
Exact analysis of entanglement in gapped
quantum spin chains

著者 Katsura Hosho, Hirano Takaaki, Hatsugai
Yasuhiro

journal or
publication title

Physical review B

volume 76
number 1
page range 012401
year 2007-07
権利 (C)2007 The American Physical Society
URL http://hdl.handle.net/2241/97883

doi: 10.1103/PhysRevB.76.012401

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tsukuba Repository

https://core.ac.uk/display/56640391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Exact analysis of entanglement in gapped quantum spin chains

Hosho Katsura,1,* Takaaki Hirano,1,† and Yasuhiro Hatsugai1,2,‡

1Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
2Institute of Physics, University of Tsukuba, 1–1–1, Tennodai, Tsukua, Ibaraki, 305–8571, Japan

�Received 13 April 2007; published 3 July 2007�

We investigate the entanglement properties of the valence-bond-solid states with generic integer spin S.
Using the Schwinger boson representation of the valence-bond-solid states, the entanglement entropy, the von
Neumann entropy of a subsystem, is obtained exactly and its relationship with the usual correlation function is
clarified. The saturation value of the entanglement entropy, 2 log2�S+1�, is derived explicitly and is interpreted
in terms of the edge-state picture. The validity of our analytical results and the edge-state picture is numerically
confirmed. We also propose an application of the edge state as a qubit for quantum computation.
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Entanglement properties of quantum spin systems have
been attracting much attention in quantum information
theory and condensed-matter physics. The entanglement en-
tropy �EE�, the von Neumann entropy of the reduced density
matrix of a subsystem, is a measure to quantify how much
entangled a many-body ground state is. Recently, the EE has
been used to investigate the nature of quantum ground states
such as the quantum phase transition and topological and/or
quantum order.1–5 Vidal et al.1 conjectured that the EE of a
large block of spins in gapped spin chains reaches saturation
while that in critical spin chains shows a logarithmic diver-
gence.

In this Brief Report, we study the EE of gapped quantum
spin chains with arbitrary integer spin. After the Haldane
conjecture that integer-spin antiferromagnetic Heisenberg
chains have a finite gap,6,7 Affleck, Kennedy, Lieb, and
Tasaki �AKLT� proposed the valence-bond-solid �VBS� state
which enables us to understand ground-state properties of the
Haldane gap systems.8,9 The VBS is now attracting renewed
interest from the viewpoint of quantum information theory.
For example, universal quantum computation based on the
VBS states has been proposed.10

While the entanglement properties in S=1 VBS has been
extensively studied in Refs. 12 and 13, we investigate the EE
in generic VBS states with arbitrary integer spin S. We stress
that there exist not only S=1 antiferromagnetic Heisenberg
chains14,15 but also an S=2 chain �MnCl3 �bipy��,16 in which
the presence of the Haldane gap has been experimentally
confirmed. We give the exact form of the EE in generic VBS
states in this Brief Report. Then, we explicitly confirm that
the part of the conjecture proposed by Vidal et al. is true for
all integer-spin VBS chains. The relationship between the EE
and the correlation function is clarified and the physical
meaning of the EE in gapped models is established. We also
make a comparison between the analytical results for VBS
chains and the numerical results for higher-spin antiferro-
magnetic Heisenberg chains. The obtained results indicate
that the edge-state picture is valid not only for S=1 Haldane
chains but also for all the other integer-spin S chains. This is
a typical consequence of the nontrivial topological and/or
quantum orders, where characteristic features are hidden in
the bulk and appear only near the boundaries and
impurities.17 We also discuss a potential application of the
edge states as qubits for quantum computation.

Let us start with the Schwinger boson representation of
generic VBS states. The spin operators are represented by the
Schwinger bosons as Sj

+=aj
†bj, Sj

−=bj
†aj, and Sj

z= �aj
†aj

−bj
†bj� /2, where aj

† and bj
† satisfy �ai ,aj

†�= �bi ,bj
†�=�ij with

the all the other commutators vanishing.18 To reproduce the
dimension of the spin S Hilbert space at each site, we must
impose the constraint that the total boson occupation number
aj

†aj +bj
†bj =2S. Using the Schwinger boson representation,

the spin S VBS state with two spin S /2’s on the boundary is
written as

�VBS� = �
j=0

N

�aj
†bj+1

† − bj
†aj+1

† �S�vac� , �1�

where j=1,2 , . . . ,N are bulk sites and 0 and N+1 are end
sites. Bij �ai

†bj
†−bi

†aj
† is a creation operator for the valence

bond between i and j.19 The VBS state �Eq. �1�� is a zero-
energy ground state of the following Hamiltonian:

H = 	
j=1

N−1

	
J=S+1

2S

AJPj,j+1
J + �0,1 + �N,N+1,

where the projection operator Pj,j+1
J projects the bond spin

J� j,j+1=S� j +S� j+1 onto the subspace of magnitude J. Here the
coefficient AJ can be an arbitrary positive value. The bound-
ary terms describing the interaction between spin S /2 and
spin S are explicitly written as

�0,1 = 	
J=S/2+1

3S/2

BJP0,1
J , �N,N+1 = 	

J=S/2+1

3S/2

BJPN,N+1
J ,

with BJ�0. In order to calculate reduced density matrices, it
is convenient to introduce a spin coherent state. For a point

�̂= �sin � cos � , sin � sin � , cos �� on the unit sphere, the
spin coherent state at each site is defined as

��̂� =
�ua† + vb†�2S


�2S�!
�0� ,

where �u ,v�= (cos�� /2�ei�/2 , sin�� /2�e−i�/2) are spinor coor-
dinates. Here, we have already fixed the U�1� gauge degree

of freedom since it has no physical content. Using ��̂�, the
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trace of any operator O is written as Tr O
= 2S+1

4� �d�̂��̂�O��̂�.
Let us now calculate the EE of a block of L contiguous

bulk spins in the VBS state �Eq. �1��. For the density matrix
of our ground state �= �VBS��VBS� / �VBS �VBS�, the re-
duced density matrix of the block of L contiguous bulk spins
is defined as �L=TrB̄L

�. Here BL is a block of L spins and

B̄L is its complement. The EE SL=−TrBL
�L log2 �L is deter-

mined by eigenvalues of �L. Suppose that the block of L
contiguous spins starting from site k and stretching up to k
+L−1, where k�1 and k+L−1	N. To obtain the reduced
density matrix �L, we take the trace over the sites j
=0,1 , . . . ,k−1 and j=k+L , . . . ,N ,N+1. Using the spin
coherent-state representation, �L is formally written as

�L =

 �� j�B̄L

d�̂ j

4�
��

j=0

k−1 �1 − �̂ j · �̂ j+1

2
�S

�
l=k+L

N �1 − �̂l · �̂l+1

2
�S

Qk
†Pk+L−1

† �VBSL��VBSL�QkPk+L−1

�2S + 1�L��2S�!�L �� j�BLB̄L

d�̂ j

4�
��

j=0

N �1 − �̂ j · �̂ j+1

2
�S , �2�

where boundary operators and a block of VBS state with
length L are defined as Qk= �uk−1bk−vk−1ak�S, Pk+L−1

= �ak+L−1vk+L−bk+L−1uk+L�S, and �VBSL�=� j=k
k+L−2�aj

†bj+1
†

−bj
†aj+1

† �S�vacL�, respectively. Here we have already used the

following relation: �0�aS−lbS+l��̂�=
�2S�!uS−lvS+l. In Eq. �5�,
the integrals over �̂k−l−1 �l=1,2 , . . . ,k−1� can be performed

by regarding �̂k−l as a polar axis. The same holds for �̂k+L+m
�m=1,2 , . . . ,N−L−k+1�. After integrating over these vari-
ables, we immediately notice that the reduced density matrix
�L does not depend on both the starting site k and the total
length N. The same property for S=1 VBS has been proved
in Ref. 13 by another approach, i.e., using the special prop-
erty of maximally entangled states. The coherent-state ap-
proach, however, allows us to generalize this result for more
complicated cases. For example, we can also prove that the
EE does not depend on the whole size of a VBS state on a
two-dimensional Cayley tree20 by using the coherent-state
representation.

Since the reduced density matrix does not depend on both
k and N, we can set N=L without loss of generality. The
following remarkable property makes it easier to calculate
the EE of L contiguous spins: SL=SL̂�−TrB̄L

�L̂ log2 �L̂,
where �L̂�TrBL

�. One can easily show this by using the
Schmidt decomposition. Then, all we have to do is to obtain
the eigenvalues of the reduced density matrix of two end
spin S /2’s,

�L̂

=

 �
j=1

L
d�̂ j

4�
�
k=1

L−1 �1 − �̂k · �̂k+1

2
�S

P0
†QL+1

† �vac��vac�P0QL+1

�S!�2 ��
j=1

L
d�̂ j

4�
��

k=1

L−1 �1 − �̂k · �̂k+1

2
�S ,

�3�

where �vac��vac���0�0�0� � �0�L+1�0�. The state P0
†�0�0 in the

numerator of Eq. �3� is explicitly given by �a0
†v1

*−b0
†u1

*�S�0�.
From the definition of the spinor coordinates, we notice that
�u ,v� changes to �iv* ,−iu*� when we change variables from
�� ,�� to ��−� ,�+��. Then, we can rewrite P0

†�0�0 as �
−i�S
S!�−�̂1�0. In the same way, QL+1

† �0�L+1 can be rewritten

as iS
S!�−�̂L�L+1. Substituting these results into Eq. �3� and

changing the variables of integration from �̂ j to −�̂ j�j
=1,2 , . . . ,L�, we obtain

�L̂

=

 �
j=1

L
d�̂ j

4�
�
k=1

L−1 �1 − �̂k · �̂k+1

2
�S

��̂1�0��̂1� � ��̂L�L+1��̂L�

 ��
j=1

L
d�̂ j

4�
��

k=1

L−1 �1 − �̂k · �̂k+1

2
�S .

�4�

Now the physical meaning of �L̂ is quite clear. Equation �4�
can be regarded as a correlation function between density

matrices ��̂1�0��̂1� and ��̂L�L+1��̂L�. More precisely, the ma-
trix elements of �L̂ are completely determined by the two-
point correlation functions of the corresponding one-
dimensional classical statistical model.19 This can be
checked by using the binomial expansion of P0 and QL+1.
While this interpretation enables us to understand the rela-
tion between the EE and the correlation functions, it is more
convenient to use form �4� for the calculation of the EE.

From now on, we follow Ref. 11 and obtain the eigenval-

ues of �L̂. In Eq. �4�, Tk,k+1= � 1−�̂k·�̂k+1

2
�S

acts as a transfer
matrix of the corresponding classical statistical model. Ex-
panding Tk,k+1 in terms of Legendre polynomials and using
the addition theorem for spherical harmonics, the transfer
matrix can be rewritten as
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Tk,k+1 =
4�

S + 1	
l=0

S


�l� 	
m=−l

l

Yl
m��̂k�Yl

m��̂k+1� , �5�

with 
�l���−1�lS!�S+1�! / ��S− l�!�S+ l+1�!�. Then, we sub-
stitute Eq. �5� into Eq. �4�, recall the orthonormality of

spherical harmonics, i.e., �d�̂Yl
m��̂�Yl�

m���̂�=�ll��
mm�, and

obtain

�L̂ =
4�

�S + 1�2	
l=0

S


�l�L−1 	
m=−l

l

�Tl
�m�

� �Tl
�m��†� ,

where irreducible lth order spherical tensor operators
Tl

�m��m=−l ,−l+1, . . . , l� are defined as Tl
�m�

� 2·S/2+1
4� �d�̂ ��̂�Yl

m��̂���̂�. We should note here that Tl
�m�

acts on the Hilbert space of the left-end spin S /2, while
�Tl

�m��† acts on that of the right-end spin S /2. Let us now
introduce the following formula found in Ref. 11:

	
m=−l

l

�Tl
�m�

� �Tl
�m��†� = Il�S�0 · S�L+1� , �6�

where S�0 and S�L+1 denote the left-end and right-end spin
S /2’s, respectively. Here Ij�X� is a jth order polynomial in X
and determined by the following recursion relation:

Ij+1�X� =
2j + 3

�S + j + 2�2� 4X

j + 1
+ j�Ij�X�

−
j

j + 1

2j + 3

2j − 1
�S − j + 1

S + j + 2
�2

Ij−1�X� ,

with I0�X�= 1
4� , I1�X�= 3

4�
X

�S/2+1�2 . The isotropic two site ten-

sor operators Ij�S�0 ·S�L+1��j=0,1 , . . . ,S� are mutually or-
thogonal with respect to the trace inner product Tr0,L+1�IjIk�.
Since Eq. �6� is completely determined by the polynomials in

S�0 ·S�L+1, the reduced density matrix �L̂ is diagonal in the

basis which diagonalizes the total spin operator J�0,L+1=S�0

+S�L+1. Therefore, the eigenvalues of �L̂ are given by

�L̂�J� =
4�

�S + 1�2	
l=0

S


�l�L−1Il�1

2
J�J + 1� −

S

2
�S

2
+ 1�� ,

where J�=0,1 ,2 , . . . ,S� is a magnitude of the total spin and
each �L̂�J� is �2J+1�-fold degenerate. Finally, the EE of a
block of L contiguous bulk spins is explicitly written as

SL = − 	
J=0

S

�2J + 1��L̂�J�log2 �L̂�J� .

Since the reduced density matrix �L̂ approaches an
�S+1�2-dimensional identity matrix in the thermodynamic
limit L→�, we can see that SL	2 log2�S+1��S��S� and
approaches this upper bound exponentially fast in L. This
saturation can be observed in Fig. 1, where the EE SL for
various spin-S VBS chains are plotted as a function of the
block size L. Here, we confirm that the conjecture proposed
by Vidal et al. is valid for all integer-spin VBS chains.

Next we make a comparison between the above results for

the VBS chains and numerical results for the integer-spin
Heisenberg models. Since S=1 systems have recently been
extensively studied,24 we study numerically the EE and the
energy spectra of the S=2 Heisenberg model and its continu-
ous deformations. One of the simplest S=2 Hamiltonian
which interpolates between these two models can be written
as

H = 	
i=1

N

S� i · S� i+1 + ��2

9
�S� i · S� i+1�2 +

1

63
�S� i · S� i+1�3 +

10

7
� ,

where �=0 and �=1 correspond to the Heisenberg model
and the S=2 AKLT model, respectively.

The edge-state picture21 in general S Haldane systems al-
lows us to interpret the spectra as follows. The low-lying
�S+1� multiplets have �2Stotal+1�-fold degeneracy in each
sector when the system has open boundaries. These general-
ized Kennedy triplet states are almost degenerate and are
completely degenerate at the AKLT point. This can be under-
stood from the VBS picture. It would be valid for the Heisen-
berg model by some results from numerical calculations.22,23

Let us now show that the ground-state properties remain un-
changed through the adiabatic continuation from the AKLT
to the Heisenberg model. Figure 2�a� shows the � depen-
dence of the energy gaps between the ground and the lowest
two excited states computed by exact diagonalizations of the
system of N=10 sites with periodic boundary conditions.
There is no level crossing between the ground state and the
first excited state, which suggests that the low-energy behav-
iors of the system are adiabatically equivalent with each
other in this parameter region.

Finally, let us discuss the EE in our system. The obtained
results of the EE from exact diagonalizations are shown in
Fig. 2�b�. The EE at the AKLT point has a tendency to con-
verge to the value S��2�=2 log2 3=3.169 93 as the system
size increases. This value coincides with our analytically cal-
culated one with open boundary conditions �see Fig. 1�. The
lower bound of the EE in the calculated region is given by
S�2 log2 3, and this is the contribution from the boundaries
of the system created by taking partial trace over the sub-
system. This lower bound is equal to the EE at the AKLT
point. Taking the edge-state picture into account, we can see
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FIG. 1. The EE for S=1 ���, S=2 ���, S=3 ���, S=4 ���, S
=6 ���, and S=8 ��� VBS chains as a function of the block size L.
The broken line indicates the saturation value S��2�.

BRIEF REPORTS PHYSICAL REVIEW B 76, 012401 �2007�

012401-3



that this lower bound is closely related to the number of
degrees of freedom emerging at the edge. In other words, if
we can prepare a sufficiently long spin S VBS chain with
open boundaries, each edge state behaves as a free spin S /2.
This �S+1�-level system can be used as a qubit �qudit� for
quantum computation by locally applying a magnetic field at

the edge. The EE provides a typical measure for the quantum
resources. We should note here that the EE has contributions
not only from the edge state but also from the bulk except for
the AKLT point. In this meaning, the AKLT point is a special
point since the EE has a contribution only from the edges
created by taking partial trace. This fact is related to the
minimum correlation length at the AKLT point. It is also
interesting that the EE at the S=2 AKLT point takes the
minimum value. A similar behavior has been observed in the
case of S=1.24 Thus, we can conjecture that the EE takes a
minimum value at the AKLT point in general SU�2�-
invariant models with integer spin S as far as the edge-state
picture is valid.
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FIG. 2. �a� Energy gaps between the ground and the lowest two
excited states in the system of N=10 sites with periodic boundary
conditions. �b� The EE of the S=2 periodic N=6,8 ,10 Heisenberg
model and its continuous deformations.
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