

Dysregulation of 4 gene transcription in the striatum of Huntington Disease transgenic mice

著者	Oyama Fumitaka, Miyazaki Haruko, Kurosawa M.,
	Tamaoka Akira, Kaneko Takeshi, Nukina Nobuyuki
journal or	Neuroscience research
publication title	
volume	58
number	Supplement 1
page range	S119-S119
year	2007
その他のタイトル	ハンチントン病モデルマウスにおけるナトリウムチ
	ャネル 4 サブユニットの発現抑制
URL	http://hdl.handle.net/2241/91508

ハンチントン病モデルマウスにおけるナトリウムチャネルB4 サブユニットの発現抑制

小山文隆1)、宮崎晴子1)2)、黒沢大1)、玉岡晃2)、金子武嗣3)、貫名信行1)

1)独立行政法人理化学研究所脳科学総合研究センター構造神経病理研究チーム 2)筑波大学大学院医学系研究科神経内科学 3)京都大学大学院医学研究科高次脳形態学研究領域

Dysregulation of $\beta4$ gene transcription in the striatum of Huntington Disease transgenic mice

Fumitaka Oyama¹, Haruko Miyazaki^{1, 2}, M. Kurosawa¹, Akira Tamaoka², Takeshi Kaneko³ and Nobuyuki Nukina¹

Sodium channel $\beta4$ ($\beta4$) is a recently identified auxiliary subunit of the voltage gated-sodium channels. We found that $\beta4$ is significantly downregulated in the striatum of Huntington Disease (HD) model mice and patients. *In situ* hybridization with $\beta4$ probe, followed by immunohistochemistry using anti preproenkephalin (PPE) or anti preprotachykinin A (PPTA) indicated that $\beta4$ mRNA is expressed in two groups of striatal neurons projecting to globus pallidus (GP)(marker protein: PPE) and substantia nigra (SN)(marker: PPTA). TaqMan RT-PCR analysis indicated that both $\beta4$ and PPE mRNAs are preferentially decreased in striatum at a presymptomatic stage of HD mice, while PPTA mRNA and its peptide are unaltered even at the symptomatic stage. These results indicate that there is a difference in downregulation of mRNA and its product among striatal projection neuron proteins and suggest that loss of $\beta4$ in the striatum of HD transgenic mice is due to dysregulation of $\beta4$ gene transcription.

¹Laboratory for Structural Neuropathology, RIKEN BSI, Saitama, Japan.

²Department of Neurology, University of Tsukuba, Tsukuba, Ibaraki, Japan

³Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan