Bland [1], M.L. Teply [7] and K. M. Rangaswarmy [4].

In [1, Proposition 5] and [1, Proposition 6], it is proved that if Cog(Mp) is
closed under factors, then

(1) By has a strongly M-projective cover iff B/B-Ann(Mg) has a projective
cover as an R/Ann (Mg)-module.

(2) Every R-module has a strongly M-projective cover iff R/Ann(Mpg) is a
right perfect ring.

But we shall show in Corollaries 8, 9 that these statements are valid without
the above assumption on Cog (Mpg).

By [1, Proposition 77, if Mz is an injective module, then any strongly M-
projective module is codivisible with respect to the hereditary torsion theory
cogenerated by Mgz So we shall characterize under what conditions about the
pre-torsion theory (&, 7,) associated with the radical ¢ a strongly z-projective
module is codivisible.

We have equivalent conditions in Theorem 12 that
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(1) If B/B-H(R) is a projective R/{(R)-module, then By is a codivisible module.

(2) Any weakly codivisible module (vesp. strongly y-projective module) is a
codivisible module.

(3) A-HRINKp=0 for any weakly-codivisible module Ap and its submodule
Kg such that KpeF,. (i.e. t(Ag) has no non-zevo torsion-free submodule.)

4) t(Bp)=BrNt(Ag) for any codivisible module Ap and its submodule Bx.

(5) M-t(R) has no non-zero torsion-free submodule for any (cyclic) module
M.

These conditions are deep related to a pseudo-hereditary pre-torsion theory.
In fact, conditions in Theorem 12 hold iff (7, &,) is a pseudo-hereditary pre-
torsion theory (Theorem 14). Furthermore this implies it holds the converse of

[4, Theorem 8] which asserts if (&, &) is a pseudo-hereditary torsion theory,
then B/B-t(R) is a projective R/t(R)-module iff By is a codivisible module.
Hence our result Theorem 12 proves that [1, Proposition 7] and [4, Theorem 8]
are essentially the same contents.

As an immediate consequence, we have the following generalization of [4,
Corollary 15] that any R-module is codivisible iff R/¢(R) is a semi-simple Artinian
ring and (I, &,) is pseudo-hereditary. We shall also generalize the result [4,
Theorem 8] on the pseudo-hereditaryness in a torsion theory to those in a pre-
torsion theory associated with a radical (Theorem 13).

In the final section, we study a module My such that My t(R)=Mp It is
proved in [7, Lemma 3] and [4, Corollary 9] that if (4, &) is a pseudo-hereditary
torsion theory, Mp- 1(R)=Mp implies that My is codivisible. We shall, however, show
that Mgz t(R)=Mp for a torsion theory (I, &) iff Mz is torsion and has a colocali-
zation with respect to (I, &). In fact, this result is valid under more weaker
situation that (I, &) is a pre-torsion theory such that A/#(Bjy) is codivisible for
any codivisible module Ar and BpCAp (Theorem 17). As an application, we
obtain the equivalent conditions which are a generalization of [7, Corollary 1]
and [7, Proposition 17;

(1) R/H(R) is a semi-perfect ring.

(2) Every simple R-module has a codivisible cover.

(3) Every simple R/i(R)-module has a codivisible cover as an R-module.
(Corollary 18).

We shall, at the same time, another proof of Theorem of K, Ohtake that
every module has the colocalization iff the torsion-free class & is closed under
factors and extensions (Corollary 19).
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2. Definitions.

Let R be a ring with unit and Mod-R the category of unital right KR-modules.
For nCMod-R, we denote “Cog ()= {Mg| MzCIIL; for some L;eq}, i.e the
class cogenerated by 7, and “Ann(g)’=nN {Ann (Mp)|Mz=n}. Mrp=Mod-R is
called “strongly n-projective” if Homg(Mz —) preserves the exactness of every
short exact sequence 0—> Kp— Lz— Hz—0 such that Lg=11L: for some L;&y. A
“strongly 7-projective cover” of Np means a strongly z-projective module Ppg
with an epimorphism Pr— Nr—0 whose kernel is small and y-independent in Pg.
Here a submodule KzC Ly is called “p-independent” in Ly if, for any non-zero
K*%C Ky, the canonical map

Homg(Lz, Mp) —> Homg(K%, Mg)

is non-zero for some Mr=Cog(n). In the case that » consists of a single element
M, the above definitions coincide with the original definitions of strongly M-
projective medule and strongly M-projective covers in [1].

For a subfunctor ¢ of the identity functor on Mod-R which is called a “pre-

radical”, we denote
TI,= {lMRE I\/I()d-lr\)i t(Af{R):AMR} and
Fo= {MzeMod-R| t(Mp)=0}

whose elements are said to be “torsion” and “torsion-free” respectively. A pre-
radical ¢ is called a “radical” if t(M/t(Mg)r)=0 for any Mz=Mod-R and is
“idempotent” if t({(Mp)=t(Mpz) for any Mz=Mod-R. We call the pair (I;, F,)
a “pre-torsion theory” (resp. “torsion theory”) if ¢ is a radical (resp. idempotent
radical). For a detail, refer to [6]. For pCMod-R, we define a pre-radical “¢,”
by

t(Ke)=\{Ker (f)|f€Homp(Kg, Mg), Mr<n}

for any Kz=Mod-R. Clearly it is a radical. In [2] H. Katayama has remarked
that any radical ¢ is represented as t=t, for some pCMod-R.

A module My is “codivisible” (resp. “weakly-codivisible”) if Homg(Mg, —)
preserves the exactness of every short exact sequence O— Kg— Lp—Hp—0 such
that Kp=%F, (resp. LrpeF,). Clearly a codivisible module is a weakly codivisible
module. A “codivisible cover” of My means a codivisible P with an epimor-
phism Pr— Mz—O whose kernel is small in P and torsion-free. An epimorphism
f1 Pr—Mr—0 is called a “weakly codivisible cover” of My if Pr is weakly
codivisible, Ker (f) is small in Pz and #(Pg)n\Ker (f)=0. In the case that fisa
radical, if a module My has a codivisible cover, then it has a weakly codivisible



206 Masahisa SaTo

cover (for the proof, see Lemma 11). A “colocalization” of Mg is an R-homo-
morphism f: Pr— My such that P, is torsion codivisible and Ker(f) & Cok (f)
=%, For a detail, see [3] and [5]. A codivisible cover, a weakly codivisible
cover and a colocalization of My are unique up to the isomorphism if they exist
(for the proof, see Lemma 6).

A pre-torsion theory (g, &) is called “pseudeo-hereditary” (resp. “hereditary”)
if any submodule of #(Rg) (resp. Mz=9) is torsion.

3. Basic Property for Radicals.

PROPOSITION 1. Let t be a pre-radical. t is a radical iff t=t, for some
nCMod-R.

In this case, F,—~Cog (n) and l=lgq,.

ProoF. “If part” is clear. So we assume ¢ is a radical and we put =9,
Let MreMod-R, KreF, and feHomp(My, Kz). f induces 1) t(Mgr)— i(Kg)
and {(Kg)==0 since KreF,, so f(H{Mz)=0, hence HMp)Ct,(Mg). We consider
the canonical map i: Mp— Mgp/t(Mz)z then (t,(Mp)=0 since M/H{(Mg)<=F,.
So t,(Mp)CTt(Mg). Thus t=t,. Next we prove ¥,=Cog (). Let MreCog ().
Then there are L;e7v, i€l such that MxG1;=,L;, hence t,(Mg)=0, thus Mpeg,.
Assume Mp=TF, For every O#xe& My there is L.€% and f,: Mr—L, such
that f(x)0, which means Jz: Mp—Tlosoengls is a monomorphism, thus
Mz=Cog (7).

COROLLARY 2. Let (I, F) be the pre-torsion theory associaled with a radical
t and u a subclass of Mod-R such that t=t,. Then the following properiies hold.

(1) t(Rp)=Ann(y)=Ann(F).

(2) Mpg-t(RR)TH{Mg) for any Mz Mod-R.

(3) T is closed under factors, dirvect sums and extensions.

(4) For any MreModR and KpC My such that Kre Z, if t(Mx)NKg is a
direct summand of Mg, then {(Mg)N\Kr=0.

PrOOF. Proof of (1). By Proposition 1, {(Rp)=t+(Rz). So
t,(R)y=n{Ker (f)|f€Homzp(Rz, Mz), Mz< 1}
=N\ {Ann (m){me Mz, Mps 7}
=\ {Ann (Mp)| Mz= 1} .

Proof of (2). For any x= My, we define f: Rg— Mz by f(#)=x-r for every
reR. Since x-t(Rp)=f(1(Rz)) and f({(Rp)Tt(Mz), M- t(Rp)Tt(Mp).
Proof of (3). Since i=tg4, 1(Mg)=Mp iff Homzp(Mp, Kz)=0 for any Kp=9.
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Homgz(—, Kp) is a right exact functor, so (3) holds.
Proof of (4). We put Mr=(t(MNKpPM} for some MEC My t(Mpg)
=t{t(Mp)N\Kp)Pt(ME)=t(ME T M% Hence t(MpNKzg=t(Mp)N\Keg\ME=0.

REMARK: The proof of (2) is valid under the assumption that ¢ is a pre-
radical. The above proofs of (2) and (4) are suggested by the refree.

4. Weakly Codivisible Modules and Strongly 7-Projective Modules.

In this section, we study basic properties of weakly codivisible modules and
strongly z-projective modules.

PROPOSITION 3. Let (I, F) be the pre-torsion theory associated with a radical
t. Then it holds that

(1) If Ag is weakly codivisible with respect to (I, F), then A/A-H(R) is a
projective R/H(R)-module.
(2) If Agr is weakly codivisible, then t(Ag)=Ag t(R).

@3) Let O—Agr—Br—Cr— 0O be an exact sequence. If Cgis codivisible, then
H(ArR)=t{(Br)NAg.

PRrOOF. Proof of (1). We put f an epimorphism XP(R/i(R)z— A/A - t(R)r
— 0 and j the canonical map Ar— A/A-t(R)z— 0. We consider the next dia-
gram with exact rows;

J
O —> A-H(Rglp —> Ag —> A/AH(R)g — O

f
0 — Ker (f)g — SB(R/H(R)) —> A/A-H(R)g —> O .

By assumption, there is g: Ap— 2 P(R/t(R))g such that j=fg. By Corallary 2,
g(A-t(R))=0. So thereis g: A/A-1(R)g— 2B(R/t(R))g such that g=gj. Since
j=fg=fgj and j is an epimorphism, 1=fg, which means A/A-#(R)z is a direct
summand of 3B(R/t(R))g, hence A/A-t(R) is a projective R/t(R)-module.

Proof of (2). A-t(R)Ct(Ar) by Corollary 2, so t(A/A-t(R)=t(Ap)/A-t(R),
but {(A/A-t(R))=0 by (1), hence t(Ap)=Agr t(Rp).

Proof of (3). Since t(AR)Ct(Bpg), t(B/t(Ar)=t(Bg)/t(Ag). On the other
hand, the exact sequence O— A/t(Ap)r— B/t(Arp)r—Cr— O splits since Cz is
codivisible and Ag/t(Ag)EF, so we put B/i(Ap)=A/t(APC for CrCB/t(Ap)r.
Since a radical commutes with the direct sums, we have

1(BR)/t(Ar)=1(Bg/t(Ag))
=t(Ag/t(AR)Dt(Cr
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:f<C-R>C:CR .
Thus (ANIU(B)/H{AR)=(Ar/ HAIN(BR)/t(AR)=0, i.e.
AN Br)=1(Ar) .

REMARK : (1) in the above proposition is a generalization of [4, Corollary 77.

THEOREM 4. Let | be a radical, (I, F) the corvesponding pre-torsion theory
and vy a subclass of Mod-R such that t=t,. Then the following statements are
equivalent for Mr=Mod-R.

(1) M/M-i(R) is a projective R/t(R)-module.

(2) M/M-Ann(y) is a projective R/Ann (n)-module.

(8) Mp is weakly codivisible with respect to (I, F).

(4) Mgz is a strongly »m-projective module.

Proor. Clearly (1) and (2) are equivalent by Corollary 2. (3) implies (1) is
proved by Proposition 3. )

(1) implies (3). Let O—>AR—>BRLCR—->O be an exact sequence such that
BreF and f: Mp—Cpr Bp t(R)=0 by Corollary 2, so Cg-t{(R)=0, hence
F(Mg- t{R)=F(Mp)-1(R)=0. 1t induces f:M/M-t{(R)z—Cr such that f=fj
where j: Mp— M/M-1(R)r is the canonical map. Clearly f and i are R/t(R)-
homomorphisms, so there is an R-homomorphism h: M/M-i(R)— Bz such that
F=ih since M/M-t(R) is a projective R/t(R)-module. Thus f=i(hj), so (3) holds.

(3) implies (4). It holds since pC¥,=Cog (1) by Proposition 1.

(4) implies (3). Let ()VV—>AR~BR—Z»CR—»() be an exact sequence such that
Breg and f:Mzp—Cp any R-homomorphism. By Proposition 1, F=Cog (%),
hence there are L=y (i=]) for some index set [ such that BpCTlie/Li. We
consider the following commutative diagram with exact rows;

My
i v /
0 —> /413 —> BR R (‘R — ()

o

) —— —""'R > H[’? e II[/L/AR —> ().

By assumption, there is an R-homomorphism g: Mp—TIL; such that kf=jg.
Since Bp is a fibre product (i.e. pull back) of (%, 7), there is an R-homomorphism
F: Mp— Bz such that f=if. Thus My is weakly codivisible.
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COROLLARY 5. For a pre-torsion theory (I, F), the following statements are
equivalent.

(1) Every R-module is a weakly codivisible module.

(2) R/t(R) is a semi-simple Artinian ring.

PROOF. This is a direct consequence of Theorem 4.

Theorem 7 generalizes [1, Proposition 5] and shows that it is proved without
the assumption in [17] that Cog ({M}) is closed under factors. Before proving the
theorem, we prove the following lemma.

LEMMA 6. Let n be a subclass of Mod-R and MreMod-R. Then it holds that
(1) A submodule L of My is p-independent in Mg iff t,(Mg)N\Lz=0.
(2) An epimorphism Pr— My is a strongly n-projective cover of Mg iff it is
a weakly codivisible cover.
(3) A strongly n-projective cover of Mg is unique up to the isomorphism if
it exists.

ProoF. (1) and (2) are clear by definitions and Theorem 4.

k f I g
Proof of 3). Let O—=Kg—Ar— Mz— 0O and O— Lzg— Br— Mzr— O be strong-
ly p-projective covers of Mg Since Lg is »-independent in Bp, there exists an
R-homomorphism A : Bg— 115, M; for some M;=7 and an index set [/ such that
h-l is a monomorphism. So we have a commutative diagram with exact rows;

k f

O— Kp — A — M, — O
[ g ”
O—> Lp —> B — Mz —O
s | » ; |7

O — hl(Lg) —> TIM; —> (XAM)/hli(Lg) —= O
where 7 is the canonical map and h* and % are induced maps of h. Since Ag
is strongly »-projective, there exists an R-homomorphism p: Ar—JIM; sunh that
jp=nhf. By the fact that A* is an isomorphism, By is a fibre product of (j, ).
So there is an R-homomorphism s: Ap— B such that f=gs. Since g is a minimal
epimorphism, s is an epimorphism. Clearly Ker (s)C Kz, so Ker (s) is small and
p-independent in A Repeating the same discussion as above, we can show
that s is a splitting epimorphism. Hence s is an isomorphism since Ker (s) is
small in Ag.
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THEOREM 7. Let n be a subclass of Mod-R and t=t, a radical. The follow-
ing assertions are equivalent for a given Br=Mod-R.

(1) Bg has a strongly n-projective cover.

(2) Bpr has a weakly codivisible cover.

(3) B/B-Ann (%) has a projective cover as an R/Ann (n)-module.

(4) B/B-t(R) has a projective cover as an R/i(R)-module.

Proor. (1) and (2) are equivalent by Lemma 6. Also (3) and (4) are equivalent
by Corollary 2.

(2) implies (4). Let O— Kz— Arp— Br— O be a weakly codivisible cover of
Br. By Proposition 3, {(Ap)=Agr-t(R), hence A-t(R)s"\Kr=0. So we have a
commutative diagram with exact rows;

0O — Kp— Ap —_— Bg —>0

O — Kg—>A/A-t{R)g —> B/B-t(R)pg —> O

By Theorem 4, A/A-#(R) is a projective R/{(R)-module. Since an epimorphic
image of a small submodule is small, Kz is small in A/A-¢(R). Hence the lower
sequence of the above diagram is a projective cover of B/B-{(R) as an R/t(R)-
module.

(4) implies (2). Let O—-K—Q—B/B-{(R)—0O be a projective cover of
B/B-t(R) as an R/t(R)-module. We consider these modules as R-modules and
put (Ag, g, /) a fibre product of Qr— B/B-t(R)grand Br— B/B-{(R)s. We have
a commutative diagram with exact rows and columns;

0 0
2
Ker (f)r—> B-t(R)g —>0

g
O—‘>K;kg”—‘> AR —_— é/R"i}O

7V
O—>Kp—> Qr —>B/B-t(R)p—>0
5o
We first show Ker (f)=Ag-t(R).
JA-t(R)=[(AR)- t(R)
=Qx(R)
=0,
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SO Agp-t(Rg)rCKer (f).

Thus 2(A-1(R)=g(A-t(R))
=g(Ap)-1(R)
=Bg t(R).

Since g is an isomorphism, A-¢#(R)=Ker (f). By this fact, Q and A/A-i(R) are
isomorphic as R-modules, hence as R/t(R)-modules. Here Q is a projective
R/t(R)-module, so Ay is a weakly codivisible module by Theorem 4. Next we
show K% (=Ker(g)) is small in Ap. Assume K}+Lz=Ar for LT Ar. Then
K% t(R)+L-t(R)=A-t(R). But K-t(R)=0, s0o K* t(R)=0, thus L-{(R)=A-t(R),
hence Ker (f)=A-t(R)=L-#(R)CLz. On the other hand, f(K%+f(Lz)=Ff(Azr)
=Qpg, which means f(Lg)=Qpg since Ky is small in Qg and f(K%)=Kpz Since f
is an epimorphism, Lg+Ker (f)z= Ay, thus Lp=A;. Last we show (Ax)N\K3=0.
t(Ap)=Ag t(R) by Proposition 3, so O=Ker (f)=KinKer (a=KEN(Ap-t(R)z
=Ki¥N1(Ap)r This completes the proof of the theorem.

By Theorem 7, we get following corollaries.

COROLLARY 8. The following statements are equivalent for Mre=Mod-R and
Bre=Mod-R.

(1) Bpg has a strongly M-projective cover.

(2) B/B-t(R) has a projective cover as an R/Ann (Mg)-module.

REMARK: This fairly generalizes both [1, Proposition 5] and [4, Theorem
107 as we state before.

COROLLARY 9. Let 7 be a subclass of Mod-R. Then we have next equivalent
conditions.

(1) Every R-module in Mod-R has a strongly n-projective cover.

(2) R/Ann (%) is a right perfect ring.

REMARK: This is also a generalization of [1, Theorem 6] and [4, Theorem
11].

By applying Theorem 7 only to finitely generated modules, we have (c.f. [4,
Theorem 12])

COROLLARY 10. The following statements are equivajent.
(1) Every finitely generated (resp. cyclic) R-module has a strongly n-projec-
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tive cover.
(2) Every finitely generated (resp. cyclic) R-module has a weakly codivisible
cover.

(3) R/Ann (%) is a semi-perfect ring.

5. A Pseudo-Hereditary Pre-Torsion Theory.

From Proposition 3, it is easily seen that when By is codivisible with
respect to (7, &,), then B/B-t(R) is a projective R/t(R)-module. On the other
hand, [4, Theorem 8] has shown that the converse of the above result holds if
(T, F,) is a pseudo-hereditary torsion theory.

Under the assumption that ¢ is a radical, we shall first study equivalent
conditions for which the converse of the above result holds. In fact, we
shall prove that the converse holds iff (9, &,) is a pseudo-hereditary pre-torsion
theory. This result means that the equivalent conditions of [1, Proposition 7]
are nothing but a paraphrase of our result in the special case that (7, &) is a
hereditary torsion theory.

LEMMA 11. Let (I, &) be a pre-torsion theory with the radical t. Then it
holds that

(1) If Ag is weakly codivisible with respect to (I, F) and BrCt(Ag), then
A/Bpr is weakly codivisible.

(2) For any MreMod-R, there is an exact sequence O— Kp— Ap— Mzp— O
such that Ag is weakly codivisible and Kre <.

(3) For any Mzr=Mod-R, there is an exact sequence O— Kp— Ap— Mzr— 0O
such that Agr is weakly codivisible and t(Ap)\Kg=0.

PrROOF. Proof of (1). Let s:Kzp—Lrp—O be an epimorphism such that
Kreg. Assume f:A/Bp— Ly is an R-homomorphism. Since Ap is weakly
codivisible, there is f: Ap— Kp such that sf=fp where p is the canonical map
Ar—A/Br.  f(BR)CF(t(Ap)=0 since i(Arp)=Agz-{(Rz) by Proposition 3, so
f(BR)=0, thus there is an R-homomorphism g: A/Bz— Kz such that f=gp.
fp=sf=sgp and p is an epimorphism. This shows f=sg, as was to be shown.

Proof of (2) and (3). We consider an exact sequence O—Ker (f)z— Pz

— Mpr— O such that P is projective. The exact sequence O—Ker (f)/i{(Ker (f))r
— P/t(Ker (f)g— Mr— O satisfies (2) by (1). The exact sequence

0 — Ker (f)/(Ker (HINt(Pp)r —> P/Ker (/)Nt(Pp)r —> Mp—> O
satisfies (3) by (1).
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REMARK: (3) in Lemma 11 is a generalization of [1, Lemma 1].

THEOREM 12. Let (I, &) be a pre-torsion theory with the radical t and 7 a
subclass of Mod-R such that t=t,. The following statements are equivalent.
1) If M/M-t(R) is a projective R/t(R)-module, then My is a codivisible
module with respect to (I, F).
(2) Every weakly codivisible module is codivisible.
(2)* Every strongly y-projective module is codivisible.
(3) For every weakly codivisible wmodule Ap, Ag-t(R)xn"\Kr=0 for any
torsion-free submodule Kg of Ag.
(3)* For every codivisible module Ap,
(@) (Ar-t(R)rN\Kz=0 for any tovsion-free submodule Ky of Ap.
(b) Agr/t(Bpg) is codivisible for any BrC Ag.
(4) For every weakly codivisible module Ag, t(Ar)r has no non-zero torsion-
free submodule.
@)* For every codivisible module Apg,
(@) t(Ag)r has no non-zero torsion-free submodule.
(b) Agr/i(Bg) is codivisible for any BrC Ap.
(5) For every weakly codivisible module Ag, t(Br)rg=t(AR)r"\Br for every
submodule BrC Apg.
(5)* For every codivisible module Ag, t(Br)r=1(Ar)x\Bg for every submodule
BrC Ap.
(6) For any Mzre=Mod-R, Mg-t(R)gz has no non-zero torsion-free submodule.
(7) For any cyclic module Cg, Cr-t(R)g has no non-zero torsion-free sub-
module.
(%) In these cases (1)—(7), for any MreMod-R, there is an exact sequence
O—Krp— Ag— Mgr— O such that Ag is codivisible and Kre &F.
Furthermore the property (b) of (3)* or (4)* is equivalent that 1(¢(Bg))=1t(Bg)
by Proposition 3, (3).

PRrROOF. The equivalences of (1), (2) and (2)* hold by Theorem 4.
(2) implies (3). The exact sequence

O —> A-t(R)sN\Kgp—> Ar —> Ar/(A- t(R)pN\Kgr)g —> O
splits since A/(A-t(R)N\K)g is codivisible by Lemma 11, (1) and the assumption.
Thus A-t(R)s"\Kz=0 by Corollary 2.
The equivalence of (3) and (4) holds since #(Ag)=Ag-t(R) by Proposition 3.
(6) implies (4). It is clear.
(4) implies (6). By Lemma 11, there exists an exact sequence O— Kr— Az
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— Mr— O such that Ap is weakly codivisible and t(Ag)rxN\Kz=0. So we have a
commutative diagram with exact rows;

O —> Ap- t(R)pN\Kr —> Ar- t(R)g —> Mp-t(R)p —> O

N n N
0 Kz Ar Mg 0

Since #(Ag)=Ag-t(R) by Proposition 3, Ag't(R)r=Mp-t(R)p, 50 Mg-t(R)z has no
non-zero torsion-free submodule.

(5) implies (5)*. It is clear.

(5 implies (1). Let Az be a codivisible module and a submodule Bg of Ag.
Then by assumption, it holds

1(t(Bp)=t(AR)rNH{Brr

. =t(Br)r
since
t(Ar)Dt(Br),
SO
H(Bped.

Using this fact, there is an exact sequence O— Kz— Pr—Mz— O such that
Py is codivisible and Kpe & by similar way in Lemma 11. #(Pp)rn\Kr=t(Kz=0
by assumption, so we have a commutative diagram with exact rows;

O I{R PR A{R ——

0

Kz —> Pp/P-i(R)g —> Mp/M-t(R)g —> O.

Since Mz/M-#(R) is a projective R/t(R)-module, the lower row sequence splits
as R-modules, hence so does the upper row sequence. Thus My is codivisible.
(4) implies (5). We remark A/{(Bjz) is weakly codivisible by Lemma 11, (1).
(t(ARrN\BR)/t(BR)C1(AR)/t(Br)=1t(A/{(Bg))
(t(AR)rN\BR)/t(BR)T Bgr/t(Br) .
By assumption, (#(Az)N\Bgr)/t(Bp)=0 since it is torsion-free. Hence t(Agp)r
NBr=1t(Bg).
The equivalence of (3)* and (4)* is clear.
(1) and (3) imply (3)* is also clear.

and

(4)* implies (5)*. It is proved similarly as (4) implies (5).

(6) implies (7). It is clear.

(7) implies (6). We first show that if My is finitely generated, then My has
the property (6) by induction on the number of generators of Mp. By assumption,
it holds in case n=1. Assume n=1, Mg=m,R+ - +m,R-+m, R and Kris a



Codivisible modules, weakly-codivisible 215

torsion-free submodule of Mpy-{(R).

Mot (R)eNKrEF
and
mn+1t(R)RﬂKRC(mn+1R)' t(Rg),
hence
Masit(R)eNKr=0 .
So
KDyt (Rp)TMg- 1(R)
and
Kr= (KrD(mas t(R)))/mnﬂt(RR)
C Mpg- H(Rg)/Mns1t(Rp)
:(”—ll‘R_l— A +mn'R)' t(RR)
where

mi:”li+mn+lt(R) s 1'_‘“17 e, N

By induction hypothesis, Kp=0. Let Mz=Mod-R and Kg a torsion-free sub-
module of Mgz-t(R). For any k= Kpg it has an expansion k=myii+ - +mals
for some m;< My and ;€t(R), i=1, -, n. So kRC(mR+ -+ +m,R)-t(R) and
ERe 9, thus kRz=0. Hence Kz=0. This completes the proof of the theorem

REMARK : In the proof of this theorem, the simplification of the proof that
(2) implies (3), (4) implies (5) are suggested by the refree.

We recall the definition of a pseudo-hereditary pre-torsion theory that any
submodule of #(Rg)z is torsion. We have the following theorem (c.f. Theorem
12).

THEOREM 13. Let (T, F) be a pre-torsion theory with the radical t. Then
the following assertions are equivalent.

() (I, &) is the pseudo-hereditary pre-torsion theory.

(2) For every MpeMod-R, any submodule of Mg-t(Rg) is torsion.

(3) For every weakly codivisible module Az, any submodule of i(Agr)r is
torsion.

(3)* For every codivisible module Ag, any submodule of t(Ag)r is torsion.

(4) For a module My such that t(Mg)=Mz-t(Rg), any submodule of (Mg
is torsion.

(5) For a module Mg such that i(Mg)=Mz-t(R), t(Ng)=t(Mp)N\Ng for every
NrC M.

ProoF. (4) implies (3), (3) implies (3)*, (2) implies (1) are clear.
(3) implies (2). By a similar way in Lemma 11, (3) using the assumption,

there is an exact sequence O— Kgp— Ag— Mz— O such that Ag is codivisible and
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Kpn\t(Ag)=0. Thus {(Ap)=Ag t(R)=Mz-t(R). Hence (2) holds.

(5) implies (4). Let NpCt(Mg)=Mpz-t(R). By assumption, {(Ngz)=tMpzz
NNp=Npg.

(1) implies (56). t(NR)TH(Mpr\Ng is clear. Assume xe<t(MgprN\Nr and
decompose

x=DEmE 1S
for m{®= My and t{¥=t(R) since x=Mp-t(R). We put
P,=(®, -, )R
CEDHR)
f: 2P, —> t(Mp)rN\Nr
JAH, o, )7 2)
=2(EmE 10 L)

=22 Xz

via

for r,= Rg. Clearly f is an epimorphism, so it is sufficient to show any submodule
of 27,Dt(R) is torsion since P,C3r5P#(R) and T is closed under factors and
direct sums. As we proved in Corollary 2, 9 is closed under extensions. So a
similar proof in [7, Lemma 3] gives this fact by induction.

The next is a generalization of a result [4, Theorem 8].
THEOREM 14. The properties in Theorem 12 and Theorem 13 are equivalent.

ProoF. (3) in Theorem 13 implies (4) in Theorem 12 is clear, so we shall
prove that (7) in Theorem 12 implies (1) in Theorem 13. Let LpC#(R)z.
L/t(Lp)eF and L/H(Lp)C(R/i(Lg)-{(R). By assumption (7), L/i{(Lg)=0, thus
Le=1t(Lp).

Next corollary is a generalization of [4, Corollary 15].

COROLLARY 15. Let (I, &) be a pre-torsion theory with the radical t. Then
the following assertions are equivalent.
(1) Every R-module is codivisible with respect to (T, 5).
(2) (@) R/t(R) is a semi-simple Artinian ring, and
(b) (I, ) is pseudo-hereditary.

ProoF. (1) implies (2). (1) satisfies the property Theorem 12, (1). Hence
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(7, &) is pseudo-hereditary by Theorem 14. (a) is clear from Corollary 5.
(2) implies (1). It is clear from Corollary 5, Theorem 12, Theorem 13
and Theorem 14.

Next we give an example, which shows (a) and (b) in Corollary 15 are
independent.

EXAMPLE: We put Z a ring of integers, n={2/pZ} and t=t, where p is
a prime number. Then

1) (Z:, &) is not pseudo-hereditary.

(2) Z/t(Z) is a semi-simple Artinian ring.

(3) Every Z-module is a weakly codivisible module.

4) Z/pZ has not codivisible cover.

Since t(Z)=pZ, t(pZ)=p*Z+t(Z) and Z/t(Z) is a field. Hence (1), (2) and (3)
hold by Theorem 7 and Corollary 5. IfZ/pZ has a codivisibl cover, then it must
be of the form O—pZ/p*2Z—~2/p*2—Z/pZ—0. But Z/p*Z is not codivisible by
Proposition 3 since #(p2Z)=p*Z+ p*Z.

By Corollary 9, if every R-module has a codivisible cover, then R/t(R) is a
right perfect ring. So on the analogy of Corollary 15, we propose the next
conjecture.

CONJECTURE. (%) If every right R-module has a codivisible cover with respect
to a pre-torsion theory (I, F), then (T, F) is pseudo-hereditary.

6. The modules Mz-t(Rg)=Mpz.

M.L. Teply in [7] has proved that for a pseudo-hereditary torsion theory
(T, &), My is codivisible if Mgz-t(Rg)=Mpz. In this section, we shall characterize
those modules My such that My-t(Rz)=Mpz by the notion of the colocalization of
a module.

LEMMA 16. Let (2, &) be a pre-torsion theory with the radical t. The
following assertions are equivalent for a given R-module Mp.

(1) Homg(t(Mg)r, Lr/Tr)=0 for any TprCLgE <.

(2) t(Mpyed and t(Mp) is weakly codivisible.

(3) t(Mg)- t(Rp)=1t(Mp).

Proor. (1) implies (2). By Proposition 1, i=t4. Hence t(Mred since
Hompg(¢(Mg)g, Lr)=0 for any LreF. The weakly codivisibility of (M) is clear.
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(2) implies (3). By Proposition 3, t(H(Mg)=1(Mzg)-t(Rz). But {(Mped,
tEMp)=1t(Mp). So (Mp)=1(Mz)-t(Rz).

(3) implies (1). Assumef eHomz(t(Mg)z, Lr/Tr). t(Mgp)=1t(Mz)-{(Ryz) implies
JMp)=f(t(Mg))-t(Rp). But f(H{Mg)TLr/Tr and (Lp/Tp)i{(Rp)=(Lz t(Rp)
+Tg)/Tr=0. Thus f=0.

THEOREM 17. Let (I, F) be a pre-torsion theory with the radical t such that
if Agr is codivisible, then A/1(Bp)r is codivisible for any BrC Ap. Then the
following statements are equivalent.

(1) Mgz has the colocalization.

(2) Homgp(t(Mgp)r, Lr/Tr)=0 for any TrC Lz <.

(3) t(Mpead and t(Mpz) is weakly codivisible.

4) t(Mg)-t(Rp)=1t(Mp).

PROOF. The equivalences of (2), (3) and (4) are proved by Lemma 16.

(1) implies (4). Let f: C(Mgr)— Mz be a colocalization of Mz C(Mpe<dg and
is codivisible, hence C(Mp)=t(C(Mg))=C(Mz)-1(Rr) by Proposition 3, hence
J(CMp)=f(C(Mg)): t(Rr)C Mg-t(Rg)C i(Mg). On the other hand, Mp/f(C(Mg)= <,
hence O=t(Mg//(C(Mp))=1t(Mg)/f(C(Mg)). Thus (Mp)C/(C(Mg), so (M)
=J(C(Mg)) and 1(Mg)=1t(Mg)-t(Rp).

(2) implies (1). We consider an exact sequence O— Kp— Pr—1t(Mgp)r— O
such that P, is projective. Since t(Pg/{(Kz))=1(Pgr)/t(Kz), we have a commut-
ative diagram with exact rows and columns;

0 0 (0]
i o
O —> (K H(Pp)/t(Kp)p —> H{(Pg)/t{Kp)g —> Im (fi)g—> O
iyl
Pr/t(Kp)p —> t(Mg)g —> O

i |

O —> (Kpt+t(Pp)/t(Pp)r —> Pgr/t(Pp)r —>Cok (j)—> O

| l

0 0] 0

0

Kr/t(Kp)r

By assumption, £=0. Hence Im (f9)=i(Mz). So (Kip+t(Pgr)/t(Pg)=Pgr/i(Pg).
Here Pr/t(Pg) is weakly codivisible by Lemma 11, so the left column sequence
splits, hence so does the middle column sequence. Thus #(Pg)/{(Kpg) is a direct
summand of Pr/1(Kg). But Pp/t(Ky)is codivisible by assumption, hence t(Pr)/i(Kg)
is codivisible. Furthermore
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H(Pr/t(Kp)=t((t(PR)/ t(KR)D(Pr/t(Pr))
=t(t(Pr)/1(Kr)DI(Pr/t(Pr))
==1(¢(Pr/H(Kp)) .

Clearly this isomorphism is an injection #(z), hence HPr/(ER)y=t(t(Pr/t(Kp)).
Thus it is torsion. This shows f: t(Pr)/t(Krr— Mz is a colocalization of Mp.

The next corollary is a generalization of [7, Proposition 1] and [7, Corollary

1],

COROLLARY 18. Under same assumption as in Theorem 17, the following
assertions are equivalent.

(1) R/t(R) is a semi-perfect ring.

(2) Every simple R-module has a codivisible cover.

(3) Every simple R/t(R)-module has a codivisible cover as an R-module.

Proor. (1) implies (2). Assume Sg to be a simple R-module. If Sg-t(Rg)=Sk,
then Sp=1(Sp)=Sx t(Rz). Hence Sy has a colocalization by Theorem 17, This
is a codivisible cover of Sp. If Sg-t(Rp)=0, then S is a simple R/{(R)-module.
By assumption (1), S has a projective cover as an R/t(R)-module, say O —K—P
—S$—0. Since P is a direct summand of a direct sum of R/{(R) as an R/t(R)-
-module, so is as an R-module. Thus Py is a codivisible R-module since a direct
sum of R/#(R) is codivisible by assumption. So the above exact sequence is a
codivisible cover of Sz as an K-module.

(2) implies (3). It is clear.

(3) implies (1). Let S be a simple R/t(R)-module and OHK’RHPRL Sg—0
a codivisible cover of Sp as an R-module. Since #(Pg)=Pg-t(R) by Proposition
3, f(H(PR)=f(Pg)- t(R)=Sg t(R)=0, hence O— (Kg+1(Pr)/t(Pr)— Pr/t(Pr)—3
—Q is an exact sequence as an R/t(R)-module. By Theorem 4, P/t(Pp) is a
projective R/t(R)-module, hence the above sequence is a projective cover of Sas
an R/t(R)-module. Thus R/t(R) is a semi-perfect ring.

COROLLARY 19. (K. Ohtake)

Let (I, F) be a pre-torsion theory with the radical t. Then the following
statements are equivalent.

(1) Every R-module has a colocalization.

(2) F is closed under factors and extensions.

ProoF. (2)implies (1). In this case, ¢ must be an idempotent radicai, so it is
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clear from Theorem 17.

(1) implies (2). By Theorem 17, ¢(Mz)=d for any Mp=Mod-R because in

the proof that (1) implies (4) the codivisibility of Ag is not necessary. Hence ¢ is

an idempotent radical, so Z is closed under extensions. Thus the assumption of
Theorem 17 is satisfied. Hence (2) holds by Theorem 17 since Homg(i(Lz/T )z,
Lz/Tr)=0 for any TzCLrEZF.
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