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Abstract. Recently by using quantized Berry phases, a prescription for a local

characterization of gapped topological insulators is given[1]. One requires the ground

state is gapped and is invariant under some anti-unitary operation. A spin liquid which

is realized as a unique ground state of the Heisenberg spin system with frustrations

is a typical target system, since pairwise exchange couplings are always time-reversal

invariants even with frustrations.

As for a generic Heisenberg model with a finite excitation gap, we locally modify

the Hamiltonian by a continuous SU(2) twist only at a specific link and define the

Berry connection by the derivative. Then the Berry phase evaluated by the entire

many-spin wavefunction is used to define the local topological order parameter at the

link. We numerically apply this scheme for several spin liquids and show its physical

validity.
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1. Topological Orders

In a modern condensed matter physics, a concept of the symmetry breaking has a

fundamental importance. At a sufficiently low temperature, most of classical systems

show some ordered structure which implies that the symmetry at the high temperature

is spontaneously lost or reduced. This is the spontaneous symmetry breaking which is

usually characterized by using a local order parameter as an existence of the long range

order. States of matter in a classical system are mostly characterized by this order

parameter with the symmetry breaking. Even in a quantum system, the local order

parameter and the symmetry breaking play similar roles and they form a foundation of

our physical understanding. Typical examples can be ferromagnetic and Neel orders in

spin systems.

Recent studies in decades have revealed that this symmetry breaking may not

be always enough to characterize some of important quantum states[2, 3]. Low

dimensionality of the system and/or geometrical frustrations come from the strong

correlation can prevent from a formation of the local order. Especially with a quantum

fluctuation, there may happen that a quantum ground state without any explicit

symmetry breaking is realized even in the zero temperature. Such a state is classified

as a quantum liquid which mostly has an energy gap (may not be always). Typical

example of this quantum liquids is the Haldane spin chain and the valence bond solid

(VBS) states[4, 5]. Also some of the frustrated spin systems and spin-Peierls systems

can belong to this class[6, 7, 8]. To characterize these quantum liquids, a concept of

a topological order can be useful[2, 3]. It was proposed to characterize quantum Hall

states which are typical quantum liquids with energy gaps. There are many clearly

different quantum states but they do not have any local order parameter associated

with symmetry breaking. Then topological quantities such as a number of degenerate

ground states and the Chern numbers as the Hall conductance are used to characterize

the quantum liquids. We generalize the idea to use the topological quantities such as

the Chern numbers for the characterization of the generic quantum liquids[3]. This

is a global characterization. When we apply this to spin systems with the time-

reversal symmetry (TR), the Chern number is vanishing in most cases. Recently

we propose an alternative for the system with the TR invariance by the quantized

Berry phases[1]. Although, the Berry phases can take any values generically, the TR

invariance of the ground state guarantees a quantization of the Berry phases which

enables us to use them as local topological order parameters. In the present article,

we use it for several spin systems with frustrations and verify the validity. Although

the geometrical frustration affects the standard local order substantially, it does not

bring any fundamental difficulties for the topological characterizations as shown later.

It should be quite useful for characterizations for general quantum liquids[1].

Finally we mention on the energy spectra of the systems with classical or topological

orders. There can be interesting differences between the standard order and the

topological order. As for energy spectra, we have two situations when the symmetry is



3

spontaneously broken. If the spontaneously broken symmetry is continuous, there exists

a gapless excitation as a Nambu-Goldstone mode. On the other hand, the symmetry

is discrete, the ground states are degenerate and above these degenerate states, there

is a finite energy gap. Note that when the system is finite (with periodic boundary

condition), the degeneracy is lifted by the small energy gap, e−L
d/ξ, where L, d and ξ are

a linear dimension of the finite system, dimensionality and a typical correlation length.

For the topological ordered states with energy gaps, we may expect degeneracy of the

ground states depending on the geometry of the system (topological degeneracy). When

the system is finite, we expect edge states generically[13]. It implies the topological

degeneracy is lifted by the energy gaps of the order e−L/ξ.

2. Local Order Parameters of Quantum Liquids

After the first discovery of the fractional quantum Hall states, the quantum liquids

have been recognized to exist quite universally in a quantum world where quantum

effects can not be treated as a correction to the classical description and the quantum

law itself takes the wheel to determine the ground state. The resonating valence bond

(RVB) state which is proposed for a basic platform of the high-TC superconductivity is

a typical example[9]. The RVB state of the Anderson can be understood as a quantum

mechanical collection of local spin singlets. When it becomes mobile under the doping,

the state is expected to show superconductivity. Original ideas of this RVB go back to

the Pauling’s description of benzene compounds where the quantum mechanical ground

state is composed of local bonding states (covalent bonds) where the basic variables to

describe the state is not electrons localized at sites but the bonding states on links[10].

This is quite instructive. That is, in both of the Anderson’s RVB and the Pauling’s

RVB, basic objects to describe the quantum liquids are quantum mechanical objects

as a singlet pair and a covalent bond[1]. The “classical” objects as small magnets

(localized spins) and electrons at site never play major roles. The constituents of the

liquids themselves do not have a classical analogue and purely quantum mechanical

objects. Based on this view point, it is natural to characterize these quantum objects,

the singlet pairs and the covalent bonds, as working variables of the local quantum

order parameters. It is to be compared with the conventional order parameter (a

magnetic order parameter is defined by a local spin as a working variable). From these

observations, we proposed to use quantized Berry phases to define local topological order

parameters[1]. ( We only treat here the singlet pairs as the topological order parameters.

As for the local topological description by the covalent bonds, see ref.[1].) For example,

there can be many kinds of quantum dimer states for frustrated Heisenberg models,

such as column dimers, plaquette dimers, etc. As is clear, one can not find any classical

local order parameters to characterize them. However, our topological order parameters

can distinguish them as different phases not by just a crossover.
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3. Quantized Berry Phases for the Topological Order Parameters of

Frustrated Heisenberg Spins

Frustration among spins prevent from forming a magnetic order and their quantum

ground states tend to belong to the quantum liquids without any symmetry breaking.

Since they do not have any local order parameters, even if they have apparent different

physical behaviors, it is difficult to make a clear distinction as a phase not just

as a crossover. We apply the general scheme in the reference [1] to classify these

frustrated spin systems. Defining quantized Berry phases as 0 or π, the spin liquids

are characterized locally reflecting their topological order. We can distinguish many

topological phases which are separated by local quantum phase transitions (local gap

closings).

We consider following spin 1/2 Heisenberg models with general exchange couplings,

H =
∑

ij JijSi · Sj. We allow frustrations among spins. We assume the ground state

is unique and gapped. To define a local topological order parameter at a specific link

〈ij〉, we modify the exchange by making a local SU(2) twist θ only at the link as

JijSi · Sj → Jij(
1

2
(e−iθSi+Sj− + eiθSi−Sj+) + SizSjz).

Writing x = eiθ, we define a parameter dependent Hamiltonian H(x) and its normalized

ground state |ψ(x)〉 asH(x)|ψ(x)〉 = E(x)|ψ(x)〉, 〈ψ|ψ〉 = 1. Note that this Hamiltonian

is invariant under the time-reversal (TR) ΘT , Θ−1
T H(x)ΘT = H(x)[11]. Also note that

by changing θ : 0 → 2π, we define a closed loop C in the parameter space of x.

Now we define the Berry connection as Aψ = 〈ψ|dψ〉 = 〈ψ| d
dx
ψ〉dx. Then the Berry

phase along the loop C is defined as iγC(Aψ) =
∫

C
Aψ[12]. Besides that the system

is gapped, we further assume the excitation gap is always finite (for ∀x), to ensure the

regularity of the ground state[3]. This may not be alway true, since the gap can collapse

by the local perturbation as an appearance of localized states (edge states)[13]. Note that

by changing a phase of the ground state as |ψ(x)〉 = |ψ′(x)〉eiΩ(x), the Berry connection

gets modified as Aψ = A′

ψ + idΩ [12, 3]. It is a gauge transformation. Then the Berry

phase, γC also changes. It implies that the Berry phase is not well defined without

specifying the phase of the ground state (the gauge fixing). It can be fixed by taking a

single-valued reference state |φ〉 and a gauge invariant projection into the ground state

P = |ψ〉〈ψ| = |ψ′〉〈ψ′| as |ψφ〉 = P |φ〉/
√

Nφ, Nφ = ‖P |φ〉‖2 = |ηφ|
2, ηφ = 〈ψ|φ〉[3, 1].

We here require the normalization, Nφ, to be finite. When we use another reference state

|φ′〉 to fix the gauge, we have |ψφ〉 = |ψφ′〉e
iΩ, Ω = arg (ηφ − ηφ′). Due to this gauge

transformation, the Berry phase gets modified as γC(Aψφ
) = γC(Aψφ′

)+∆, ∆ =
∫

C
dΩ.

Since the reference states |φ〉 and |φ′〉 are single-valued on the C, the phase difference

Ω is just different by ∆ = 2πMC with some integer MC . Generically it implies that the

Berry phase has a gauge invariant meaning just up to the integer as

γC ≡ − i

∫

C

A, mod 2π

By the TR invariance, the Berry phase get modified as γC(Aψ) =
∑

J C
∗

JdCj =
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Figure 1. One dimensional Heisenberg models with alternating exchange interactions

with periodic boundary condition (left). Numerically evaluated distribution of the

quantized Berry phases (right). JA, JA′ > 0 and JF < 0. The results are independent

of the system size. ( We have checked a consistency of the results for various possible

system sizes.)

−
∑

J CJdC
∗

j = −γC(AΘψ) since
∑

J |CJ |
2 = 1[1]. Therefore to be compatible with the

gauge ambiguity, the Berry phase of the unique TR-invariant ground state, |ψ〉 ∝ Θ|ψ〉,

satisfies γC(Aψ) ≡ −γC(Aψ) (mod 2π). Then it is required to be quantized as

γC(Aψ) = 0, π (mod 2π).

This quantized Berry phases have a topological stability since any small perturbations

can not modify unless the gauge becomes singular. Here we note that the Berry phase

of the singlet pair for the two site problem is π[1]. Now let us take any dimer covering

of all sites D = {〈ij〉} (#D = N/2, N is a total number od sites) and assume that the

interaction is nonzero only on these dimer links, then the Berry phases, π, pickup the

dimer pattern D. Now imagine an adiabatic process to include interactions across the

dimers. Due to the topological stability of the quantized Berry phase, they can not be

modified unless the dimer gap collapses. This dimer limit presents a non-trivial pattern

of a quantized Berry phase and shows the usefulness of the quantized Berry phases as

local order parameters of singlet pairs. To show its real validity of the quantized Berry

phases, we have diagonalized the Heisenberg Hamiltonians numerically by the Lanzcos

algorithm and calculated the quantized Berry phases explicitly.

The first numerical examples are the Heisenberg chains with alternating exchanges.

When the exchanges are both antiferromagnetic as JA > 0 and JA′ > 0, it is a spin Pierls

or dimerized chain. In this case, the Berry phases are π on the links with the strong

exchange couplings and 0 on the one with the weak couplings (Fig.1). This is expected

from the adiabatic principle and the quantization. When one of them is negative as

JA > 0 and JF < 0, the calculated Berry phases are π for the antiferromagnetic links

and 0 for the ferromagnetic ones. It is independent of the ratio JA/JF . Since the

strong ferromagnetic limit is equivalent with the spin 1 chain, it is consistent with the

topological nontrivial structure of the Haldane phases. Further analysis on the S = 1

systems will be published elsewhere. Next numerical examples are spin chains with

nearest neighbor (NN) and next nearest neighbor (NNN) exchanges as ladder of triangles

(Fig.2). These are typical systems with frustrations. (a) and (b) are two different but

specific configurations where one may adiabatically connect the system with different
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(a)

(b)

J=1: J=2: = 0:γ =    :γ    π

(c)

Figure 2. One dimensional Heisenberg models with NN and NNN exchanges (left)

with periodic boundary condition. Numerically evaluated distribution of the quantized

Berry phases (right). (a), (b) and (c): three different exchange configurations of J = 1

and J ′ = 2.

dimer coverings by the strong coupling bonds. In these cases, the quantized Berry

phases are π for the strong coupling links and 0 for the rest links. This is consistent

with the adiabatic principle. We note here that it is difficult to make a qualitative

difference between the two quantum liquids by a conventional methods. However we

have made a clear distinction between them as two different topological phases. The

present scheme is not only valid for these simple situations but also useful for generic

situation. For example, as for a system in the Fig.2 (c), we can not use the adiabatic

principle simply. However the quantized Berry phases show non trivial behaviors and

it make a clear distinction that the phase (c) is topologically different from the ones in

the (a) and (b) as an independent phase not just as a crossover. A local quantum phase

transition separates them by the gap closing. As is now clear, the present scheme is

quite powerful to make a local characterization of the topological quantum insulators.
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