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Abstract. In this article, we study the following problem of [5] :

Classify all finite type surfaces in a Euclidean 3-space E3. A sur-

face M in a Euclidean 3-space is said to be of finite type if each

of its coordinate functions is a finite sum of eigenfunctions of the

Laplacian operator on M with respect to the induced metric (cf.

[1, 2]). Minimal surfaces are the simplest examples of surfaces of

finite type, in fact, minimal surfaces are of 1-type. The spheres,

minimal surfaces and circular cylinders are the only known exam-

ples of surfaces of finite type in Es and it seems to be the only

finite type surfaces in Ez (cf. [5]). The first author conjectured in

[2] that spheres are the only compact finite type surfaces in Es.

Since then, it was proved step by step and separately that finite

type tubes, finite type ruled surfaces, finite type quadrics and finite

type cones are surfaces of the only known examples (cf. [2, 6, 7,

10].) Our next natural target for this classification problem is the

class of surfaces of revolution. However, this case seems to be

much difficult than the other cases mentioned above. We therefore

investigate this classification problem for this class and obtain classi-

fication theorems for surfaces of revolution which are either of

rational or of polynomial kinds (cf. §1 for the definitions). As

consequence, further supports for the conjecture cited above are

obtained.

1. Introduction.

Let M be a (connected) smooth surface in a Euclidean 3-space E3. Denote

by A the Laplacian of M associated with the induced metric. Let x and H

denote the position vector fieldand the mean curvature vector fieldof M in is3,
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respectively. Then we have

(1.1) Ax=-2H.

Formula (1.1) yields the following two well-known facts: (a) surface Mis

minimal if and only if all coordinate functions of E3, restricted to M, are har-

monic functions, i.e., they are eigenfunctions of A with eigenvalue 0; and (b)

M is an open portion of an ordinary sphere S2 if and only if all coordinate

functions of E3, restricted to M are eigenfunctions of A with a fixed nonzero

eigenvalue.

For a given surface M in E3, a smooth function on M is said to be of

finite type if it can be expressed as a finitesum of eigenfunctions of A. If all

coordinate functions of is3, restricted to M, are of finitetype, then M is said

to be of finite type. Otherwise, M is said to be of infinite type. (See [1, 2] for

details). In terms of finite type surfaces, a well-known result of Takahashi

[11] says that,a surface in E3 is of 1-type if and only if either it is a minimal

surface of E3 or it is an open portion of an ordinary sphere.

In [2], the firstauthor proposed the following

Problem. Classify finite type surfaces in E3.

This is indeed an interesting but a very difficultproblem. Because the

problem involves a system of very complicated partical differential equations.

It seems to the firstauthor that the only surfaces of finitetype in E3 are open

portions of planes, spheres, circular cylinders or minimal surfaces. For com-

pact case, the firstauthor made the following

Conjecture. [5] The only compact surfaces of finitein E3 are the ordinary

spheres.

The firstresult concerning the classificationof surfaces of finite type in Es

was obtained in [2]. In fact, it was proved in [2] that circular cylinders are

the only tubes of finitetype in E3. In [10] it was shown that planes are the only

finitetype cones in E＼ It was proved in [7] that a ruled surface in E3 is of

finitetype if and only if it is an open portion of a plane, of a circular cylinder

or of a helicoid. Furthermore, the first author and F. Dillen proved in [6]

that spheres and circular cylinders are the only quadrics of finitetype in E%

(even locally). Further resultsin this direction can be found in [5, 8, 9],

In this article, we consider this classificationproblem for surfaces of re-
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volution. However, this case seems to be much complicated than the previous

cases. We therefore investigate in this article the classificationof surfaces of

revolution which are either of rational kind or of polynomial kinds.

A surface in E3 is called a surface of revolution if it is generated by a

curve C on a plane it when it is rotated around a straight line L in it. By

choosing it to be the xz-plane and line L to be the z-axis, a surface of revolu-

tion is parametrized by

(1.2) x(u, v)=(f(u) cos v, f(u) sin v, g(u)).

A surface of revolution given by (1.2) is said to be of the polynomial kind

if f(u) and g{u) are polynomial functions in u; and it is said to be of the

rational kind if g is a rational function in /, i.e., g is the quotient of two

Dolvnomial functions in f.

In this article we prove the following classificationtheorems:

Theorem 1. Let M be a surface of revolution of the polynomial kind.

Then M is a surface of finite type if and only if M is either an open portion

of a plane or an open portion of a circular cylinder.

Theorem 2. Let M be a surface of revolution of the rational kind. Then

M is a surface of finite type if and only if M is an open portion of a plane.

In fact, Theorem 2 follows from the following more general result:

Theorem 3. Let M be a finite type surface of revolution parametrized by

x(t,v)―(tcos v, t sin v, g(t)).

If g'(t)2=Q(t)/R(t) for some polynomial functions Q(t) and R{t) in t, then M is

an open portion of a plane, or M is an open portion of a catenoid, or deg Q=

dexrR = 2-＼-de.{r(Q4-R).

Remark. Up to similarity transformations on E＼ a catenoid can be para-

metrized by

x(t,v)={t cos v, t sin v, g(t)),

with g(t)=cosh~1t. Thus g'{tf=l/(f―l) is the quotient of two polynomials

Q = l and R―f―1 with deg i?=deg (Q+R). On the other hand, it is easy to

verify that spheres centered at the origin in E3 are 1-type surfaces which do

satisfy the condition on g'if)in Theorem 3 with deg O=deg 7?=2+deg (Q-＼-R).
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And planes are null 1-type surfaces with the function g(t) of Theorem 3 satis-

fying g'(]t)=0.

2. Preliminaries.

Let x: M^E3 be an immersion from a 2-dimensionaI connected manifold

M into a Euclidean 3-space E*. Denote the Laplacian operator of M with the

induced metric by A. Then the immersion x (or the surface M) is of finite

type if each component of the position vector field x of M in Em can be

written as a finite sum of eigenfunctions of the Laplacian operator. Hence x

is of finitetype if and only if x has the following decomposition:

(2.1) * = c+ *1+ x2+ ･･･+xk

where c is a constant vector and xu x2,■･■,xk are non-constant maps satisfy-

ing Axi=lixi, i=l, 2, ･･･,k. Moreover, if all eigenvalues {^i,X2,･･･,%k＼are

mutually different, then the immersion x (or the surface M) is said to be of

k-type and the decomposition (2.1)is called the spectral decomposition of the

immersion x (or of the surface M.) In particular, if one of {Xu X2,･■■,^k) is

zero, then M is said to be of null k-type.

We need the following results for later use:

Proposition 1. [1, 2] Let M be a k-type surface whose spectral decomposi-

tionis given by (2.1). // we put

(2.2)

then P(A)(x-c)=O.

Proposition 2. [3, 5] Let M be a surface in E＼ If there exists a constant

b such that AH―bH, then M is either of 1-type or of null 2-tyfie.

Proposition 3. [4] The only null 2-type surfaces in E3 are open portions

of circular cylinders.

The monic polynomial P in Proposition 1 is called the minimal polynomial

of the finite type surface M. To find out whether or nor a surface is of finite

type, the minimal polynomial plays a very important role (cf. [5]).

Let M be a surface of revolution parametrized by

(2.3) x(u, v)= (f(u) cos v, f{u) sin v, g{u)).
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It is easy to verify by straight-forward computation that the Laplacian operator

A of M is crivpn hv

(2.4) A
-1 a2

(f'f+{grf du>

f /'

V((/')2+(£')2)

f'f'+g'g" 1 d

((/')!+(OT3≪ f2dv2

3. Proof of Theorem 1.

Assume Mis a surface of revolution of the polynomial kind in Es. Then,

without loss of generality, we may assume M is parametrized by

(3.1) x{u, v)=(Q(u) cos v, Q(u) sin v, R(u))

for some polynomials Q(u) and R(u) of degree q and r, respectively. In parti-

cular, we have max {q, r}^l.

We need the following

Lemma 1. Let F(u) and G(u) be polynomial functions in u and M a surface

of revolution of the polynomial kind which is parametrized by (3.1). Ther

A(F(u)/G(u))=F1(u)/G1(u) for some polynomial functions Fh Gx with

deg Fi-deg G^deg F-deg G-2 max {deg F, deg G].

Proof. By applying (2.4)and straight-fordward computation, we may obtair

where

(3.2)

u)) Gl(u)

F1=Q{Q'z+R'2){G{F'G-FG'y-2G＼F'G-FG'))

-＼-G(F/G-FG'){Q'(Q'2+R'2)-Q(Q'Q"+R'R")}

and

(3.3) Gi=-G*Q(Q'2+R'*)*.

Let deg Q~q and degi? = r. Then from (3.2) and (3.3) we may find

deg Fi£2 deg G+q+2 max {q, r＼+deg F-A ,

deg Gx-3 deg G+q+4 max {?, r} -4 ,

which implies the lemma. □

Let
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A*/?
Fi

r=lf 2, 3,

Then by Lemma 1 we have

(3.5) deg Fi+1-deg Gf+1<deg F,-deg Gt< ･■･<deg Fx-deg d<deg R .

iVssume M is of finitetype, say of &-type. Let

P(T)=T*+c1T*-1+ ･･･+ck-!T+ck

be the minimal yolynomial of M given in Proposition 1. Then Phas k distinct

real roots. From (3.4) and Proposition 1, we have

Gk
+ Ci + ･'･ +C*_x +ck(R-a)=Q

Then we have

(3.6) + ･■･+Ck_lK-^-+ckK(R-a)=O

Fk-t

for some constant a. Let K―G, ■･■Gh

K-^+dK^
Gk~i

If deg/?=O, M is an open portion of a plane. If degi?>0, then by (3.5)

we have

deg#(/?-a)>deg *･■£->- >deg Kp^->deg Kp-

which is impossible unless P(T)=T2+CiT with Ci=£0 and A/?=0, since the

minimal polynomial P has k distinctrealroots. In this case, (1.1) and Proposi-

tion 1 imply

(3.7) AH=-ClH.

Hence, by Proposition 2, we know that M is either of 1-type or of null 2-type.

If M is of 1-type, then either M isa n open portion of a sphere or M is minimal.

It is easy to check that spheres are not of the polynomial kind and the only

minimal surfaces of revolution are open portions of planes and open portions

of catenoids. Since as remarked in§1, catenoids are also not of the polynomial

kind, we conclude that M is of null 2-type. Consequently, by applying Pro-

position 3, we conclude that M should be an open portion of a circular cylinder.

The converse of this is easv to verify. n

4. Proof of Theorem 2.

Let M be a surface of revolution of the rational kind. Then, without less

of generality, we may assume M is parametrized by

x(t.v)=(t cos v. t sin v. s(t))
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where g(t)=G(t)/H(t) for some polynomial functions G(t) and H(t). We may

assume G(t) and H(t) are relatively prime. We have

(4.1) g'(ty=Q(t)/R(t), Q=(G'H-GH')＼ R=H*.

It is easy to verify that deg Q―deg R if and only if deg G = l+deg H. More-

over, in this case, we have deg Q―deg R=deg(Q + R). Assume M is of finite

type. Then, by Theorem 3 proved in §5, M is either an open portion of a

plane or an open portion of a catenoid. Since, up to similarity transformations

on E＼ a catenoid can be parametrized by

(4.2) x(t,v)=(t cos v, t sin v, cosh"1*),

it is not of the rational kind. Hence, M must be an open portion of a plane.

The converse is trivial. □

5. Proof of Theorem 3.

Let M be a surface of revolution parametrized by

(5.1) x(t,v)―{tcos v, tsin v, g(t))

with g'{tf―Q{t)/R{t) for some polynomial functions Q(t), R(t). Without loss

of generality, we may assume that Q(t) and R(t) are relatively prime and R(t)

is a monic polynomial.

From (2.4) and (5.1) we find

(5.2) A=
R d* __R ( tjQ'R-R'Q)] 8

q+r df tco+Ryr^ 2R idt

From (5.2) we get

(5.3)

with

(5.4)

A(t cos v)=
9.

R

1 a2

dvz

cos?;

Q1=-2R(Q+R)+t(Q'R-QR')+2(Q+R)＼ R1=2t(Q+Rf.

Moreover, by (5.2),(5.3) and (5.4), we may conclude inductively that

(5.5) Ai(tcosv)=%^cosv, i=l, 2, 3, ･･･
Ri

for some polynomial functions Qt and Rt. Moreover, if we put

(5.6) Qi=Q'iRi-QiR'i, Qi^Q'iRi-QM'RWiQ'iRi-QiR'dRiR't,

then we have

(5.7) Q,+1--2^(Q + i?)a-2^i??(O + i?)Oi
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+t＼Q'R-QR')R＼Qi+2{Q+RYQiR＼,

Ri+1=2t＼Q+R)*R＼, i^l.

Assume M is of finite type, say of &-type. Let

P(T)=Tfe + c1T*-1+ ･･･+Ck.lT + ck

be the minimal polynomial of M given in Proposition 1, Then P has k distinct

real roots. From (5.5) and Proposition 1, we have

(5.9) 9i + c. Qk-i

Let K―R, ･･■Rk- Then we have

(5.10) + c,K
-"1

9i

For simplicity,we put g―degQ, r=degR, qi―degQi, and ri=degi?f. We

divide the proof of the theorem into three separate cases.

Case (i): q>r.

In this case we have the followinglemma.

Lemma 2. // q>r, then,for any i^tl, we have

(5.11) ri-gi=2i-l.

Proof of Lemma 2. From (5.4) we obtain rl=lJr2q and qx―2q. Thus

(5.11) holds for i=l.

Assume (5.11) holds for some z'^1. From (5.6) we have deg Qi=qt+ri ―1

and degQi=qi+3ri―2. Therefore, by (5.7) and (5.8), we may find

qi+1=2q+qi+3ri) ri+1=2?+4ri+2.

This implies ri+i―qi+i=ri―qi+2=2i+l. This proves the lemma. □

By using Lemma 2 and (5.10) we can conclude that case (i) is impossible.

Case (ii): q<r.

In this case we have the following lemma.

Lemma 3. // q<r, then, for any i^l, we have

(5.12) rt-qi=2i-l+s,
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where s is a positive integer.

Proof of Lemma 3. From (5.4) we obtain rx=l+2r and q^q+r. Let

s = rl―<7i―l~^>r―q>0. Then r1 ―g1= l + s. This proves (5.12) for i=l.

Assume (5.12) holds for some zS^l. Then, by (5.6), we have

deg Qi=qi-＼-ri ―1, deg5i=?i+3rj―2 .

Therefore, by (5.7) and (5.8), we get

Qi+1=2r+qi+3ri> ri+1=2+2r+4ri.

Consequently, we find ri+1―^i+i=2+rj ―qi―2{iJr＼)―1 + s. This proves the

lemma. n

By using Lemma 3 and (5.10) we can conclude that Case (ii)is also im

oossible.

Case (Hi): q=r.

Let m=deg (Q+R). We divide this case into three subcases:

Case (iii-a): q=r=?n.

Without loss of generality, we may assume the leading coefficientsof Q

and R are given bv a and 1. resoectivelv.

We need the followinglemma.

Lemma 4. Assume q=r=m. Then we have

(1) if a^4n(n + l) for every natural number n, then

(5.13) ri-qi=2i-l, i=l, 2,■■■.

(2) if a=in(n ―l) for some natural number n^2, then

(5.14) ri―qi-―2i―l, for i^n

(5.15) ri―qi=2i―lJrs, for i>n,

where s is a positiveinteger.

Proof of Lemma 4. Since q=r=m, we have

(5.16)

It is

zero.

degR(Q + R)=2r, feg{Q'R-QR')^2r-2, deg (Q+R)2=2r.

easy to see that the leading coefficientof Qx is 2a(a + l) which is not

Therefore, by (5.4), we have qx=2r. Since r,―l+2r, formulas (5.13)and
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(5.14) hold for *=1.

Assume a=£4n(n + l) for any natural number n and assume (5.13) holds foi

z'2>2. From (5.6) and (5.7), we see that <7i+i^2r+#i+3ri. It is not difficult tc

verify that the leading coefficient of Qi+1 is 2{l + a ―(r* ―qt)2}Gi(l + a), where

flfis the leading coefficient of Qt. Since r*―qt=2i―1 and a±U{i―1) by as-

sumption, we obtain ^i+1=2r+^i+3ri. Because ri+l―2-＼-2r+Aru we find ri+]

―qi+1―2+ri ―qi=2(i+l)―1. This proves Statement (1).

For Statement (2), let us assume that a―in(n ―1) for some natural number

n^2. By the same argument as the proof of Statement (1), we obtain (5.14).

Since a=4n(n ―1) and rn―qn=2n ―l, we find l-＼-a―(rn~qny=Q. Thus

deg(?n+i <2r+qn+3rn. Let s = 2r+gn+3r7l―deg Qn+1. Then we obtain

rn+i―<7n+i=(2+2r+4rn) ―(2r+^re+3rn ―s)=2+s+rn ―gn=2n+l + s. This proves

(5.15) for z'=n + l. Formula (5.15) for i>n + l can be proceeded in the same

way as Statement (1), now. □

From Lemma 4, we see that (5.10) is impossible unless ck―Q and (?i=Q.

Since the minimal polynomial P has exactly k distinct real roots, this implies

P(T) ―T. Thus, M is a minimal surface in E＼

CASE(iii-b): q=r=m+l.

In this case,we may put

(5.17) Q(t)=-tr + A(t), R(t)=tr+B(t),

where A(t)and B{t) are polynomials of degree ^r―l―m and

(5.18) deg(Q+/?)=deg(4+5)=r-l, deg(Q'R-QR')=2r-2.

We need the followinglemma.

Lemma 5. // q=r=m+l, then we have rx=qi and there is a non-negative

integer s such that ri―qi=i+s for any *2>2.

Proof of Lemma 5. From (5.4) and (5.18) we have ql―rl=^2r―l. Thus,

by using (5.6) we may obtain

(5.19) deg$1^1+r1-2=4r-4, degQ^Sr-7.

From (5.8) we find r2^10r-4. By applying (5.7)and (5.19), we get qt£10r-6.

Let s=10r―6―<?2^0. Then we have r2―<72=2-4-s.

Now, assume n―nt=i+s for some i^2. The, by direct computation, we
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obtain from (5.7) that the degree of each term in the right-hand-side of (5,7)

is <^2r+<7i+3rf ―1. Moreover, by using rt―#i>0, and by direct computation

of the coefficientof Qi+1 in (5.7),we may conclude that deg Qt+i=2r+qi+3ri―l.

Since ri+1―2rJriri, we obtain ri+l―qi+1= ri―qt-{-l=t+ l + s by (5.8). This

prove the lemma. □

From Lemma 5 we see that (5.10) is impossible unless c*=0 and Qi―0.

Because the minimal polynomial P of M has exactly k distinctreal roots, this

implies P(T)=T. Thus, Mis a minimal surface in Es.

CASE(iii-c): q=r>m+l.

In this case we may put

(5.20) Q(!)=-tm+lD(t)+A(t), R(t)=tm+1D(t)+B(t),

where D(t) is a polynomial of degree r―m―1 and .4(0, B(t) are polynomials

of degree 5Sm such that deg(A+£)=m. It is easy to see from (5.20) that

(5.21) deg (QfR-QR')=r+m-l.

We need the following lemma.

Lemma 6. // q=r>m+l, then

(5.22) rt-qt=i(2+m-r)-l.

Proof of Lemma 6. From (5.4) and the assumption, we have qx~r-＼-m

and n=2m+l. Thus, rx―<7i=m+l ―r, which shows that (5.22) is true for

Assume (5.22) holds for some i'^1. Then, from (5.6) and (5.21), we find

(5.23) deg Qi=qt+rt-l, deg &^+3rt-2 .

From (5.7),(5.8),(5.21) and (5.23), we may obtain ri+i=4ri+2m+2 and qi+1£

(7i4-3rj+r+m. Furthermore, by direct computation, we may see that the co-

efficientof tqi+iri+T*min Qi+l is a nonzero multiple of {2ri―2qi+m―r){qi ―ri).

Since qt―r^Q and 2rf―2qi+ m―r=i(2+m―r) ―1+m―r<0, we get qi+i=

qi-＼-3ri+r+m. Hence, ri+1―qi+1=ri-qi+2+m-r=(i+l)(2+m-r)-l. This

proves the lemma. □

As we did before, let K―R, -･■Rk. Then we have

(5.24) K

Rk
+cxK

Qk-i

Rk-＼
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From Lemma 6. we have

(5.25) degK= S Qi+-k(k+l)(2+m-r)-k
i=l I

By applying Lemma 6 and (5.25)we obtain

(5.26)

(5.27)

degK^=8-i(2+m-r), i=l, ･･■, k ,

degtK=d, $=hqi + ^k{k + l){2+m-r)-k + l.
i=l I

(5.26) and (5.27) imply that if r>m+2, (5.24) is impossible unless k = l and

c*=0. Hence, in this case either r=#=m+2 or M is minimal.

Consequently, by combining cases (i),(ii)and (iii),we conclude that either

deg Q=deg i?=2+deg ((?+/?) or M is a minimal surface of revolution in E＼

The latter case occurs only when the surface is either an open portion of a

plane or an open portion of a catenoid. This completes the proof of the theo-

rem.

c
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