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Abstract

We propose a new call admission control (CAC) scheme for voice
calls in cellular mobile communication networks. It is assumed that
the rejection of a hand-off call is less desirable than that of a new call,
for a hand-off call loss would cause a severe mental pain to a user.
We consider the pains of rejecting new and hand-off calls as different
costs. The key idea of our CAC is to restrict the admission of new calls
in order to minimize the total expected costs per unit time over the
long term. An optimal policy is derived from a semi-Markov decision
process in which the intervals between successive decision epochs are
exponentially distributed. Based on this optimal policy, we calculate
the steady state probability for the number of established voice con-
nections in a cell. We then evaluate the probability of blocking new
calls and the probability of forced termination of hand-off calls. In the
numerical experiments, it is found that the forced termination prob-
ability of hand-off calls is reduced significantly by our CAC scheme
at the slight expense of the blocking probability of new calls and the
channel utilization.

Keywords: mobile communication networks, call admission control, semi-
Markov decision process, blocking probability, forced termination, channel
utilization.
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1 Introduction

Recent years have witnessed a remarkable development in cellular mobile
communication techniques. The population of mobile users is explosively
growing with the technological and functional progress. Application services
provided today are diverse and expanding, including cellular telephony, e-
mail of characters and images, and the Internet browsing and transactions.
As various traffic will occupy the wireless resources while the frequency
bandwidth is limited, the call admission control (CAC) is a mandatory ele-
ment of mobile communication networks. Traditional policy, i.e., admission
if channel is available, which admits a call whenever a channel is available,
will not yield priority scheme to various types of traffic. Therefore, some
control scheme is needed in order to guarantee the differential quality of
service (QoS) requirements as much as possible.

A simple way of giving priority to hand-off calls over new calls is to
reserve a certain number of channels exclusively for hand-off calls. Such a
guard-channel model was first analyzed by Hong and Rappaport [1], who as-
sumed independent arrivals of new and hand-off calls in a single cell. Their
model has been extended to a network of multiple cells in which the hand-off
calls for each cell are generated by the outgoing calls from its neighboring
cells [2]–[4].

As for the CAC, many schemes have been proposed. A CAC scheme is
implemented in [5] by employing a semi-Markov decision process. In [6] the
congestion control is carried out for data traffic to ensure that the packet
error probability (PEP) of voice be lower than a specified QoS requirement.
However, hand-off calls are not considered in these models.

In this paper, we propose a new CAC policy for voice calls by taking into
account hand-off calls in cellular networks. We investigate to what degree it
has an impact on the traffic performance of the network. Our CAC policy
dealing with hand-off calls is executed in the call level. Once the best policy
is obtained as a result of the CAC, the hand-off rate is computed from the
probabilistic analysis of the behavior of mobile terminals. The steady state
probabilities for the number of calls present in the cell are used to calculate
the probability of blocking new calls and the probability of forced termina-
tion of hand-off calls for voice traffic.

The rest of this paper is organized as follows. Section 2 describes our
system model. Section 3 defines performance measures for voice traffic. Sec-
tion 4 presents numerical results. Concluding remarks are given in Section
5.
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2 System Model

In this section, we propose a call level model for a cell in a cellular com-
munication network. We assume that the cellular network is homogeneous
such that all cells have the same stochastic properties. We keep track of
a sequence of events that each call experiences in the cell. We present a
dynamic CAC method using a semi-Markov decision process.

2.1 Semi-Markov process for the number of calls in a cell

Let us pay our attention to a single cell. The cell can accommodate calls
up to the multiple access capability (MAC) K for voice users, which is
determined by a specified QoS requirement. If a new call is placed and the
number of existing calls is less than K, the call is either admitted into the
cell or it is blocked according to the CAC. Similarly, if a hand-off call arrives
and the number of existing calls is less than K, the hand-off process either
succeeds or it is forcibly terminated (i.e., the hand-off process fails), again
according to the CAC.

Voice calls have channel holding and cell residence times the lengths of
which are a few minutes. The average call holding time and the average cell
residence time of a calls are denoted by 1/µ1 and 1/µ2, respectively. Both
times are assumed to be exponentially distributed. Therefore, µ1 is the call
completion rate, and µ2 is the rate at which a call goes out of the cell.
Let λ1 and λ2 be the rates at which new and hand-off calls are generated
respectively according to independent Poisson processes.

Consider an imbedded Markov chain in which the state is defined by
the pair (k, j), where k is the number of calls existing in the cell and j
denotes how the state is entered (see below). In this model, we identify
a set of Markovian decision epochs such that, if we specify the state at a
decision epoch and provide information thereafter, we know the state at the
next decision epoch. There are four cases of the state transition from state
(k, j) at a decision epoch (0 ≤ k ≤ K). First, if a new call is placed in
a cell and it is admitted into the cell, the chain moves to state (k + 1, 1)
(0 ≤ k ≤ K − 1). Second, if a hand-off call is placed in a cell and it is
admitted into the cell, the chain moves to state (k + 1, 2) (0 ≤ k ≤ K − 1).
Third, if a new or hand-off call is placed but rejected, the chain stays in
state (k, j) (0 ≤ k ≤ K). Fourth, if the call is completed or if it leaves the
cell as hand-off, the chain moves to state (k − 1, 0) (1 ≤ k ≤ K). Note
that the last case is a fictitious decision epoch because no decision is made.
Figure 1 depicts these transitions in the Markov chain.
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Figure 1: State transition diagram for a Markov chain embedded at decision
epochs.

The probabilities of transition from state (k, j) to states (k − 1, 0), (k +

1, 1), (k + 1, 2) and (k, j) are denoted by qk,k−1, q
(1)
k,k+1, q

(2)
k,k+1, and qk,k,

respectively, such that qk,k−1 + q
(1)
k,k+1 + q

(2)
k,k+1 + qk,k = 1. They are given in

terms of µ = µ1 + µ2, λ1, λ2, and the action parameters a(k,1) and a(k,2) of
the CAC as follows:

qk,k−1 =
kµ

λ1 + λ2 + kµ
1 ≤ k ≤ K (1)

q
(1)
k,k+1 =

λ1a(k,1)

λ1 + λ2 + kµ
0 ≤ k ≤ K − 1 (2)

q
(2)
k,k+1 =

λ2a(k,2)

λ1 + λ2 + kµ
0 ≤ k ≤ K − 1 (3)

qk,k =
λ1(1 − a(k,1)) + λ2(1 − a(k,2))

λ1 + λ2 + kµ
0 ≤ k ≤ K, (4)

where

a(k,1) =

{
0 if a new call is rejected

1 if a new call is admitted

a(k,2) =

{
0 if a hand-off call is rejected

1 if a hand-off call is admitted

when k calls are present in the cell (0 ≤ k ≤ K−1), and a(K,1) = a(K,2) = 0.
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Since qk,k
′ = q

(1)

k,k
′ = q

(2)

k,k
′ = 0 for |k − k

′ | > 1, the Markov chain is a birth-

and-death process. Assuming that the chain is ergodic, let pk,j; 0 ≤ k ≤ K,
0 ≤ j ≤ 2, be the steady state probability for the chain to be in state (k, j).
Then we have the set of balance equations:

pk,j =





(
2∑

i=0

pk+1,i

)
· qk+1,k + pk,0 · qk,k j = 0

(
2∑

i=0

pk−1,i

)
· q(1)

k−1,k + pk,1 · qk,k j = 1 ,

(
2∑

i=0

pk−1,i

)
· q(2)

k−1,k + pk,2 · qk,k j = 2

(5)

and the normalization condition:

K∑

k=0

2∑

j=0

pk,j = 1. (6)

Let p̃k,j be the steady state probability of state (k, j) at an arbitrary
point in the continuous-time domain. Then, from the theory of semi-Markov
processes [7, Section 9-1], we have

p̃k,j =
pk,j · ηk

η
0 ≤ k ≤ K, 0 ≤ j ≤ 2, (7)

where

ηk =
1

λ1 + λ2 + kµ
(8)

is the mean sojourn time in state (k, j), and η is the average time interval
between the successive points of state transitions, given by

η =

K∑

k=0

2∑

j=0

pk,j · ηk (9)

2.2 Call admission control policy

Accidents that ongoing conversations are forcibly terminated generally dis-
please the user more than initial access failures. Thus it makes sense that
we weight different rejection costs for new calls and hand-off calls and that
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we try to minimize the average cost per unit time over the long term. The
cost should quantify the strength of stress that a rejected user feels.

A policy that rejects a new call even if there are available channels may
reject fewer hand-off calls on average than another policy that accepts a
new call whenever there are available channels. Here, the “policy” means
an action to take in every state. Finding the optimal policy is the goal of
our CAC policy. In other words, the optimal choice of actions (accept or
reject a call) is made in each state to minimize the average cost per unit
time over the long term.

In order to find the optimal policy, we employ a semi-Markov decision
process as in [5]. The process is observed when a conversation is completed,
a calling user goes out of the cell, a new call is placed, or a hand-off call
arrives. If we assume that each of these events occurs in a Poisson pro-
cess, the intervals between two successive observation points, called decision
epochs, are exponentially distributed. After observing the process, a deci-
sion is made according to the policy and the corresponding cost is incurred
as a consequence of the decision made. The set of possible states in the
process is denoted by

I = {x = (k, j) | 0 ≤ k ≤ K, 0 ≤ j ≤ 2}\{x = (K, 0)}, (10)

where state x = (k, j) is defined in Section 2.1.
Suppose that the cost function is given by

Cx(ak) = (1 − ak)γj x = (k, j), (11)

where ak = (a(k,1), a(k,2)) is the action pair. Cx(ak) represents the immedi-
ate cost incurred until the next decision epoch if action ak is chosen at state
x = (k, j). γj quantifies the strength of stress which a rejected user feels at
state x = (k, j), where we let γ0 = 0.

The expected time until the next decision epoch in state x is given by

τx =
1

λ1 + λ2 + kµ
x = (k, j). (12)

The transition probability from state x = (k, j) to state x

�

if action ak

is chosen at state x is given by
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P
x,x

� (ak) =





qk,k−1 x

�

= (k − 1, 0)

q
(1)
k,k+1 x

�

= (k + 1, 1)

q
(2)
k,k+1 x

�

= (k + 1, 2)

qk,k x

�

= x

0 otherwise

x = (k, j) (13)

Now, the value-iteration algorithm of a semi-Markov decision process
is applied to our CAC in order to determine the optimal policy. To do
so, we convert the semi-Markov decision model into a discrete-time Markov
decision model such that the average costs per unit time over the long term
of each stationary policy are the same in both models. This is done by a
method called uniformization [8, Section 3.4].

For the conversion, we choose a time unit τ in the discrete-time model
such that

0 ≤ τ ≤ min
x∈I

τx =
1

λ1 + λ2 + Kµ
.

Then a decision epoch occurs in time τ with probability τ/τx and it does not
with probability 1 − τ/τx. The transition probabilities in the discrete-time
model are given by

P̄
x,x

� (ak) =





τ

τx
P
x,x

� (ak) x

�

6= x = (k, j)

τ

τx
P
x,x

� (ak) +

{
1 − τ

τx

}
x

�

= x = (k, j)

. (14)

If the current state is x = (k, j) and action ak is chosen, the average cost per
unit time until the next decision epoch is given by Cx(ak)/τx. The quantity
Vn(x) is introduced as the minimal total expected cost with n steps left to
the time horizon when the current state is x in the discrete-time process.
Since the goal is to minimize the average cost per unit time over the long
term, we must go backward in the time axis until the one-step difference
Vn(x) − Vn−1(x) converges to the minimal average cost per unit time.

The value-iteration algorithm to find the optimal policy in the discrete-
time model is described as follows:

1. Choose V0(x) such that 0 ≤ V0(x) ≤ 1

τx
min
ak

{Cx(ak)} for all x =

(k, j) ∈ I. Set n := 1.
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2. Compute for x = (k, j) ∈ I

Vn(x) = min
ak


Cx(ak)

τx
+

τ

τx

∑

x

�

∈I

P
x,x

� (ak)Vn−1(x
�

) +

{
1 − τ

τx

}
Vn−1(x)




(15)
and determine the action ak that minimizes the right-hand side of
(15).

3. Compute the upper and lower bounds of the one-step difference by

Mn = max
x∈I

{Vn(x) − Vn−1(x)} and mn = min
x∈I

{Vn(x) − Vn−1(x)}
(16)

4. If 0 ≤ Mn − mn ≤ εmn, then stop the algorithm with the optimal set
of actions for all x. Otherwise n := n + 1 and go to step 2.

Here, ε is a prespecified small positive constant (tolerance number) for stop-
ping the iteration. In our numerical experiments, the algorithm had conver-
gence with ε = 10−3.

Once the optimal policy {ak = (a(k,1), a(k,2)); 0 ≤ k ≤ K − 1} is deter-
mined, we can obtain the steady state probabilities pk,j and p̃k,j ; 0 ≤ k ≤
K, 0 ≤ j ≤ 2, as shown in Section 2.1.

3 Performance Measures

In this section, we introduce some performance measures in order to compare
the CAC model with various ratios γ2/γ1 and the non-CAC model. Namely,
we will use the probability of blocking new calls and the probability of forced
termination of hand-off calls. We also consider the channel utilization as a
measure of effective use of the channels.

3.1 Blocking and forced termination probabilities

There are two situations which irritate users. One is that users who newly
try to call someone are rejected by the system due to no available channel
(i.e., blocking new calls). The other is that users who are on the phone and
crossing the cell boundary are forcibly broken off (i.e., forced termination of
hand-off calls). Therefore, we consider the probability of blocking new calls
and the probability of forced termination of hand-off calls as performance
measures from the user’s viewpoint.
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If a new call is placed in a cell and the action pair that follows the CAC
policy is “reject”, it results in the blocking of the new call. If a hand-off
call arrives in a cell and it is rejected according to the CAC policy, it means
the forced termination of the hand-off call. It is assumed that new calls and
hand-off calls arrive according to Poisson processes independently. Let Pb

represent the probability of blocking new calls and let Pf be the probability
of forced termination of hand-off calls. Using the PASTA (Poisson Arrivals
See Time Averages) property [7, Section 11-2], we have

Pb =
∑

a(k,1)=0

2∑

j=0

p̃k,j (17)

Pf =
∑

a(k,2)=0

2∑

j=0

p̃k,j, (18)

where p̃k,j ; 0 ≤ k ≤ K, 0 ≤ j ≤ 2 is the steady state probability for the
number of calls in a cell at an arbitrary time, given in equation (7).

3.2 Channel utilization

Another performance yardstick is the channel utilization. Channel capacity
is the maximum number of available channels, that is, the multiple access
capability K, stated in Section 2.1. Let N be the average number of channels
in use at an arbitrary time. It is given by

N =

K∑

k=0

2∑

j=0

k · p̃k,j . (19)

Then the channel utilization U is given as the ratio of the average number
of channels in use to the channel capacity as

U =
N

K
. (20)

It is obvious that U = 1 is an ideal situation from the system operator’s
viewpoint of channel usage.

4 Numerical Experiments

Numerical experiments have been carried out in order to evaluate to what
degree our CAC scheme has an impact on the performance of voice traffic. It
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has been assumed throughout our experiments that the average call holding
time is 1/µ1 = 1.5 (minutes) and that the average cell residence time is
1/µ2 = 5 (minutes). The number of channels is assumed to be K = 22; see
Appendix for this choice.

We examine the effectiveness of the CAC by means of the blocking and
forced termination probabilities for the new and hand-off calls, respectively,
as well as the channel utilization. In the legend of the figures shown below,
the “non-CAC” means the result when the optimization of action is not
made. For the CAC cases, “ratio = 1” means that the cost of rejecting new
and hand-off calls is the same (γ2/γ1 = 1), “ratio = 10” and “ratio = 100”
mean that the rejection of hand-off calls gives users 10 and 100 times more
stress (cost) over new calls (γ2/γ1 = 10 and 100), respectively.

4.1 Calculation of the hand-off call arrival rate

Suppose that the network consists of independent and statistically identical
cells. Then the inbound hand-off rate can be considered equal to the out-
bound rate to adjacent cells. Given the steady state probabilities for the
number of simultaneous calls in the cell, the inbound hand-off rate λ2 from
neighboring cells can be determined by the fixed-point method [2, 3]. By
this method, the algorithm to calculate the rate λ2 is given as follows:

1. Initialize λ2 = 0.

2. Calculate p̃k,j; 0 ≤ k ≤ K, 0 ≤ j ≤ 2 as shown in Section 2.

3. Compute

λ2 =
K∑

k=0

2∑

j=0

(kµ2) · p̃k,j. (21)

4. Repeat steps 2 and 3 until λ2 converges.

We note that the value-iteration, stated in Section 2.1, is conducted during
step 2 with the interim value of λ2 to get the optimal policy ak for the CAC
model. In our experiments, we have used

τ =
1

λ1 + λ2 + 2Kµ
(22)

for the value-iteration algorithm.
With the value of hand-off rate λ2 that has converged, we have the

relation
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λ2 = KUµ2, (23)

which is reasonable as KU = N is the average number of channels being
used at an arbitrary time.

We omit plotting λ2 as a function of λ1 as λ2 is proportional to the
channel utilization U shown in Figure 5 below. From Figure 5 we can say
that the hand-off rate λ2 is less for the CAC model with larger ratio γ2/γ1,
because new call arrivals are more often blocked then in order to reserve
more channels for accepting hand-off calls.

4.2 Performance results and discussion

Before discussing the performance measures, let us look at the optimized
action at decision epochs. Our optimization has resulted in a(k,2) = 1 for
0 ≤ k ≤ K−1, i.e., hand-off calls are always admitted as far as channels are
available. On the other hand, there exists an upper bound for the number
of available channels over which new calls are blocked in the CAC model.
Such bound depends on the ratio γ2/γ1.
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Figure 2: Number of channels allowed to new calls.

Figure 2 shows that the maximum number of channels, kmax, allowed
to new calls as a result of optimization, where

kmax = max
0≤k≤K

{k | a(k,1) = 1}. (24)
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For the CAC models with given ratios γ2/γ1, kmax decreases monotonously
as a function of λ1. This implies that fewer channels can be used by new
calls as the traffic increases. For a given level of λ1, kmax is less for larger
γ2/γ1, which represents the effects of our CAC.
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Figure 3: Blocking probability of new calls.

Figure 3 shows the blocking probability Pb of new calls as a function
of the new call arrival rate λ1. Since our CAC restricts new calls for the
benefit of hand-off calls, it is reasonable that the larger the ratio γ2/γ1, the
larger the blocking probability. For example, the blocking probabilities after
implementation of the CAC with γ2/γ1 = 10 and γ2/γ1 = 100 are 2.7 and
6.4 times larger, respectively, than that under the non-CAC at λ1 = 6.

In Figure 4, we plot the forced termination probability Pf of hand-off
calls as a function of the new call arrival rate λ1. As hand-off calls have
great advantage over new calls under the CAC with large ratios, the forced
termination probabilities are smaller under the CAC with larger ratio. Let us
note that the forced termination probability drops at λ1 = 10 for γ2/γ1 = 1,
λ1 = 8 and 13 for γ2/γ1 = 10, and λ1 = 11 and 15 for γ2/γ1 = 100. The
reason is that the number of available channels under which the optimal
policy rejects new calls is decremented by one at those arrival rates as shown
in Figure 2. However the forced termination probability increases at λ1 = 7
for γ2/γ1 = 100, although the optimal policy starts rejecting new calls here
too. The reason may be that the increasing rate of hand-off calls outperforms
the effect of rejecting new calls.

We should not overlook the difference in the effects of CAC at low and
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Figure 4: Forced termination probability of hand-off calls.
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high load conditions. Because the blocking probabilities whether under the
CAC or non-CAC are very large at heavy load, the effect of CAC at heavy
load is relatively small compared with that at light load in Figure 3. On
the other hand, the effect of CAC on the forced termination probabilities at
heavy load is larger than that at light load in Figure 4.

Figure 5 shows the channel utilization. Channel utilization values under
the CAC with γ2/γ1 = 1, 10, and 100 is 97.4, 90.4, and 82.6%, respectively,
of the value under the non-CAC at λ1 = 16. Thus channels are slightly less
utilized under the CAC than under the non-CAC. This is a negative effect
of CAC on the channel utilization, but it leads to the great reduction in the
probability of forced termination of hand-off calls as shown in Figure 4.

5 Concluding Remarks

In this paper, we have proposed a CAC scheme for voice traffic and ana-
lyzed its effects for cellular mobile communication networks. Our problem
has been modeled by a two-dimensional Markov chain, a semi-Markov pro-
cess, and a (semi-)Markov decision process. According to the numerical
experiments, our CAC reduces significantly the forced termination proba-
bility of hand-off calls, while it marginally increases the blocking probability
of new calls and suppresses the channel utilization.

As usual with optimization by (semi-)Markov decision processes, the
computational time may prohibit the application of our CAC to the dy-
namic control of real systems. However, our results could be used as a
benchmark against those by quick approximate optimizing methods.
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Appendix: Multiple Access Capability

This appendix presents an approximate method for evaluating the error
probability of a voice packet as a function of the multiple access capability
(MAC) K, the maximum number of simultaneous users. This is used to
choose the value of K in our numerical experiments (given in Section 4)
when the packet error probability (PEP) is the QoS requirement.

The direct-sequence code division multiple access (DS-CDMA) is consid-
ered as a multiple access technique. It is an averaging system which reduces
the interference by averaging the signal power over a long time interval.
Therefore, the more multiple DS signals overlap in time and frequency the
noisier the received signal is, resulting in the degradation of QoS. To guar-
antee various QoS requirements, we must adjust the MAC values for each
type of users. For the voice traffic, we consider only the PEP of the voice
packet as a specified QoS requirement.

Various approximation techniques for the bit error probability (BEP)
have been developed for the DS-CDMA radio system using binary phase
shift keyed (BPSK) signaling. In [9], expressions are developed for the mul-
tiple access interference (MAI) and the upper and lower bounds are given on
the average error probability for a direct-sequence spread spectrum multiple
access (DS-SSMA) system. An accurate approximation, called “improved
Gaussian approximation,” is subsequently presented in [10]. Another ap-
proximation that is simpler but maintains the same accuracy is proposed in
[11], which is further simplified in [12]. Here, we employ an approximation
given in [12], which simplifies the improved Gaussian approximation while
maintaining the same accuracy.

It is assumed that interfering signal sequences are random and that MAI
is the only source of bit errors. Suppose that the ratio N = Tb/Tc is a
constant, where Tb is the duration of each encoded data bit and Tc is the
duration of each chip in the signal sequence, and that the system has K
simultaneous users. It is well known that the BEP can be approximately
calculated by finding the average signal-to-noise ratio (SNR) x and using
the Q function
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Q(x) =
1√
2π

∫ ∞

x

exp(−u2

2
)du. (A.1)

According to [12], the simplified improved Gaussian approximation yields
results close to the improved Gaussian approximation as long as the BEP
is larger than about 10−6. If the mean µ and standard deviation σ of the
distribution of the MAI are available, the BEP is given by

BEP(K) =
2

3
a +

1

6
b +

1

6
c, (A.2)

where

a = Q

(√
N2

µ

)
; b = Q

(√
N2

µ +
√

3σ

)
; c = Q

(√
N2

µ −
√

3σ

)
. (A.3)

The values for µ and σ2 are given by

µ = (K − 1)
N

3
; σ2 ≈ (K − 1)

23N2

360
. (A.4)

Let us now consider the PEP using the above BEP. We can express the
PEP in a closed form if we ignore the bit-by-bit error dependency for ease of
computation. Suppose that one packet length is L bits and the block error
correction capability is incorporated into the data packet which can correct
t or fewer bits. Then the PEP is given by

PEP(K) = 1 −
t∑

i=0

(
L
i

)
BEP(K)i(1 − BEP(K))L−i (A.5)

This equation yields the MAC, K, for voice call users so that PEP(K) sat-
isfies the QoS requirement PEP(K) < 10−2.

The IS-95 air interface [13] says that the signal at a rate of 19.2 Kbps
is spread with an orthogonal Walsh code at a rate of 1.2288 Mcps, that is,
N = 1228.8/19.2 = 64. Data packets to be transmitted are first grouped
into 20 millisecond frames. If exactly one packet is transmitted in a frame
and the bit rate is 14.4 Kbps, the packet length L is 14.4 × 20 = 288 bits.
Furthermore, it is assumed that each packet has the block error correction
capability that can correct two or fewer bit errors (t = 2).

We have discussed that K is dependent on system parameters and the
specified QoS requirement. The system has to ensure that the PEP of trans-
mitted data packets never violates the specified QoS requirement. Referring
to Figure 6, obtained by equation (A.5), we find K = 22 as the number of
simultaneous users such that the PEP is about 10−2.
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Figure 6: PEP versus MAC.
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