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We present results for I = 2 pion scattering length with the Wilson fermions in the quenched approximation.

The finite size method presented by Lüscher is employed, and calculations are carried out at β = 5.9, 6.1, and

6.3. In the continuum limit, we obtain a result in reasonable agreement with the experimental value.

1. Introduction

Lattice calculations of scattering lengths of the
two-pion system is an important step for under-
standing of strong interactions beyond the hadron
mass spectrum. For the I = 0 process, which is
difficult due to the presence of disconnected con-
tributions, only one group carried out the calcu-
lation [1]. For the I = 2 process, on the other
hand, a number of calculations has been car-
ried out with the Staggered [1,2] and the Wil-
son fermions [1,3]. These calculations reported
results in agreement with the prediction of cur-
rent algebra or lowest-order chiral perturbation
theory(CHPT) [4]. It is known, however, that
this prediction differs from the experimental value
over 1.4σ, and that the higher order effects of
CHPT are small [5].

The past lattice calculations were made on
coarse lattices with small sizes, and the contin-
uum extrapolation was not taken. In this arti-
cle we report on our high statistics calculation
of the I = 2 pion scattering length aiming to
improve on these points. This work is carried
out in quenched lattice QCD employing the stan-
dard plaquette action for gluons with the Wilson

∗presented by N. Ishizuka

fermions. The number of configurations (and lat-
tice size) are 187(163 × 64), 120(243 × 64), and
100(323 × 80) for β = 5.9, 6.1, and 6.3. The pion
mass covers the range 450 − 900MeV.

2. Method

The energy eigenvalue of a two-pion system in
a finite periodic box L3 is shifted by finite-size
effect. Lüscher presented a relation between the
energy shift ∆E and the S-wave scattering length
a0 given by [6]

−∆E ·
mπL2

4π2
= T +A ·T 2 +B ·T 3 +O(T 4) , (1)

where T = a0/(πL). Since T takes a small
value, typically ∼ −10−2, in our simulation we
can neglect the higher order terms O(T 4). The
constants A and B are geometrical values A =
−8.9136 · · · and B = 62.9205 · · ·.

The energy shift ∆E can be obtained from the
ratio R(t) = G(t)/D(t), where

G(t) = 〈π+(t)π+(t)W−(t1)W
−(t2)〉

D(t) = 〈π+(t)W−(t1)〉 〈π
+(t)W−(t2)〉 . (2)

In order to enhance signals we use wall sources
(denoted by W−) and fix gauge configurations to
the Coulomb gauge. The two wall sources are
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Figure 1. R(t) = G(t)/D(t).

placed at different time slices t1 and t2 to avoid
contaminations from Fierz-rearranged terms in
the two-pion state that would occur for the choice
t1 = t2. In this work we set t2 = t1 + 1 and
t1 = 8, 10, 13 for β = 5.9, 6.1, 6.3. Quark prop-
agators are solved with the Dirichlet boundary
condition imposed in the time direction and the
periodic boundary condition in the space direc-
tions. In region t >> t1, t2 the ratio behaves as
R(t) ∼ Z(1 − ∆E · (t − t1) + O(t2)).

As an example, the ratio R(t) at β = 6.3 and
κ = 0.1513 corresponding to mπ = 433(4)MeV
is plotted in Fig. 1. The signal is very clear and
Z ∼ 1. This means the overlap of our wall sources
with the two-pion state is sufficiently large. In
general there are higher order terms O(t2) in R(t),
but we cannot resolve them in Fig. 1. Making a
linear fitting in the range t = 27 − 62, we obtain
(a∆E) = 5.97(60) × 10−3. Solving equation (1)
with this value we obtain T = −1.73(15)× 10−2,
which corresponds to a0 = −0.525(45)(1/GeV).

3. Result

In Fig. 2 we compare our new results for
a0/aCHPT

0 with those of old calculations, where
aCHPT
0 is the prediction of current algebra :

aCHPT
0 = −mπ/(16πf2

π
). For the decay constant

fπ we use the value at finite mπ at finite lat-
tice spacing referred in each study. This ratio
has been commonly employed to make a com-
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Figure 2. Comparison of our results with the old
calculations by a0/aCHPT

0 .

parison of current algebra and lattice calculations
with different quark actions and parameters. The
open symbols refer to results with the Staggered
fermions and filled ones are those of the Wilson
fermions. The legends give β, the spatial lattice
size L, and collaborations of the studies ( K : Ku-
ramashi et.al. [1], SGK : Sharpe et.al. [2], GPS :
Gupta et.al. [3], Ours : our calculation ). We also
plot the experimental value at mπ = 140MeV.
We find that our results are inconsistent with
old results, especially with those of the Staggered
fermions.

A possible cause of the discrepancy is the sys-
tematic error of determination of fπ needed to
calculate aCHPT

0 . In Fig. 3 we compare our re-
sults with old calculations in terms of a0/mπ.
The same symbols as those in Fig. 2 are used.
The lattice results including ours are almost con-
sistent with each other. Also they appear to be
in more agreement with the experiment than with
the prediction of current algebra.

We note that the calculation of fπ, being de-
termined by the amplitude of correlation function
of pion and axial vector current, is quite difficult.
Various systematic errors may well enter in their
determinations. Further the mass dependence of
fπ is not small and a0/aCHPT

0 is very sensitive to
it. For these reasons we analyze a0/mπ below.
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Figure 3. Comparison of our results with the old
calculations by a0/mπ.

From chiral symmetry a0/mπ behaves as

a0/mπ = A+B·m2
π
+C·m2

π
log(m2

π
/Λ2)+O(m4

π
) .(3)

For the Wilson fermions we should consider an-
other term ∝ 1/m2

π
that arises from breaking of

chiral symmetry. Golterman and Bernard also
proposed the same term pointing out that it can
appear from quenching effect [7]. However, these
effects are very small in our simulation as we do
not observe a rapid variation of a0/mπ expected
from such a term in Fig. 3. Further the chiral
logarithm term, m2

π
log(m2

π
/Λ2), is also small.

In Fig. 4 our results for a0/mπ in the chiral
limit obtained by a linear fitting in m2

π
are plot-

ted, together with the experimental value and the
prediction of current algebra at mπ = 140MeV.
We observe a very clear linear dependence in the
lattice spacing a. By a linear extrapolation, we
then obtain

a0/mπ = −1.91(25) (1/GeV2)
a0mπ = −0.0374(49) , (4)

in the continuum limit.
This result is consistent with the experimen-

tal value: a0/mπ = −1.43(61)(1/GeV2) (a0mπ =
−0.028(12)). The difference from the predic-
tion of the current algebra given by a0/mπ =
−2.3(1/GeV2) (a0mπ = −0.045) is about 1.5σ.
Since scaling violation is not small, and our data
points are far from the continuum limit, as seen in
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Figure 4. a0/mπ at the chiral limit at each β.

Fig. 4, further calculations nearer to the contin-
uum limit is desirable. In addition studies with
the Staggered fermions should be repeated in a
systematic manner for comparison with present
results.
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