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Abstract 
 
 
Over 70% of people with REM-Sleep Behaviour Disorder (RBD) will go on to develop one of the 
neurodegenerative alpha-synucleinopathies within 12 years, most commonly Parkinson’s disease 
(PD). Symptom-tracking remains the dominant clinical approach to RBD prognosis due to sub-optimal 
specificity/sensitivity of pathology-detection methods and inadequate prognostic biomarkers of 
disease progression. In particular, there have been limited efforts to explore combinations of 
biomarkers. 
 
The primary aim of this thesis was to identify novel prognostic biomarkers of RBD phenoconversion to 
PD. Frequentist statistical analysis was used to closely examine differences between groups and 
identify potential individual biomarkers, while machine learning was enlisted to develop a prognostic 
model to combine biomarkers and predict RBD prognosis. 
 
A multi-modal data collection approach was taken to deeply phenotype Control (n=19), isolated RBD 
(n=16) and early-stage PD (n=17) participants. Non-invasive phenotyping methods were chosen due 
to their applicability to the clinical setting. Data types ranging from motor assessments, participant 
reported outcome measures and electrophysiological data (EEG, ECG, EOG) were collected, to 
compare modalities. It was additionally hypothesised that electrophysiological investigations would 
be able to detect subtle signs of neurodegeneration that might not be captured by broad clinical 
assessments and questionnaires.  
 
The main results of this thesis include replication of previous findings in similar cohorts – for example, 
olfactory dysfunction, increased depressive symptoms and minimal changes to sleep 
macroarchitecture in RBD and PD groups. Novel analyses of heart rate variability, eye movements and 
REM microstates in the three groups are reported in this thesis, with some avenues laying promising 
foundations for future research. Novel analytical techniques were used for EEG microarchitecture 
analysis, and this is one of the first studies to report the use of machine learning classifiers for 
prognostic prediction in an RBD cohort. 
 
Generally, standardised clinical assessment measures proved to have the greatest prognostic power 
for distinguishing early-stage PD from Controls in this relatively small cohort. However, 
electrophysiological features may hold value for stratification of RBD phenoconverters according to 
disease outcome. The work detailed in this thesis provides direction for future, longitudinal studies in 
larger cohorts. 
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Chapter I: Background 
 
The path from health to disease is complex and often the result of hundreds of cellular, systems and 

psychosocial processes. What prompts a cascade of dysfunction in one person can leave their 

counterpart unchanged. To predict disease progression, we need to not only understand inherent 

physiology and the external determinants of health – we also need to appreciate the far-reaching 

impacts of the predictions. This thesis explores the uncertain journey from sleep disorder to 

movement disorder by developing a framework for integration of clinical, psychological and 

physiological datastreams with a view to improving diagnostic and prognostic accuracy in prodromal 

Parkinson’s disease.  

 

The aim of this introduction is to give a broad overview of Parkinson’s disease and REM Sleep 

Behaviour Disorder and to highlight the current challenges that face clinicians, researchers and people 

with these conditions. 
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Parkinson’s Disease 

Parkinson’s Disease (PD) is one of the most common neurodegenerative diseases. Worldwide, it is 

estimated to impact over 8.5 million people (Ou et al., 2021) although prevalence and awareness 

differs regionally. PD is usually diagnosed between the ages of 50-80 (Pagano et al., 2016) and is a 

chronic, non-fatal condition that people live with for many years: thus incidence is far lower than 

prevalence. As with other neurodegenerative conditions, the trend of increasing lifespan has meant 

PD now represents a large burden on our societies (GBD 2016 Parkinson’s Disease Collaborators, 

2018).   

 

PD is best-known as a movement disorder and the first descriptions of PD-like illnesses centre variably 

on the most prominent symptoms of this disease: resting tremor, slowness of movement and stiffness. 

The earliest written descriptions of PD-like symptoms appear in the ancient India Ayurvedic medical 

text Charaka Samhrita in 2400BP, detailing a disease named kampavata characterised by drooling, 

tremors, depression and movement problems (Blonder, 2018). On the cusp of pre-classical history, 

descriptions of PD-like symptoms appear in the Chinese medical text The Yellow Emperor’s Classic of 

Internal Medicine (425–221BC), detailing symptoms of stooped shoulders, tremor, stiffness and 

staring of the eyes (Blonder, 2018); around the same time the Greek Erasistratus of Ceos in c.300BC 

described paradoxos, wherein a person walking would suddenly freeze and could not restart (Craig, 

2015). Further accounts of PD symptoms were documented by defining polymaths of post-classical 

(Galen) and modern (Da Vinci) history periods (Blonder, 2018). Awareness and occurrence of PD in 

cultures without recorded or written histories is much harder to trace but suffice to say that symptoms 

of PD appear common across the globe throughout history. Historically, PD was a rare condition as its 

onset occurs in later life and the life expectancy in the pre-modern eras was far lower. This goes some 

way to explain the sporadic references to PD-like symptoms in medical texts. 

 

It was in 1817 that James Parkinson consolidated the cluster of symptoms reported across history into 

one condition, named the paralysis agitans (shaking palsy). In 1884 Charcot proposed rigidity be 

considered a core feature of the shaking palsy and renamed the condition Parkinson’s disease 

(Blonder, 2018). From this time onward, the treatment of PD became formalised and an interest in 

studying the condition developed. PD research has accelerated rapidly in recent decades, owing to 

advances in technology. Yet there is still much progress to be made: up to 20% of people with PD do 

not respond to first-line medications (levodopa) and acute and progressive side effects are common 

to PD medication use (Rizek et al., 2016). Of the 15 compounds approved by the FDA for PD treatment 
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since 1999, none are disease modifying or curative, and the majority focus on motor symptoms of the 

disease (Boucherie et al., 2021). 

PD Pathology  
The widespread cellular dysfunction and death which characterises PD can be traced to the misfolding 

of the alpha-synuclein protein. Naturally, surrounding this neat narrative are many unknowns. 

 

A Brief History of the Synucleins 
Synuclein proteins were independently identified by several research teams, each investigating 

seemingly unrelated neurophysiological processes. In 1988, Maroteaux et al. identified and localised 

a protein, synuclein, to the neuronal presynapse and inner nuclear membrane in torpedo californica 

(Maroteaux et al., 1988). They noted that the highly repeated structure of the protein made it unlikely 

to be an enzyme and the localisation suggested synuclein may play ‘distinct, unrelated functions in 

spatially distant cellular locations’ and would likely coordinate or regulate nuclear and synaptic events 

(Maroteaux et al., 1988). 

 

Two years later, Nakajo et al. purified and characterised a 14kDa protein from bovine, rat and human 

cerebral cortex tissue (Nakajo et al., 1990), which they later named phosphoneuroprotein 14 (PNP 

14), due to the fact the protein could be phosphorylated by CAMKII (Nakajo et al., 1993). Given that 

phosphorylation regulates most neuronal proteins (Walaas & Greengard, 1991) this characteristic of 

the protein could be expected, but the regulation by CAMKII hinted at functions related to synaptic 

plasticity and learning processes (Nakajo et al., 1993). Immunoblot analysis identified PNP 14 in 

cerebral tissue of carp, snake, bullfrog and chicken, demonstrating the protein was highly conserved 

across species and thus, the authors concluded, likely to be essential for some neural function (Nakajo 

et al., 1993). In the same year, Uéda et al. isolated the non-Aβ component of AD amyloid precursor 

(NACP) protein from human Alzheimer’s disease amyloid deposits (Uéda et al., 1993), implicating the 

protein in pathological aggregation and neurodegeneration. George et al. would later identify the 

presynaptic protein synelfin, whose expression was regulated according to the zebrafinch’s critical 

song learning period (J. M. George et al., 1995), again hinting to a potential role in synaptic plasticity.   

 

Finally, the multiple identities of the protein were consolidated under α-synuclein. Jakes et al. had 

sequenced two proteins, 134 and 140 amino acids in length respectively, from both control and 

Alzheimer’s disease cerebral cortex (Jakes et al., 1994). The larger protein, homologous to Uéda’s 

NACP and orthologous to George’s synelfin, was named α-synuclein, while the smaller 134 amino acid 

protein, orthologous to Nakajo’s PNP 14, was named β-synuclein. The work of Jakes et al. established 

the synuclein protein family, to which γ-synuclein was later added (Lavedan et al., 1998) and shown 
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to be orthologous to Maroteaux’s synuclein. The genes for these three proteins (SNCA, SNCB and 

SNCG) map respectively to chromosomes 4q21.3–q22, 5q35 and 10q23 (Lavedan et al., 1998; 

Spillantini et al., 1995).  

 

There is high homology between the synucleins’ amino acid (aa) sequences (Sung & Eliezer, 2007). Key 

features of the synuclein sequences include an N-terminal domain (aa1-60) which contains several 

imperfect residue repeats each 11aa in length, the central NAC-region (aa61-95) and the highly acidic 

C-terminal domain (aa96) (Doherty et al., 2020; Sung & Eliezer, 2007). 

 

The aa sequence of the synucleins determines a natively unfolded, or intrinsically disordered, protein 

under physiological conditions (Hayashi & Carver, 2022). Thus, their structure is not limited to a 

particular conformation and instead they are able to reversibly bind to a variety of partners under a 

variety of conditions. Additionally, the charge distribution across each protein is sensitive to 

environment pH and ionic composition (Doherty et al., 2020). The intrinsically disordered structure of 

the proteins therefore explains the vast number of functions throughout the body which have been 

identified for the synuclein proteins. 

 

Alpha-Synuclein in Health & Disease 
In the ~30 years since the synucleins were first identified, we have gained a good understanding of 

their roles in disease and, often by inference, their roles in health. Table 1.1 details the identified 

‘healthy’ functions of each protein. The similar structure of the synuclein proteins is evidenced by their 

similar functions, with sharing of protein-binding partners leading to a degree of functional 

redundancy within the family (Sung & Eliezer, 2006). 
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Synuclein Expression Function Reference 

Alpha 

Presynaptic terminals Regulation of vesicle trafficking 
(Burré et al., 2014; K.-

W. Lee et al., 2011; K. J. 
Vargas et al., 2014) 

Cell Nucleus (Neuron) Transcription regulation (Wales et al., 2013) 

Immune system 
Induces immune response 

(‘alarmin’) 
(Alam et al., 2022) 

Beta Presynaptic terminals 
Co-localises with alpha-synuclein; 

regulation of vesicle trafficking 
(J.-Y. Li et al., 2002; 
Ninkina et al., 2021) 

Gamma 
Presynaptic terminals Regulation of vesicle trafficking (Ninkina et al., 2012) 

Adipocytes 
Protein chaperone; regulation of 

lipid storage 
(Millership et al., 2013) 

Table 1.1: Expression and functions of the synuclein family proteins. 

 

Not long after the synuclein family was identified, before the function of alpha-synuclein was 

comprehensively explored, it was already hypothesized to play a part in PD. Genotype analysis of the 

oft-researched Italian PD kindred (Golbe et al., 1996) revealed recombinations in the previously 

identified location of the alpha-synuclein gene (Nussbaum & Polymeropoulos, 1997). The same year, 

alpha-synuclein was then identified to be the core component of Lewy bodies, the characteristic 

inclusion bodies of aggregated protein seen in PD neural tissue (Spillantini et al., 1997). One year later, 

Spillantini et al. showed alpha-synuclein was the core aggregate in Multiple System Atrophy (MSA) 

and Dementia with Lewy Bodies (DLB) (Spillantini et al., 1998). The misfolding and aggregation of 

alpha-synuclein is therefore not unique to PD and is the pathological basis for a range of other diseases 

known collectively as the synucleinopathies. 

 

Alpha-synuclein became the focus for synucleinopathy research and the legacy of these discoveries 

can be seen in the resource distribution inferred from publications across the synucleins between the 

years of 1993-2022: 

• gamma-synuclein: 624 publications 

• beta-synuclein: 3050 publications 

• alpha-synuclein: 15,005 publications 

accessed via Pubmed, 26.07.22 

While the intrinsically disordered structure of the synucleins enables their multitude of functions 

throughout the body, it is also the unique feature which engenders the pathological misfolding of 

alpha-synuclein. Membrane-bound alpha-synuclein has an alpha-helix structure, but unbound alpha-

synuclein is natively unstructured (Mehra et al., 2019). Under certain conditions, these unstructured 
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monomers begin to misfold into pre-fibrillar oligomers, which in turn misfold into beta-sheet-rich 

fibrillar aggregates (Mehra et al., 2019) (Figure 1.1).  

 

These fibrils aggregate together, eventually forming cellular inclusions such as Lewy Bodies and Lewy 

Neurites (Mahul-Mellier et al., 2020). Pathological alpha-synuclein can transfer between cells and can 

induce misfolding in ‘non-pathological’ unbound alpha-synuclein proteins (J. Y. Vargas et al., 2019; 

Volpicelli-Daley et al., 2014), explaining the progressive pathology and disease presentation of the 

synucleinopathies.  

Figure 1.1: Pathological alpha-synuclein aggregation and misfolding A) Process of pathological 

alpha-synuclein aggregation and Lewy pathology. Lewy body histology image from (Menšíková et al., 

2022); Lewy neurite histology image from (CC License, 2010). B) PD Lewy pathology localisation in 

neurons. Informed by (H. Braak et al., 1999; Mehra et al., 2019; Spillantini et al., 1997). 

 

The brain regions and neurotransmitter systems involved vary both between and within the alpha-

synucleinopathies, resulting in a spectrum of disease phenotypes. Although the initial spread of alpha-

synuclein pathology can be reliably predicted using Braak staging (H. Braak et al., 2003) – 
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demonstrating a ‘peripheral-onset’, caudorostral spreading and seeding progression from peripheral 

nerves to the brainstem – the distribution of alpha-synuclein pathology within subsequent subcortical 

and cortical structures is less predictable. For instance, PD is characterised by extensive death of 

dopaminergic neurons in the Substantia Nigra pars compacta; a pathological feature less prominent 

in LBD (Piggott et al., 1999). Some PD patients experience vivid visual and presence hallucinations, 

while other PD patients will never experience these (Taddei et al., 2017).   

 

That alpha-synuclein is a synaptic protein with multiple functions and expression patterns throughout 

the central nervous system (Emamzadeh, 2016) goes some way to explaining the variation between 

and within alpha-synucleinopathy phenotypes. However, to date there is no coherent explanation for 

what drives specific patterns of alpha-synuclein pathology within the cerebrum. One hypothesis is that 

alpha-synuclein is in fact a protein of prion classification with the potential to misfold into multiple 

pathological configurations, each of which provides a unique dysfunction within specific cell types and 

subsequently a unique syndrome (Peelaerts et al., 2015). Another unknown in the field of alpha-

synucleinopathies is the triggering event for spontaneous alpha-synuclein misfolding, i.e. is it lifelong 

or induced by some environmental factor, which further complicates our understanding and 

successful treatment of these diseases.  

 

Despite having distinctive symptom profiles and prognoses from one another, these diseases do share 

a template for the neurodegenerative course, wherein a long prodromal period, characterised by 

subtle physiological deficits, precedes the onset of gross and often aggressive global dysfunctions. 

Identifying these subtle dysfunctions which are not only predictive of, but also unique to, alpha-

synucleinopathies presents both an exciting and challenging opportunity to pre-empt and target 

mechanisms of future neurodegeneration.   

 

Alpha-synuclein in PD 
In PD, alpha-synuclein pathology is largely restricted to neuronal cell types and its localisation and 

progression can be described using the Braak staging system (H. Braak et al., 2003). Braak et al. 

proposed synuclein pathology is first detectable in the periphery (namely the vagus nerve and anterior 

olfactory nucleus), spreads to the brain stem via the vagus nerve then progresses from brainstem 

nuclei to subcortical and finally cortical regions (H. Braak et al., 2003) (Figure 1.2). Braak staging is not 

without its critics, and given the heterogeneity of PD it is likely Braak’s staging may only describe a 

subgroup of people with PD (Rietdijk et al., 2017) where pathology occurs ‘body-first’ rather than 

‘brain-first’ (Horsager et al., 2020). 
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Figure 1.2: Braak staging of PD. Informed by (H. Braak et al., 2003, 2006). Stage I is characterised by 

synuclein pathology in the enteric nervous system, vagus nerve, olfactory nucleus and medulla. The 

spread from the periphery is shown with green shading of the gut and vagus nerve. Stage II 

demonstrates synuclein pathology in the pontine nuclei including the reticular formation and locus 

coeruleus, and pathology in the Substantia Nigra pars compacta is evident by Stage III. Cortical Lewy 

pathology is evident in the temporal cortex (specifically hippocampal and entorhinal regions) by 

Stage IV, and spreads to the prefrontal and association cortices by Stage V. Stage VI is characterised 

by extensive pathology in all previous cortical regions and milder pathology in the primary 

somatosensory cortices.  

 

Synuclein pathology first causes cellular dysfunction through a myriad of processes, from decreasing 

ATP synthesis in the mitochondria to dislocating voltage-gated calcium channels and reducing 

neurotransmitter release (Bernal-Conde et al., 2020; Kulkarni et al., 2022). Cell death and formation 

of Lewy bodies and Lewy neurites then follow (Bernal-Conde et al., 2020; Kulkarni et al., 2022; 

Volpicelli-Daley et al., 2014). These alpha-synuclein-mediated dysfunctional processes are 

accompanied by neuroinflammation (Troncoso-Escudero et al., 2018) and tauopathy (Pan et al., 2021), 

which further feed into the degenerative process. 
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What is unique about PD is the highly specific degeneration of dopaminergic neurons – although this 

is seen to some extent in MSA and DLB, it is the starkest in PD (Piggott et al., 1999). The driver of this 

dopaminergic targeting is unknown but thought to be related to the presence of neuromelanin, a 

pigment which is prominent in catecholamine-rich neurons and is known for its iron-binding abilities 

(Nagatsu et al., 2022). Neuromelanin is derived from dopamine and incorporates other catecholamine 

metabolites, and is found within the soma in double-membrane organelles (Nagatsu et al., 2022). It is 

thought that alpha-synuclein aggregation leads to release of toxic levels of iron from degraded 

neuromelanin, resulting in a cascade of events and cell death (Jansen van Rensburg et al., 2021). Two 

of the most prominent nuclei to degrade in PD – locus coeruleus and substantia nigra pars compacta 

– contain the highest concentrations of neuromelanin in the brain, and the neuromelanin hypothesis 

goes some way to explain this selective degeneration.  

 

Other cell types and neurotransmitter systems also degenerate in PD – it is unknown whether these 

are also selectively targeted due to some species present in the cells or whether the degeneration is 

simply due to sporadic cell-to-cell transmission of pathological alpha-synuclein.  

 

PD Epidemiology 
PD can be inherited (familial) or acquired (sporadic). A minority of PD cases are familial (~15% 

(Kristiansen et al., 2019)) and can be caused by one or several mutations in over 28 chromosomal 

regions, including the alpha-synuclein SNCA gene (Klein & Westenberger, 2012). Sporadic cases tend 

to arise from the 6th decade of life onward and have been linked to many potential risk factors 

(Ascherio & Schwarzschild, 2016; Bellou et al., 2016).  

 

Biological risk factors for PD development include being male or post-menopausal and advancing age. 

Socioeconomic risk factors include both low levels of education and high socioeconomic status. Risk 

factors linked to direct or indirect substance consumption include high dairy intake, exposure to 

pesticides and solvents, methamphetamine use and alcohol misuse. Melanoma, traumatic brain injury 

and type 2 diabetes (but not high cholesterol) have been identified as risk factors. Evidence suggests 

exercising, caffeine intake, ‘healthy’ diets and NSAIDs may be neuroprotective against PD (above risk 

factors identified from (Ascherio & Schwarzschild, 2016; Bellou et al., 2016)). 

 

The evidence supporting different risk factors for PD is variable, and risk factors occur in variable 

combinations in different populations – making it difficult to predict what might cause PD 

development in one person compared to another. Many of the above risk factors are also hardly 
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specific for PD development, and rather are predictive of poor health and neurodegeneration in 

general, reflecting the influence and importance of our societies for our health. 

 

Developing PD 
PD has a long prodromal period, wherein low-specificity symptoms such as constipation, depression 

and hyposmia occur up to 20 years before any motor symptoms develop (Figure 1.3) (Kalia & Lang, 

2015; Postuma et al., 2012, 2019). The long prodromal period is supported by the Braak hypothesis – 

these early prodromal symptoms are accompanied by pathology in the peripheral nervous system, 

before pathological alpha-synuclein has spread to the regions of the brain responsible for movement 

(H. Braak et al., 2003).  

 

Figure 1.3: Timeline of PD symptom development from prodromal to advanced stages. From (Castilla-

Cortázar et al., 2020). 

 

Because these early prodromal symptoms are common in the general population and may be caused 

by many different factors, it is unreliable, and unethical, to diagnose someone with PD based off these 

differential symptoms alone. Attempts to define and standardise prodromal PD identification include 

the development of criteria for identifying prodromal PD in a research setting, which estimates a 

probability of prodromal PD for an individual based on presence of prodromal symptoms and PD risk 

factors (Berg et al., 2015). Nonetheless, a PD diagnosis can only be given once motor symptoms are 

present (Clarke et al., 2016), by which time significant neurodegeneration will have occurred. 
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PD Symptom Presentation 
The emergence and progression of PD symptoms (prodromal and established) can be understood 

when they are aligned with Braak staging (H. Braak et al., 2003). PD symptoms are broadly divided 

into two categories: motor symptoms and non-motor symptoms. PD diagnoses are made primarily on 

the presence of motor symptoms (Clarke et al., 2016), and as motor symptoms are the most physically 

noticeable these have become the defining features of PD. However, recognition of the non-motor 

symptoms of PD has increased in the past decade and these symptoms are fast gaining traction in 

clinical and research investigations of PD.  

 

The results chapters of this thesis (Chapters 3-7) explore motor and non-motor PD symptoms in depth, 

but they are summarised briefly below. 

 

Motor Symptoms 
The diagnostic motor symptoms of PD are slowness of movement (bradykinesia), muscle stiffness 

(rigidity), resting tremor and balance problems (postural instability) (Clarke et al., 2016). These 

symptoms manifest in different ways, from micrographia (small handwriting) to lack of facial 

expression (Parkinsonian Mask). Motor symptoms are usually mild and unilateral at disease onset, but 

as PD progresses bilateral involvement develops and motor symptoms worsen to become debilitating. 

People with advanced-stage or the more recently described Late-stage (Fabbri et al., 2020) PD may be 

unable to walk, speak clearly, balance without help or carry out large or fine motor movements (Goetz 

et al., 2007) making them dependent on carers and unable to communicate effectively (Varanese et 

al., 2011). 

 

Motor symptoms are largely the result of dopaminergic degeneration in the Substantia Nigra pars 

compacta (SNpc) of the basal ganglia, and therefore treatments which replicate the effects of 

dopamine are incredibly beneficial in treating motor symptoms.  

 

Although incredibly effective for many people with PD, dopamine-targeting PD treatments often do 

not fully resolve motor symptoms, suggesting dopamine dysfunction is not the only contributor to 

motor impairments. Indeed, synuclein pathology in the serotonergic dorsal raphe nucleus has been 

linked to severity of resting tremor (Doder et al., 2003, p. 11; Qamhawi et al., 2015), in-keeping with 

the modulatory effects of serotonin on basal ganglia activity (Vegas-Suarez et al., 2019). 
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Non-Motor Symptoms 
The non-motor symptoms of PD are varied and include constipation, hyposmia, autonomic 

dysfunction, cognitive impairment, sleep issues (including RBD and insomnia) and psychopathologies 

(including depression, anxiety, psychosis and hallucinations). Non-motor symptoms are the result of 

wide-ranging pathology throughout the brain and have unsurprisingly been linked to every 

neurotransmitter in the brain, from dopamine to serotonin to GABA (Moghaddam et al., 2017). Not 

only has PD pathology been identified in key neurotransmitter-associated nuclei, such as the 

noradrenergic locus coeruleus (Baloyannis et al., 2006; E. Braak et al., 2001) and cholinergic nucleus 

basalis of Meynert (Alexandris et al., 2020), causing direct dysfunction, but the neurotransmission 

imbalances that arise as a consequence of this pathology has knock-on effects for other 

neurotransmitter systems resulting in global neural dysfunctions (Moghaddam et al., 2017).  

 

Treating PD 
Treatments for PD centre on the dopaminergic depletion and motor symptoms inherent to the 

condition. Medications may provide an exogenous dopamine source to the brain (levodopa), may bind 

agonistically to dopamine receptors to replicate dopamine’s effects, or may prevent dopamine 

breakdown within the pre-synapse (MAO-B inhibitors) and post-synapse (COMT inhibitors). 

Anticholinergics may be prescribed to correct the imbalance of acetylcholine which arises from a 

depletion in dopamine in PD.  

 

Long term dopaminergic medication use can however cause side effects, with levodopa-induced 

dyskinesia (LID) being one of the most disabling. Almost ironically for a medication designed to reduce 

motor symptoms, the symptoms of LID are involuntary movements including chorea (rapid, irregular, 

writhing movements) and dystonia (excessive and painful muscle contraction causing sustained 

posturing) (B. Thanvi et al., 2007). 40-50% of people with PD will develop motor fluctuations or 

dyskinesias after 5 years of levodopa use, increasing to 70-80% of people with PD after 10 years (Rizek 

et al., 2016). It is recommended that levodopa treatment is minimised (as long as it is symptomatically 

appropriate) by delaying initiation or keeping dosage low, in order to reduce LID (Sun et al., 2020).  

In cases where PD symptoms are not responsive to medications (~20% of people do not respond to 

levodopa (Rizek et al., 2016)), or where medications lead to side effects such as LID, chronic 

interventions such as deep brain stimulation can be used to stimulate basal ganglia targets to replicate 

the effects of dopamine neurotransmission. Regular exercise, occupational therapy and medications 

such as anti-depressants can also help to alleviate motor and non-motor symptoms and improve 

quality of life for people with PD.  

 



 39 

Despite intensive research into PD causes and treatments, the most effective and broadly suited 

therapies available for PD remain variations of the drugs identified some 50 years ago (e.g. levodopa) 

(Fox et al., 2018). Despite their successes, these drugs do not delay motor symptom onset or alter 

mortality (Rizek et al., 2016). To date, there are no interventions for PD which prevent or delay disease 

development, slow pathology progression or cure the disease (Fox et al., 2018). Such interventions 

would be most effective if deployed either before or during the prodromal window of PD. However, 

identifying suitable recipients has been hampered by the limited specificity of prodromal symptoms.  

 

PD Prognosis 
PD prognosis depends on several factors including age of onset and severity of symptoms on diagnosis 

(Bäckström et al., 2018), making it hard to predict disease course for a single individual. Despite the 

progressive nature of PD, good treatment availability and access to health and social care support 

means that the majority of people diagnosed with PD in the UK can be well-managed long-term. 

Average life expectancy is estimated to be 10-15 years (Bäckström et al., 2018; De Pablo-Fernandez et 

al., 2017). Meta-analyses show people with PD have an elevated risk of mortality (2.56 Odds Ratio) 

(Clarke, 2010), although individuals with mild PD symptoms and normal cognitive function at diagnosis 

have been shown to have a mortality rate similar to Controls (Bäckström et al., 2018). The most 

common causes of death for people with PD are pneumonia, dementia and cardiac events, which can 

all be linked to PD pathology (Bäckström et al., 2018; P. Hobson & Meara, 2018).  

 

With no cure for PD and inevitable treatment limitations, an emphasis is placed on ‘living well with 

PD’ and ensuring people with PD have the opportunity to lead a high quality of life. By treating PD 

early on in the disease course,  symptoms can be alleviated and progression of the condition’s 

presentation can be slowed (Murman, 2012). Even though this does not alter the underlying pathology 

or slow the PD neurodegeneration, early treatment does offer an extended period wherein PD 

symptoms are minimal (Murman, 2012).  

 

In the UK, efforts to ‘live well with PD’ are hampered by austerity policies and law changes which 

redefine disability and restrict access to financial and social support for people with conditions such 

as PD (Parkinson’s UK, 2019a) and cut funding for healthcare services which people with PD rely upon 

(Parkinson’s UK, 2019b).  
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The PD Experience 
Quantitative positivist research (as the study detailed within this thesis is) can often overlook the 

personal experiences of illness; yet it can be argued that the expectations and experience of an illness 

are central to its outcome (Carr et al., 2001).  

 

The experience of PD is dependent on the society within which it is diagnosed and endured. 

Knowledge systems, standards of healthcare, science and health literacy of the general population 

and standards of living will all impact how illness and disease are understood, socially accepted and 

managed (Schiess et al., 2022). 

 

For example, in the Global North (Western, Educated, Industrialised, Rich, Democratic (WEIRD) 

countries), illness and disease are overwhelmingly understood from a mechanistic, biomedical 

perspective. The cause of PD is identified as pathological alpha-synuclein propagation, which leads to 

a series of loosely predictable symptoms and can be treated with medications or electrical stimulation 

to replicate what has been lost. This biomedical perspective of the Global North derives from the 

naturalistic interpretation of illness which is prevalent in India, southeast Asia, China and to, some 

extent, South America (Ibeneme et al., 2017). Naturalistic theories centre on the notion of balance 

and equilibrium within the living system and with its environment: illness and disease arise from 

imbalance, and treatment must seek to restore harmony. One example of this is seen in Traditional 

Chinese Medicine (TCM), which has no term for PD but instead describes and treats it based upon 

symptom patterns of deficiency and excess, such as yin deficiency of kidney and liver and wind tremors 

(Fan et al., 2022; Hongzhi et al., 2017). TCM reinstates equilibrium in PD with treatments such as 

acupuncture and Tai Chi (Fan et al., 2022). The biomedical and naturalistic interpretations of illness 

are antithetical to the personalistic interpretations of illness which are prominent in many cultures in 

South & Latin America, Africa and Oceania (Ibeneme et al., 2017). Illness and disease are understood 

to be caused by external, often supernatural agents who place illness upon an individual, or may be 

caused by the actions of the individual. Awareness of PD amongst the general population in these 

regions may be low due to limited healthcare resources and language proficiency (Fothergill-Misbah 

et al., 2021). Studies from several African countries show that while healthcare workers largely identify 

the cause of PD from the biomedical perspective (Kenya: Fothergill-Misbah et al., 2021; Tanzania: 

Mshana et al., 2011), causes of PD listed by members of the general population and traditional healers 

included a curse (Tanzania: Mshana et al., 2011; Ethiopia: Walga, 2019), witchcraft (South Africa: 

Mokaya et al., 2017; Tanzania: Mshana et al., 2011) and due to the person with PD killing a cat 

(Ethiopia: Walga, 2019).  
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The interpretation of illness, cultural values and health and social support all affect the PD experience 

(Fothergill-Misbah et al., 2022; Ghorbani Saeedian et al., 2014; Smith et al., 2020). This thesis is 

situated within the context of the Global North and the experience of participants with PD in this work 

will be shaped by UK society.  

 

The PD experience begins with early symptoms, medical investigations and receiving a diagnosis. The 

diagnosis itself can be life-shattering and deeply emotional: one person with PD interviewed in 

(Phillips, 2006) described the experience:  

 

‘when I was diagnosed, I remember just kind of crying that day. And coming home and looking up 

that word in the dictionary and it was like, well, I’m going to die with this disease.’ 

 

Themes of dread, anxiety for the future and the hope of a stable life were common amongst people 

with PD following their diagnosis (Phillips, 2006). When interviewed about living with PD long-term, 

symptoms are often at the forefront. Motor and non-motor symptoms have far-reaching impacts on 

people with PD: loss of sense of smell and tastes leads to reduced appetite and weight-loss, muscle 

stiffness means books cannot be held and read, apathy leads to less involvement in social activities 

and quiet or slurred speech make it difficult to be understood by others (Bonner et al., 2020). Many 

people with PD report a sense of loss in their identity and dignity as physical changes develop, they 

become more dependent on others and they become more socially isolated (Haahr et al., 2021; 

Sjödahl Hammarlund et al., 2018). Themes of shame, humiliation and stigma are common in 

interviews with people with PD (Haahr et al., 2021). Social identities such as gender also influence the 

extent to which different PD changes shape the disease experience (Solimeo, 2008). Despite the 

challenges, qualitative research consistently identifies themes of resilience, appreciation of life, 

positive mindset and hope for the future as being important for enduring the PD experience (Phillips, 

2006; Sjödahl Hammarlund et al., 2018; Wieringa et al., 2021).    

 

People with PD report a desire for early diagnosis, better treatments and a cure for their condition 

(Phillips, 2006; Schipper et al., 2014). Being able to identify PD at its earliest, prodromal stages allows 

for a cohort of people within whom treatments may be most effective or curative.  In a society where 

prevalence of PD is increasing due to increased life expectancy, but which also increasingly fails to 

support those with PD by continuing and expanding austerity policy, it has never been more important 

to advance PD research to identify and prevent the causes of the disease and its progression.  
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REM Sleep Behaviour Disorder 

REM Sleep Behaviour Disorder (RBD) was first identified as a prodromal symptom of PD in the seminal 

paper by Schenck et al. (Schenck et al., 1996), approximately 10 years after they first described RBD 

in the scientific literature (Schenck et al., 1987). However, RBD is a condition in its own right and can 

have many other causes beyond synucleinopathy.  

 

RBD is a chronic parasomnia specific to the REM sleep stage. Normative REM sleep is characterised by 

two distinct physiological phenomena: the absence of skeletal muscle tone (atonia) and the presence 

of rapid eye movements (REMs). However, in RBD there is a lack of REM atonia and individuals 

demonstrate increased minor (e.g. limb twitches) and major movements (dream enactment) during 

REM. Minor movements during REM sleep may be referred to as REM Sleep without Atonia (RSWA). 

Major motor events (dream enactment behaviours (DEBs)) are often reported to be violent in nature, 

and are associated with accompanying violent dreams (Olson et al., 2000). 

 

RBD Epidemiology 
Multi-cultural studies have found that RBD prevalence is around 1-2% in the general population (Haba-

Rubio et al., 2018; S.-H. Kang et al., 2013), although often these studies assess presence of RBD 

symptoms as opposed to further stratifying individuals according to cause of RBD behaviours. RBD 

typically presents after the age of 60 (Olson et al., 2000). 

 

RBD presents in-clinic with a ratio of ~9:1 for men vs. women (Olson et al., 2000). However, surveys 

of the general population do not report this same skewed ratio, with prevalence of probable RBD 

estimated to be 1:1 and RBD incidence occurring independent of biological sex (Haba-Rubio et al., 

2018). Investigations into underreporting of RBD by women therefore must be further undertaken, 

including exploring potential neuroprotective effects of oestrogen and social causes for 

underdiagnosis. 

 

RBD has traditionally been thought of as a brainstem-mediated sleep disorder, with dysfunction cited 

at the level of the glutamatergic pontine sublaterodorsal nucleus or GABAergic/glycinergic 

ventromedial medulla resulting in disinhibition of spinal motoneurons during REM and subsequent 

loss of REM atonia (Peever et al., 2014). Several processes have been identified which independently 

cause this breakdown in the brainstem REM atonia circuitry and lead to the behaviours seen in RBD. 

In healthy individuals, DEBs occur relatively frequently in stressed populations: namely students and 

in new mothers (Nielsen et al., 2009; Nielsen & Paquette, 2007), suggesting environmental/situational 
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factors are sufficient to induce an intrusion of muscle activation into REM sleep. However, whether 

the trigger for such DEBs is anxiety or sleep deprivation is yet to be investigated. A potential 

association between socioemotional disturbance and DEBs is further evidenced in cases of PTSD (Baird 

et al., 2018), wherein trauma-associated dream enactment is hypothesised to be the result of 

hyperarousal mechanisms, targeting both amygdaloid and cortical networks (Mysliwiec et al., 2018). 

Intense negative sleep emotion has also been linked to an increase in periodic limb movements during 

both NREM and REM sleep (Germain & Nielsen, 2003), further demonstrating the significant potential 

of emotion to override REM atonia mechanisms.  

 

Besides the influence of salient emotional states, RBD can be secondary to certain medications- the 

most common of which is the anti-depressant class selective serotonin reuptake inhibitors (SSRIs) 

(Winkelman & James, 2004). While depression is not directly associated with RBD onset, treatment 

using SSRIs can result in increased serotonergic tone, which in turn may interfere with mechanisms of 

tonic muscle activity during REM (Winkelman & James, 2004). However, as RBD may persist following 

cessation of SSRIs (Parish, 2007), it is possible that these medications in fact unmask an already 

underlying pathology and therefore the risk of further disease development remains high.  

 

Finally, RBD may be secondary to lesion, caused by trauma or neurodegeneration. RBD due to lesion 

is rare and most commonly associated with meningioma and subsequent disruption of pontine REM-

atonia structures (McCarter et al., 2015). RBD can develop at the same time or following a 

synucleinopathy diagnosis - ~40% of PD patients present with concomitant RBD (Poryazova et al., 

2013), while 88% of MSA patients exhibit RBD concomitantly (Palma et al., 2015). In these individuals, 

synuclein pathology targeting the brainstem causes RBD to develop. 

 

Evidently, it is important to not only differentiate between acute DEBs and RBD, but also between RBD 

subtypes according to their underlying pathology.  

 

This thesis focuses on the idiopathic or (increasingly commonly named) isolated RBD, wherein the 

condition cannot be explained by an underlying cause. In cases of isolated RBD, the majority of 

individuals will go on to develop an alpha-synucleinopathy, with estimates of phenoconversion in 52%-

75% of people with RBD within 12 years of diagnosis (Iranzo et al., 2014; Postuma et al., 2009). The 

cause of RBD in these individuals is an as-yet undetected neurodegenerative process, evident only 

through their sleep behaviours. 
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Pathophysiology of Prodromal RBD 
People with isolated RBD who are in fact in the prodromal stages of synucleinopathy are hypothesised 

to have alpha-synuclein pathology evident in several brainstem nuclei, including those responsible for 

REM atonia. Post-mortem tissue availability for isolated RBD is incredibly rare and thus research has 

focused on histological analyses of isolated RBD phenoconverters, with results supporting the 

hypothesis of REM atonia brainstem nuclei degeneration (Iranzo, Tolosa, et al., 2013). 

 

This narrative fits neatly with the Braak staging model of alpha-synuclein pathology (H. Braak et al., 

2003). However, the classical model of caudorostral spreading can be challenged by early cortical 

symptoms (e.g. executive function impairment) that have been shown to accompany RBD (Gagnon et 

al., 2012), the characteristic presence of cortically-mediated complex DEBs, as well as mathematical 

modelling predicting RBD progression (de la Fuente-Fernández, 2013), which suggest that cortical and 

brainstem involvement can occur simultaneously before subcortical pathologies arise. The 

identification of alpha-synucleinopathy disease subtypes associated with RBD concomitance 

additionally suggests that RBD is representative of a more widespread/cortical alpha-synuclein 

pathology. Determining how cortical and peripheral pathology can arise in the same instance is 

essential for understanding RBD disease course.  

 

Diagnosis  
Many people with RBD do not feel their symptoms are serious enough to require medical intervention, 

and seek medical help mainly due to a partner interaction: either the bedpartner has been injured by 

the person with RBD in the night, or the bed partner notices a change in the person with RBD’s sleep 

(White et al., 2012). There is therefore a long diagnostic delay for people with RBD as they do not seek 

treatment immediately (White et al., 2012). 

 

RBD is diagnosed according to criteria in the International Classification of Sleep Disorders (3rd Edition) 

(American Academy of Sleep Medicine, 2014). The gold-standard protocol for RBD diagnosis is clinical 

assessment coupled with overnight video polysomnography (v-PSG), to objectively demonstrate REM 

sleep without atonia (RSWA) (Figure 1.4) and dream enactment. In instances where v-PSG is not 

available, or where v-PSG did not sufficiently capture RBD behaviours, a diagnosis can be made based 

on past history and ‘probable’ RBD is assumed.  
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Figure 1.4: Polysomnogram of an individual with RBD exhibiting REM sleep without atonia (RSWA). 

REM sleep is evidenced by divergent eye movements (labelled channels 1&2, green arrows) and low 

amplitude, high frequency EEG activity (labelled channels 3&4, blue arrows). Elevated phasic muscle 

activity can be seen in the Chin, Arm and Leg EMG channels (labelled channels 5,6 and 7 respectively, 

red arrows). Adapted from (Britton et al., 2016). 

 

Treatment 
Treatment for RBD should be reflective of the known cause; for instance, RBD secondary to SSRI-use 

is treated with cessation of the causative medication. However, for isolated, or potentially prodromal, 

RBD patients, the breakdown of REM atonia mechanisms has no single clear cause. In the UK, 

treatment targets the behavioural symptoms of the condition (e.g., sleep separate from bed partner/ 

remove objects near to the bed) as well as tackling the condition pharmacologically (St Louis & Boeve, 

2017). The benzodiazepine Clonazepam, an GABAA receptor positive allosteric modulator, is the first-

line treatment of choice for many clinicians, acting to increase inhibitory processes and thus quell the 

abnormal motor behaviours. Alternatively, or in combination as a polytherapy, melatonin 

supplementation may be prescribed. Both treatments are usually tolerated by patients; however, 

clonazepam’s efficacy decreases with time (S. X. Li et al., 2016) and the mild improvement seen under 
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melatonin therapy for RBD symptom-control are not understood (McGrane et al., 2015). 

Pharmacological intervention remains the only method for symptom control, and thus for the majority 

of RBD patients the condition is chronic with no cure, regardless of subtype.  

 

Prognosis 
The prognosis for people with RBD secondary to identifiable causes is relatively good. In some cases, 

such as when RBD is secondary to medication, the medication can be stopped and the RBD usually 

resolves. For those with lesions, the condition will remain stable and the aim is to manage the 

condition long-term with medications and behavioural recommendations. 

 

RBD secondary to synucleinopathy has a far poorer prognosis, regardless of whether the RBD 

preceded or developed alongside the synucleinopathy. Of those with isolated RBD, the majority (52%) 

will develop PD, followed by DLB (43.5%) and MSA (4.5%) (Postuma et al., 2019).  

 

Arguably, RBD in PD has been studied to a far greater extent than in DLB and MSA; however, in general 

alpha-synucleinopathy occurring with RBD (e.g. DLB+RBD) presents as a clinically and pathologically 

distinct subtype with more severe disease progression and increased non-motor symptoms (Postuma 

et al., 2008). RBD concomitant with PD (PD+RBD) is associated with a phenotype of greater sleepiness, 

depression and cognitive impairment than in PD counterparts, as well as increased incidence of 

hallucination and autonomic symptoms (Rolinski et al., 2014). PD+RBD individuals may also 

demonstrate a distinct akinetic-rigidity motor phenotype, wherein the dominant motor symptoms are 

movement slowing, muscle stiffness and postural/gait difficulties (as opposed to tremor-dominant 

phenotype where the major motor symptom is tremor) (S. H. Kang et al., 2016; Suzuki et al., 2017). 

DLB+RBD individuals demonstrate earlier symptom onset than their DLB peers, and further DLB+RBD 

subtypes may be identified according to patient biological sex (Dugger et al., 2012). Interestingly, 

cognitive function profiling may be able to differentiate between RBD disease course to PD or DLB 

conversion (Génier Marchand et al., 2017). Perhaps due to the high concomitance of RBD with MSA, 

and the comparative rarity of MSA, there has been no research reported in the literature specifically 

looking at MSA subtypes with reference to RBD.  

 

The prognosis for isolated RBD remains uncertain for the duration of the illness, until either 

phenoconversion or death occur.  
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The RBD Experience 
In the flurry of scientific investigation following the RBD-synucleinopathy discovery, the research 

community has failed by and large to acknowledge the lived-experience of people with RBD. One 

quantitative study found people with isolated RBD had a lower quality of life in all domains (e.g. pain, 

mental health, physical function) except social function than Controls (K. T. Kim et al., 2017), but little 

time has been taken to consider whether current research serves the interests of people with RBD or 

may alleviate quality of life issues.  

 

A recent survey study of 81 people with RBD found that the majority (96%) wanted to be better 

informed about the connection between their sleep disorder and synucleinopathy development, and 

the majority (93%) felt knowledge of personal phenoconversion risk was important (Gossard et al., 

2022). Over half of respondents (53%) felt anxious about phenoconversion and 36% reported feeling 

pessimistic about their future (Gossard et al., 2022). Concerns of workplace discrimination or health 

insurance were expressed by 21% of respondents (Gossard et al., 2022). Research into the RBD-

synucleinopathy relationship is essential to address the priorities of people with RBD expressed above. 
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RBD as a Prodromal Symptom: Opportunities and Challenges 

RBD precedes synucleinopathy development by up to 10 years and can represent a prodromal period 

of the neurodegenerative process. Thus, RBD represents a window for potential interventions. 

However, the RBD disease course is unpredictable: whether there are truly any isolated RBD patients, 

or whether all cases of RBD will convert to an alpha-synucleinopathy given a long enough follow-up 

time, is unknown. 

 

RBD and PD present researchers and clinicians alike with similar challenges: high variability in disease 

presentation, a lack of understanding of what triggers alpha-synuclein pathology, sub-optimal 

methods to detect early pathology and inadequate quantitative measures of disease progression. To 

address these challenges and to predict the disease course of people with RBD, robust clinical 

biomarkers of the entire synucleinopathic neurodegenerative process must be established. 

 

Predicting Prognosis 
Ideally, clinicians would be able to answer three questions when faced with a person with isolated 

RBD: 

• Will this person develop a synucleinopathy? 

• Which synucleinopathy will they develop? 

• When will the phenoconversion occur? 

Research has focused on identifying prognostic biomarkers of the synucleinopathic 

neurodegenerative process which are detectable at the earliest stages, change as a function of 

neurodegenerative extent or duration and which have high specificity between synucleinopathies. To 

be clinically viable, a biomarker must be easily and affordably detectable, minimal harm must come 

to the patient in the biomarker collection process and the biomarker must have high sensitivity and 

specificity.  

 

The accuracy of a biomarker when predicting RBD disease course is determined by the biomarker’s 

ability to correctly detect those who will phenoconvert (true positive rate; sensitivity) and correctly 

reject those who will not phenoconvert (true negative rate; specificity). Even with high sensitivity and 

specificity, a prognostic biomarker needs to be used with caution. For example, if a biomarker had 

95% sensitivity for RBD phenoconversion and was tested on 100 people with RBD known to be in the 

prodromal stages of synucleinopathy, 5 people would be told they would not develop a 

synucleinopathy. Conversely, if a biomarker has 93% specificity and was tested on 100 people with 

RBD who would never develop a synucleinopathy, 7 healthy people would be given a synucleinopathy 
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prognosis. Clearly even prognostic tests with high sensitivity and specificity have potential to seriously, 

negatively impact lives. 

 

Prognostic biomarkers for RBD have been investigated in several domains, including using ophthalmic, 

genetic and functional neuroimaging methods (Miglis et al., 2021). The issue of accuracy is one of the 

stumbling blocks for prognostic biomarker development to date, with variable sensitivity and 

specificity outcomes. For example, measurement of muscle tone and tonic REM sleep without atonia 

(RSWA) during sleep has 89% sensitivity and 70% specificity for RBD phenoconversion to any 

synucleinopathy (Nepozitek et al., 2019), whereas olfactory function testing had a 77.8% sensitivity 

and 84% specificity for RBD  DLB phenoconversion (Mahlknecht et al., 2015). The field of RBD 

prognostic biomarkers is in its infancy and thus longitudinal studies are still needed to fully determine 

the accuracy of prospective biomarkers (Miglis et al., 2021). 

 

One of the most promising prognostic biomarkers is pathological (phosphorylated) alpha-synuclein 

levels in human tissue, such as  cerebrospinal fluid (CSF) (Fairfoul et al., 2016), nasal mucosa (Stefani 

et al., 2021), blood serum (Jiang et al., 2020), skin (K. Doppler et al., 2017), salivary glands (Iranzo et 

al., 2018) and colon tissue (Sprenger et al., 2015).  Pathological alpha-synuclein levels are detectable 

in RBD human tissue many years prior to phenoconversion and are therefore applicable for prognosis 

in early-stage neurodegeneration. Additionally, the assays used to detect pathology alpha-synuclein 

such as the RT-QuIC may be able to differentiate between DLB, PD and MSA synuclein (Fairfoul et al., 

2016; Iranzo, Fairfoul, et al., 2021), providing further insight into the RBD disease course. Though 

sensitivity and specificity are often high for the alpha-synuclein biomarker, there still remains error 

and often invasive procedures such as spinal tap or internal biopsies are required (Miglis et al., 2021). 

Other avenues of enquiry into prognostic biomarkers are therefore still worthwhile. 

 

To date, efforts have focused on identifying standalone biomarkers but no single biomarker has been 

confirmed which satisfies the criteria for clinical use. Without the ability to classify, or stratify, RBD 

patients using biomarkers, symptom-tracking remains precedent in clinical practice. One way to 

increase prognostic accuracy is to combine several biomarkers, either to generate composite scores 

or by using statistical methods such as logistic regression (Yan et al., 2015). Few studies have formally 

investigated biomarker combinations for RBD prognosis: (Ye et al., 2020a) used stepwise forward 

regression to identify a combination of olfactory, TMEM175 gene profile and inferior frontal gyrus 

grey matter atrophy to have the greatest prognostic accuracy in a cohort of people with RBD, whereas 

(Arnaldi et al., 2021) used logistic regression and found age >70, constipation and reduced nigro-
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putaminal dopaminergic function has greatest prognostic accuracy for phenoconversion. The latter 

study also identified biomarker combinations predicting PD or DLB disease course from RBD (Arnaldi 

et al., 2021). Unfortunately these studies did not report sensitivity or specificity for their analyses. 

 

The Ethics of Early Diagnosis 
There are clear long-term benefits for the research community and medical field if the prognosis of 

people with RBD could be robustly determined. Cohorts of people with early-stage synucleinopathy 

could be established and used for development of disease interventions. Knowledge of disease 

mechanisms would increase, with potential for curative discoveries. Should treatments be developed 

which can stop or reverse synucleinopathy, people with RBD due to prodromal synucleinopathy could 

be given these treatments and a neurodegenerative disease course would be averted.  

 

The reality however is that these treatments to delay, reverse or cure synucleinopathies do not 

currently exist. In the interim period between identifying a robust prognostic biomarker and treatment 

availability, people with RBD would be given a certain prognosis and, for those who will phenoconvert, 

no treatment options to address the disease course.  

 

Discussing risk of disease development with patients (however certain) therefore carries incredible 

ethical weight. Whether to inform people with RBD of their high-risk of phenoconversion has been 

much debated, with advocates for total, upfront disclosure (St. Louis, 2019) and a delayed disclosure 

only when necessary (Sixel-Döring, 2019) alike. One survey of sleep medicine physicians (n=44) found 

that while the majority (93%) provide prognostic counselling to people with RBD, far fewer are aware 

of the high risk of phenoconversion (42%) and only 15% routinely give detailed information of 

conversion rates to their patients (Teigen et al., 2021).  

 

With all the caveats and benefits of hindsight, one survey of people with PD investigated attitudes 

towards early diagnosis (Schaeffer et al., 2020) and found that 46% of people would have wanted to 

know their risk of developing PD, ‘even if there would have been no medical treatment to postpone 

the onset of the disease’, but this increased to 85% if they were advised on lifestyle changes which 

might alter their chances of developing PD (Schaeffer et al., 2020). 10% of respondents said they did 

not think people should be informed of their PD risk under any circumstance, whereas 67% thought 

communication of risk should be considered under certain conditions, such as if the individual 

expressed that they wanted to be informed or if it led to new treatment options for the individual 

(Schaeffer et al., 2020). 23% of respondents said people should always be informed of their PD risk, 

regardless of preference or circumstance (Schaeffer et al., 2020). A similar survey has not been 
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conducted in an RBD population, though (Gossard et al., 2022)’s survey of people with RBD found only 

4% of respondents would have wanted to receive less information regarding their prognosis and the 

majority agreed having prognostic information was important for planning for the future. 

 

One way to ensure patient autonomy despite the power imbalance of the patient-clinician relationship 

and when faced with a difficult prognosis is to simply ask people if they want to receive prognostic 

counselling. However, only 32% of clinicians routinely ask patients about their preference for 

prognostic counselling (Teigen et al., 2021). Although only a small percentage (10%) of people with 

RBD indicated they would want to be asked about their preference toward prognostic counselling by 

their clinician (Gossard et al., 2022), it is still one important aspect of patient care which should be 

upheld in the context of an uncertain prognosis.  

 

Retaining patient autonomy is paramount for wellbeing, whether they choose to know more 

information about their prognosis or less. In WEIRD societies clinicians historically withheld serious 

diagnoses under the assumption that this helped the patients to cope – in the 1970s there was a 

reversal of this cultural norm and now it is a given that clinicians would always tell the patient all 

information (Rosenberg et al., 2017). In some cultures, it remains preferential to spare people their 

terminal illness diagnosis in order to protect their emotional wellbeing. Many people across cultures 

believe that discussing illness causes illness and they prefer not to know. The way prognosis is handled 

is therefore dependent on the culture, personal beliefs and wishes of the person in question 

(Rosenberg et al., 2017; Searight & Gafford, 2005).  

 

Ensuring patient autonomy and transparent communication of risks are incredibly important for RBD 

biomarker research as it evolves. Solving the RBD prognosis conundrum presents many biomedical 

and ethical challenges, but equally a great many opportunities.  
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Study Rationale, Aims and Objectives 
This introduction has summarised etiological, clinical and societal aspects of PD and RBD disease states 

and highlighted the current challenges facing researchers, clinicians and patients. Despite numerous 

efforts to harness RBD as a prognostic model and significant advances in correlating accompanying 

prodromes with disease development and outcomes, understanding of RBD pathology remains 

limited.  

 

The work in this thesis focuses on the most common disease course for people with RBD: 

phenoconversion to PD (Postuma et al., 2019). Research into prognostic biomarkers for this pathway 

has so far been promising but has not yet achieved high sensitivity and specificity for 

phenoconversion; in particular, there have been limited efforts to explore combinations of 

biomarkers. 

 

To address this, the study presented in this thesis was designed. Entitled ‘Investigating RBD using 

Electroencephalogram and Additional Multi-Modal Measures’ (STREEM), the aim of this study was 

to conduct extensive ‘deep’ phenotyping of people with RBD, people with PD and Controls to screen 

for a range of potential prognostic biomarkers. The PD group were early-stage (within 3 years of 

diagnosis). Frequentist statistical analysis was used to closely examine differences between groups 

and identify potential biomarkers, while machine learning was enlisted to develop a prognostic model 

to combine biomarkers and predict RBD prognosis. 

 

Non-invasive phenotyping methods were chosen due to their applicability to the clinical setting. A 

variety of data types, ranging from motor assessments, participant reported outcome measures and 

electrophysiological data were collected, to compare modalities. It was additionally hypothesised that 

electrophysiological investigations would be able to detect subtle signs of neurodegeneration that 

might not be captured by broad clinical assessments and questionnaires.  

The STREEM study also served to test the feasibility of dual clinic/at-home multimodal data collection 

in RBD, PD and older age populations.  
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Aims 

The aim of this thesis is to identify and assess a range of potential prognostic biomarkers for RBDPD 

phenoconversion. 

 

Objectives 

To investigate prognostic biomarkers in the following domains: 

• Autonomic function (Chapter 3) 

• Olfactory function (Chapter 4) 

• Cognitive function (Chapter 5) 

• Affective profile (Chapter 5) 

• At-rest brain activity (Chapter 5) 

• Sleep (Chapter 6) 

• Motor function (Chapter 7) 

• To assess the relative importance of identified biomarkers on prognostic prediction using 

machine learning models (Chapter 8) 
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Chapter II: General Methods 
 
This chapter describes methods which were common throughout the STREEM study. Further details 

are provided in relevant chapters. 

Study Schematic 

The STREEM study was an observational short-term longitudinal study. A visual overview of the study 

is provided in Figure 2.1. 

Figure 2.1: Visual overview of the STREEM research study. The key research question and study 

design are detailed.  

 

Patient & Public Involvement on Study Design 

People with PD and those affected by PD were consulted on the proposed STREEM study protocol. 

The primary researcher (Amber Roguski) attended the local Parkinson’s and Other Movement 

Disorders Health Integration Team (MOVE HIT) Patient & Public Involvement (PPI) group meeting on 

the 16th April 2019 to discuss the study.  The aim of this consultation was to gauge acceptability of the 
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study and receive advice as to the accessibility of the proposed research. The study was discussed in-

person with 10 attendees, and a further 5 individuals joined remotely or sent their feedback on the 

research separately. The main feedback on the study regarded the at-home sleep study nights and 

privacy concerns around the video recording in the bedroom. The justification for these measures was 

satisfactory. There were no further major issues or queries on the study. 

 

Ethical Approval & Funding 

All study procedures were completed in accordance with the Declaration of Helsinki. 

The study protocol was approved by the University of Bristol’s Research Ethics Department (RED) 

[Case ID: 2019-2286], the South West-Central Bristol NHS Research Ethics Committee (REC) and the 

Health Research Authority (HRA) [IRAS ID: 262961; REC Reference: 19/SW/0103; approval 

18.06.2019]. The study was sponsored by the University of Bristol and funded by a BBSRC/CASE 

Studentship [B/S507295/1]. 

 

Participants 

Groups & Sample Size 
Participants were recruited into 4 groups:  

• Healthy Controls (Control)  

• Clinically-diagnosed RBD (RBD) 

• Parkinson’s disease with concomitant RBD (PD+RBD)  

• Parkinson’s disease without concomitant RBD (PD-) 

The proposed sample size for this study of n=20/group was based on a balance between previous 

sample sizes of EEG studies in RBD patient populations (Ferri et al., 2017; Manni et al., 2009; Sunwoo 

et al., 2017), the exploratory nature of the project, the timescale of this PhD studentship and expected 

availability of participants in the Bristol area.  

 

Recruitment, Screening & Consent Procedure 
Patient group participants (RBD, PD- and PD+RBD) were identified from patient notes, clinician 

referrals and existing databases from the Neurology and Neuropsychiatry services of Southmead 

Hospital, North Bristol NHS Trust.  
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Healthy Control participants were identified from the partners and friends of patient group 

participants and from existing Control Group databases from the Movement Disorders and ReMemBr 

Research Groups at the Brain Centre, North Bristol NHS Trust.  

 

Initial contact with identified potential participants was made via telephone, when the study was 

described and a screening questionnaire was verbally completed. Eligible individuals were given the 

option to receive further information by way of the written Participant Information Sheet. Potential 

participants were then contacted in a follow-up telephone call within 7 days of receipt of the 

Participant Information Sheet to further discuss participation and answer any questions. If the 

individual wanted to participate in the research, dates for the clinical assessment and at-home 

recording sessions were organized. 

 

Participants provided written consent at the start of the first in-person study session, the clinical 

assessment. 

 

Inclusion Criteria 
All participants: 

• Male or Female, aged 18 years or above 

• Participant is willing and able to give informed consent for participation in the study  

• Fluent in written and spoken English 

• If the participant has a bed-partner, the bed-partner must be willing and able to give informed 

consent for 1) incidental video data of them to be collected during H1/H2 experiments 2) 

completion of daily questionnaire relating to study participant’s sleep 

RBD Group: 

• RBD diagnosis made based on polysomnographic evidence according to standard 

International Classification of Sleep Disorders-III criteria by a consultant specialising in sleep 

disorders. The majority of RBD group participants were diagnosed by clinicians in the NHS 

North Bristol Trust. 

PD+RBD Group: 

• Diagnosis of idiopathic PD according to the United Kingdom Brain Bank Criteria 

• Diagnosis of idiopathic PD made within the last 3 years 

• Hoehn and Yahr Score ≤3 in the clinically defined OFF state 

• Ability to walk unassisted during clinically defined OFF state  
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• RBD diagnosis made on the basis of polysomnographic evidence according to standard 

International Classification of Sleep Disorders-III criteria by a consultant specialising in sleep 

disorders* 

* This inclusion criterion was too stringent as very few people with PD+RBD receive a formal 

diagnosis of RBD prior to their PD diagnosis. Therefore, the inclusion criterion was revised as 

follows: 

• Probable RBD based on history of dream enactment behaviours and RBDSQ >5 

PD- Group:  

• Diagnosis of idiopathic PD according to the United Kingdom Brain Bank Criteria 

• Diagnosis of idiopathic PD made within the last 3 years 

• Hoehn and Yahr Score ≤3 in the clinically defined OFF state 

• Ability to walk unassisted during clinically defined OFF state 

 

Exclusion Criteria 
For all participants: 

• Inability to travel to study appointments 

• Diagnosis of dementia 

• Active hallucinations or psychosis 

• Significant medical comorbidities which, in the investigator’s opinion, could 

skew/confound data from tasks (e.g. ataxia, severe osteoarthritis etc.) 

• Inability to withdraw from melatonin or clonazepam 

• Pregnancy 

• Any other reason for ineligibility of the subject according to investigator opinion 

RBD Group: 

• Diagnosis of PD 

• In the opinion of the clinical team, the RBD is secondary rather than primary i.e. due to 

medications, narcolepsy etc 

PD+RBD Group: 

• Atypical parkinsonian features according to investigator opinion 

• Evidence of Dopamine Dysregulation Syndrome according to investigator opinion 

• Clinically significant Impulse Control Disorder in opinion of investigator  

PD- Group: 
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• Atypical parkinsonian features according to investigator opinion 

• Evidence of Dopamine Dysregulation Syndrome according to investigator opinion 

• Clinically significant Impulse Control Disorder in opinion of investigator  

• Indication of RBD (RBDSQ score >5) 

Control Group: 

• History of PD, RBD, dementia or other significant neurodegenerative or musculoskeletal 

condition 

• First-degree relative with PD 

• Indication of RBD (RBDSQ score >5) 

Final Participant Groups  
A combination of factors resulted in difficulties recruiting the planned groups and sample sizes.  

The first issue was a smaller than expected pool of potential PD+RBD group participants. It became 

clear that very few people with PD+RBD received a diagnosis of RBD prior to their PD diagnosis and 

the exclusion criteria were amended accordingly. However, even with this amendment it was difficult 

to recruit n=20 of PD+RBD participants from the NHS North Bristol NHS Trust.  

 

The second issue was the COVID-19 pandemic and a 7-month recruitment & participation suspension 

of the study between March-October 2020. This had an immediate impact on the study timeline and 

ability to recruit sufficient numbers, and had a further knock-on effect of reduced interest in voluntary 

study participation following the COVID-19 pandemic. 

 

The final participant groups and sizes were: 

• Healthy Controls (Control) n=19* 

*  1 Control participant withdrew from participation following the clinical assessment due to 

uncertainty of being filmed or the video-polysomnography. For data obtained during the at-

home study period, therefore, the Control group n=18. 

• Clinically-diagnosed RBD (RBD) n=16 

• Parkinson’s Disease (PD) n=17** 

**  The PD group comprises participants with concomitant RBD and those without: 

o Parkinson’s disease with concomitant RBD (PD+RBD) n=6 

o Parkinson’s disease without concomitant RBD (PD-) n=11 
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Participant Demographics 
Demographics data for the final participant groups are presented in Table 2.1. All participants lived in 

the South West of England, concentrated around Bristol. The participant demographics were biased 

with an over-representation of white, aged men. The implications of this are discussed in the General 

Discussion (Chapter 9). 

 

There were no significant differences between groups for demographics data (sex, age, ethnicity), 

socioeconomic status indicators (accommodation status, vehicle access, employment status & 

position) or major health status predictors (years of education, marital status). 
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PD 

 
Control 
(n=19) 

RBD 
(n=16) 

Overall 
(n=17) 

PD+RBD 
(n=6) 

PD- 
(n=11) 

Sex (n, %) 
Female 

 
5 (26.3%) 

 
2 (12.5%) 

 
4 (23.5%) 

 
0 (0 %) 

 
4 (36.4%) 

Male 14 (73.7%) 14 (87.5%) 13 (76.5%) 6 (100%) 7 (63.6%) 

Ethnicity (n, %) 
White and Black African 

 
- 

 
1 (6.3%) 

 
- 

 
- 

 
- 

White British 18 (94.7%) 14 (87.5%) 15 (93.75%) 5 (83.3%) 11 (100%) 
White Irish - 1 (6.3%) - - - 

White Other 1 (5.3%) - 1 (6.25%) 1 (16.7%) - 

Age (mean, ± s.d; range) 
69.57 ± 8.77; 

50.2-84.8 
64.64 ± 9.05; 

48.9-82.9 
66.73 ± 9.3; 

47.2-78.2 
64.74 ± 6.14; 

56.9-73.5 
67.82 ± 10.77; 

47.2-78.2 

Female 
71.55 ± 3.99; 

64.6-74.3 
65.91 ± 23.97; 

48.9-82.9 
68.81 ± 14.43; 

47.3-77.6 
- 

68.81 ± 14.43; 
47.2-77.6 

Male 
68.87 ± 9.98; 

50.2-84.8 
64.46 ± 7.07; 

53.8-73.1 
66.09 ± 7.84; 

53.5-78.2 
64.74 ± 6.14; 

56.9-73.5 
34.25 ± 9.38; 

53.5-78.2 
Marital Status (n, %) 

Married/ Relationship 
 

15 (78.9%) 
 

14 (87.5%) 
 

13 (76.5%) 
 

3 (50%) 
 

10 (90.9%) 

Single (incl. widowed) 4 (21.1%) 2 (12.5%) 4 (23.5%) 3 (50%) 1 (9.1%) 

Number of Times Married 
(mean, ± s.d) 

1.32 ± 0.75 1.25 ± 0.68 1.24 ± 0.56 1.0 ± 0.63 1.36 ± 0.50 

Age Left School 
(mean, ± s.d) 

17.16 ± 1.21 16.5 ± 1.31 16.76 ± 1.25 16.33 ± 1. 17.0 ± 1.34 

Completed Further or 
Higher Education 
(n, %) 

15 (78.9%) 10 (62.5%) 13 (76.5%) 4 (66.7%) 9 (81.8%) 

Number of Years of FE/HE 
Education (mean, ± s.d) 

4.53 ± 2.39 4.6 ± 2.63 3.85 ± 2.12 3.75 ± 3.5 3.89 ± 1.45 

Accommodation status: 
Own Home 
(n, %) 

19 (100%) 13 (81.3%) 15 (88.2%) 4 (66.7%) 11 (100%) 

Number of bedrooms 
(mean, ± s.d) 

3.32 ± 0.89 3.13 ± 1.41 2.82 ± 1.12 2.67 ± 1.03 2.91 ± 1.3 

Number of vehicles 
(mean, ± s.d) 

1.42 ± 0.61 1.38 ± 0.81 1.29 ± 0.77 1.0 ± 0.89 1.45 ± 0.69 

Employment status (n, %) 
Employed 

 
5 (26.3%) 

 
8 (50%) 

 
8 (47.1%) 

 
3 (50%) 

 
5 (45.5%) 

Unemployed - 2 (12.5%) - - - 

Retired 14 (73.7%) 6 (37.5%) 9 (52.9%) 3 (50%) 6 (54.5%) 

Table 2.1: Study participant demographics. 



 61 

Participant Health Status 
Health status data for final participant groups is shown in Table 2.2  

 

The RBD group had an increased BMI compared to the Control and PD groups, though this was only 

significant for the RBD vs. PD (overall) group differences (One-Way ANOVA with Tukey HSD; 

F(2,49)=4.4, p=0.02). There were no further significant differences between the groups regarding 

health status measures. 

 
 

PD 

 Control 
(n=19) 

RBD 
(n=16) 

Overall 
(n=17)* 

PD+RBD 
(n=6) 

PD- 
(n=11) 

BMI (kg/cm2) 
(mean, ± s.d) 

25.91 ± 3.7 28.93 ± 4.32 25.18 ± 3.54 25.45 ± 1.69 25.04 ± 4.31 

Female 25.18 ± 5.23 26.54 ± 2.73 24.73 ± 6.86 - 24.73 ± 6.86 

Male 26.18 ± 3.21 29.28 ± 4.47 25.32 ± 2.2 25.45 ± 1.69 25.21 ± 2.7 

Smoking Status (n, %) 
Never Smoked 

 
13 (68.4%) 

 
9 (56.3%) 

 
11 (64.7%) 

4 (66.7%) 7 (63.6%) 

Ex-Smoker 6 (31.6%) 7 (43.8%) 6 (35.3%) 2 (33.3%) 4 (36.4%) 

Smoker - - - - - 

Number of Cigarettes/Day 
(mean, ± s.d) 

17.5 ± 5.24 11.67 ± 7.63 9 ± 6.51 12.5 ± 10.61 6.67 ± 2.89 

Number of Medications (mean, ± 
s.d) 

3.26 ± 3.49 4.75 ± 3.8 4 ± 2.42 3.67 ± 2.42 4.18 ± 2.52 

Experience of Occupational 
Health Exposures (Any)* 
(n, %) 

14 (73.7%) 15 (93.75%) 15 (93.75%) 5 (83.3%) 10 (90.9%) 

Lifetime Occupational Health 
Exposures* (n, %) 

Physical Labour  
4 (21.1%) 5 (31.3%) 3 (18.8%)  3 (27.3%) 

Noise 3 (15.8%) 3 (18.1%) 1 (6.3%) 1 (16.7%) 10 (90.9%) 

Pollutants 2 (10.5%) 4 (25%) 4 (25%) 1 (16.7%) 3 (27.3%) 

Stress 10 (52.6%) 12 (75%) 11 (68.8%) 3 (50%) 8 (72.7%) 

Shift Work 6 (31.6%) 8 (50%) 3 (18.8%) 1 (16.7%) 2 (18.2%) 

Night Shift Work 4 (21.1%) 4 (25%) 3 (17.6%) 1 (16.7%) 2 (18.2%) 

Duration (Years) of Occupational 
Health Exposures * (mean, ± s.d) 

15.31 ± 11.5 17.41 ± 13.49 15.9 ± 11.13 20.0 ± 14.14 13.85 ± 11.09 

Table 2.2: Participant health status measures. *For measures relating to Occupational Health 

Exposures: PD Overall n=16; PD- n=10 due to incomplete questionnaire item by 1 participant. 
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PD Disease Profile 
PD disease profiles for the PD groups is shown in Table 2.3.  

 

There were no significant differences between PD+RBD and PD- groups regarding symptom duration, 

symptom presentation or medication dosage. 

 

 PD Overall 
(n=17) 

PD+RBD 
(n=6) 

PD-RBD 
(n=11) 

Symptom Duration (Years) 
(mean, ± s.d) 

5.88 ± 6.77 4.67 ± 2.73 6.55 ± 8.26 

Time since Diagnosis (Years) 
(mean, ± s.d) 

1.82 ± 0.882 1.67 ± 0.82 1.91 ± 0.94 

Diagnostic Delay (Years) 
(mean, ± s.d) 

4.06 ± 6.44 3.0 ± 2.68 4.64 ± 7.85 

Symptom at Onset (n, %) 
Tremor 

 
12 (70.6%) 

 
6 (100%) 

 
6 (54.5%) 

Rigidity 7 (13.5%) 4 (66.7%) 3 (27.3%) 

Bradykinesia 10 (58.8%) 5 (83.3%) 5 (45.5%) 

Postural Instability 5 (29.4%) 3 (50%) 2 (18.2%) 
Side Affected (n, %) 

Dominant 
 

8 (47.1%) 
 

2 (33.3%) 
 

6 (54.5%) 
Non-Dominant 8 (47.1%) 4 (66.7%) 4 (36.4%) 

Symmetric 1 (5.9%) - 1 (9.1%) 

Hoehn & Yahr Score  
(mean, ± s.d) 

1.47 ± 0.62 1.33 ± 0.21 1.55 ± 0.21 

Equivalent L-DOPA Dose/Day 
(mean mg ± s.d) 

336.57 ± 135.41 318.67 ± 184.39 350.0 ± 96.36 

Table 2.3: PD disease profiles. 
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RBD Disease Profile 
RBD disease profiles for the RBD groups is shown in Table 2.4. 

 

The RBD group had an increased symptom duration compared to the PD+RBD group though not 

significantly so.  

 

The majority of RBD participants (n=9, 56.3%) could not identify a potential trigger event (for example, 

a traumatic life event) for onset of their sleep disorder . The remaining 43.8% (n=7) most commonly 

linked their RBD onset to a stressful time period (n=4, 57.1%) or a notable illness or injury (n=2, 28.6%). 

For most RBD participants, the development of their condition was gradual. In comparison, the 

majority of the PD+RBD participants developed RBD symptoms at a similar time to their PD diagnosis 

(n=4, 66.7%). The remaining 2 PD+RBD participants linked their RBD onset to a stressful time period 

(n=2, 33.3%). 

 
RBD (n=16) 

PD+RBD 
(n=6) 

Symptom Duration (Years) 
(mean, ± s.d) 

8.38 ± 6.31 4.17 ± 3.43 

Time since Diagnosis (Years) 
(mean, ± s.d) 

2.8 ± 1.37 - 

Diagnostic Delay (Years) 
(mean, ± s.d) 

5.73 ± 6.11 - 

Symptoms at Diagnosis  
(n, %) 

Change in Olfaction 

 
4 (25%) 

- 

Constipation 4 (25%) - 

Change in Cognition 9 (56.3%) - 

Table 2.4: RBD disease profiles. 

 

RBD treatment was explored in the RBD group. Most participants (n=15, 93.8%) had been prescribed 

pharmacological treatment for the condition, though this provided long-term symptom improvement 

only for a minority (n=5, 31.3%). 56.3% (n=9) RBD participants were not given behavioural 

recommendations for symptom management by their clinician. 
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Medication Prescribed No 
Improvement 

Short-term 
Improvement 

Long-term 
Improvement 

Melatonin   
(n=8, 53.3%) 

3 (37.5%) 4 (50%) 1 (12.5%) 

Clonazepam  
(n=6, 40%) 

1 (16.6%) 1 (16.6%) 4 (66.66%) 

Melatonin & Clonazepam  
(n=1, 6.6%) 

1 (100%) - - 

Table 2.5: Prescribed medications and effect overview for RBD Group. 
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Study Design & Procedure 

This was primarily a cross-sectional observational study, with a subset of participants (Control n=10; 

RBD n=9) completing a 12-month follow-up and providing limited longitudinal data. An overview of 

the study design is given in Figure 2.1. 

Clinical Assessment 
Participants attended Southmead Hospital for a 2.5-hour clinical assessment, which started with a 

discussion about the study and the signing of the consent form. Demographic, socioeconomic data 

and medical history was collected for all participants as well as information on PD and/or RBD disease 

presentation for patient groups. 

 

A series of screening, psychometric and psychophysical tests and questionnaires were completed to 

assess psychological, cognitive, motor, olfactory and autonomic function. This battery of tests was 

selected based on prodromal symptom presentation and due to their common usage in clinic and 

research settings for RBD/PD investigations. The specifics of these tests are given in the appropriate 

chapters, but a brief summary is as follows: 

 

Measures of Cognitive and Psychological Function 
• Lille Apathy Rating Scale (LARS) (Sockeel et al., 2006) 

• Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 2005) 

• Phonemic and Semantic Fluency Assessments (Strauss et al., 2006) 

• Beck Depression Inventory (BDI) (BECK et al., 1961; Jackson-Koku, 2016a) 

• Parkinson Anxiety Scale (PAS) (Leentjens et al., 2014) 

Measures of Olfactory Function 
• Sniffin’ Sticks Smell Test (Burghardt®, Wedel, Germany; (Rumeau et al., 2016a)) 

Measures of Motor Function 
• Movement Disorders Society – Unified Parkinson’s Disease Rating Scale Part III: Motor 

Examination (MDS-UPDRS III) (Goetz et al., 2007) 

• Purdue Pegboard (Tiffin & Asher, 1948) 

Measures of Circadian and Sleep Function 
• Epworth Sleepiness Scale (ESS) (Johns, 1991) 

• REM Sleep Behaviour Disorder Screening Questionnaire (RBDSQ) (Stiasny-Kolster et al., 2007) 

• Parkinson’s Sleep Scale (PSS) (Chaudhuri et al., 2002) 

• Morningness-Eveningness Questionnaire (MEQ) (Horne & Ostberg, 1976b) 

• Pittsburgh Sleep Quality Index (PSQI) (Buysse et al., 1989) 
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Measures of Autonomic Function 
• Scales for Outcomes in Parkinson’s Disease- Autonomic Questionnaire (SCOPA-AUT) (Visser et 

al., 2004) 

• Orthostatic Hypotension Challenge  (Naschitz & Rosner, 2007b) 

At-Home Recording Session 
The 7-day At-Home Recording Session began the day after the Clinical Assessment.  

 

Participants were required to continuously wear actigraphy wristbands and to complete a sleep and 

mood diary for 7 days and nights. On the final nights of the home recording session (2 nights for PD/HC 

participants, 3 nights for RBD/PD+RBD participants), a high-density polysomnography study was 

conducted at the participant’s home.  

 

The specifics of the data collected & hardware are as follows: 

 

Sleep and Mood Diary 
Participants completed a morning questionnaire and an evening questionnaire each day of the At-

Home Recording Session. Participants were asked to report their sleep duration, quality, any sleep 

behaviours and general mood in the morning questionnaire, and were asked to report on their daily 

activities, mood and tiredness in the evening questionnaire. Bed-partners, who were considered to be 

‘incidental participants’, could also optionally complete a 7-day diary relating to the sleep of their 

corresponding participant. 

Actigraphy 
Participants wore tri-axial GENEActiv accelerometers (Activinsights Ltd., Kimbolton, England) on both 

wrists for 7 days and nights. Sampling rate was 100Hz. The accelerometers were waterproof and 

participants were instructed to keep them on at all times. Participants additionally kept a daily activity 

diary to aid in-depth actigraphy analyses. 

 

Polysomnography 
Dependent on their group, participants underwent either 2 or 3 polysomnography (PSG) nights at 

home.  

 

Hardware 
Electrophysiological data was recorded using the 64-channel Sleep BrainCap (BrainProducts GmbH), 

which incorporates both scalp and auxiliary channels (electrooculogram (EOG) and electrocardiogram 

(ECG)) (Figure 2.2), allowing them to be recorded with one 64-channel acquisition system. EEG 
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recordings were obtained from 55 scalp locations defined by the 10-20 system (Klem et al., 1999) and 

in-line with AASM standards for polysomnography (Berry et al., 2017). All electrodes were Ag/AgCl 

sintered.  

 
Figure 2.2: High-density 64-channel Sleep BrainCap channel layout. Image courtesy of BrainProducts 

GmbH. 

All electrodes were referenced online to a single channel (FCz) for recording. The EEG set-up was 

verified using a biocalibration recording, wherein participants were asked to perform a series of 

behaviours such as eye movements and blinks. These actions elicit clear electrophysiological 

signatures to confirm data quality. 

 

Data was acquired using a wireless EBNeuro BE Plus LTM 64 amplifier and Galileo acquisition software 

(EB Neuro). All PSG data was recorded at a sampling frequency of 512Hz. Video sampling rate was 25 

frames per second (fps). EEG and video data were both recorded using the same Galileo acquisition 

software (EB Neuro) and were synchronised to one another.  
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Procedure 
On PSG nights, the researcher would arrive to the participant’s home approximately 2 hours before 

the participant’s normal bedtime. The following morning, the researcher would arrive at a pre-agreed 

time, usually within fifteen meetings of the participant’s normal waking time.  

Participants were informed to wash their hair the morning of the EEG recording and to refrain from 

using conditioner and styling products to minimise grease and chemical influence on the connectivity 

between scalp and EEG electrodes. Participants were advised to refrain from alcohol or illegal/non-

prescription medication consumption on their PSG nights.  

 

The EEG was set-up according to the manufacturer's instructions (BrainProducts GmbH). Once the EEG 

set-up was finished, participants underwent 2 five-minute ‘quiet wake’ behavioural state recordings, 

first with eyes open and then with eyes shut. For these recordings, participants were sat in a chair in 

a quiet room and instructed to minimise their movements and either look straight ahead or to close 

their eyes.  

 

Following the quiet wake recordings, the overnight EEG recording was started and the researcher left 

the participant’s home. As the EEG amplifier was wireless, participants were free to go about their 

night-time routine as usual, and the overnight recording was stopped the next morning by the 

researcher. 

 

Analyses 
Specific data processing and analysis methods are provided in individual chapters. There was no 

blinding procedure during data analysis.  

 

Broadly, electrophysiological data were processed and analysed using custom Python scripts.  

All other data was formatted and analysed using SPSS (IBM SPSS Statistics for Windows, 2019). 

Shapiro-Wilk tests for normality were used due to sample sizes. Two-tailed parametric or non-

parametric tests (α threshold = 0.05) were applied as appropriate. Post-hoc analyses with multiple 

comparisons corrections were used to investigate specific between-group relationships. Where 

relevant, covariates were controlled for. Effect sizes are given as Partial Eta Squared for parametric 

tests and Eta Squared for non-parametric tests, unless otherwise specified. 

 

Analyses enlisting machine learning methods in Chapters 5, 6 and 8 were completed by Amarpal 

Sahota (PhD student, UKRI Centre for Doctoral Training in Interactive Artificial Intelligence, University 

of Bristol). Analyses by Amarpal Sahota are indicated within the relevant chapters.  
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Chapter III: Autonomic Function 
 
“I feel dizzy when I stand up, especially like if I’m gardening. So if I’m going to go, you know, like 

squatting, leaning, digging and I stand up I feel dizzy like maybe like I’m going to faint.” 

Person with PD, quote from (Bonner et al., 2020) 

 

The exploration of early-stage PD biomarkers begins in the periphery, where symptoms of 

dysautonomia develop in line with Braak Stage I pathology.  

Background 

Overview of the Autonomic Nervous System 
Autonomic functions are the automatic, reflexive physiological processes of the body which maintain 

homeostasis and respond to the external environment. Autonomic functions are controlled by the 

autonomic nervous system (ANS), which is itself under the control of first-order neurons of the 

hypothalamus and brainstem (Figure 3.1). 

Figure 3.1: Organisation of the nervous system. Broadly, the nervous system is divided into Central 

(CNS) and Peripheral nervous systems (PNS), comprising the brain and spinal cord (CNS) and 

peripheral nerves (PNS). These two divisions are integrated with reciprocal modulation of one 

another. The PNS can be further divided into the Somatic and Autonomic nervous systems. The 

Somatic nervous system controls skeletal motor and sensory systems. The Autonomic nervous system 

regulates bodily functions and innervates the organs, smooth muscle and glands via the Sympathetic 

and Parasympathetic nervous systems. The Sympathetic nervous system controls ‘fight or flight’ 

responses to stress, while the Parasympathetic nervous system controls ‘rest and digest’ functions. 
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The Enteric nervous system comprises all gastrointestinal nerves and  is closely linked with both the 

Sympathetic and Parasympathetic nervous systems. Informed by (Squire et al., 2012).  

 

There are 3 branches of the ANS: sympathetic, parasympathetic and enteric. The effector organs of 

these branches are smooth muscle, cardiac muscle and glands. Afferent neurons carry sensory 

information from the viscera to the central nervous system, forming a feedback loop. Broadly 

speaking, the sympathetic and parasympathetic branches innervate the same targets throughout the 

body and have contrasting effects (Figure 3.2). The enteric nervous system comprises the pre- and 

postganglionic efferents (traditionally thought of as parasympathetic and sympathetic) that 

exclusively innervate the gastrointestinal tract, as well sensory afferent neurons and glia (Fleming et 

al., 2020). 

 
Figure 3.2: Nerves and effector organs of the sympathetic and parasympathetic nervous system. Solid 

lines indicate preganglionic neurons, dotted lines indicate postganglionic neurons. Informed by 

(Karemaker, 2017; Squire et al., 2012).  
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The sympathetic and parasympathetic nervous systems (and their equivalents in the enteric nervous 

system) are best known for respectively dominating in high arousal/stressful or restful states. 

Acetylcholine and noradrenaline are the key neurotransmitters in the ANS. All preganglionic neurons 

(sympathetic and parasympathetic) use acetylcholine for neurotransmission and all parasympathetic 

postganglionic neurons use acetylcholine (Squire et al., 2012). Sympathetic postganglionic neurons 

use acetylcholine or noradrenaline for neurotransmission (Squire et al., 2012). 

 

Specific anatomical lesions of ANS components lead to localised autonomic dysfunctions (Mathias, 

2003)- for example, a tumour in the superior cervical ganglion can lead to oculomotor dysautonomia 

seen in Horner’s syndrome (A. George et al., 2008). On the other end of the spectrum, gross 

dysautonomia can arise from high-level central or brain-stem lesions, cellular or neurotransmitter 

dysfunction (Mathias, 2003). Many medications also have autonomic side effects. According to the 

underlying pathology, the resultant dysautonomia can be hyperactive or hypoactive. A combination 

of sympathetic or parasympathetic dysfunctions may arise, or both systems may be affected (Mathias, 

2003). 

 

Autonomic Dysfunction in PD 
Dysautonomia is a commonly-reported feature of PD and includes symptoms such as orthostatic 

hypotension, constipation, altered thermoregulation and sexual dysfunction (Z. Chen et al., 2020). 

Autonomic dysfunction is not specific to PD, and is a hallmark of all alpha-synucleinopathies (Postuma 

et al., 2013). Therefore, its prognostic value as a standalone measure has typically been seen as limited 

in a prodromal cohort such as RBD. Further to this, dysautonomia can be caused by a myriad of 

pathologies, further confounding its utility as a marker of phenoconversion. For example, it is 

estimated that constipation affects 33% of adults >60 years old (Bharucha et al., 2013) and is 

associated with aging (Choung et al., 2007), diabetes, colorectal cancer and multiple sclerosis, 

pregnancy and medications amongst many other causes (Forootan et al., 2018). Although the 

prognostic value of dysautonomia must not be overstated due to differential diagnoses, it does 

provide insight into where pathology is occurring in the nervous system.  

 

The dysautonomia seen in PD is caused by peripheral and central alpha-synuclein aggregation and cell 

death. In the periphery, alpha-synuclein accumulation and Lewy Bodies have been found in the enteric 

neural plexus, sympathetic nerve fibres and vagus nerve (H. Braak et al., 2003). These depositions 

explain the constellation of peripheral autonomic symptoms evident in PD, such as constipation and 

orthostatic hypotension (Figure 3.3). In the central nervous system, alpha-synuclein pathology spreads 

to homeostatic centres in the brain stem and hypothalamus (H. Braak et al., 2003) with local effects 
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and up-stream impacts on higher-order autonomic processing and integration regions such as the 

insula (H. Braak et al., 2003; Christopher et al., 2014). There is, as always, interplay between the 

branches of the ANS and autonomic symptoms can be the result of dysfunctions in any branch. Anti-

parkinsonian medications, such as selegiline, can further compound autonomic symptoms (Zesiewicz 

et al., 2003). 

Figure 3.3: PD autonomic symptoms. Informed by (Pfeiffer, 2020). 

 

Symptoms of autonomic dysfunction are evident in the early and prodromal stages of PD (Malek et 

al., 2017; Postuma et al., 2013), with depositions identified in the dorsal motor nucleus of the vagus 

and peripheral autonomic ganglia in Braak Stage 1 (H. Braak et al., 2003). A prospective study of people 

with RBD found autonomic symptoms of urinary dysfunction, constipation, erectile dysfunction and 

orthostatic hypotension developed within a similar time frame approximately 5 years before 

phenoconversion to either PD or DLB (Postuma et al., 2013). Although it is typically later Braak stages 

(4 and 5) which see pathological alpha-synuclein spread from the periphery to the central autonomic 

control centres (H. Braak et al., 2003), autonomic dysfunction severity (as measured by questionnaires 
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and neurophysiological tests) does not consistently correlate with PD duration or Hoehn & Yahr stage 

(Leclair-Visonneau et al., 2018; Magerkurth et al., 2005; Malek et al., 2017; van Deursen et al., 2020). 

Autonomic symptom presentation is also incredibly heterogenous within PD populations and 

dysautonomia progression is erratic rather than linear (Leclair-Visonneau et al., 2018), limiting the 

efficacy of autonomic symptom tracking for prognosis. However, autonomic dysfunctions may be 

informative in combination with other symptoms in a multimodal prognostic context.  

 

The order in which autonomic symptoms emerge in relation to other PD symptoms such as motor or 

cognitive dysfunction has given strength to the hypothesis of ‘Brain-First’ and ‘Body-First’ PD subtypes, 

proposed by (Horsager et al., 2020). They propose that the heterogeneity of PD symptoms can be 

explained by the initial location of alpha-synuclein pathology and subsequent spread. Individuals with 

iRBD and PD+RBD are typically thought of as ‘Body-First’, as their symptoms develop largely in 

accordance with the classical Braak spreading of PD pathology from the periphery to the brainstem 

before sub-cortical and eventually cortical involvement. Conversely, other PD presentations -including 

those people with PD without RBD - has been theorised to be ‘Brain-First’, with alpha-synuclein 

pathology starting in the olfactory bulb or limbic system and spreading to the periphery only in the 

latest stages.  

 

Foundational for this theory were PET studies using the 123I-MIBG tracer, which can be used to assess 

the integrity of sympathetic postganglionic neurons in the heart: denervation of the heart leads to 

reduced 123I-MIBG binding (Skowronek et al., 2019). Studies have shown reduced cardiac MIBG 

uptake in RBD and PD+RBD groups compared to Controls and PD without RBD groups (Kashihara et 

al., 2010; Miyamoto et al., 2008; Nomura et al., 2010). Horsager et al. subsequently showed that iRBD 

and PD+RBD groups demonstrate reduced cardiac MIBG uptake and colonic Donezepil binding signal 

despite intact putaminal FDOPA binding. This was interpreted as a ‘Body-First’ PD effect, whereas the 

‘Brain-First’ PD group did not display such a pattern and instead showed putaminal FDOPA decreases 

before decreases in cardiac or colonic signal were seen (Horsager et al., 2020). Interestingly they note 

the groups did not differ on standard clinical rating scale scores such as the MDS-UPDRS Part III, 

SCOPA-AUT or MoCA – again highlighting the challenges in detecting and differentiating between 

heterogenous PD populations and the limitations of individual rating scales. 

 

Nonetheless, these studies suggest that measures of cardiovascular dysautonomia may be more 

useful for prognosis than other autonomic measures.  
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Heart Rate Variability and Its Utility in PD and RBD Populations 
Heart Rate Variability (HRV) is one representative feature of cardiac autonomic function and describes 

the highly variable interval between consecutive heartbeats, or R-waves (Figure 3.4). Physiologically, 

the timing of heartbeats is the result of innate, spontaneous depolarisation of the sinoatrial node’s 

pacemaker cells. This spontaneous depolarisation is modulated by autonomic activity: reductions in 

heart rate are due to increased vagal tone and are instantaneous and transient, whereas increases in 

heart rate due to sympathetic dominance have a delayed onset (~5s) and are longer-lasting (Shaffer 

et al., 2014).  A reduction in parasympathetic vagal tone similarly can lead to increased heart rate.  

 
Figure 3.4: Features of the cardiac cycle. A) ECG trace of one cardiac cycle (heartbeat), detailing the 

PQRST components. The P wave represents atrial depolarisation and contraction, the QRS complex 

represents ventricular depolarisation and contraction before the T wave and ventricle repolarisation 

before relaxation B) 5 cardiac cycles with the RR interval highlighted. The variability in the number of 

milliseconds (𝑥𝑥 ms) between R component peaks is influenced by the autonomic nervous system can 

be investigated using heart rate variability measures. Informed by (Waugh, 2014). 
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Heartbeat occurrence reflects the dynamic relationship between the sympathetic and 

parasympathetic nervous system, which is constantly in flux as the body responds to its internal and 

external environment. Fluctuations in HR are a marker of a highly effective physiological homeostasis 

– a high HRV is typically a healthy one.  

 

During wake, the multitude of daily living experiences changes autonomic balance and HRV measures 

minute-to-minute. For example, increased cognitive load is correlated with increased HRV (Solhjoo et 

al., 2019), while eating (irrespective of meal content) (Sauder et al., 2012) and meditation can increase 

parasympathetic influence and lower HRV (Arya et al., 2018). 

 

Intrinsic bodily functions with direct influence from the ANS similarly reflect autonomic tone. One of 

the major influences is breathing, wherein the irregularity of inhalation and exhalation causes 

intermittent activation of the vagus nerve which in turn stimulates the sinoatrial node. Generally, HR 

increases upon inhalation and decreases with exhalation (Lehrer & Gevirtz, 2014), and overall this 

variable vagal stimulation results in variation in the RR Interval. When the change in the RR interval 

>0.12s, the pattern is termed sinus arrythmia (RSA).  

 

In sleep (both overnight and short naps), NREM stages 1-3 are associated with a progressive increase 

of parasympathetic influence evidenced by decreased HR, increased RR Interval variability and 

increased HF component (AlQatari et al., 2020; Stein & Pu, 2012; Žemaitytė et al., 1984) – though it 

should be noted that there is a threshold effect of parasympathetic influence on HRV wherein HRV 

increases to a point before decreasing despite sustained parasympathetic tone (J. J. Goldberger et al., 

2001) and thus NREM3 sleep can sometimes be associated with decreased RR Interval variation 

(Žemaitytė et al., 1984). REM sleep is associated with a shift towards sympathetic dominance reflected 

by HF component values similar to that of wake (Vanoli et al., 1995). 

 

These adaptive shifts in heart rate and HRV measures in response to environmental challenges are 

necessary for good health. However, a sustained shift towards increased sympathetic activity and 

decreased parasympathetic activity is associated with myocardial infarction and is a risk for cardiac 

mortality, whereas the inverse shift has been associated with conditions such as Sudden Infant Death 

Syndrome (Shojaei-Brosseau et al., 2003). Dysautonomia in neurodegenerative diseases such as 

multiple sclerosis (Damla et al., 2018) and Motor Neuron Disease (Pisano et al., 1995) are similarly the 

result of a sympathetic/parasympathetic imbalance, evidenced by decreases in HRV. Of interest to 

this study, HRV holds potential as a predictor of disease course – for example, a retrospective study 
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of mild cognitive impairment endpoints found those individuals who developed Lewy Body Dementia 

had significantly lower HRV compared to those who developed Alzheimer’s Disease (M. S. Kim et al., 

2018). 

 

Measures of Heart Rate Variability 
There are many different analysis methods which have been used to measure HRV, with each offering 

different insights into underlying mechanisms. ECG data can be analysed in the time-domain, 

frequency-domain or by quantifying the non-linearity of the signal (Cygankiewicz & Zareba, 2013). 

 

Time domain HRV measures largely reflect parasympathetic influence on the heart and are derived 

from the timing of the heartbeat/R wave and the resultant Inter-Beat Interval. How this RR Interval 

changes over time is represented in several measures, such as the standard deviation of normal RR 

Interval durations (SDNN).  

 

Frequency-domain analysis moves beyond the timing of heartbeats and allows for oscillatory 

components of the ECG to be investigated (Shaffer et al., 2014). Spectral analysis is performed on the 

Inter-Beat Interval portion of the signal, with frequencies analysed split into the very low (<0.04Hz) 

low (0.04–0.15Hz; LF) and high (0.15–0.4Hz; HF) bands (Heathers, 2014). While vagal tone and RSA is 

strongly associated with the HF component (Akselrod et al., 1981), the physiological source of the LF 

component is contested (Houle & Billman, 1999). In long-term recordings (24 hours) LF component is 

reported to be a measure of sympathetic tone, as a complement to the HF’s links with 

parasympathetic modulation (Heathers, 2014; Shaffer et al., 2014). – however, this is not the case in 

short-term recordings where LF component likely best reflects vagally-mediated baroreceptor activity 

(Shaffer et al., 2014). To date there is no consensus on the modulators of LF (Heathers, 2014). Similarly, 

the ratio of LF:HF power is a contested measure of autonomic balance between the branches. 

 

Both time- and frequency-domain measures of HRV use linear algorithms. The variability of heartbeats 

is the result of many modulatory processes, each themselves modulated by many other processes; 

nonlinear metrics may therefore be more appropriate for HRV analysis as they describe systems 

beyond the assumption of proportionality (Janson, 2012). HRV can be understood as a nonlinear, 

dynamical system under different mathematical ideals – HRV has been investigated using chaos theory 

(Wu et al., 2009), fractal dynamics (A. L. Goldberger et al., 2002) and entropy measures (Udhayakumar 

et al., 2020). These analyses share a common assumption that healthy states (in this case, cardiac 

function) are associated with nonlinear fluctuations and inherent disorder (Ilan, 2020; Wu et al., 2009). 

In the words of Shaffer et al. ‘a healthy heart is not a metronome’ (Shaffer et al., 2014).  



 77 

 

When disease states develop, signal complexity tends to breaks down and the overall state of the 

system becomes increasingly periodic and less able to adapt to challenges. Significant changes in HRV 

complexity indices have been demonstrated in end-stage renal disease (Liu et al., 2020), chronic 

obstructive pulmonary disease (Caliskan et al., 2018) and in experimental preparations of sinoaortic-

denervated mice (L. E. V. Silva et al., 2015).  

 

Heart Rate Variability Changes in RBD and PD 
Studies have shown both RBD (Postuma et al., 2010; Sumi et al., 2020; Valappil et al., 2010) and PD 

(Arnao et al., 2020; Heimrich et al., 2021; Y. Li et al., 2021; Mochizuki et al., 2017) populations have 

decreased HRV. These disease states are thus characterised as having increased order and rhythmicity 

to their heart function, under the hypothesis of dysautonomia and pathological modulation of HRV. 

In PD, the Inter-Beat Interval positively correlates with disease duration and Hoehn & Yahr stage 

(Mochizuki et al., 2017) and it has been shown that dysautonomia of gastrointestinal function (phases 

of colonic motility and associated reflexes) correlate with changes indicating decreased HRV (Ali et al., 

2021).  

 

How HRV fits in to the hypothesis of progressive neurodegeneration from RBD to PD is unclear. In line 

with Braak staging, the extent of HRV change has been reported as comparable between groups 

(Bugalho et al., 2018), suggesting that cardiac dysautonomia occurs early on the PD process and 

plateaus. Other studies found that decreased HRV is in fact attributed to RBD-specific pathology, not 

PD (Postuma et al., 2011; Salsone et al., 2016), once again supporting the distinction between ‘Brain-

First’ and ‘Body-First’ processes and presentation in alpha-synucleinopathies. 

 

Rationale and Hypotheses 

Autonomic dysfunction occurs early in the PD disease course and largely arises from 

neurodegeneration in the periphery- namely within the parasympathetic nervous system. However, 

the heterogenous presentation of autonomic symptoms and their severity in PD populations, as well 

as the common occurrence of dysautonomia in the general population and other disease states, 

makes the predictive value of autonomic symptoms in isolation uncertain. Nevertheless, cardiac HRV 

measures provide a valuable and easily accessible insight into sympathovagal balance and may be 

useful in localising synuclein pathology within the peripheral nervous system.  

 



 78 

I hypothesised that both PD and RBD groups would have greater autonomic dysfunction scores on 

gross clinical assessment, with little evidence of autonomic dysfunction in the Control group. I further 

hypothesised that HRV measures during both sleep and wake would be reduced in the PD and RBD 

group, reflecting the early-stage vagal pathology previously reported in the literature. Given the 

dominance of parasympathetic activity in NREM sleep, I expected the NREM HRV measures to 

demonstrate the greatest difference between Control and disease groups.  

Methods  

Participants 
Psychophysical and electrophysiological data were collected from all participants who completed the 

At-Home Recording Session.  

 

Preliminary correlation analyses found no significant relationship between age and clinical assessment 

or electrophysiological autonomic measures analysed in this chapter. Therefore, the results presented 

are not controlled for age covariate. 

 

Clinical Assessment Measures of Autonomic Function 
The following tests were used to assess autonomic function during the Clinical Assessment session: 

• Scales for Outcomes in Parkinson’s Disease- Autonomic Questionnaire (SCOPA-AUT) (Visser et 

al., 2004)– 25-item questionnaire assessing autonomic dysfunction. Total score ranges from 0-

69 with high scores indicating worse autonomic function.  

• Orthostatic Hypotension Challenge (Naschitz & Rosner, 2007a) – measurement of blood 

pressure change during an orthostatic hypotension challenge. Participants lie down for 5 

minutes, have a blood pressure reading, then stand up. Blood pressure is re-measured after 3 

minutes of standing. The difference in both systolic and diastolic pressure is calculated: a 

reduction in systolic blood pressure ⩾20mmHg and/or diastolic blood pressure ⩾10mmHG 

indicates orthostatic hypotension. 

Heart Rate Variability Measures of Autonomic Function 
The modulation of HR by the environment highlights the importance of carefully-controlled 

experimental set-ups when recording and interpreting short-term HRV (Heathers, 2014). ECG data 

was collected using a single modified lead II set-up as recommended by the AASM (Berry et al., 2017) 

with the electrode placed on the left upper chest placement. A mixture of short (5 minutes) and ultra-

short (10 seconds) data segments were analysed, as detailed below. Sampling rate was 512Hz. 
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Wake ECG data was collected during the two (eyes open and eyes shut) 5-minute quiet restful 

recordings. At the beginning of their sleep study night, between the hours of 5pm-10pm, participants 

were instructed to sit quietly for 5 minutes, first with their eyes open and then again with their eyes 

shut. The data presented here are from the second night of recordings, in the eyes shut condition. 

 

Sleep ECG data was collected for each recording night. Sleep stage-specific ECG data was extracted 

according to the manual scoring of the EEG data, resulting in ECG data for NREM 1-3 and REM stages. 

Only sleep-stage episodes longer than 6 minutes were analysed, with a 5-minute segment isolated 

from the middle of the episode and analysed. This minimises analysis of sleep stage transitions and 

standardises the recording duration, thus making HRV measures comparable between sleep stages 

and participants (Electrophysiology, 1996). 

 

The REM sleep stage was further divided into phasic and tonic REM according to the respective 

presence or absence of eye movements. REM microstates are inherently short in duration and 

therefore HRV measures were extracted from ultra-short data segments of 10 seconds (i.e. 10 seconds 

of continuous tonic or phasic REM), which have been shown to reliably correlate with HRV 

measurements derived from longer-duration recordings (Nussinovitch, Elishkevitz, Katz, et al., 2011; 

Nussinovitch, Elishkevitz, Kaminer, et al., 2011; E. B. Schroeder et al., 2004). The short duration of 

these recordings means that only time-domain HRV measures were extracted, as the number of 

samples required for accurate frequency-domain measurements was insufficient (Heathers, 2014).  

 

For each REM episode, phasic and tonic REM with duration ≥10 seconds was extracted and analysed. 

To increase reliability of the ultra-short HRV measures (E. B. Schroeder et al., 2004), a median of the 

tonic/phasic HRV measures was taken per episode as a final, representative measure.  

 

Each sleep stage/REM microstate episode was analysed individually- for example, if there were 6 

episodes of consolidated NREM3 during the night, each episode would be analysed independently. 

This approach conserves the homeostatic and circadian influence upon the electrophysiological 

signatures of sleep, allowing for subsequent time-dependent and sleep stage-dependent analyses. 

Wake and isolated sleep stage signals were preprocessed and analysed using custom Python scripts 

(version 3.7), with use of the HeartPy toolkit (version 1.2.7) (Gent et al., 2019; van Gent et al., 2018). 

 

Preprocessing 
ECG data was notch filtered at 0.05Hz to remove baseline drift and the data was scaled. If the signal 

was very noisy, peaks were enhanced using a synthetic QRS template convolved with the signal, 
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leading to an increased Signal:Noise ratio. If small sections of the signal were too noisy they were 

cropped. If the majority of the signal was too noisy the episode was not analysed. 

 

Extraction and Analysis of ECG Features 
Peak detection of the ECG R component and subsequent feature extraction was conducted using the 

HeartPy ‘process’ function. Briefly, a window with 0.75s width was passed over the data to generate 

a moving average of the signal to be used as a baseline measure for peak detection. The moving 

average is raised stepwise using an optimizing function which minimises the standard deviation of 

preliminary detected peak-peak distances and calculates and applies an optimum threshold for peak 

detection to the signal. The detected peaks are checked for outliers which are subsequently removed 

from further analysis. 

 

Detected peaks were imposed on the signal and visually inspected to ensure the detections were 

accurate (Figure 3.5).  

Figure 3.5: Exemplar preprocessed ECG trace from Control participant with HeartPy peak detection 

applied. Detected peaks (R components) are highlighted with green circles. 

 

Tables 3.1, 3.2 and 3.3 detail the time-domain, frequency-domain and non-linear HRV measures 

(Shaffer & Ginsberg, 2017) which were calculated from the detected R peaks. The different domains 

often correlate with one another, but there are subtle differences between the underlying 

physiological modulators. Given the exploratory nature of the present study, it was considered 

advantageous to calculate a variety of HRV measures. Later within-group analyses focused on a 

reduced number of HRV measurements. 
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Time Domain 
Time domain measures quantify the variance of the Inter-Beat Interval between R components (Figure 

3.4B, Table 3.1). 

 
Variable Description Further details 

Beats Per Minute 
(BPM) 

Number of peaks divided by 
signal duration (minutes) 

Under control of sympathetic and 
parasympathetic nervous system 

Inter-Beat Interval 
(IBI) 

Average duration between 
R component peaks (ms) 

Under control of sympathetic and 
parasympathetic nervous system 

Standard Deviation 
of RR Intervals 

(SDNN) 

Standard deviation of 
‘normal’ Inter-Beat Intervals 

(ms) 

Primary source of variation is 
parasympathetic innervation of the vagus 

by way of respiratory sinus arrhythmia (RSA) 
Correlates with Low Frequency components 

Root Mean Square 
of Successive 

Differences (RMSSD) 

Successive time differences 
between R waves is 

calculated, then squared 
and the result is averaged 

Reflects beat-to-beat variance and vagal 
mediation of HRV 

Table 3.1: HRV time domain variables and description. Informed by (Shaffer & Ginsberg, 2017). 
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Frequency Domain 
Frequency domain measures decompose the ECG signal into its constituent frequencies using the Fast 

Fourier Transformation (Figure 3.6).  

 

 
Figure 3.6: Exemplar power spectral density plot of an ECG signal. Ultra-low frequency band (0-

0.04Hz) in green, low frequency band (0.04-0.15Hz) in pink and high frequency band (0.15-0.4Hz) in 

blue. Image from (PGomes92/pyhrv, n.d.). 

 

The following frequency-domain measures were extracted: 

Measure Description Further details 
Low Frequency 
Component (LF) 

Power within 0.04-0.15Hz 
frequency band (ms2/Hz) 

Primarily reflects vagally-mediated 
baroreceptor activity at rest 

High Frequency 
Component (HF) 

Power within 0.15-0.4Hz frequency 
band (ms2/Hz) 

Reflects parasympathetic/vagal activity 

Low 
Frequency:High 
Frequency Ratio 

(LF/HF) 

Ratio of low frequency power to 
high frequency power 

Contested, but it is thought that low 
ratio reflects greater parasympathetic 
activity and high ratio reflects higher 

sympathetic activity 
Table 3.2: HRV frequency domain variables and description. Informed by (Shaffer & Ginsberg, 2017). 

Frequency domain measures were not computed for REM microstate analysis due to sampling 

limitations 
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Non-Linear Measures 
The following non-linear measures (Table 3.3) are calculated by applying an ellipse to a Poincaré plot, 

wherein the relationship between each RR interval measure against its preceding interval is visualised 

as a scatter plot (Shaffer & Ginsberg, 2017) (Figure 3.7). Non-linear measures measure the 

unpredictability of a time series and may better represent the contribution of multiple modulators 

into HRV.   

Figure 3.7: Exemplar Poincaré plot from Control participant data (own data). 

 

Measure Description Further details 

SD1 
Standard deviation of the distance of each 

point from y=x axis. Specifies width of 
ellipse 

Reflects short-term HRV (ms) 
Identical to RMSSD 

Predicts many other HRV measures 

SD2 
Standard deviation of the distance of each 

point from y=x + average RR interval. 
Specifies length of ellipse 

Measures short & long-term HRV (ms) 
Correlates with LF power and BRS 

S 
Total area of the ellipse, representing 

total HRV 
Correlates with baroreflex, LF & HF 

power and RMSSD 

SD1/SD2 
Ratio of SD1 to SD2 

 

Measures unpredictability of RR time 
series 

Measures autonomic balance 
Correlated with LF:HF ratio 

Table 3.3: Non-linear variables and description. Informed by (Shaffer & Ginsberg, 2017). 
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Results 

Clinical Assessment 
Table 3.4 details the clinical assessment measures for autonomic function testing. The PD group had 

a non-significant increase in their SCOPA-AUT total score compared to Controls, while the RBD group 

had an intermediate score. When the SCOPA-AUT was broken down into functional domain subscores, 

the only domain which significantly differentiated between the groups was Gastrointestinal function 

(Figure 3.8B, Kruskal Wallis X2(2,46)=23.917; p<0.001), with the PD group score significantly greater 

than Controls (p<0.001) and RBD (p=0.009) group.  

 

 
 

Control 
◊ 

(n=19) 

RBD 
† 

(n=15) 

PD 
‡ 

(n=17) 
Test Statistic 

p-value 
 

Post-Hoc 
Effect 
Size 

SCOPA-AUT Total 
Score 

8.5 ± 
4.85 

12.2 ± 
11.23 

14.41 ± 
6.78 

X2(2,50)=5.959 0.051b - 0.042 

Subscore: 
Gastrointestinal 

0.89 ± 
1.49 

1.5 ± 
1.6 

4 ± 
2.42 

X2(2,49)=19.851 <0.001b 
◊ < ‡ p=<0.001 
† < ‡ p=0.009 

0.345 

Subscore: Urinary 
5 ± 

3.09 
3.67 ± 
2.74 

4.94 ± 
3.19 

F(2,48)=0.985 0.381a - 0.039 

Subscore: 
Cardiovascular 

0.42 ± 
0.69 

0.71 ± 
1.14 

0.59 ± 
1.06 

X2(2,50)=0.473 0.789b - 0.075 

Subscore: 
Thermoregulatory 

1.11 ± 
1.02 

2.4 ± 
3.25 

2.41 ± 
1.46 

X2(2,50)=5.253 0.072b - 0.027 

Subscore: 
Pupillomotor 

0.47 ± 
0.68 

0.47 ± 
0.92 

1.06 ± 
1.14 

X2(2,51)=4.031 0.133b - 0.001 

Subscore: Sexual 
0.89 ± 
1.15 

1.6 ± 
2.09 

1.65 ± 
1.84 

X2(2,51)=1.454 0.483b - 0.053 

Table 3.4: Autonomic function clinical assessment measures and statistical analysis results. All values 

are given as mean ± standard deviation (SD). For p-values & statistical tests, a=One-Way ANOVA 

with Tukey HSD post-hoc, b=Kruskal Wallis one-way analysis of variance with Bonferroni post-hoc. 

Analyses were completed with outliers included and excluded. 
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No PD participants exhibited orthostatic hypotension, compared to n=1 RBD and n=1 Control 

participants who did (Table 3.5). A chi-square test for independence indicated no significant 

association between group and orthostatic hypotension presence (X2 (2, n=51) = 1.085, p=0.581, 

Cramer’s V=0.146 (medium effect size). 

 

 Control 
◊ 
n=19 

RBD 
† 
n=15 

PD 
‡ 
n=17 

Orthostatic 
Hypotension 
(n, %) 

Yes (n=2) 1 (5.3%) 1 (6.7%) 0 (0%) 

No (n=49) 18 (94.7%) 14 (93.3%) 17 (100%) 

Table 3.5: Proportion of participants exhibiting orthostatic hypotension. 

 

Figure 3.8 (next page): Boxplots for total and subscore SCOPA-AUT results per group. A) SCOPA-AUT 

total score B) Gastrointestinal subscore C) Urinary subscore D) Cardiovascular subscore E) 

Thermoregulatory subscore F) Pupillomotor subscore G) Sexual function subscore. Significant 

differences are indicated with brackets and p-values displayed. Outliers are indicated with a grey 

diamond. Individual datapoints are shown as dots. Solid line in each box plot indicates median, dotted 

line indicates mean.  
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Electrophysiology (ECG) 
Wake Heart Rate Variability Measures 
There were no significant differences between the groups in time-domain (Figure 3.9A&B) or non-

linear (Figure 3.9C&D) HRV measures (Appendix Table 1). In the frequency-domain (Figure 3.9E,F,G), 

there was a significant decrease in Low Frequency component power for the RBD group when 

compared to Controls (Kruskal Wallis with Bonferroni correction for multiple comparisons; 

X2(2,38)=6.828, p=0.033, Control > RBD p=0.048).  

 

The majority of Wake HRV measures showed a trend of decreasing or increasing values from Control 

to PD group values, with RBD group an intermediary. 

 

Figure 3.9 (next page): Boxplots for selected Wake heart rate variability results per group. A) SDNN B) 

RMSSD C) S D) SD1:SD2 ratio E) Low frequency component F) High frequency component G) LF:HF ratio. 

Significant differences are indicated with brackets and p-values displayed. Outliers are indicated with 

a grey diamond. Individual datapoints are shown as dots. Solid line in each box plot indicates median, 

dotted line indicates mean.  
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Sleep Stage Heart Rate Variability Measures 
The majority of HRV measures for NREM2, NREM3 and REM showed no significant differences 

between the groups (Appendix Tables 2-4). Trends indicating decreased HRV in the PD group 

compared to controls were seen in NREM 2, NREM 3 and REM across all domains. 

 

The one significant difference identified between groups was on the SD1:SD2 Ratio, which broadly 

measures autonomic balance and unpredictability of the RR time series. For REM sleep, the PD group 

had a significantly increased score compared to the RBD group (Kruskal Wallis with Bonferroni 

correction for multiple comparisons; X2(2,21.491)=2.379, p=0.046, RBD < PD p=0.029). The RBD group 

score was comparable to that of the Control group (0.24 ± 0.07 and 0.28 ± 0.08 respectively), both of 

which were lower than the PD group score (0.41 ± 0.23).  

 

State-Dependent HRV Changes 
State-dependent HRV changes were investigated by analysing the change in selected time-domain 

(BPM, RMSSD) and non-linear measures (SD1:SD2 Ratio) across sleep and wake states. A reduced 

number of measures were chosen to assess state-dependent changes given the lack of significant 

difference between groups on sleep HRV measures. Time-domain BPM and RMSSD measures were 

selected to represent linear analysis methods as they are the most commonly/recommended HRV 

measures to report (Shaffer & Ginsberg, 2017) and provide a robust measure of parasympathetic 

influence on HRV. Nonlinear SD1:SD2 measure was selected to give an overall view of HRV signal 

complexity.  Within-group repeated measures analysis was conducted to see if all groups 

demonstrated the expected state-dependent HRV.  
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Time-Domain: Beats per Minute 
BPM decreased with increasing sleep depth from Wake to NREM 3 in all groups, before increasing 

slightly in REM sleep (Figure 3.10). The group values within-states were all within the same, healthy 

range. 

Figure 3.10: Line chart for state-dependent changes to Beats per Minute (BPM) for each group. Error 

bars ±2 standard errors. 

 

Within the groups, a Friedman test found no overall significant variation in BPM for Controls across 

the states, whereas PD and RBD groups had significant differences in BPM between the states of Wake 

and sleep, with Wilcoxon Signed Rank Post-Hoc test showing a significant decrease between Wake 

and NREM for RBD, and between Wake and NREM and REM for PD group (Table 3.6). 
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 Wilcoxon Signed Rank Post-Hoc (Z, p-value) 

 Test Statistic p-value 
Wake-

N2 
Wake-

N3 
Wake-
REM 

N2-N3 N2-REM N3-REM 

Control 
◊ 

n=10 
X2(3,12)=6 0.112 

Z=-1.66 
p=0.09 

Z=-0.94 
p=0.35 

Z=-0.35 
p=0.73 

Z=-1.57 
p=0.12 

Z=-2.8 
p=0.005 

Z=-1.73 
p=0.08 

RBD 
† 

n=10 
X2(3,11)=15.33 0.002 

Z=-2.85 
p=0.004 

Z=-2.67 
p=0.008 

Z=-2.31 
p=0.021 

Z=-0.52 
p=0.6 

Z=-3.04 
p=0.002 

Z=-2.27 
p=0.023 

PD 
‡ 

n=11 
X2(3,12)=16.1 0.001 

Z=-3.06 
p=0.002 

Z=-2.82 
p=0.005 

Z=-2.82 
p=0.005 

Z=-1.5 
p=0.13 

Z=-1.29 
p=0.198 

Z=-0.18 
p=0.86 

Table 3.6: Within group state differences for BPM. Friedman test (α=0.05) with Wilcoxon Signed Rank 

Post-Hoc (α=0.008 to correct for multiple comparisons). Significant differences highlighted in bold.  
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Time-Domain: RMSSD 
All groups showed an elevation of inter-beat-interval variability from Wake to sleep states (Figure 

3.11). This increase was only significant for the RBD and PD groups (p=0.004 and p<0.001 respectively), 

with post-hoc tests finding a significant difference only for PD Wake-N2 and Wake-REM (Table 3.7). 

Neither the RBD nor PD group demonstrated the increase in RMSSD from NREM 2 – NREM 3 that was 

seen in the Control group.  

Figure 3.11: Line chart for state-dependent changes to RMSSD for each group. Error bars ±2 standard 

errors. 
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 Wilcoxon Signed Rank Post-Hoc (Z, p-value) 

 Test Statistic p-value 
Wake-

N2 
Wake-

N3 
Wake-
REM 

N2-N3 N2-REM N3-REM 

Control 
◊ 

n=10 
X2(3,10)=6.6 0.086 

Z=-2.28 
p=0.023 

Z=-1.68 
p=0.093 

Z=-1.88 
p=0.06 

Z=-0.87 
p=0.386 

Z=-1.57 
p=0.117 

Z=-1.48 
p=0.139 

RBD 
† 

n=10 

X2(3,10)=13.
3 

0.004 
Z=-2.19 
p=0.028 

Z=-1.99 
p=0.047 

Z=-2.19 
p=0.028 

Z=-1.96 
P=0.05 

Z=-1.96 
p=0.05 

Z=-0.45 
p=0.66 

PD 
‡ 

n=11 

X2(3,11)=17.
95 

<0.001 
Z=-2.93 
p=0.003 

Z=-2.2 
p=0.026 

Z=-2.76 
p=0.006 

Z=-1.71 
p=0.087 

Z=-0.97 
p=0.33 

Z=-0.25 
p=0.81 

Table 3.7: Within group state differences for RMSSD. Friedman test (α=0.05) with Wilcoxon Signed 

Rank Post-Hoc (α=0.008 to correct for multiple comparisons). Significant differences highlighted in 

bold.  
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Nonlinear: SD1:SD2 Ratio 
The RBD and PD groups had non-significantly elevated SD1:SD2 ratio in Wake, NREM 2 and NREM 3 

stages, with the PD group showing significantly increased ratio for REM compared to RBD and Controls 

(Figure 3.12). The Control group had significant difference in SD1:SD2 ratio between NREM 2, NREM 

3 and REM (Table 3.8), whereas the RBD group only showed significant difference between NREM and 

REM stages. The PD group had no significant state-dependent changes in SD1:SD2 ratio. 

 

 
Figure 3.12: Line chart for state-dependent changes to SD1:SD2 ratio for each group. Error bars ±2 

standard errors. 
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 Wilcoxon Signed Rank Post-Hoc (Z, p-value) 

 Test Statistic 
p-

value 
Wake-

N2 
Wake-

N3 
Wake-
REM 

N2-N3 N2-REM N3-REM 

Control 
◊ 

n=9 
X2(3,9)=17.3 0.001 

Z=--1.42 
p=0.16 

Z=-2.55 
p=0.01 

Z=-1.07 
p=0.29 

Z=-2.8 
p=0.005 

Z=-2.67 
p=0.008 

Z=-2.8 
p=0.005 

RBD 
† 

n=10 
X2(3,10)=13.6 0.004 

Z=-0.67 
p=0.51 

Z=-1.68 
p=0.09 

Z=-1.48 
p=0.14 

Z=-2.5 
P=0.01 

Z=-2.85 
p=0.004 

Z=-2.9 
p=0.003 

PD 
‡ 

n=11 
X2(3,11)=13.7 0.003 

Z=-2.13 
p=0.03 

Z=-2.05 
p=0.04 

Z=-1.25 
p=0.21 

Z=-1.78 
p=0.07 

Z=-1.85 
p=0.06 

Z=-2.27 
p=0.02 

Table 3.8: Within group state differences for SD1:SD2 ratio. Friedman test (α=0.05) with Wilcoxon 

Signed Rank Post-Hoc (α=0.008 to correct for multiple comparisons). Significant differences 

highlighted in bold. 
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REM Microstate Heart Rate Variability Measures 
There were no significant HRV differences between groups when Tonic and Phasic REM microstates 

were analysed independently (Tables 3.9 & 3.10).  

Tonic REM HRV Measures 
 

 
 

Control 
◊ 

(n=13) 

RBD 
† 

(n=12) 

PD 
‡ 

(n=12) 
Test Statistic 

p-value 
 

Post-Hoc 
Effect 
Size 

BPM 
65.32 ± 
11.08 

59.82 ± 
6.48 

60.83 ± 
8.33 

F(2,34)=1.364 0.269a - 0.074 

IBI 
959.03 ± 
160.11 

1014.86 ± 
103.76 

1005.67 ± 
131.93 

X2(2,37)=1.655 0.437b - 0.06 

SDNN 
35.15 ± 
22.69 

27.79 ± 
12.05 

26.44 ± 
13.51 

F(2,20.663)=0.65 0.532a - 0.054 

RMSSD 
23.68 ± 
12.64 

21.26 ± 
10.65 

23.71 ± 
15.75 

F(2,32)=0.128 0.88a - 0.008 

SD1 
16.2 ± 
8.58 

14.51 ± 
7.42 

16.35 ± 
11.15 

F(2,32)=0.138 0.871a - 0.008 

SD2 
43.35 ± 
30.19 

32.83 ± 
13.8 

30.34 ± 
14.91 

F(2,20.362)=0.868 0.435a - 0.073 

S 
3331.72 

± 
3106.08 

1432.32 
± 864.92 

2116.89 
± 

2089.41 
X2(2,34)=1.057 0.589b - 0.09 

SD1/SD2 
0.5 ± 
0.19 

0.51 ± 
0.18 

0.58 ± 
0.19 

F(2,31)=0.786 0.465a - 0.048 

Table 3.9: Tonic REM HRV measures and statistical analysis results. All values are given as mean ± 

standard deviation (SD). For p-values & statistical tests, a=One-Way ANOVA with Tukey HSD post-

hoc, b=Kruskal Wallis one-way analysis of variance with Bonferroni post-hoc. 
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Phasic REM HRV Measures 
 

 
 

Control 
◊ 

(n=13) 

RBD 
† 

(n=12) 

PD 
‡ 

(n=11) 
Test Statistic 

p-
value 

 
Post-Hoc 

Effect 
Size 

BPM 
62.88 ± 

9.18 
60.1 ± 6.82 

60.69 ± 
8.49 

F(2,33)=0.397 0.676 - 0.12 

IBI 
979.58 ± 
157.07 

1011.07 ± 
107.72 

1008.84 ± 
134.56 

F (2,33)=0.211 0.811 - 0.13 

SDNN 
32.36 ± 
16.92 

21.31 ± 
8.44 

25.28 ± 
11.46 

F(2,31)=2.169 0.159 - 0.06 

RMSSD 
29.24 ± 
20.64 

20.20 ± 
9.15 

23 ± 13.28 F(2,31)=1.055 0.36 - 0.11 

SD1 
20.17 ± 
14.63 

13.91 ± 
6.42 

15.8 ± 
9.46 

F(2,31)=1.012 0.421 - 0.11 

SD2 
35.68 ± 
19.47 

23.9 ± 
9.36 

28.57 ± 
14.16 

F(2,31)=1.783 0.185 - 0.08 

S 
3738.57 ± 
3735.19 

1320.71 ± 
1029.12 

1722.28 ± 
1539.6 

X2(2,34)=2.3 0.317 - 0.05 

SD1/SD2 
0.62 ± 
0.28 

0.62 ± 
0.23 

0.58 ± 
0.22 

F(2,30)=0.124 0.884 - 0.14 

Table 3.10: Phasic REM HRV measures and statistical analysis results. All values are given as mean ± 

standard deviation (SD). For p-values & statistical tests, a=One-Way ANOVA with Tukey HSD post-

hoc, b=Kruskal Wallis one-way analysis of variance with Bonferroni post-hoc. 
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Selected time-domain (BPM, RMSSD) and non-linear (SD1:SD2) measures are shown in Figures 3.13 – 

3.14.  

 
Time-Domain: Beats Per Minute 
A mixed between-within subjects ANOVA was conducted to assess the effect of REM microstate on 

BPM (Figure 3.13). There was no significant interaction between microstate BPM and group (Wilks’ 

Lambda=0.89, F(1,33)=2.07, p=0.14, partial eta squared=0.11). There was no significant main effect 

for microstate (F(2,33)=2.03, p=0.16, partial eta squared=0.058) and no main effect for group (Wilks’ 

Lambda=0.942, F(2,33)=0.83, p=0.45, partial eta squared=0.048).  

 

 
Figure 3.13: Line chart for REM microstate-dependent changes to Beats per Minute (BPM) for each 

group. Error bars ±2 standard errors. 

 

 
 

Control 
◊ 

n=13 

RBD 
† 

n=12 

PD 
‡ 

n=11 

Interaction Effect 
(Group*Microstate) 

Main Effect (Group) 
Main Effect 
(Microstate) 

Tonic 
65.32 ± 
11.08 

59.82 ± 
6.48 

60.83 ± 
8.33 F(2,33)=2.07; 

p=0.14; 
Partial eta2=0.11 

F(2,33)=0.83; 
p=0.445; 

Partial eta2=0.048 

F(1,33)=2.03; 
p=0.16; 

Partial eta2=0.058 Phasic 
62.88 ± 

9.18 
60.1 ± 
6.82 

60.69 ± 
8.49 

Table 3.11: Mixed between-within subjects ANOVA to test for between-group differences in REM 

microstates for Beats per Minute (BPM).   
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Time-Domain: RMSSD 
A mixed between-within subjects ANOVA was conducted to assess the effect of REM microstate on 

RMSSD (Figure 3.14). There was no significant interaction between microstate RMSSD and group 

(Wilks’ Lambda=0.924, F(2,31)=1.274, p=0.294, partial eta squared=0.076). There was no significant 

main effect for microstate (Wilks’ Lambda=0.997, F(2,31)=0.1, p=0.75, partial eta squared=0.003) and 

no main effect for group (F(2,31)=0.59, p=0.56, partial eta squared=0.037).  

Figure 3.14: Line chart for REM microstate-dependent changes to RMSSD for each group. Error bars 

±2 standard errors. 

 

 
 

Control 
◊ 

n=12 

RBD 
† 

n=11 

PD 
‡ 

n=11 

Interaction Effect 
(Group*Microstate) 

Main Effect 
(Group) 

Main Effect 
(Microstate) 

Tonic 
23.68 ± 
12.64 

21.26 ± 
10.65 

25.37 ± 
15.39 F(2,31)=1.274; 

p=0.294; 
Partial eta2=0.08 

F(2,31)=0.59; 
p=0.56; 
Partial 

eta2=0.037 

F(1,31)=0.1; 
p=0.75; 
Partial 

eta2=0.003 Phasic 
29.24 ± 
20.64 

20.2 ± 
9.15 

22.99 ± 
13.28 

Table 3.12: Mixed between-within subjects ANOVA to test for between-group differences in REM 

microstates for RMSSD.   
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Nonlinear: SD1:SD2 
A mixed between-within subjects ANOVA was conducted to assess the effect of REM microstate on 

SD1:SD2 ratio (Figure 3.15). There was no significant interaction between microstate SD1:SD2 ratio 

and group (Wilks’ Lambda=0.932, F(2,29)=1.07, p=0.36, partial eta squared=0.068). There was a 

significant main effect for microstate (Wilks’ Lambda=0.856, F(1,29)=4.87, p=0.035, partial eta 

squared=0.14) and no main effect for group (F(2,29)=0.018, p=0.98, partial eta squared=0.001).  

Figure 3.15: Line chart for REM microstate-dependent changes to SD1:SD2 Ratio for each group. 

Error bars ±2 standard errors. 

 

 
 

Control 
◊ 

n=12 

RBD 
† 

n=10 

PD 
‡ 

n=10 

Interaction Effect 
(Group*Microstate) 

Main Effect (Group) 
Main Effect 
(Microstate) 

Tonic 
0.49 ± 
0.19 

0.51 ± 
0.18 

0.57 ± 
0.18 F(2,29)=1.07; 

p=0.36; 
Partial eta2=0.068 

F(2,29)=0.018; 
p=0.98; 

Partial eta2=0.001 

F(1,29)=4.87; 
p=0.035; 

Partial eta2=0.144 Phasic 
0.62 ± 
0.28 

0.61 ± 
0.23 

0.58 ± 
0.22 

Table 3.13: Mixed between-within subjects ANOVA to test for between-group differences in REM 

microstates for SD1:SD2.   
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Discussion 

The presence and extent of dysautonomia within the study cohort was investigated using self-

reported measures of global autonomic function and analysis of blood pressure and 

electrophysiological data. 

 

Specific autonomic symptoms occur in RBD and early-stage PD 
Overall, the PD group had a non-significantly elevated score for global autonomic dysfunction (SCOPA-

AUT total score) compared to Controls, with RBD an intermediary score between groups. When 

broken down into different domains, only the Gastrointestinal sub-score of the SCOPA-AUT was 

significantly increased for the PD group compared to Controls and RBD. The Gastrointestinal sub-score 

of the SCOPA-AUT contains 7 items relating to symptoms of constipation, early abdominal fullness and 

swallowing difficulties. In this cohort, the items which consistently contributed to the Gastrointestinal 

sub-score for RBD and PD groups were items 5 and 6 (related to constipation). For both the 

Gastrointestinal and Sexual Function sub-scores, RBD group had intermediary scores between Control 

and PD groups. The lack of trend between groups on other sub-score domains reinforces narratives of 

erratic and non-step-wise progression of autonomic symptoms in PD (Leclair-Visonneau et al., 2018). 

 

Of note in the SCOPA-AUT scores there were several Control participants who had high scores, and 

the overall Control group score for Urinary Function was high, in line with RBD and PD scores. The 

Urinary Function sub-score thus probably reflects the elderly age of study participants, a factor known 

to increase likelihood of urinary dysfunction in the general population (Siroky, 2004).   

 

The availability of ECG data in this study focused the attention of autonomic assessment onto cardiac 

function. In the SCOPA-AUT Cardiac domain and Orthostatic Hypotension Challenge there were no 

significant differences or non-significant trends between groups. As the SCOPA-AUT cardiac questions 

relate to orthostatic hypotension symptoms (e.g. dizziness upon standing) it was not surprising to have 

two similar results for these measures.  

 

Heart rate variability is reduced in PD sleep and wake states 
Cardiac dysautonomia was further assessed by conducting HRV analysis. Non-significant trends in the 

Wake HRV measures reflected those reported in the literature, with decreased HRV in the PD group 

compared to Controls, evidenced by decreased RMSSD and increased SD1:SD2 ratio. The Wake HRV 

measures were variably comparable between RBD and PD groups, but the RBD and PD+RBD group did 

not exhibit significantly greater dysfunction than the PD group (data not shown).  
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During sleep, HRV measures showed sleep-stage-dependent changes analogous to those reported 

previously, validating my data quality and analytical approaches. Taking the Control group as an 

example, the beat-to-beat variance (RMSSD) increased and signal complexity (SD1:SD2 ratio) 

decreased with deepening sleep from NREM2 to NREM 3, reflecting increased parasympathetic 

influence. The RMSSD decreased and signal complexity increased during REM sleep in line with a shift 

towards elevated sympathetic activity. Between the REM sleep microstates, Control Tonic REM had 

decreased RMSSD and SD1:SD2 ratio compared to Phasic REM. This difference between microstates 

reflects the increased arousal of the Tonic state (Simor et al., 2020).  

 

Between-group comparisons of sleep-stage HRV measures showed trends for decreased HRV in the 

PD (and to a lesser extent, RBD group) compared to Controls. Only REM sleep showed a significant 

difference between groups, with the PD group demonstrating a significantly increased SD1:SD2 ratio 

compared to RBD and non-significantly compared to Controls. An increased SD1:SD2 ratio is a marker 

of reduced complexity or variability/unpredictability in a signal, which is an established characteristic 

of many disease states. Indeed, the SD1:SD2 ratio was elevated in all behavioural states for the PD 

group (figure x), though the greatest increases were seen in sleep states. The RBD group similarly 

showed elevated SD1:SD2 ratio compared to controls. 

 

One interesting observation is the reduced variability and trend flattening in HRV measures between 

sleep states and REM microstates for the PD and RBD groups. In the RMSSD measure, the RBD and PD 

groups did not show an elevation in beat-to-beat variability between NREM 2 and NREM 3, unlike the 

Control group (Figure 3.14). This was further evidenced in the SD1:SD2 ratio measure – there was no 

clear change in the signal unpredictability across the sleep stages in the PD group compared to 

Controls. There was an apparent disease scaling effect: whereas the Control group had a significant 

difference in SD1:SD2 ratio between all sleep stages, the RBD group only had significant differences 

between NREM and REM values (i.e. not between NREM 2 and NREM 3), while the PD had no 

significant difference between any sleep stages. These results suggest dampened HRV between NREM 

sleep states may be an initial indication of parasympathetic pathology. 

 

Similarly interesting findings were observed between REM microstates: the PD group did not show 

any change in SD1:SD2 ratio between Tonic and Phasic REM, while both PD and RBD groups had the 

opposite change in RMSSD between states compared to Controls (RMSSD increased in Phasic REM for 

Controls compared to decreased for RBD and PD). There was negligible change in BPM for the PD and 
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RBD groups compared to controls. These results again suggest an imbalance between ANS branches 

and dysregulation of HRV during sleep.  

 

The attenuation of HRV response across behavioural states seen in these results is in agreement with 

previous reports in the literature of reduced heart rate state-dependent changes in RBD (Ferini-

Strambi et al., 1996; Lanfranchi et al., 2007). As far as I am aware, this is the first time HRV metrics 

have been quantified in tonic vs. phasic sleep in humans, or investigated in the context of PD and RBD. 

 

Dysautonomia is mild and scaled from RBD to early-stage PD 
The results presented in this chapter culminate in a picture of mild dysautonomia in the PD group, and 

to a lesser extent RBD group, compared to Controls. Specifically, gastrointestinal dysfunction and 

decreased HRV, but not cardiac blood pressure, are impacted in these disease states. The variable 

presentation of autonomic symptoms in this study is similar to previously reported early-stage PD 

cohorts (Malek et al., 2017), and the slightly elevated level of baseline dysautonomia in the Control 

group is expected given the older age of the cohort (Parashar et al., 2016). This reduced autonomic 

function in the Control group may also partially explain the lack of significant differences between the 

groups on a number of measures. 

 

Conclusion 

The results detailed in this chapter demonstrate a heterogenous presentation of dysautonomia in the 

PD population, with gastrointestinal and HRV measures the most discriminatory from Controls. 

Contrary to other studies, there was no evidence for significantly increased dysautonomia in the RBD 

group compared to PD. However, this does not rule-out HRV measures adding predictive power when 

integrated with other, multi-modal metrics.  The results presented here also show how both sleep and 

wake physiology are affected in PD, establishing a foundation for further state-dependent analyses 

within this thesis.  
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Chapter IV: Olfactory Function 
Chapter by Publication 

 

“… because of the loss of smell, food doesn’t taste as good, even water, and it’s gotten worse. As 

time goes on, it’s harder and harder for me to find something that I like … So I’ve lost, I’ve lost 

weight.”  

Person with PD, quote from (Bonner et al., 2020) 

 

As Braak Stage I alpha-synuclein pathology takes hold in the periphery, rostral pathology can develop 

simultaneously in the olfactory bulb, impacting sense of smell and taste many years before a PD 

diagnosis.  

Manuscript Commentary 

This chapter is comprised of a manuscript accepted for publication by the journal Clinical Parkinsonism 

& Related Disorders. Manuscript acceptance was confirmed on 15th December 2022. Co-authors were 

Dr Michal Rolinski, Dr Matthew W. Jones and Dr Alan Whone. Co-authors oversaw the research and 

contributed to the final manuscript by providing feedback. 

 

The manuscript investigates the olfactory profile for the Control, RBD and PD groups using the 

psychophysical 16-item Sniffin’ Sticks smell test (Burghart GmBh, Wedel, Germany). It is well-

established that PD is associated with diminished olfactory function (Haehner et al., 2011), and 

increased rates of hyposmia and normosmia have consistently been reported in RBD cohorts (Lyu et 

al., 2021). These findings of early olfactory dysfunction in prodromal PD are supported by histological 

and molecular evidence (H. Braak et al., 2003; Stefani et al., 2021) and have informed the ‘body-first’ 

theories of PD subtypes (Horsager et al., 2020). Indeed, results reported in the manuscript presented 

here show near-identical olfactory profiles in the RBD and PD groups, with significantly impaired 

olfactory ability compared to Controls.  

 

As part of the Sniffin’ Sticks smell test, participants are asked if they are aware of any changes to their 

sense of smell. During the data collection, I noticed that many of the participants with RBD would 

answer that they had not noticed any changes to their sense of smell, yet would subsequently score 

poorly in the test. Often, clinicians rely on self-report of olfactory function when assessing people with 

RBD, and this discrepancy in self-reporting of olfactory function vs. test score led to the hypothesis 

that people with RBD may be unaware of the association between RBD, PD and hyposmia and thus 

less likely to be aware of olfaction changes. This hypothesis was tested by calculating the sensitivity, 
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specificity and accuracy of self-report against the Sniffin’ Sticks test score for the Control, RBD and PD 

groups. Self-report accuracy was low for all groups but was lowest for the RBD group. Other studies 

have found olfaction self-report to be unreliable (Adams et al., 2017), but in the context of RBD where 

hyposmia may indicate prodromal synucleinopathy, it seems prudent to be aware of this discrepancy 

and its implications for clinical practice. 

 

The results detailed in this chapter thus confirm olfactory dysfunction to be a strong prognostic 

biomarker candidate and highlight the importance of objective patient phenotyping for clinical 

practice as well as research.   
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Abstract  

Introduction 
The earliest stages of alpha-synucleinopathies are accompanied by non-specific prodromal symptoms 

such as diminished sense of smell, constipation and depression, as well as more specific prodromal 

conditions including REM Sleep Behaviour Disorder (RBD). While the majority of RBD patients will 

develop an alpha-synucleinopathy, one of the greatest clinical challenges is determining whether and 

when individual patients will phenoconvert.  Clinical evaluation of a patient presenting with RBD 

should therefore include robust and objective assessments of known alpha-synucleinopathy 

prodromes. 

 

Methods 
This study compared olfactory function self-report measures with psychophysical ‘Sniffin’ Stick 16-

item Identification’ test scores in Control (n=19), RBD (n=16) and PD (n=17) participants.  

 

Results 
We confirm that olfactory test scores are significantly diminished in RBD and PD groups compared to 

Controls (p<0.001, One-Way ANOVA with Tukey HSD Post-Hoc, effect size=0.401). However, RBD 

participants were only 56% accurate when self-reporting olfactory dysfunction, hence markedly less 

likely to perceive or acknowledge their own hyposmia compared to Controls (p=0.045, Fisher’s Exact 

Test, effect-size=0.35).  

 

Conclusion 
When isolated RBD presents with hyposmia, there is an increased likelihood of phenoconversion to 

Parkinson’s Disease (PD) or Dementia with Lewy Bodies (DLB); unawareness of olfactory dysfunction 

in an individual with isolated RBD may therefore confound differential diagnosis and prognosis. Our 

results evidence the fallibility of olfactory function self-report in the context of RBD prognosis, 

indicating that clinical assessments of RBD patients should include more reliable measures of olfactory 

status. 
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Introduction 

The alpha-synucleinopathies Parkinson’s disease (PD), Dementia with Lewy Bodies (DLB) and Multiple 

System Atrophy (MSA) are a group of neurodegenerative disorders which, despite shared pathology 

of misfolded alpha-synuclein protein aggregation, have varying symptom profiles. The earliest stages 

of alpha-synucleinopathy neurodegeneration are accompanied by non-specific prodromal symptoms 

such as diminished sense of smell, constipation and depression, as well as more specific prodromal 

symptoms such as REM Sleep Behaviour Disorder (RBD) (Berg et al., 2015; McKeith et al., 2020; Xia & 

Postuma, 2020). The combination of prodromal symptoms and extent of their severity can be 

indicative of which alpha-synucleinopathy is developing (Colosimo et al., 2009; Palermo et al., 2020; 

Postuma et al., 2019).  

 

The most specific prodrome for alpha-synucleinopathies is isolated RBD, where the condition is not 

caused by a known mechanism such as medication, pathological stress or specific lesion (Skorvanek 

et al., 2018). Prevalence of hyposmia (diminished sense of smell) and anosmia (total loss of sense of 

smell) has been consistently shown to be higher in isolated RBD patients compared to controls (Barber 

et al., 2017; Fantini et al., 2006a). When isolated RBD presents with hyposmia, this is indicative of an 

underlying synucleinopathy and there is an increased likelihood of phenoconversion to PD or DLB 

(Iranzo, Marrero-González, et al., 2021). In contrast, MSA is associated with relatively preserved 

olfactory function(Garland et al., 2011; Iranzo, Marrero-González, et al., 2021; Stefani et al., 2020). 

Hyposmia may therefore serve as a differentiating prodrome of a-synucleinopathies and prognostic 

predictor when co-occurring with isolated RBD.  

 

There is conflicting evidence as to whether olfactory function progressively deteriorates over the 

course of alpha-synucleinopathy development, with different domains demonstrating different 

progression profiles. Longitudinal studies utilising odour identification paradigms (e.g. Sniffin’ Sticks 

identification subtest; UPSIT-40) found olfaction does not progressively decline in prodromal RBD 

cohorts, and instead is a stable and prognostic indicator of synucleinopathy (Iranzo, Marrero-

González, et al., 2021; Janzen et al., 2022). This stable RBD olfactory profile potentially reflects a floor-

effect, wherein the alpha-synuclein pathology responsible for olfactory dysfunction (olfactory bulb, 

anterior olfactory nucleus, orbitofrontal cortex) has already maximally occurred in the early prodromal 

stage (Iranzo, Marrero-González, et al., 2021; Janzen et al., 2022). However, other olfaction domains 

(threshold detection, odour discrimination) have been shown to decline in prodromal RBD cohorts 

over the course of 4 years (Janzen et al., 2022). 
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Self-report of olfactory dysfunction is unreliable and declines with age, with poor sensitivity ranging 

in reports from 12-35% (Adams et al., 2017; Murphy et al., 2002; Nordin et al., 2012; Seubert et al., 

2017). However, when isolated RBD patients are clinically assessed, the majority of clinicians rely on 

patient self-reports and do not perform further olfaction assessments. Unawareness of olfactory 

dysfunction in an individual with isolated RBD may impact differential diagnosis and prognosis. 

Here, we therefore test whether there is a mismatch between the self-reported olfactory function and 

clinically-assessed olfaction test scores in RBD and PD patients compared to controls. 

  



 109 

Methods 

Participants 
103 potential participants were contacted and screened for inclusion.  54 people met the study 

inclusion criteria and verbally agreed to participate; 2 participants subsequently withdrew from the 

study prior to enrolment due to the time commitment required. 52 participants gave written consent 

to participate and were enrolled onto the study. Data from n=52 participants are reported here. 

 

Patient group participants (RBD and PD groups) were recruited from the Neurology and 

Neuropsychiatry services of Southmead Hospital, North Bristol NHS Trust, UK. Control participants 

(n=19) were recruited from the local population, including partners or friends of patient group 

participants.  

 

Study inclusion criteria required PD participants to have received their diagnosis in the previous 3 

years, meaning they were in the relatively early stages of Parkinson’s. Of the n=17 PD participants 

reported in this study, 6 had ‘probable-RBD’ (p-RBD) and were categorised as such using the criteria 

of a history of dream enactment or a score ≥6 on the REM Sleep Disorder Screening Questionnaire 

(RBDSQ) (Nomura et al., 2011). None of the PD participants with p-RBD had polysomnography-

confirmed RBD, and for most p-RBD participants their RBD symptoms developed at the same time as 

their PD diagnosis.  

 

All RBD (n=16) participants had a polysomnography-confirmed RBD diagnosis according to ICSD 

criteria (depending on date of diagnosis, either ICSD-2 (American Academy of Sleep Medicine, 2005) 

or ICSD-3 (American Academy of Sleep Medicine, 2014) criteria) and were considered by their clinician 

to have ‘isolated’ RBD rather than due to a secondary cause.  

 

The study protocol was approved by the University of Bristol’s Research Ethics Department (RED), the 

South West-Central Bristol NHS Research Ethics Committee (REC) and the Health Research Authority 

(HRA). REC reference: 19/SW/0103. All participants provided written informed consent following a full 

discussion of the study procedure. 

 

Olfaction Assessment 
Olfactory function was quantified using the 16-item Sniffin’ Sticks Smell Test (Burghart GmBh, Wedel, 

Germany). This test assesses odour identification using a forced-choice paradigm, wherein an odorant 

is presented to the participant for 2-3 seconds and they must identify the scent out of a choice of 4 
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options. A 30s pause between odours minimises odour cross-contamination. As such, the duration of 

the test is approximately 12 minutes. Participants can score between 0 (no correct identification) and 

16 (all odorants identified correctly). 

 

As part of the Sniffin’ Sticks smell test, participants report any recent cold or flu, whether they are 

aware of any olfactory or gustatory changes and the duration of these changes. Although the Sniffin’ 

Sticks smell test primarily interrogates olfaction, participants are questioned on their sense of taste 

due to the strong connection between olfactory and gustatory function. Participants who reported 

olfactory dysfunction were classified as having ‘perceived hyposmia/anosmia’, while those 

participants who reported gustatory dysfunction were classified as having ‘perceived ageusia’. 

Participants are also asked to report their first language and whether they speak other languages 

fluently, due to the cultural context of sensory assessments.  

 

There are several criteria available to classify olfactory function as normosmic, hyposmic or anosmic 

using Sniffin’ Sticks (Hummel et al., 1997, 2007; Oleszkiewicz et al., 2019), including cut-off criteria 

provided in the test kit (Burghart Messtechnik GmBH). This study utilises Oleszkiewicz et al’s age-

adjusted percentile scores (Oleszkiewicz et al., 2019) (Supplementary Table 1) to classify olfactory 

function. 

 

Agreement between self-reported and clinically-assessed olfactory function was defined as follows: 

 

• Correctly Perceived Olfaction – individuals’ perception of their sense of smell matches their 

Sniffin’ Sticks score. 

• Incorrectly Perceived Normosmia – individuals perceive their sense of smell to be within the 

normosmic range, but their Sniffin’ Sticks score is hyposmic or anosmic 

• Incorrectly Perceived Hyposmia /Anosmia – individuals perceive their sense of smell to be 

within the hyposmic /anosmic range, but their Sniffin’ Sticks score is normosmic 

 

Data Analysis 
Data were analysed using SPSS Version 26 software (SPSS Inc., Chicago, Ill., USA). Shapiro-Wilk tests 

for normality were followed by 2-sided parametric or non-parametric tests, chosen as appropriate to 

calculate inferential statistics. Corrections for multiple comparisons were used for post-hoc analyses. 

Effect size is given as Cramer’s V for Fisher’s test and Eta Squared for ANOVA (partial) & Kruskal Wallis 

analyses. 
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Accuracy, sensitivity and specificity values were calculated as described in (Baratloo et al., 2015). 

 

Results 

Demographics  
All participants were living in the South-West of England and the majority were of White British 

ethnicity (n=47, 90.4%). The remaining participants identified with White European ethnic 

backgrounds or dual heritage backgrounds. 96.1% (n=50) of participants were native speakers of 

English, while the remaining participants spoke fluent English. The majority of participants were male 

(n=41, 78.85%). 

 

There were no significant differences in the age or sex distributions between the 3 participant groups. 

In all groups, female participants were slightly older than their male counterparts, though not 

significantly so (Two-Way Between Groups ANOVA F(2,46) = 0.013, p=0.987, partial eta squared = 

0.001) (Table 4.1). 

 

In addition to the results shown in Table 4.1, there were no significant differences between groups 

when measures of socioeconomic status (accommodation status, vehicle access, employment status 

& position) were analysed. 

 

There were no significant differences between groups in relevant medical history. Control and RBD 

groups contained a low number of participants with diagnosed nasal pathologies, specifically nasal 

polyps and rhinitis. Health status predictors (years of education, marital status) were also similar 

across groups. 
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Control (n=19) 

◊ 
RBD (n=16) 

† 
PD (n=17) 

‡ 
p-value; 
post-hoc 

Test 
Statistic 

Effect 
Size 

Sex 
Male 
Female 

 
14 (73.7%) 
5 (26.3%) 

 
14 (87.5%) 
2 (12.5%) 

 
13 (76.5%) 
4 (23.5%) 

ns (0.637)c 1.109 (2) 0.14 

Age 
 
Male 
 
Female 

69.57 (8.77) 
 

68.87 (9.98) 
 

71.55 (3.99) 

64.64 (9.05) 
 

64.46 (7.07) 
 

65.91 (23.97) 

66.73 (9.3) 
 

66.09 (7.84) 
 

68.81 (14.43) 

ns (0.277)a 
 

ns (0.383)a 
 

ns (0.860)a 

F(2,49) = 
1.319 

F(2,38) = 
0.985 

F(2,8) = 
0.154 

0.05 
 

0.05 
 

0.04 

Duration of 
RBD 
Symptoms 
(years ± s.d) 

- 8.75 (7.17) - - - - 

Duration of 
RBD 
Diagnosis 
(years ± s.d) 

- 2.8 (1.37) - - - - 

Duration of 
PD motor 
Symptoms 
(years ± s.d) 

- - 5.88 (6.77) - - - 

Duration of 
PD Diagnosis 
(years ± s.d) 

- - 1.82 (0.882) - - - 

Diagnosed 
Nasal 
Pathology 

2 (10.52) 2 (12.5) 0 (0) ns (0.446)c 2.175 (2) 0.2 

Smoking 
Status 
Never 
Smoked 
Ex-Smoker 
Smoker 

 
 

13 (68.4) 
 

6 (31.6) 
0 (0) 

 
 

9 (56.3) 
 

7 (43.8) 
0 (0) 

 
 

11 (64.7) 
 

6 (35.3) 
0 (0) 

ns (0.77)c 0.628 (2) 0.11 

Occupational 
Exposure to 
Pollutants 

2 (10.5) 
 

4 (25) 
 

4 (23.5) 
 

ns (0.495)c 
 

1.694 (2) 0.18 

Table 4.1: Demographics and Relevant Medical History results. All continuous variable results are 

presented as mean and standard deviation (s.d.) unless otherwise specified. All categorical variable 

results are presented as frequency (n) and percentage (%) unless otherwise specified. For p-values & 

statistical tests, a=One-Way ANOVA with Tukey HSD post-hoc, b=Kruskal Wallis one-way analysis of 
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variance with Bonferroni post-hoc, c=Fisher’s Exact Test with Bonferroni correction d=Pearson’s Chi-

Square Test for Independence with Bonferroni Correction. 

Self-Report Olfactory and Gustatory Function 
Self-reported olfactory dysfunction, or perceived hyposmia, was not significantly different between 

the groups. Of the 3 groups, only the PD group included a majority of participants self-reporting a 

diminished sense of smell (Table 4.2; Figure 1a).  

 

A minority of participants in all groups self-reported gustatory dysfunction, or perceived ageusia. 

Duration of perceived hyposmia or ageusia was not significantly different between groups. 
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Control 
(n=19) 

◊ 

RBD (n=16) 
† 

PD (n=17) 
‡ 

p-value; 
post-hoc 

Test 
Statistic 

Effect 
Size 

Perceived 
Hyposmia/Anosmia 
(n, %) 

5 (26.3%) 6 (37.5%) 9 (52.9%) ns (0.272)c 2.646 (2) 0.228 

Perceived 
Hyposmia/Anosmia 
Duration (years ± s.d) 

30.3 (20.69) 
12.33 
(5.72) 

12 (15.23) ns (0.144)b 
X2(2,20) = 

3.88 
-0.007 

Perceived Ageusia 
(n, %) 

2 (10.5%) 4 (25%) 5 (29.4%) ns (0.33)c 2.199 0.202 

Perceived Ageusia 
Duration (years ± s.d) 

15.2 (20.86) 10 (0) 14.4 (20.11) ns (0.729)b 
X2(2,11) = 

0.633 
-0.42 

Sniffin’ Sticks Score (± 
s.d) 

11.68 (2.1) 7.63 (2.6) 7.47 (2.85) 
<0.001a; 

◊>† <0.001, 
◊>‡ <0.001 

F(2,49) = 
16.440 

 
0.401 

Olfaction 
Categorisation (n, %) 
 
Normosmic 
Hyposmic 
Anosmic 

 
 
 

17 (89.5%) 
2 (10.5%) 

0 (0%) 

 
 
 

5 (31.3%) 
3 (18.8%) 
8 (50%) 

 
 
 

4 (23.5%) 
5 (29.4%) 
8 (47.1%) 

<0.001c; 
 
 

◊> †,‡ 0.001 
ns 

◊< †,‡ 0.001 

n/a 
0.442 

 
0.501 

Olfaction Perception 
(n, %) 
Correctly Perceived 
Olfaction 
Incorrectly Perceived 
Normosmia 
 
Incorrectly Perceived 
Hyposmia 

 
 

14 (73.68%) 
 

1 (5.26%) 
 
 

4 (21.05%) 

 
 

9 (56.25%) 
 

6 (37.5%) 
 
 

1 (6.25%) 

 
 

11 (64.71%) 
 

5 (29.41%) 
 
 

1 (5.88%) 

 
 

ns (0.544)c 
 

0.045c; 
ns(◊<†,‡ 

0.06) 
 

ns (0.344)c 

 
 

n/a 
 

n/a 
 
 

n/a 

 
 

0.3 
 

0.35 
 
 

0.185 

Table 4.2: Olfactory Perception, Sniffin’ Sticks Smell Test Results and Olfaction Categorisation. All 

continuous variable results are presented as mean and standard deviation (s.d.) unless otherwise 

specified. All categorical variable results are presented as frequency (n) and percentage (%) unless 

otherwise specified. For p-values & statistical tests, a=One-Way ANOVA with Tukey HSD post-hoc, 

b=Kruskal Wallis one-way analysis of variance with Bonferroni post-hoc, c=Fisher’s Exact Test with 

Bonferroni correction d=Pearson’s Chi-Square Test for Independence with Bonferroni Correction. 
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Figure 4.1: PD and RBD participants are more likely to incorrectly perceive normal olfactory function: 

(a) Self-reported olfactory problem frequencies per group. Differences between group were not 

significant (Fisher’s exact test p=0.272). (b) Scatter plot showing the distributions of Age and Sniffin’ 

Sticks score according to age. Marginal axes show respective density curves for the distribution of 

ages (x-axis) and Total Sniffin’ Sticks score (y-axis) for each group. Line of best fit (± SE) and Pearson’s 

correlation coefficient is calculated for each group to describe the relationship between age and 

olfactory function (Control r=-0.38, p=0.11; RBD r=0.11, p=0.68; PD r=-0.08,p=0.75). 
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Sniffin’ Sticks Smell Test 
RBD and PD groups scored significantly lower than Controls on the Sniffin’ Sticks smell test (Table 4.2; 

Figure 4.1b). There was no significant difference between the RBD and PD mean Sniffin’ Sticks scores, 

indicating similar levels of olfactory dysfunction between the two groups. When the PD group was 

stratified into p-RBD PD and PD without p-RBD, there was no significant difference between mean 

total Sniffin’ Sticks scores (p-RBD PD mean score = 7.5 ± s.d. 2.59; PD without p-RBD mean score = 7.45 

± s.d. 3.11; Independent Samples T-Test t(15) = 0.03, p=0.98, two-tailed, eta squared=0.015). 

 

The majority (89.5%) of Control participants were categorised as ‘normosmic’. The majority of RBD 

and PD participants experienced olfactory dysfunction of some degree, and both RBD and PD groups 

had a significantly greater proportion of ‘anosmic’ individuals compared to Controls (p<0.001, Fisher's 

Exact Test).  

 

There was no difference in Sniffin’ Sticks score between individuals diagnosed with nasal pathology 

(n=4; mean score = 10.00 ± s.d. 0.82) and those without nasal pathology (n=48; mean score = 8.98 ± 

s.d. 3.23). Secondary analyses were conducted after removing individuals with nasal pathology, 

however this did not impact the overall results. Similarly, there was no significant difference in Sniffin’ 

Sticks score between non-smokers (n=33; mean score = 8.79 ± s.d 3.2) and ex-smokers (n=19; mean 

score = 9.53 ± s.d. 3.17) (independent samples t-test; t(50)=-0.8, p=0.43, two-tailed). The magnitude 

of the differences in the means was of small effect (Cohen’s d = 0.23), suggesting limited association 

between variables. 

 

Mismatch Between Self-Report and Sniffin’ Sticks Olfactory Categorisation 
The majority of participants had a correct perception of their olfactory function (Table 4.2). However, 

there was a significant difference in the occurrence of Incorrectly Perceived Normosmia across groups 

(p=0.045, Fisher’s Exact Test): RBD and PD groups had more participants self-reporting normosmia 

while scoring in the hyposmic or anosmic range on the Sniffin’ Sticks smell test. Subgroup analysis of 

p-RBD PD and PD without p-RBD found no clear differences in olfaction perception between groups 

(correctly perceived normosmia, incorrectly perceived normosmia and incorrectly perceived 

hyposmia; Fisher’s exact test two-tailed p=1.0 for all analyses). The RBD group contained the greatest 

number of participants with incorrectly perceived normosmia; 37.5% compared to 5.3% Control. 

 

The discrepancies between olfaction categorisation and self-reported olfactory function (Table 4.2; 

Supplementary Table 4.2) were explored by calculating the accuracy, sensitivity and specificity of the 
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respective groups’ self-report (Table 4.3), using the 16-item Sniffin’ Sticks test as a gold-standard 

psychophysical assessment of olfactory function.  

 

For control participants, self-report was 74% accurate, compared to 56% and 65% for RBD and PD 

respectively. Sensitivity and specificity values were lowest for the RBD group (45% and 67% 

respectively) compared to the Control and PD groups.  

 

Group Accuracy Sensitivity Specificity 

Control 73.68% 50% 76.47% 

RBD 56.25% 45.45% 66.67% 

PD 64.71% 61.54% 75% 

Table 4.3: Accuracy, Sensitivity and Specificity of olfactory function self-report. 

 

Discussion 

This study compared olfactory function self-perceptions with psychophysical assessment scores in 

Control, RBD and PD participants with similar age, sex, socioeconomic status and health profile. We 

found a significant difference between groups when comparing the number of participants who 

incorrectly perceived their sense of smell to be normosmic. Specifically, RBD participants were more 

likely to incorrectly perceive their sense of smell to be normosmic when compared to Controls, and to 

a lesser degree when compared to the PD group.  

 

Given that self-report is the most common way for clinicians to assess patient olfaction, we sought to 

investigate whether there was a mismatch between participant’s perceptions of their sense of smell 

compared to their Sniffin’ Sticks score. We hypothesised that RBD patients may be unaware of the 

association between olfactory impairment, RBD and PD and therefore more likely to be unaware of 

their own sense of smell. If RBD patients do not report olfactory changes to clinicians, this may have 

impacts for their healthcare and the clinicians’ ability to provide an accurate prognosis given that 

olfactory disturbance associates with the rate of RBD phenoconversion and that olfactory disturbance 

is less common in MSA (Garland et al., 2011; Iranzo, Marrero-González, et al., 2021; Stefani et al., 

2020).  

 

We found that self-report was less accurate than psychophysical olfactory testing in the RBD group 

compared to Control and PD groups, with lower sensitivity and specificity. Our results indicate that 

RBD patients are less likely to be aware of any olfactory dysfunction than Control and PD individuals, 
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calling into question the reliance of clinicians on olfactory self-report for RBD prognosis, where 

olfactory dysfuction arising in RBD increases the likelihood of phenoconversion. 

 

Pathologies which cause hyposmia range from transient inflammation to neuronal death. Diminished 

olfactory function is therefore a non-specific symptom of many conditions, from short-term illness 

including COVID-19 (Moein et al., 2020) to long-term conditions such as chronic rhinosinusitis and 

traumatic brain injury (Ciofalo et al., 2018; Kohli et al., 2017).  

 

The distinction between non-specific and prognostic olfactory dysfunction was investigated by 

considering factors which may influence olfaction such as smoking history, diagnosed nasal 

pathologies and exposure to pollutants. No participants in the study were current smokers, and the 

majority of participants in each group had never smoked. There were no significant differences in the 

number of ex-smokers between the 3 groups. Additionally, while current smoking is associated with 

olfactory dysfunction, function is rescued by smoking cessation (Ajmani et al., 2017). In both the 

Control and RBD groups, n=2 participants reported diagnosed nasal pathology, specifically rhinitis or 

nasal polyps. Neither smoking history nor nasal pathology significantly impacted on Sniffin’ Sticks 

score. There was no significant difference in the number of participants per group who had exposure 

to pollutants, which ranged from fertiliser and carbon dust to petrol vapours. The low prevalence of 

these exposures, coupled with the limited epidemiological literature (Werner & Nies, 2018), make it 

difficult to comment on the impact of these exposures on olfaction in the current study. 

 

Across the 3 groups, the majority of participants did not report any olfactory or gustatory dysfunction. 

The PD group had a non-significantly greater number of participants reporting olfactory dysfunction 

than RBD and Control groups (PD 52.9%; RBD 37.5%, Control 26.3%). This perhaps reflects the 

simultaneous and juxtaposing phenomena that while PD patients are aware of the association 

between olfactory impairment and PD, they still over-rate their sense of smell compared to controls 

(Leonhardt et al., 2019). The interpretation of these results would benefit from a larger sample size to 

explore the mechanisms and psychology of this phenomenon. 

 

When participants’ olfaction was tested using the Sniffin’ Sticks 16-item identification smell test, RBD 

and PD group scores were significantly lower than Controls, with similar performance in RBD and PD 

groups (RBD mean ± SD 7.63 (2.6); PD mean ± SD 7.47 (2.85) p = 0.983). When participants’ olfactory 

function was categorised as ‘normosmic’, ‘hyposmic’ or ‘anosmic’ according to age-adjusted criteria 

applied to Sniffin’ Sticks score [19], significantly more RBD and PD participants were ‘anosmic’ 
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compared to Controls. All 3 groups contained similar numbers of ‘hyposmic’ participants, likely due to 

the age of participants and increased incidence of health conditions (Mackay-Sim et al., 2006; Nordin 

et al., 2012). 

 

The Sniffin’ Sticks scores and categorisations support the literature that isolated RBD is associated 

with diminished sense of smell to an extent comparable with PD olfactory profiles (Shin et al., 2013). 

Additionally, the similar scores between the patient groups are consistent with olfactory (dys)function 

not progressively worsening over time, but instead plateauing at some early prodromal stage of the 

PD neurodegenerative process, with early progression occurring before reaching a floor effect (Iranzo, 

Serradell, et al., 2013).  

 

Finally, we did not find any differences in the Sniffin’ Sticks scores nor in olfaction perception when 

we conducted p-RBD PD and PD without p-RBD subgroup analysis, suggesting the extent of olfactory 

dysfunction and awareness of it is independent of concomitant RBD or PD subtypes. We therefore 

interpret these preliminary findings as a cognitive bias, in that people with isolated RBD are not always 

aware that olfactory dysfunction is commonly associated with RBD. Olfactory dysfunction is a far more 

recognised symptom of PD and thus we propose people with PD are more likely to be aware of a 

deficit.  

 

Our findings warrant further investigation into the relevance of olfaction self-report within the clinic 

when considering RBD prognosis. Future work should build upon this by applying the Extended Sniffin’ 

Sticks test to contextualise our findings within the larger Threshold, Discrimination and Identification 

(TDI) composite score, which additionally assesses odour threshold detection and odour 

discrimination (Rumeau et al., 2016b). Replication of this work using other commonly-used 

psychophysical olfaction assessments, such as the University of Pennsylvania Smell Identification Test 

(UPSIT), would also be useful. 

 

Study Limitations 
The core hypothesis motivating this paper arose from incidental observations during the data 

collection stage of a broader study of RBD, PD and control groups. Thus, the data analysed in this 

paper were not explicitly collected to test the hypothesis.  

 

The participant sample size is relatively small and this may contribute to the conclusions drawn. While 

the majority of the associations reported are reinforced by effect size (small effect size for non-

significant results, large effect size for significant differences), we report several variables where effect 
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size is ‘medium’ – namely whether participants correctly perceive their olfactory function (non-

significant difference between groups) or if they incorrectly perceive normosmia (significant 

difference between groups). The interpretation of these results may benefit from a larger sample size. 

 

Another limitation of this study is the over-representation of the white, older male identity within our 

cohort. While this is common practice within biomedical research – particularly when focusing on age-

related neurodegeneration – it has countless damaging impacts upon science, society and healthcare, 

ranging from the generalisability of results to reinforcing marginalisation of particular identities. We 

acknowledge that measures to recruit participants with diverse identities were not sufficient within 

this study.  

 

Conclusion 

To the best of our knowledge, this is the first paper to consider the fallibility of olfactory function self-

report in the context of RBD prognosis. This work puts forward the case for routine objective testing 

of olfactory function in the clinic upon initial RBD diagnosis as a cost-effective and accessible method 

to inform prognosis and potentially improve healthcare outcomes for RBD patients.  
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Chapter V: Cognition, Affect and EEG Resting State Activity 
 
“Well I worry about further decline, cognitive decline … If I don’t have my mind, I'm not me at all.”  

Person with PD, quote from (Bonner et al., 2020) 

 

The experience of being oneself – mood, cognition, and the ability to engage meaningfully with the 

world – can become altered to varying extents from the early-to-mid stages of PD. From raphe 

pathology in Braak Stage II to substantial amygdala pathology in Braak Stage VI, complex networks 

become dysregulated as alpha-synuclein pathology progresses. Identifying which domains are 

dysfunctional at early-stage PD provides important information about underlying pathology and could 

hold prognostic power.  

 
Introduction 

The awake brain is in flux, constantly receiving, integrating, interpreting, storing information and 

generating action. Previous chapters in this thesis have, to varying degrees, isolated and analysed 

specific functions of the body such as olfaction or eye movements. The neural pathways for these 

phenomena are well-described and largely domain-specific; assessing processes of the awake brain 

however presents a different, potentially far more complex challenge of understanding the functional 

segregation and integration of the brain’s cellular activity. The full range of awake brain phenomena 

requires large-scale network activity, and as such, there is no single dominant neurotransmitter, brain 

cell type or pathway responsible for our wakeful experience. How functions such as cognition, affect 

and consciousness are experienced and map onto the brain, and how they are impacted in diseases 

like PD, remains a biological, mathematical and philosophical challenge.  

 

This chapter investigates three perspectives on the awake brain: psychological health, task-related 

cognition (extrinsic activity) and task-independent, ongoing activity (intrinsic activity). Each 

perspective is interrogated as a standalone ‘domain’, but that is not to say that they are functionally 

separate. Rather, it is a reflection of the methodological and analytical limitations when dealing with 

complex systems such as the awake brain processes. 

 

Cognitive Function in Parkinson’s disease 
Cognition is a broad term to describe the emergent information processing that results from complex 

system interactions within the brain. It is the mental processes by which we acquire knowledge and 

understand our world; high-level functions such as memory, attention and executive function (which 

each themselves are umbrella terms for further specialised mental processes).  
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Functional imaging (fMRI, EEG) has enabled localisation of the neural correlates of the major cognitive 

processes: motion perception is controlled by activity of the visual cortex Area 5 (V5); spatial cognition 

and object recognition are coordinated by the dorsal and ventral visual streams respectively; the 

lateral prefrontal cortex is linked to goal selection and activity of the prefrontal and parietal cortex 

allows memory retrieval (Banich & Compton, 2018). Determining how the activity of these regions 

leads to distinct cognitive processes, which are then integrated into a global conscious experience 

(and its subsequent actions) is an incredibly complex challenge. Strong evidence links prefrontal cortex 

activity with higher-order cognition and executive function, which relies on the integration of a broad 

range of cognitive processes (Banich & Compton, 2018). Additionally, damage to white matter tracts 

and the thalamic pulvinar nucleus (key for information integration between cortical regions) leads to 

executive function deficits, further consolidating the importance of large network activity for 

cognition (Banich & Compton, 2018). 

 

By and large the regions responsible for cognition are regions affected in the later Braak stages (V and 

VI) in PD (H. Braak et al., 2003), and cognitive dysfunction worsens with progressing PD. The impact of 

PD pathology on cognition is multi-faceted. The extent of alpha-synuclein pathology in the CSF and 

cortex (Cortical Lewy body and Lewy neurite deposition) correlates with cognitive impairment (Fang 

et al., 2020; Irwin et al., 2012), while dysfunctional or reduced noradrenergic, cholinergic and 

dopaminergic signalling leads to altered neurotransmission in cognitive processes (Fang et al., 2020). 

Further to this, neurons with long axons or low-to-poorly myelinated axons (whether due to age or 

innate structure) and functionally connected regions are more susceptible to alpha-synuclein 

pathology (Coughlin & Irwin, 2022), providing some explanation for impairments in higher-order 

cognitive processes which integrate information from many anatomically separate regions. As 

discussed previously, although mental processes can be localised within the brain, they do not 

function in isolation. Impairment in a single cognitive domain can therefore be attributed to localised 

PD-related pathology, but it would be naïve to ignore the global network dysfunctions in PD and the 

far-reaching impacts this can have on cognition. Thus, cognitive dysfunction can have an incredibly 

varied presentation, as seen in PD. 

 

Symptoms of cognitive dysfunction, including forgetfulness, slow thinking and difficulty dividing 

attention are common amongst people with PD (Figure 5.1), and Quality of Life measures decrease as 

cognitive issues worsen (Barone et al., 2017). Studies estimate that 19-40% of people with PD present 

with mild cognitive impairment (MCI) at time of diagnosis (Barone et al., 2009; Litvan et al., 2012; 
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Nicoletti et al., 2019; Pedersen et al., 2017; Roheger et al., 2018). PD progression from MCI to PD 

dementia (PDD) is slow, heterogeneous and unpredictable (Roheger et al., 2018). With increasing PD 

duration comes increasing PDD likelihood: longitudinal studies have found cumulative prevalence of 

PDD to be 60-80% within 12 years of PD symptoms (Aarsland et al., 2003; Hely et al., 2008; Pedersen 

et al., 2017; Roheger et al., 2018). Braak staging of synucleinopathy progression aligns with this 

progression from MCI to PDD as pathological alpha-synuclein aggregation and spread intensifies in the 

cortex at the later stages of the disease (H. Braak et al., 2003).  

Figure 5.1: Cognitive symptoms of Parkinson’s disease (without dementia). A broad range of 

cognitive symptoms can be present in PD. There is strong experimental evidence for attention, 

executive dysfunction, memory and visuospatial deficits. Evidence for language deficits is 

inconsistent.  

 

Risk of MCI or PDD in PD has been attributed to older age, male sex and lower levels of education 

(Palavra et al., 2013), but not necessarily duration of PD (Martínez-Horta et al., 2021). People with PD 

who have an akinetic-rigid motor profile and prominent non-motor symptoms are also more likely to 

exhibit cognitive impairments (Palavra et al., 2013). Vascular comorbidities (specifically hypertension, 

dyslipidaemia and high homocysteine levels), diabetes and low B12 levels have been shown to be 

significantly associated with PD-MCI whereas physical exercise and cognitive stimulation appear to 

have a protective effect (Martínez-Horta et al., 2021). These results suggest that, like MCI in the 

general population, PD-MCI is strongly influenced by environmental lifestyle factors rather than 

determined by a specific pathological mechanism (Z. Wang et al., 2020). Indeed, randomised 
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controlled trials of exercise and diet regimens have shown promise for improving MCI or limiting its 

progression (F. C. da Silva et al., 2018; Gonzalez-Latapi et al., 2021; Paknahad et al., 2020), though 

evidence for cognitive training is lacking (Orgeta et al., 2020). 

 

As with most symptoms of PD, cognitive impairment presents heterogeneously. Symptoms can 

fluctuate (Lawson et al., 2017) and impairments in multiple domains including attention, memory, 

executive function, visuospatial ability and psychomotor speed have been identified (Litvan et al., 

2011). It is most common for people with PD-MCI to exhibit impairment in a single domain (e.g. 

executive function alone), though multi-domain impairment has been reported (Litvan et al., 2011). 

Subtypes of PD-MCI according to symptom presentation have been proposed (amnesiac vs. non-

amnesiac, single vs. multi-domain impairment), and it has been shown that while demographic and 

lifestyle factors did not significantly influence PD-MCI subtype, motor symptom severity and gait 

strongly predicted subtype (Goldman et al., 2012). 

 

The prevalence of MCI at PD diagnosis suggests that MCI can precede PD during the prodromal stage, 

and the MDS Taskforce on the Definition of Parkinson’s Disease’s research criteria for prodromal PD 

includes cognitive impairment as a risk marker (Berg et al., 2015). Longitudinal cohort studies support 

these criteria, finding cognitive impairment is a risk factor for PD diagnosis (Darweesh et al., 2017; 

Schrag et al., 2019; Weintraub et al., 2017). Within idiopathic RBD cohorts, MCI is common, occurs in 

43-50% people (Gagnon et al., 2009; Iranzo et al., 2010; Yoo et al., 2021) and is associated with an 

increased chance and faster progression of alpha-synucleinopathy phenoconversion (de Natale et al., 

2022; Ye et al., 2020b). The duration of MCI in RBD phenoconverters is longer for RBDDLB (average 

MCI duration 6 years before DLB diagnosis) compared to RBDPD (average MCI duration 1-2 years 

before PD diagnosis) (de Natale et al., 2022), though this differentiation holds little prognostic value 

as it is retrospectively defined. The recent multicentre study by Postuma et al. found that of all 

prodromal symptoms present in a large RBD cohort, only cognitive variables held prognostic value to 

differentiate between DLB and PD end-points (Postuma et al., 2019). As with PD, RBD cognitive 

impairments affect attention, executive function and visuospatial abilities (de Natale et al., 2022). It is 

therefore possible to detect early cognitive changes predictive of phenoconversion in RBD cohorts.   
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Psychopathology in Parkinson’s disease 
Psychological state is deeply intertwined with cognitive function. If cognition is how we process and 

respond to information, our psychological state is a veil through which this information is interpreted. 

This veiling – whereby internal affect influences perception and cognition – is known as affective 

realism (Siegel et al., 2018), and has been evidenced in many studies. For example, spousal-bereaved 

people were found to have significantly worse cognitive task scores compared to controls (Ward et 

al., 2007) whereas positive mood increases working memory and executive control (Storbeck & 

Maswood, 2016).  

 

Though particular brain regions are commonly associated with particular emotions (a classic example 

being the amygdala and fear), theories of emotion are progressing from such locationist viewpoints. 

Much like cognition, it is evident that affect arises out of complex interplay between different brain 

regions (Lindquist et al., 2012).  

 

It is well-established that psychopathologies are a common non-motor symptom of PD. Depression, 

anxiety and apathy are each respectively prevalent in ~40% of people with PD (H. Chen et al., 2015; 

Cong et al., 2022; den Brok et al., 2015). Psychosis affects 13% (early-stage) – 60% (later-stage) of 

people with PD (Forsaa et al., 2010; Mok et al., 2021; Rodríguez-Violante et al., 2015; Stang et al., 

2022) and most commonly presents with visual hallucinations, though delusions and non-visual 

hallucinations may also be present (Schneider et al., 2017). Impulse Control Disorders (ICDs), wherein 

individuals engage excessively in repetitive, reward-driven behaviours such as gambling, shopping, 

eating, hobbying or sexual activities (Kelly et al., 2020), occur in ~20% of people with early-stage PD 

(Baig et al., 2019; Corvol et al., 2018). However, it should be noted that while depression, anxiety, 

apathy and psychosis are caused by a-synuclein pathology, ICDs are an adverse effect of dopaminergic 

replacement therapies (particularly dopaminergic agonists) designed to alleviate PD symptoms (Kelly 

et al., 2020). With continued dopaminergic medication use, the prevalence of ICDs increases to 32% 

after 5 years (Corvol et al., 2018). Thus, ICDs do not have prognostic potential as they arise out of PD 

interventions: indeed, ICD prevalence in RBD populations is similar to that of healthy controls (1% vs. 

0.7%; (Baig et al., 2019) and subclinical ICD behaviours occur in drug-naïve early-stage PD at similar 

rates to controls (Antonini et al., 2011). 

 

Psychosis onset accompanies PD diagnosis in a minority of people, and is typically a psychopathology 

of later-stage PD (B. R. Thanvi et al., 2005). There is limited evidence for psychosis as a prodromal 

feature of PD beyond case reports, although a recent cross-sectional study found older people with 

new-onset symptoms of psychosis (hallucinations and /or delusional ideation) had an increased 
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likelihood of meeting the criteria for prodromal PD (Pachi et al., 2021). This suggests that psychotic 

symptoms may develop as a feature of prodromal PD in a minority of individuals. Investigations of 

prodromal psychosis symptoms in RBD populations have focused on hallucinations, and it has been 

shown that people with RBD are significantly more likely to have a pareidolic response (interpret a 

meaningful image when presented with a non-meaningful image – for example, seeing a face when 

looking at an electrical outlet) than controls (Sasai-Sakuma et al., 2017). However, the authors 

discussed this phenomenon in the context of RBDDLB phenoconversion and the impact of 

cholinergic degeneration and posterior cortical dysfunction. Given that symptoms of psychosis such 

as hallucinations are a cardinal feature of DLB (McKeith et al., 2017), psychotic symptoms in RBD may 

be a phenoconversion differentiator rather than PD predictor.  

 

Conversely, depression, anxiety and apathy (DAA) commonly precede PD diagnosis (Bareeqa et al., 

2022; Jacob et al., 2010) and are frequently identified in RBD cohorts at an increased rate compared 

to controls (Assogna et al., 2021; Barber et al., 2017, 2018). Making sense of DAA symptoms in an RBD 

or PD cohort can be challenging, however. To begin, there is a great deal of symptom overlap and 

concomitance between depression, anxiety and apathy, making it difficult to attribute cause or effect 

to specifically one of the three. DAA are also incredibly common in the general population, with a 

prevalence of 15% for depression and 19% for anxiety (H. Chen et al., 2015). Apathy is often a feature 

of neurological disorders (Sockeel et al., 2006), but has been shown to exist at subclinical levels in the 

general population with a prevalence of 30-40% (Ang et al., 2017; Lafond-Brina & Bonnefond, 2022). 

Biological (e.g. neurochemistry; genetics) (Maron & Nutt, 2017; Nedic Erjavec et al., 2021) and 

environmental (e.g. population shock; socioeconomic status) (Freeman et al., 2016; Santomauro et 

al., 2021) factors deeply influence psychological state and contribute to DAA. This means DAA as 

prognostic symptoms for alpha-synucleinopathies have low specificity as there are a myriad of other 

reasons an individual might have DAA symptoms. Even in a prodromal RBD cohort, depression and 

anxiety symptoms alone are not sufficient to predict whether phenoconversion will be to PD or DLB 

(Postuma et al., 2019).  

 

Determining whether DAA in PD (or other alpha-synucleinopathies) is due to neurodegenerative 

processes or due to the conscious experience of having a neurodegenerative condition can be difficult 

to ascertain - however, given that DAA occurs prior to PD diagnosis, it is likely synucleinopathy is 

causative. Thus, although DAA lacks prognostic power, it can offer valuable insights into underlying 

pathological mechanisms from prodromal to full-blown disease. As with cognitive impairments, the 

PD pathology underlying DAA is due to a combination of anatomical and signalling dysfunctions 
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including localised alpha-synuclein deposition and reduced noradrenergic, serotonergic, cholinergic 

and dopaminergic neurotransmission in brain regions such as the anterior cingulate cortex (Fischer et 

al., 2018), amygdala and ventral striatum (Remy et al., 2005; Schapira et al., 2017).  

 

DAA symptoms are most prominent in those individuals with PD who have other prominent non-

motor symptoms, such as RBD and autonomic dysfunction (Sklerov et al., 2022; Zhong et al., 2021), 

suggesting more extensive synuclein pathology in these individuals.  

 

Drawing on the previous section’s focus on cognition and the introduction of affective realism within 

this section, it is important to highlight the links between psychopathology and cognition in PD. DAA 

are reported to occur more often in PD-MCI than PD without MCI groups (Simon-Gozalbo et al., 2020), 

suggesting either a common mechanism caused by synucleinopathy or a functional overlap between 

the two (i.e. depression affects cognition negatively (Perini et al., 2019)). To address this question, 

Toloraia et al. designed a longitudinal study to assess how baseline depression, anxiety and apathy 

scores related to cognitive scores 3 years later in a cohort of cognitively unimpaired people with PD. 

They found that only baseline anxiety scores predicted MCI status at follow-up, whereas depression 

and apathy did not (Toloraia et al., 2022). Anxiety therefore may be a better predictor of worse PD 

progression. 

 

Resting State Brain Activity in Parkinson’s disease 
When there is no task at hand, and no covert cognitive processing occurring, the brain defaults to an 

‘ongoing’ or ‘resting’ state. Arguably the frequently-used ‘resting state’ term is a misnomer as though 

the body may appear at rest, the brain is far from it: rather, it continues to process information, 

monitor the environment and prepare for action (Sadaghiani et al., 2010). In fact, the characteristics 

of ongoing brain activity have been shown to predict future task performance (Zou et al., 2013) and 

working memory capacity (Oswald et al., 2017), demonstrating that ongoing and task-dependent brain 

activity are intimately, functionally linked (Northoff et al., 2010). 

 

From an embodied, behavioural perspective, ongoing brain activity is accompanied by (or perhaps is 

better viewed as the product of) a state wherein the body is inactive and only the automatic functions 

such as breathing, blinking and digestion remain. There are no ongoing tasks such as walking, reading 

or conversation and thus brain activity is maintaining as opposed to generative. Indeed, these are the 

behavioural instructions given to participants in ‘resting-state’ experimental paradigms: for the body 

to be still and eyes to be closed in an environment devoid of direct stimulation.  
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The experiential representation of ongoing brain activity is harder to define – some researchers have 

argued that this state is stimulus-orientated and watchful, with increased attention focused on the 

external environment; others have argued that ongoing brain activity is occupied by knowledge 

retrieval, information processing and problem solving; others propose an introspective, stimulus-

independent mental state characterised by self-reflection, memory processing and envisioning of the 

future (Hurlburt et al., 2015). A commonality between these theories is the temporal representation 

of these thoughts – they are spontaneous and quick to change and untethered: the mind wanders 

(Hurlburt et al., 2015). Questionnaires and ‘experience sampling’ experiments show that there is great 

variability between people in their experience of ongoing brain activity, and how much time is spent 

(for example) attending to the external environment, inner speaking or consciously processing feelings 

(Delamillieure et al., 2010; Hurlburt et al., 2015).  

 

Determining the personal experience of ongoing brain activity is important not just for understanding 

the state itself, but also for aligning subjective report with objective measures of brain activity. fMRI 

studies have been instrumental in developing the field of ongoing brain activity research and have led 

to the formation of the ‘Default Mode Network’ (DMN) theory – that ongoing brain activity is the 

result of spontaneous activity of a well-defined network of brain regions which demonstrate 

correlated activity during behavioural quiescence and deactivate upon task initiation (Greicius & 

Menon, 2004; Shulman et al., 1997). The core network consists of the ventral and dorsal medial 

prefrontal cortex, anterior and posterior cingulate cortex, inferior parietal lobe, lateral temporal 

cortex, and the hippocampal formation (Buckner et al., 2008), while differing thoughts and internal 

experiences add layers of fluctuating activity atop the DMN (Gorgolewski et al., 2014). Mantini et al. 

have provided evidence for multiple ‘resting state networks’, including the dorsal attention network, 

executive control network and DMN, which fluctuate in their activity over a period of ongoing brain 

activity (Mantini et al., 2007). 

 

The DMN brain regions are best-accessed using functional imaging such as fMRI or PET given their 

subcortical and medial cortex locations – however, while these techniques provide invaluable 

localisation of ongoing activity, they lack the temporal resolution to investigate real-time dynamics 

and use proxy measures of activity such as blood flow or tracer binding. EEG methodology offers 

insight into the temporal characteristics of ongoing brain activity on a millisecond scale, though spatial 

resolution is considerably compromised and detecting subcortical activity comes with its challenges. 

One way to measure this activity is under the assumption that subcortical structures have direct and 

indirect influence on the pyramidal layer V neurons whose activity dominates the cortical EEG signal 
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– for example, the magnitude of pre-frontal asymmetry has been shown to reflect limbic (amygdala) 

and paralimbic (posterior temporal cortex) activity during music listening (Daly et al., 2019). Recent 

research has also shown that subcortical electrical activity can be separated out from cortical signals 

in EEG using mathematical techniques such as Source Separation (Krishnaswamy et al., 2017; Seeber 

et al., 2019).  

 

The constant activity of the brain even during restful, task-negative wakefulness was first evidenced 

in Hans Berger’s EEG recordings from the 1920s, and subsequent studies have shown that ongoing 

brain activity is characterised by fluctuating power in the alpha and beta frequency bands (Laufs et al., 

2003; Mantini et al., 2007). The constantly changing internal experience of ongoing brain activity is 

thought to be represented in the EEG with microstates – quasi-stable spatial distributions of electrical 

activity which last ~80-120 seconds during a broader behavioural state such as wake (Khanna et al., 

2015; Lehmann et al., 2009). How brain regions communicate with one another defines the function 

and experience of ongoing brain activity and can be interrogated with functional connectivity analyses 

utilising EEG, fMRI or diffusion tensor imaging. In its most basic interpretation, functional connectivity 

is white matter tracts linking brain regions – the microstructure of these connections determines the 

speed and strength of signal transfer between regions (Babaeeghazvini et al., 2021). 

 

The oscillations detected by EEG are the summed activity of millions of postsynaptic potentials. Thus, 

at its most reductionist, ongoing brain activity is the product of intrinsic tonic neuronal activity while 

task-related brain activity arises from stimulated, phasic neuronal activity (L. Wang et al., 2014).  

Ongoing brain activity and its representations from single neuron activity to network dynamics are 

altered in disease states including Alzheimer’s disease (Babiloni et al., 2016; Xue et al., 2018), disorders 

of consciousness (Hannawi et al., 2015), major depression and bipolar disorder (J. Gong et al., 2020). 

 

The PD disease state is similarly associated with changes to ongoing brain activity during ‘resting 

wakefulness’ experimental paradigms. fMRI studies have found reduced functional connectivity 

between resting state networks such as the DMN (Prajapati & Emerson, 2021) and within the striatum 

(Hacker et al., 2012), with one study finding a complete disintegration of the DMN (Ghasemi et al., 

2021). A breakdown of functional connectivity between resting state networks and the far-reaching 

effects this has on global cognition (Chén et al., 2019; Hausman et al., 2020; Maesawa et al., 2021) 

may explain symptoms linked to slowing of cognition (‘brain fog’ or bradyphrenia) (Armstrong et al., 

2019), seen in PD.  
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Which connections breakdown may explain heterogenous PD symptomatology: for example, one 

study showed that while all PD participants had decreased functional connectivity in the DMN 

compared to Controls, people with PD who experienced visual hallucinations had increased functional 

connectivity in the posterior cingulate gyrus and frontal cortex compared to those without visual 

hallucinations (N. Yao et al., 2014).  The authors hypothesise this increase of connectivity seen in the 

PD with visual hallucination group (which is, in fact, a preservation of a network) leads to an imbalance 

in the network and excessive self-referential and mnemonic activity, which in turn contributes to 

hallucinations (N. Yao et al., 2014). Similarly, changes to resting state networks can be used to stratify 

people with PD: differences have been found between people with PD with and without constipation 

(Zheng et al., 2022), freezing of gait (Mi et al., 2017) and RBD (D. Li et al., 2017). Depression and 

cognitive impairment have also been shown to associate with resting state network changes in PD 

cohorts (M. Wang et al., 2020; Wolters et al., 2019) – however, cognitive function and affect are 

associated with resting state functional connectivity changes in the general population (Esposito et 

al., 2013; Kaiser et al., 2015). From a prognostic standpoint, this reflects the limitations of using 

symptoms such as constipation, depression and MCI as prodromal markers alone: untangling which 

changes are the result of alpha-synuclein pathology and which are differential diagnoses is 

challenging. 

 

Nonetheless, studies have shown that within RBD cohorts, ongoing brain activity is altered (although 

there is a broad and inconsistent variety of changes reported) and changes can predict 

synucleinopathy phenoconversion. EEG studies report lower occipital beta power and increased 

frontal theta power (Fantini et al., 2003), increased frontal alpha power (Bang et al., 2017) and a 

decreased dominant occipital frequency in at-rest RBD patients both controlled (Bang et al., 2017) and 

uncontrolled (Fantini et al., 2003) for mild cognitive impairment. It has been shown that RBD ongoing 

brain activity demonstrates reduced EEG signal complexity (Ruffini, Ibañez, Kroupi, et al., 2019), 

reduced frontal functional connectivity in the delta-band (Sunwoo et al., 2017), changes to microstate 

temporal and spatial dynamics (Peng et al., 2021) and reduced functional connectivity from the 

striatum to cortical regions as measured with fMRI (H.-J. Zhang et al., 2021). Evidently, global 

dysfunctions are present in RBD neural networks. These findings mirror those seen in PD and DLB, 

demonstrating how pervasive synucleinopathy can be even in early stages, affecting the very fabric of 

the task-independent experience.  
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Rationale and Hypotheses 

The three awake aspects of brain activity detailed thus far (cognition, psychological state and ongoing 

activity) clearly hold diagnostic and potentially prognostic potential for disease states independently, 

yet the evidence of their complex interconnectedness shows they influence one another deeply. 

I hypothesised that the PD group would be characterised by reduced cognitive function scores and 

greater depression, anxiety and apathy scores. I expected that there would be a negative correlation 

between cognitive function and psychopathology in all groups: the most depressed and anxious 

participants would have the most impaired cognition. As with other chapters, I hypothesised the RBD 

group scores would sit in between PD and Control scores, reflecting a state of early, or partial, 

neurodegeneration. 

 

Similarly for the EEG data I hypothesised that resting brain activity would be able to differentiate PD 

and RBD groups from Controls. The EEG data analysis task served as a space for a novel analysis 

framework to be developed by Amarpal Sahota, a collaborator on the STREEM analysis. Thus, an 

additional rationale/aim for the EEG analysis was to establish new methods for processing this high-

dimensional data type. 
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Methods 

Participants  
Psychophysical and electrophysiological data were collected from all participants who completed the 

At-Home Recording Session.  

 

Clinical Assessment Measures of Cognitive Function 
The following tests were used to assess cognitive function during the Clinical Assessment session:   

• Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 2005) – A short cognitive test 

assessing memory recall, visuospatial abilities, executive function, attention and language. 

Score is out of 30, with high score indicating no cognitive deficit. A cut-off score of 26 is 

recommended, with scores below 26 indicating cognitive impairment. The MoCA test results 

can be divided into domains or subscores according to the nature of the items within the 

assessment: visuospatial, executive, attention, language, delayed recall, and orientation 

domains. The subscores can identify which specific domains are impaired.  

• Phonemic and Semantic Fluency Assessment (Strauss et al., 2006) – Timed test wherein 

participants produce as many words as they can in 60s which either a) begin with a specified 

letter (phonemic) or belong to a specified category (semantic). Used as a measure of cognitive 

impairment.  

Clinical Assessment Measures of Affect 
The following tests were used to assess affect during the Clinical Assessment session:   

• Beck Depression Inventory (BDI) (BECK et al., 1961) – 21-item questionnaire measuring 

depressive characteristics. Low scores (0-13) indicate no symptoms of depression, while higher 

scores indicate greater severity of depressive symptoms: Score 14-19 = mild depression; Score 

20-28 = moderate depression; Score 29-63 = severe depression (Jackson-Koku, 2016b). 

• Parkinson Anxiety Scale (PAS) (Leentjens et al., 2014) – 12-item questionnaire with each item 

scored on a 5-point Likert scale. Maximum score is 48 with high scores indicating higher levels 

of anxiety. A suggested cut-off score of 13 has been suggested by the authors for classifying 

people with (≥14) or without (13≥). anxiety. The PAS also generates 3 subscores (persisting 

anxiety, episodic anxiety, avoidance behaviour) which represent different dimensions of 

anxiety. 

• Lille Apathy Rating Scale (LARS) (Sockeel et al., 2006) – 36-item rating scale to score the clinical 

manifestation of apathy. Score ranges between -36 and +36, with a higher score indicating 

higher levels of apathy. Scores can be classified as follows: no apathy, ≤−22; mild apathy, −21 

to −17; moderate to severe apathy, ≥−16.The LARS also generates 4 subscores (intellectual 
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curiosity, self-awareness, emotion, action initiation) which represent distinct dimensions of 

apathy, and to some extent depression. 

Electrophysiological Measures of Ongoing Brain Activity 
Wake EEG data was collected during the two 5-minute quiet restful recordings (eyes open and eyes 

shut). At the beginning of their sleep study night, between the hours of 5pm-10pm, participants were 

instructed to sit quietly for 5 minutes, first with their eyes open and then again with their eyes shut. 

The data presented here are from the second night of recordings, in the eyes shut condition.  

 

For the high-density EEG analysis, I collected and preprocessed the EEG data and analysis was 

completed by Amarpal Sahota. 

 

Preprocessing 
Briefly, EEG data were downsampled from 512Hz to 256Hz and highpass filtered from 0.25Hz. Bad 

channels were identified and removed using manual inspection of the signal and power spectral 

density plots. The online reference channel FCz was added into the data and the data was offline re-

referenced to an average reference. ‘Bad’ data segments (e.g. those with electrode, movement or 

sweat artefact) were manually labelled and removed from further analysis. Artefact removal was 

conducted using Independent Component Analysis (ICA) on highpass filtered (1Hz) data. The signal 

was decomposed into 40 independent components using the ‘fastica’ method (Hyvärinen & Oja, 

2000). The components represent both artefactual and neural data and time-series and topographic 

visualisation of the components were manually inspected and classified as such. Artefact components 

were labelled for removal from the data. After excluding artefact components from the data, bad 

channels were interpolated. The data was then re-referenced using the REST referencing technique 

(Dong et al., 2017; HaoZ, 2019/2021; D. Yao, 2001). 
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Analysis Pipeline 
Preprocessed wake EEG data was grouped according to brain region (Adebimpe et al., 2015) (Figure 

5.2).  

Figure 5.2: The 57 scalp electrodes were grouped into 13 brain regions as per (Adebimpe et al., 2015). 

Image from (Adebimpe et al., 2015). 

 

The pipeline for the feature extraction and machine learning classifier of the EEG data is shown in 

Figure 5.3. Table 5.1 details the sample n per group and the number of epochs used in the analyses. 

 

Sample n/group 
Length (number of 20-second epochs ± 

standard deviation) 
Control = 17 

11 ± 3 RBD = 15 
PD = 16 

Table 5.1: Sample details for Wake EEG analysis. 
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Figure 5.3: Overview of the Mr-SEQL EEG data analysis pipeline. A) The preprocessed EEG data is 

transformed into a 7-variate time series of bandpower coefficients by way of dimension reduction, 

Fourier Transform and bandpower extraction. B) High-level graphic of Mr-SEQL classifier model 

processes taking the 7-variate time series as input. Feature extraction uses SAX and SFA methods. For 

SAX time domain transformation, the signal (dark blue line) is divided into epochs (green vertical 

lines) and the mean value for each epoch (red circle) is calculated using PAA process. The PAA means 

are then assigned to a letter of the alphabet according to their value (indicated by purple shading). 

Intervals for the alphabet assignments are divided under the normal distribution with equal 

probability. For SFA frequency domain transformation, a Discrete Fourier Transform (DFT) is applied 

to the time series and the output Fourier Coefficients are used to assign symbolic value (letters). The 

symbolic representations from the SAX and SFA processing are input to the SEQL classifier along with 

the data labels. The classifier outputs are used to determine the accuracy, precision and recall of the 

model. Informed by (Le Nguyen et al., 2019; Nguyen, 2018/2022).  
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The following processes were completed for each participant’s data. The EEG analysis pipeline began 

with reducing the data dimensionality by grouping EEG channels according to brain region. 13 brain 

regions are populated (Figure 5.2).  

 

The preprocessed wake data time series was segmented into 20-second epochs and the bandpower 

for 6 frequency bands was calculated for each epoch using Welch’s Fast Fourier Transform method 

(Welch, 1967) (Figure 5.3A). Briefly, this method splits the time series into overlapping windows and 

calculates a periodogram for each window using the Discrete Fourier Transform (DFT). The 

periodograms are then averaged. The power spectral densities (PSD) within the defined power bands 

are calculated by integrating the area under the PSD curve for the corresponding frequency band. The 

frequency bands extracted were Delta (0.5-4Hz), Theta (4-8Hz), Alpha (8-12Hz), Sigma (12-16Hz), 

Beta(16-30Hz) and Gamma (30-40Hz). An additional ‘Total Power’ variable was calculated by 

integrating the total area under the PSD curve. The extraction of these 7 power variables was 

completed for each epoch of the time series, resulting in a 7-variate time series of bandpower 

coefficients.  

 

This 7-variate time series set was then used as input for the Mr-SEQL classification method described 

by (Le Nguyen et al., 2019) (Figure 5.3B). The Mr-SEQL method takes a set of time series data and 

generates multiple symbolic representations of the signal in the time domain (symbolic aggregate 

approximation; SAX) and frequency domain (symbolic Fourier approximation; SFA). This dual approach 

captures important information from the time series from 2 perspectives, which enables models to 

achieve greater accuracy (Le Nguyen et al., 2019). Using a symbolic representation, rather than raw 

data, standardises and compresses the data while retaining information and improves the efficiency 

of training models. The SAX (time domain transformation) takes the ‘raw’ numeric data (in this case, 

the bandpower time series) and computes Piecewise Aggregate Approximation (PAA) by dividing the 

data into epochs of equal duration and calculating the mean value for each epoch. Each PAA epoch is 

then assigned a symbolic value (letter of the alphabet) (Le Nguyen et al., 2019). The SFA (frequency 

domain transformation) first applies a Discrete Fourier Transform (DFT) to the data, decomposing it 

into a series of sinusoid waves each represented by a Fourier Coefficient  (Schäfer & Högqvist, 2012). 

The output Fourier Coefficients are then assigned a symbol (letter) using the Multiple Coefficient 

Binning (MCB) method and combined into a string output with length n to represent the data (Schäfer 

& Högqvist, 2012). Both the SAX and SFA transformations are defined by hyperparameters set by the 

user (such as alphabet size, word length and window size) and this determines the characteristics of 

the time series symbolic representations inputted into the SEQL classifier (Le Nguyen et al., 2019).  
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The symbolic data representations are inputted into an adapted Sequence Learner (SEQL) machine 

learning algorithm (Ifrim & Wiuf, 2010), named the ‘Ensemble SEQL’ model as it can take in multiple 

domain symbolic representations (SAX- and SFA-generated sequences of symbols/letters) at once. 

Multiple models are trained using the SEQL classifier at once. Each model receives a different symbolic 

representation of the training data and the corresponding labels, and the classifier learns which 

symbolic representations are most discriminative between classes (‘features’) and the corresponding 

importance of these features (‘feature weights’). The learning framework is via greedy coordinate 

descent on the loss function (Le Nguyen et al., 2019). The output from the multiple SEQL models can 

then be combined in one of two ways: either a single ensemble model is produced, which sums the 

output scores from the multiple training models. This produces a single score, which is then used for 

classifying new data (Le Nguyen et al., 2019). A second approach extracts the features learnt by the 

models and combines them in a new logistic regression classifier (i.e. the inputs to the logistic 

regression are the features from the multiple SEQL models). The first approach (single ensemble 

output) is utilised in this thesis.  

 

Finally, new data (‘test data’) can be input to the trained final model, which will then predict the class 

or label (e.g. Control, RBD or PD) of the data. The feature coefficients and symbolic representations 

which have been learnt from the training dataset are applied to the test data and the output score 

determines the class.  

 

Experimental Methods 
A custom python script was created by Amarpal Sahota utilising the sktime python library for the Mr-

SEQL method (Löning et al., n.d., 2022). The classification of participant’s EEG data according to their 

group (Control; RBD; PD) was conducted using the Mr-SEQL classifier model. 

 

The performance of the model was evaluated using accuracy, precision and recall metrics (Table 5.2). 
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Metric Definition 

Accuracy 

The ratio between the number of correct predictions and total predictions 
(i.e. how many times the model made a correct prediction). 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
 

 

Precision 

The ratio between the number of correct predictions for a class and the total 
predictions for that class, summed and averaged for the number of classes. 

Equivalent to positive predictive value metric. 
 

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
� 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇� 𝐴𝐴𝑃𝑃𝑃𝑃𝑐𝑐𝐴𝐴𝑃𝑃𝑐𝑐 + � 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇�𝑅𝑅𝑅𝑅𝑅𝑅 +  � 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇�𝑇𝑇𝑅𝑅

𝑃𝑃𝐴𝐴𝑛𝑛𝑛𝑛𝑃𝑃𝐴𝐴 𝑃𝑃𝑜𝑜 𝐴𝐴𝑐𝑐𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 

 

Recall 

The ratio between the number of correct predictions for a class and the 
number of actual cases for that class. Equivalent to sensitivity metric. 

 

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐 =  
� 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇� 𝐴𝐴𝑃𝑃𝑃𝑃𝑐𝑐𝐴𝐴𝑃𝑃𝑐𝑐 + � 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇�𝑅𝑅𝑅𝑅𝑅𝑅 +  � 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇�𝑇𝑇𝑅𝑅

𝑃𝑃𝐴𝐴𝑛𝑛𝑛𝑛𝑃𝑃𝐴𝐴 𝑃𝑃𝑜𝑜 𝐴𝐴𝑐𝑐𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 

 
Table 5.2: Performance metrics for the Mr-SEQL classifiers. 

 

The Mr-SEQL time series classification method (Le Nguyen et al., 2019) was applied to the bandpower 

representation time series of the preprocessed wake EEG data for each brain region. There was one 

classifier model per brain region (13 classifier models in total). Hyperparameters were initialised using 

default sktime arguments (Löning et al., n.d.). Five-fold cross-validation with two different random 

seeds was used for each classifier model. This means that the total data available was split into 5 data 

sets, with the model trained on 4 sets and tested on 1 set. The test error is calculated when the model 

is applied to the 5th test data set (hold-out test set). This process is repeated twice (2 random seeds), 

therefore each brain region’s model had 10 outputs. The metrics for the final Mr-SEQL classifier 

performance were calculated as the mean accuracy, weighted mean precision and weighted mean 

recall over all runs. The weights for the precision and recall metrics are the number of positive labels 

present and positive model predictions for each of the folds.  
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Results 

Clinical Assessment 
Cognitive Measures 
There were no significant differences between the 3 groups for any of the cognitive measures assessed 

(Table 5.3).  

 

The MoCA total score for global cognitive function was reduced, but not significantly so, in the PD and 

RBD groups compared to Controls (Figure 5.4A). All MoCA subscores except for the Visuospatial 

domain were reduced in the disease states (Figure x5.4B & C for example).  

 

Phonemic and Semantic fluency scores were also not significantly different between the groups (Table 

5.3) and did not exhibit any clear trend, in line with the minimal differences seen in the MoCA: 

Language domain.  

 
 

Control 
◊ 

n=19 

RBD 
† 

n=16 

PD 
‡ 

n=17 
Test Statistic 

p-value 
 

Post-
Hoc 

Effect 
Size 

MoCA Total 
Score 

26.79 ± 2.74 25 ± 3.2 
25.24 ± 

3.07 
F(2,49)=1.893 0.161a - 0.07 

MoCA: 
Executive 
Function 

3.37 ± 0.76 
3.19 ± 
0.91 

2.82 ± 1.13 X2(2,52)=2.416 0.252b - 0.03 

MoCA: 
Visuospatial 

3.53 ± 0.61 
3.38 ± 
1.15 

3.59 ± 
0.712 

X2(2,52)=0.552 0.759b - 0.07 

MoCA: 
Attention 

5.79 ± 0.42 
5.44 ± 
0.73 

5.29 ± 0.92 X2(2,52)=3.824 0.148b - 0.003 

MoCA: 
Language 

5.37 ± 0.83 5 ± 1.21 5 ± 0.87 X2(2,52)=1.762 0.414b - 0.04 

MoCA: 
Delayed 

Recall 
3.53 ± 1.47 

2.88 ± 
1.59 

3.29 ± 1.49 X2(2,52)=2.146 0.342b - 0.04 

MoCA: 
Orientation 

6 ± 0 
5.81 ± 
0.54 

5.88 ± 0.33 X2(2,52)=2.46 0.292b - 0.03 

Phonemic 
Fluency 

14.4 ± 4.19 
13.92 ± 

4.55 
14.02 ± 5 F(2,49)=0.056 0.945a - 0.002 

Semantic 
Fluency 

19.47 ± 5.08 
18.81 ± 

5.04 
18.47 ± 

4.14 
F(2,49)=0.206 0.814a - 0.008 

Table 5.3: Cognitive assessment scores and statistical analysis results. All values are given as mean ± 

standard deviation (SD). For p-values & statistical tests, a=One-Way ANOVA with Tukey HSD post-

hoc, b=Kruskal Wallis one-way analysis of variance with Bonferroni post-hoc. 
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MoCA score was not significantly correlated with age for any of the groups (Table 5.4), nor was it 

significantly correlated with RBD diagnosis duration (r(14)=-.23; p=0.41), PD diagnosis duration 

(r(15)=.06; p=0.8) or PD Levodopa Equivalent Daily Dose (LEDD) (r(15)=-.16; p=0.57). There was no 

large difference in the MoCA total score between those PD patients taking dopaminergic medications 

(n=9, mean score 25.36 ± 3.1) compared to those who were not (n=3, mean score 24.67 ± 3.5). 

 

 
 

Test Statistic 
p-value 

 
Control 

n=19 
r(17)=-.19 0.45 

RBD 
n=16 

r(14)=-.39 0.13 

PD 
n=17 

r(15)=-.01 0.98 

Table 5.4: Pearson Correlation Test for correlation between MoCA Total Score and Age. 

There were no significant correlations between age and phonemic fluency for any of the groups 

(Control r(17)=-0.1, p=0.68; RBD r(14)=-0.05, p=0.87; PD r(15)=0.32, p=0.21). There was a significant 

negative correlation between age and semantic fluency for the Control group (r(17)=-0.61, p=0.006) 

but not for RBD (r(14)=-0.26, p=0.34) or PD (r(14)=-0.39, p=0.12) groups. 

When the MoCA scores were classified according to criteria from MoCA developers 

(www.mocatest.org), the majority of Control participants were classified as having ‘Normative 

Cognition’ (n=16, 84.2%), whereas 50% of RBD (n=8) and 47.1% PD (n=8) were classified with some 

form of cognitive impairment (Table 5.5). Therefore, although there was no significant difference in 

mean MoCA score between groups, there is a clear difference in MCI classification between groups 

although this did not reach statistical significance when tested (Pearson chi-square test; X2(4, 

52)=7.38, p=0.117, two-tailed).  

 PD (n=17) 
MoCA Score 
Classification 

HC 
(n=19) 

RBD 
(n=16) 

PD Total 
(n=17) 

PD+RBD 
(n=6) 

PD- 
(n=11) 

Normative Cognition 
(≥26) 

16 (84.2%) 8 (50%) 9 (52.9%) 2 (33.3%) 7 (63.6%) 

Mild Cognitive 
Impairment (25≥18) 

3 (15.8%) 7 (43.8%) 8 (47.1%) 4 (66.7%) 4 (36.4%) 

Moderate-to-Severe 
Cognitive Impairment 

(≤17) 
- 1 (6.3%) - - - 

Table 5.5: MoCA score classifications to determine extent of cognitive impairment within groups. 

Data is presented as n, %. 
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Measures of Affect 
Clearer between-group differences are evidenced in the clinical assessment measures of affect.  

 

Both RBD and PD groups had higher scores than Controls on the depression (BDI) and anxiety (PAS) 

rating scales, indicating increased negative affect in these disease states. BDI score was significantly 

increased for RBD and PD compared to Controls; the increase in PAS total score did not reach 

significance for either group but was more than 1.5x the score of Controls (Table 5.6). The RBD and 

PD group had increased scores on all of the PAS subscores. 

  



 142 

 
 

Control 
◊ 

n=19 

RBD 
† 

n=16* 

PD 
‡ 

n=17 
Test Statistic 

p-value 
 

Post-Hoc 
Effect 
Size 

Beck 
Depression 
Inventory 

Total Score 

4.9 ± 
3.94 

11.13 ± 
9.28 

13.88 ± 
8.41 

F(2,48)=7.032 
 

0.001b 
◊ < † p=0.047 
◊ < ‡ p=0.002 

0.23 

Parkinson’s 
Anxiety Score 

(PAS) Total 
Score 

6.42 ± 
6.37 

10.8 ± 
10.43 

10.71 ± 
8.07 

F(2,48)=1.627 0.159a - 0.063 

PAS: 
Persistence 

4.21 ± 
4.38 

5.6 ± 
4.66 

6.18 ± 
4.31 

F(2,48)=0.938 0.399a - 0.037 

PAS: 
Episodic 

1.32 ± 
1.7 

3.07 ± 
3.45 

2.12 ± 
2.29 

X2(2,51)=1.667 0.435b - 0.05 

PAS: 
Avoidance 

0.89 ± 
1.73 

2.13 ± 
3.25 

2.41 ± 
2.87 

X2(2,51)=3.763 0.152b - 0.005 

Lille Apathy 
Rating Scale 
(LARS) Total 

Score 

-22.16 
± 5.82 

-21.13 
± 6.21 

-21.06 
± 7.59 

F(2,49)=0.16 0.859a - 0.006 

LARS: 
Intellectually 

Curious 

-2.74 ± 
0.81 

-2.42 ± 
0.81 

-2.12 ± 
1.18 

F(2,49)=1.922 0.157a - 0.072 

LARS: 
Emotion 

-1.68 ± 
1.3 

-1.84 ± 
1.39 

-2.03 ± 
1.07 

F(2,49)=0.337 0.715a - 0.013 

LARS: Action 
Initiation 

-2.61 ± 
1.24 

-2.41 ± 
1.19 

-2.71 ± 
1.48 

X2(2,52)=1.356 0.508b - 0.05 

LARS: Self-
Awareness 

-2.68 ± 
1.73 

-2.94 ± 
1.44 

-3.12 ± 
1.05 

X2(2,52)=0.242 0.886b - 0.07 

Table 5.6: Depression, Anxiety and Apathy assessment scores and statistical analysis results. All 

values are given as mean ± standard deviation (SD). For p-values & statistical tests, a=One-Way 

ANOVA with Tukey HSD post-hoc, b=Kruskal Wallis one-way analysis of variance with Bonferroni 

post-hoc. * for PAS and BDI assessments, 1 RBD participant did not fully complete the questionnaires 

and therefore for these measures the RBD n=15. 

 

When the BDI scores were classified according to criteria from (Jackson-Koku, 2016b), the majority of 

Control participants were classified as ‘No Depression’ (n=18, 94.7%), whereas 40% of RBD (n=6) and 

52.9% PD (n=9) were classified with some form of depression (Table 5.7).  
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BDI Score Classification 
HC 

(n=19) 
RBD 

(n=15) 
PD 

(n=17) 
PD+RBD 

(n=6) 
PD- 

(n=11) 
No Depression (≤13) 18 (94.7%) 9 (60%) 8 (47.1%) 2 (33.3%) 6 (54.5%) 

Mild Depression 
(14≥19) 

1 (5.3%) 3 (20%) 3 (17.6%) 3 (50%) - 

Moderate Depression 
(20≥28) 

- 2 (13.3%) 5 (29.4%) 1 (16.7%) 4 (36.4%) 

Severe Depression 
(≥29) 

- 1 (6.7%) 1 (5.9%) - 1 (9.1%) 

Table 5.7: BDI score classifications to determine extent of depression within groups. Data is 

presented as n, %. 

 

When the PAS scores were similarly classified according to criteria from (Leentjens et al., 2014), the 

majority of Control participants were classified as ‘No Anxiety’ (n=17, 89.5%), compared to 66.7% of 

RBD (n=10) and 70.6% PD (n=12) (Table 5.8).  

 

PAS Score Classification 
HC 

(n=19) 
RBD 

(n=15) 
PD 

(n=17) 
PD+RBD 

(n=6) 
PD- 

(n=11) 
No Anxiety (≤13) 17 (89.5%) 10 (66.7%) 12 (70.6%) 4 (66.7%) 8 (72.7%) 

Anxiety (≥14) 2 (10.5%) 5 (33.3%) 5 (29.4%) 2 (33.3%) 3 (27.3%) 
Table 5.8: PAS score classifications to determine extent of anxiety within groups. Data is presented as 

n, %. 

 

The Lille Apathy Rating Scale (LARS) total scores & subscores were not significantly different between 

groups. There was greater variability in LARS scores within the PD group: the PD group had both the 

highest and lowest scores in the whole cohort (Figure 5.4D). On average, the RBD and PD groups 

scored slightly higher than Controls suggesting a marginal trend towards greater levels of apathy, 

however when the subscores are examined there is again variability within presentations: RBD and PD 

score marginally worse for Intellectual Curiosity but have ‘better’ scores in the Emotion and Self-

Awareness categories (Table 5.6).  

 

When the LARS scores were classified according to criteria from (Sockeel et al., 2006), the percentage 

and number of participants displaying some form of apathy was similar across groups: 42.1% Control 

(n=8); 43.8% RBD (n=7); 52.9% PD (n=9). (Table 5.9).  
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LARS Score 
Classification 

HC 
(n=19) 

RBD 
(n=16) 

PD 
(n=17) 

PD+RBD 
(n=6) 

PD- 
(n=11) 

No apathy (≤-22) 11 (57.9%) 9 (56.3%) 8 (47.1%) 2 (33.3%) 6 (54.5%) 
Mild Apathy (-21≥-17) 3 (15.8%) 2 (12.5%) 6 (35.3%) 2 (33.3%) 4 (36.4%) 
Moderate-to-Severe 

Apathy (20≥28) 
5 (26.3%) 5 (31.3%) 3 (17.6%) 2 (33.3%) 1 (9.1%) 

Table 5.9: LARS score classifications to determine extent of apathy within groups. Data is presented 

as n, %. 
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A  B  

C  D  

E  

Figure 5.4: Boxplots for cognition and psychopathology assessment results per group. A) MoCA total 

score B) MoCA Executive Function subscore C) BDI total score D) PAS total score E) LARS total score. 

Significant differences are indicated with brackets and p-values displayed. Outliers are indicated with 

a grey diamond. Individual datapoints are shown as dots. Solid line in each box plot indicates median, 

dotted line indicates mean. 
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Depression and anxiety as measured with the BDI and PAS were significantly positively correlated with 

one another for all groups (Table 5.10). Neither BDI nor PAS scores were significantly correlated with 

LARS scores (Table 5.11 & 5.12).  

 
 

Test Statistic 
p-value 

 
Control 

n=19 
r(17)=.75 <0.001 

RBD 
n=15 

r(13)=.81 <0.001 

PD 
n=17 

r(15)=.8 <0.001 

Table 5.10: Pearson Correlation Test for correlation between BDI and PAS total scores. 

 
Figure 5.5: Scatter plot showing correlation lines of best fit for the relationship between BDI and PAS 

scores. A significant positive correlation for all groups is seen, with a high BDI score (greater 

depressive symptoms) correlating with a high PAS score (greater anxiety symptoms). 
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Test Statistic 
p-value 

 
Control 

n=19 
r(17)=-.08 0.75 

RBD 
n=15 

r(13)=.14 0.62 

PD 
n=17 

r(15)=.2 0.45 

Table 5.11: Pearson Correlation Test for correlation between BDI and LARS total scores. 

 

 
 

Test Statistic 
p-value 

 
Control 

n=19 
r(17)=-15 0.54 

RBD 
n=15 

r(13)=-.04 0.89 

PD 
n=17 

r(15)=-.04 0.89 

Table 5.12: Pearson Correlation Test for correlation between PAS and LARS total scores. 

 

BDI, PAS and LARS total scores were not correlated with age, PD diagnosis duration or PD LEDD 

(Appendix Tables 5,7). BDI, but not PAS or LARS (Appendix Table 6), was significantly correlated with 

RBD diagnosis duration (r(13)=-.64; p=0.014). 

 

Relationship between cognitive function and psychopathology 
Taking BDI as the most robust measure of psychopathology in the PD and RBD groups, the relationship 

between depression and cognitive function was assessed using Pearson Correlation analysis. There 

was a significant positive correlation between BDI and MoCA/phonemic fluency scores for the PD 

group only (Tables 5.13 & 5.14).  
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Test Statistic 
p-value 

 
Control 

n=19 
r(17)=.13 0.96 

RBD 
n=15 

r(13)=.003 0.99 

PD 
n=17 

r(15)=.67 0.003 

Table 5.13: Pearson Correlation Test for correlation between BDI and MoCA total scores. 

 

 
Figure 5.6: Scatter plot showing correlation lines of best fit for the relationship between MoCA and 

BDI scores. There is no correlation between MoCA total score and BDI total scores for the Control and 

RBD groups, but there is a significant positive correlation for the PD group. In PD, greater levels of 

depressive symptoms are correlated with better cognitive function. 
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Test Statistic 
p-value 

 
Control 

n=19 
r(17)=-.36 0.13 

RBD 
n=15 

r(13)=-.24 0.38 

PD 
n=17 

r(15)=.59 0.012 

Table 5.14: Pearson Correlation Test for correlation between BDI total score and phonemic fluency. 

 
Figure 5.7: Scatter plot showing correlation lines of best fit for the relationship between BDI total 

score and Phonemic Fluency. There is a non-significant negative correlation between BDI total score 

and Phonemic Fluency score for the Control and RBD groups, and a significant positive correlation for 

the PD group. In PD, greater levels of depressive symptoms are correlated with better Phonemic 

Fluency scores. 

 

There was no relationship between BDI and semantic fluency for any of the groups (Table 5.15), 

though moderate negative and positive correlations were evident for the RBD and PD group 

respectively. 
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Test Statistic 
p-value 

 
Control 

n=19 
r(17)=-.21 0.38 

RBD 
n=15 

r(13)=-.36 0.18 

PD 
n=17 

r(15)=.37 0.14 

Table 5.15: Pearson Correlation Test for correlation between BDI total score and semantic fluency. 

 

Correlation analysis between MoCA and PAS score found a significant positive correlation for the PD 

group only (r(15)=.61; p=0.01). There was no significant correlation between MoCA and LARS scores 

for any of the groups.  
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Electrophysiology (EEG): Ongoing Activity Measures 
A multiclass classification task was performed using the Mr-SEQL model to test whether resting wake 

(ongoing) brain activity could differentiate Control, RBD and PD groups from one another. A high 

classification accuracy would indicate that the information within the EEG data was physiologically 

relevant to disease state. 

 

Measures of accuracy, recall and precision of the classifier were calculated (Table 5.16). The most 

informative brain region for classification of the 3 groups was the Prefrontal cortex, with an accuracy 

of 0.78 ± 0.22, precision of 0.86 ± 0.17 and recall of 0.80 ± 0.17.  

 

Brain Region Accuracy (%) Precision (%) Recall (%) 
Prefrontal 78 ± 22 86 ± 17 80 ± 17 

Frontal 54 ± 16 50 ± 24 54 ± 14 
Left Frontal 56 ± 16 52 ± 21 56 ± 11 

Right Frontal 45 ± 14 44 ± 14 41 ± 9 
Central 44 ± 18 40 ± 26 41 ± 14 

Left Central 42 ± 14 41 ± 24 41 ± 7 
Right Central 49 ± 14 47 ± 19 45 ± 11 
Left Temporal 39 ± 13 38 ± 22 39 ± 8 

Right Temporal 40 ± 16 40 ± 27 41 ± 14 
Parietal 39 ± 14 33 ± 23 38 ± 1 

Left Parietal 47 ± 12 46 ± 16 44 ± 6 
Right Parietal 44 ± 16 41 ± 25 43 ± 11 

Occipital 55 ± 18 51 ± 23 52 ± 12 
Table 5.16: Accuracy, Precision and Recall measures of the multiclass classifier. The ‘best 

performing’/ most informative brain region for classification was Prefrontal region. All values 

presented as mean ± standard deviation. 

 

The difference between regions for these 3 measures was tested using a Friedman Chi-square test and 

Nemenyi post-hoc test (Table 5.17). There was a significant difference in accuracy, precision and recall 

between regions, and all measures were significantly increased in the Prefrontal Cortex compared to 

other regions (see post-hoc results in Table 5.17). 
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Measure Test Statistic p-value Post-Hoc 

Accuracy X2(12)=63.84 <0.001 

Prefrontal > Right Frontal p=0.004 
Prefrontal > Central p=0.002 
Prefrontal > Left Central p=0.001 
Prefrontal > Left Temporal p=0.001 
Prefrontal > Right Temporal p=0.001 
Prefrontal > Parietal p=0.001 
Prefrontal > Right Parietal p=0.003 

Precision X2(12)=43.85 <0.001 

Prefrontal > Frontal p=0.003 
Prefrontal > Right Frontal p=0.01 
Prefrontal > Central p=0.02 
Prefrontal > Left Central p=0.002 
Prefrontal > Left Temporal p=0.001 
Prefrontal > Right Temporal p=0.001 
Prefrontal > Parietal p=0.001 
Prefrontal > Left Parietal p=0.03 
Prefrontal > Right Parietal p=0.002 

Recall X2(12)=60.68 <0.001 

Prefrontal > Right Frontal p=0.001 
Prefrontal > Central p=0.001 
Prefrontal > Left Central p=0.001 
Prefrontal > Left Temporal p=0.001 
Prefrontal > Right Temporal p=0.001 
Prefrontal > Parietal p=0.001 
Prefrontal > Right Parietal p=0.01 

Table 5.17: Statistical test results for between-region differences for Accuracy, Precision and Recall 

measures. 
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Discussion 

Cognitive impairment and psychopathology are two of the most burdensome non-motor symptoms 

in PD. These symptoms have a poorly understood, but undoubtedly complex, relationship with 

ongoing brain activity. This chapter further sought to quantify differences in these three domains 

between study groups.  

 

Cognitive impairments are prevalent but mild in disease states 
Cognitive function was assessed primarily using the researcher-administered MoCA assessment, while 

language-specific cognitive function was assessed using phonemic and semantic fluency tests. 

Cognitive function decreases with advanced aging (Murman, 2015) and in the first instance analyses 

were undertaken to assess the extent of the relationship between age and cognition within this study 

cohort. In the Control group, non-significant negative correlations were found between age and MoCA 

score or phonemic fluency score. A significant negative correlation was shown between age and 

semantic fluency for Controls. These negative correlations were attenuated or absent for the RBD and 

PD groups. One explanation for this finding is selection bias (Munafò et al., 2018): individuals, 

especially Control participants, interested or capable of participating in research may be more likely 

to be in better health with good cognitive function. Thus, while the impact of age on cognition is likely 

to be underestimated in this cohort, it is clear disease states attenuate the relationship between aging 

and cognitive function. 

 

This study reports prevalence of mild or moderate cognitive impairment (based on MoCA score 

classification) was evident in 15.8% Control, 50% RBD participants and 47.1% PD participants. These 

prevalences are within ranges previously reported in the literature for an aged general population 

(Sachdev et al., 2015), people with RBD (Gagnon et al., 2009; Iranzo et al., 2010; Yoo et al., 2021) and 

early-stage PD (Martínez-Horta et al., 2021). Nonetheless, the increased prevalence was not 

statistically significant and there was no significant difference in MoCA total scores or subscores 

between the groups. This is likely since many of the RBD and PD MoCA scores were close to the cut-

off for MCI classification and thus cognitive function was reasonably preserved.  

 

There is debate as to whether PD is characterised by frontal cortex-associated impairments (mainly 

executive function deficits) or whether a more generalised, global cognitive impairment is present. 

Studies reporting a heterogenous cognitive impairment presentation which may go some way to 

bridge the gap in the debate (Lawson et al., 2017; Litvan et al., 2011). Nonetheless, there is evidence 

that Levodopa may rescue MCI to some extent and prevent short-term progression of cognitive 
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impairment in people with PD (Ikeda et al., 2017; Kulisevsky et al., 2000), with the mechanism for this 

thought to relate to reduced dopaminergic striatal stimulation and subsequently disrupted 

frontostriatal neuronal loops (Poletti & Bonuccelli, 2013). This study did not find a correlation between 

LEDD and MoCA score, nor a difference in the MoCA total scores between those people with PD taking 

dopaminergic medications vs those who were not. There is not enough evidence from the results 

reported to conclude that dopaminergic medications influenced the cognitive profile of the PD 

participants. 

 

The overall trend in decreased MoCA total score was seen in multiple MoCA subtests, with executive 

function and attention scores progressively decreasing from Control  RBD  PD (Table 5.3). Other 

subscores did not show clear differences between Control and PD groups (Visuospatial; Delayed 

Recall) or were decreased to the greatest extent in RBD groups (Delayed Recall). However, given that 

these subscores are calculated from 1-3 individual questions within the MoCA, and the subscore 

differences between groups is consistently small, it is difficult to say how physiologically meaningful 

their interpretation can be.  

 

There were no statistically significant differences in phonemic or semantic fluency between groups, 

consistent with the lack of significant difference in the MoCA Language subscore between groups. 

Language function is not affected by RBD or PD diseases states in this cohort. 

 

There was a low correlation between RBD or PD duration and MoCA score, providing limited evidence 

for the progressive nature of MCI within these disease states. However, with limited participant 

numbers and only prodromal and early-stage PD represented within the study, it is hard to draw 

further conclusions on this point. 

 

Depression and anxiety are common in disease states 
Measures of DAA relied upon participant-reported outcome measures (depression; anxiety) and 

researcher-administered assessments (apathy).  

 

This study found depression prevalence to be 40% in the RBD group and 52.9% in the PD group 

compared to 5.3% in the Control group. The overall depression score on the BDI was significantly 

increased for disease state groups compared to Controls, indicating increased depressive symptoms 

in these individuals. The PAS anxiety scores were similarly increased in the disease state groups 

compared to Controls, though not significantly so. Using the recommended PAS cut-off score for 

anxiety diagnosis (Leentjens et al., 2014), the prevalence of anxiety was estimated to be 10.5% in 
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Controls, 33.3% in the RBD groups and 29.4% in the PD group, in support of the literature. Correlation 

analysis showed strong significant positive correlations between BDI and PAS scores for all groups 

(Figure 5.5), evidencing the clear overlap in symptom presentation and underlying mechanisms 

between the two psychopathologies. 

 

Apathy scores were not significantly different between the 3 groups and the prevalence of apathy was 

similarly comparable between the 3 groups with 42.1% of Controls, 43.8% of RBD and 52.9% of PD 

participants reaching the threshold for apathy classification as defined by the LARS developers 

(Sockeel et al., 2006). The prevalence of apathy within the PD group was high and in line with the 

previous literature (Mele et al. 2020) – however, both the Control and RBD also exhibited high apathy 

prevalence (>40%). It was expected that the RBD group would exhibit higher levels of apathy in line 

with the PD group results, having been reported previously in the literature (Barber et al. 2018) and 

fitting with the prodromal theory of RBD neurodegeneration.  The prevalence of apathy in the Control 

group was in line with previously reported subclinical levels of apathy affecting 30-40% of the general 

population (Ang et al., 2017; Lafond-Brina & Bonnefond, 2022); nevertheless, it was unexpected that 

the 3 groups would have such similar prevalence rates and scores for apathy. 

There are several potential explanations for the lack of expected between-group differences. To begin, 

the majority of data collection appointments took place in the immediate aftermath of COVID-19 

pandemic, which was shown to cause sustained increases in apathy levels within older individuals 

(Hausman et al. 2022) and in people with PD (Kinger et al. 2023). It is therefore plausible that the 

apathy scores presented here reflect a genuine increased prevalence. The proximity of the research 

to the COVID-19 pandemic may explain the high prevalence and elevated apathy levels across the 3 

groups. 

Another reason why the levels between the 3 groups might have been similar is due to the subjective 

nature of the LARS scale, which is delivered by the researcher/clinician and relies upon the opinion of 

the researcher/clinician for scoring. This presents opportunity for bias to enter the scoring process: 

either as experimenter bias or inaccurate measurement of responses due to incorrect delivery of the 

scale questions. Such causes would lead to low specificity of the classification. 

Finally, it may be that the levels of apathy in the PD group were lower than expected (compared to 

Controls) due to a selection bias, wherein more motivated, less apathetic individuals are more likely 

to participate in research (Munafò et al. 2018). 

There was additionally no significant correlation between LARS apathy scores and BDI or PAS scores, 

demonstrating a variability in the presentation of these symptoms across the 3 groups and supporting 
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previous research which shows a distinction between apathy and depression symptoms in 

neurodegeneration (Levy et al., 1998). 

 

Depression and anxiety do not predict cognitive impairment in this cohort 
Previous studies have demonstrated the complex relationship between affect and cognition in the 

general population (Ward et al., 2007) and in disease states (Marvel & Paradiso, 2004). In RBD and PD, 

depression and cognitive impairment are common comorbid symptoms (Assogna et al., 2021; Toloraia 

et al., 2022), and the analyses detailed within this chapter sought to investigate whether there is a 

correlation between these factors in the study cohort. 

 

It was expected that a significant negative correlation would be evident between BDI score and 

cognitive scores – the higher the BDI score (and therefore greater depression symptoms), the lower 

the cognitive scores (indicating greater cognitive impairment). Unexpectedly, there was no strong 

significant negative correlation between BDI score and any of the cognitive scores (MoCA, phonemic 

fluency, semantic fluency) for any of the groups. The only group which showed significant correlations 

was the PD group, with significant positive correlations between BDI score and phonemic fluency or 

MoCA score, suggesting the more depressive symptoms these participants had, the greater their 

cognitive function. This finding is at odds with much of the literature (Jones et al., 2016; Malak et al., 

2017).   

 

One explanation for this discrepancy may be the timing of the data collection, with most participant 

involvement occurring in the 12 months following the initial COVID-19 outbreak. Therefore, people 

with normative cognitive function may have experienced increased depression levels due to COVID-

19 unrelated to their disease state, masking the true relationship between cognitive function and 

psychopathology. Such population shocks – the ‘unexpected or unpredictable events that disrupt the 

environmental, health, economic, or social circumstances within a population’ (Santomauro et al., 

2021) – have been shown to increase levels of depression in the general population: this has been 

documented in the case of the Hong Kong protests in 2019 (Ni et al., 2020), following war and conflict 

(I. C. Z. Y. Lim et al., 2022) and following economic crises (Guerra & Eboreime, 2021). Prevalence of 

depression in the general population immediately following the COVID-19 pandemic has been shown 

to be increased compared to pre-pandemic levels (Santomauro et al., 2021), which likely impacted the 

depression scores across the entire study cohort. However, additional research has shown that COVID-

related increases in depression in people with PD may be disproportionate to the rest of the 

population (Nabizadeh et al., 2022). The reasons for this are speculated to include increased social 

isolation and an increased vulnerability to depressive symptoms (Nabizadeh et al., 2022). 
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Unfortunately in the current study there was no data collected specifically on the impact of COVID-19 

and thus this explanation for the unexpected correlations seen in the PD group is purely speculative. 

 

Ongoing brain activity contains limited information to differentiate between participant 
groups 
Resting wake, or ongoing, brain activity was assessed by means of EEG and regional bandpower 

analysis. These measures are not sufficient to describe dynamics of specific resting state networks, 

but instead provide a high-level overview of ongoing activity which is influenced by resting state 

networks. There were many potential avenues for the methods used to analyse the EEG data, such as 

entropy or cross-frequency-coupling analysis. Bandpower was chosen as an initial analysis metric as it 

has commonly been reported in the literature (Bang et al., 2017; Betrouni et al., 2022; Caviness et al., 

2016; Fantini et al., 2003). The resting state analysis completed for this thesis are therefore a proof-

of-principle with lots of potential for future development. 

 

The analysis method chosen is a novel approach developed by Amarpal Sahota, involving the initial 

transformation of the preprocessed data into regional frequency domain time series followed by 

implementation of the Mr-SEQL machine learning classifier model. By compressing the wake EEG data 

into a 7-variate bandpower time series and further transforming this multivariate time series using 

the SFA and SAX methods of the Mr-SEQL model, this method addresses issues of slow processing 

time and large memory requirements which are common in current time series classification methods 

(such as large ensemble models and deep neural networks) (Le Nguyen et al., 2019). The benefit of 

using a machine learning classifier model over traditional EEG analysis methods and statistical models 

is that a large amount of information from multiple domains (time, frequency) can be integrated, 

something which can be cumbersome with traditional statistical models. The performance metrics of 

the model (accuracy, precision and recall) give insight into how informative the data is for the 

classification task: if EEG data was highly discriminative between participant groups, the model would 

be expected to perform with high prediction accuracy. 

 

The Mr-SEQL analysis of resting wake EEG activity found the prefrontal brain region to be most 

informative for classifying participants according to their group. Given the low explainability of the 

model outputs at this time (no feature importance rankings were outputted), it is difficult to provide 

explanations for this prefrontal result. Previous research has shown that Default Mode Network 

(DMN) (which has a large prefrontal component) activity is decreased in people with PD (both with 

MCI and without) compared to Controls, and that people with PD+MCI had decreased functional 

connectivity within the prefrontal cortex (Amboni et al., 2015). It was also shown that the decreased 
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prefrontal connectivity correlated with cognitive score (Amboni et al., 2015),  which reflects the 

established role of the prefrontal cortex in executive function and the importance of dopamine 

transmission in the prefrontal cortex for higher-order cognition (Squire et al., 2012). Another resting 

state study found that beta-gamma phase amplitude coupling was increased in the prefrontal cortex 

of people with PD, with the abnormal brain synchronisation postulated to be the result of impaired 

beta and gamma propagation through basal ganglia/thalamocortical pathways due to impaired 

dopamine neurotransmission (R. Gong et al., 2021). These studies show that altered prefrontal resting 

brain activity is a feature of PD, although both of these studies included participants with long PD 

duration (maximum duration 17 years).  

 

The preliminary results from our investigations suggest it may be possible that early-stage dopamine 

dysfunction is detectable in the resting-state EEG of PD, and perhaps prodromal RBD, groups, and this 

requires further investigation with our dataset. It would also be interesting to test whether any resting 

prefrontal activity changes correlate with cognitive score, as in (Amboni et al., 2015), or with 

psychopathology profiles. 

 

It should be noted that all classifier metrics were relatively poor, even in the prefrontal region 

(Accuracy range 78% ± 22 (Prefrontal) – 39% ± 14 (Parietal); Precision range 86% ± 17 (Prefrontal) – 

33% ± 23 (Parietal); Recall range 80% ± 17 (Prefrontal) – 38% ± 10 (Parietal)). The standard deviations 

were large for most metrics, likely due to the limited size of the dataset. Thus, without further insights 

into the feature importances and individual group performances, it is difficult to conclude whether 

the performance metrics are due to limited data or there not being enough information within the 

data for high performance classification. A binary class task using the same wake EEG data to classify 

Control vs. PD groups similarly found the Prefrontal region to be most informative, however the 

performance metrics achieved were much higher (Accuracy 90.2% ± 10.9; Precision 85% ± 31.5; Recall 

85%  ± 23.8) (analyses not shown, manuscript in submission (Sahota et al. 2022), suggesting the 

inclusion of the RBD group into a multiclass task reduces performance. This may be due to the variable 

presentation of the RBD group and the mixed population of those with prodromal synucleinopathy 

and those without.   

 

Currently, the results from the ongoing brain activity analysis are promising but limited in the extent 

to which cause and effect conclusions can be made (interpretability) and feature importance can be 

understood (explainability). Future directions for developing the Mr-SEQL analyses include improving 

the interpretability to find out which features/bandpowers are most informative for disease state 
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classification and extracting class-specific performance metrics. Because the data processing pipeline 

retains the time and frequency domain information, temporal characteristics of the signal should be 

explored. This would provide further insight into how ongoing brain activity is altered in 

synucleinopathies.  

 

Conclusion 

This chapter sought to describe three aspects of the awake brain state: cognition, mood and ongoing 

activity. Cognitive impairment, depression and anxiety are all present in disease states and have a 

scaled presentation from RBD  PD. Cognitive function and psychopathology were uncorrelated in 

this cohort, which may reflect the early disease states or the impact of the COVID-19 pandemic on the 

study population. In early-stage synucleinopathy, resting state prefrontal brain activity may be an 

additional signature of cortical pathology.   
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Chapter VI: Sleep 
 

“You go to bed tired, you wake up tired, during the day you’re tired. I’m tired now. I was tired when I 

got up this morning.”  

 

“Oh, the worst part of it. The, um, vivid dreams and screaming in my sleep.” 

People with PD, quotes from (Bonner et al., 2020) 

 

As early as Braak Stage II, brain regions involved in sleep and wake regulation become impacted by 

alpha-synuclein pathology. Sleep complaints are common in PD, but there are clear challenges when 

identifying specific sleep biomarkers for neurodegeneration in a cohort of individuals who already 

have an established sleep disorder such as RBD. 

 
Introduction 

Historically presumed as a state of inactivity and idling, advances in electrophysiological and 

neuroimaging techniques have now enabled a detailed understanding of brain activity during different 

sleep stages.  

 

Although sleep-related symptoms have been reported for a long time in PD, it is really the discovery 

that RBD can precede PD development that has accelerated the interest in PD sleep. 
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Normative Sleep 
During a night of healthy sleep, humans cycle through several arousal states – wakefulness, REM 

(‘paradoxical’) sleep and Non-REM (NREM) deep sleep. Both NREM and REM sleep can be further 

subdivided into NREM stages 1-3 and REM Tonic and Phasic microstates. The timing and duration of 

sleep stages is referred to as the macroarchitecture of sleep (Figure 6.1). 

Figure 6.1: The timing and structure of normative sleep. At the start of the sleep period, adult 

humans become drowsy and first enter NREM 1 sleep. NREM 2 and NREM 3 sleep follow, with the 

majority of NREM 3 sleep taking place in the first half of the sleep period. From NREM 3 sleep, 

typically Wake or REM sleep are entered, ending the sleep cycle. This pattern of WakeNREMREM 

repeats 4-5 times throughout the night, with one cycle taking ~90 minutes. The majority of REM 

sleep takes place in the second half of the sleep period. Informed by (Bassetti et al., 2021). 
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Each sleep stage has unique behavioural and electrophysiological features (Figure 6.2), referred to as 

the microarchitecture of sleep.  

 

Figure 6.2: Electrophysiological and behavioural features of the different sleep stages. 

 

Both the macro- and microarchitecture of sleep change with advancing age (Ohayon et al., 2004) 

(Figure 6.3) and in relation to acute and chronic challenges – whether these challenges are external 

(e.g. jet lag from changing time zones  (Monk et al., 2000)) or internal (e.g. disease states (Bassetti et 

al., 2021)). 
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Figure 6.3: Changing sleep macroarchitecture with age. SL, Sleep Latency; WASO, Wake After Sleep 

Onset; REM, Rapid Eye Movement sleep; NREM 1-3, Non-Rapid Eye Movement Sleep stages 1-3. 

Adapted from (Ohayon et al., 2004). 

 

The Anatomy and Physiology of Sleep 
The phenomenon of sleep is under the control of circadian and homeostatic drivers (Borbély, 1982) 

and is the result of complex interplay between many brain regions and neurotransmitters (Figure 6.4), 

which can be broadly differentiated as wake-promoting or sleep-promoting.  

 

Wakeful brain activity is characterised by strong noradrenergic, cholinergic, dopaminergic and 

serotonergic influence within the ascending reticular activating system (ARAS) of the brainstem and 

subcortical nuclei (Figure 6.4) (Squire et al., 2012). The complex interactions between these regions 

leads to desynchronised cortical activity and active maintenance of the wake state. The ARAS has a 

mutually-inhibitory interaction with the sleep-promoting hypothalamic ventrolateral preoptic area 

(VLPO), mediated by orexinergic neurons of the lateral hypothalamus, producing a flip-flop switch 

between sleep and wake (Saper et al., 2001). The influence of circadian zeitgebers (including light, 

food and exercise) is introduced into this system by the suprachiasmatic nucleus (SCN) which 

stimulates melatonin secretion from the pineal gland and uses variable glutamatergic signalling to 

regulate the activity of the ARAS (Squire et al., 2012). As wake duration increases, homeostatic 

molecules (endogenous somnogens) such as adenosine build up in the brain, increasing sleep drive by 

binding to inhibitory receptors and reducing the activity of wake-promoting brain regions (Squire et 
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al., 2012). This triggers a downstream chain of events to increase activity of sleep-promoting brain 

regions and effectively silence wake-promoting regions. Within the sleep state, NREM and REM state 

transitions are controlled by the reciprocal interactions of PPT/LDT cholinergic REM-on and raphe 

nuclei (RN)/locus coeruleus (LC) noradrenergic REM-off neurons which inhibit one another in negative 

feedback loops (J. A. Hobson et al., 2000). The interactions controlling sleep stage transitions and sleep 

stability are maintained until homeostatic pressure decreases and circadian influence shifts the 

balance to wake-promoting activity (Squire et al., 2012). 

Figure 6.4: Control of sleep and wakefulness. Sleep-wake and NREM-REM state switching is shown in 

the top two rows. Circadian (melatonin, Process C) and homeostatic (sleep pressure, Process S) 

patterns are shown in the bottom of the figure. DR, dorsal raphe nucleus (serotonin); LC, locus 

coeruleus (norepinephrine); LDT, laterodorsal tegmental nucleus (acetylcholine); PB, parabrachial 

nucleus (glutamate); PC, precoeruleus area (glutamate); PPT, pedunculopontine tegmental nucleus 

(acetylcholine); SLD, sublaterodorsal region; TMN, tuberomammillary nucleus (histamine); vPAG, 

ventral periaqueductal gray (dopamine).  Informed by (Borbély, 1982), adapted from (Saper et al., 

2010). 
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NREM Sleep 
The first states that are entered upon in normative sleep are NREM. Drowsy wake usually transitions 

into light NREM 1 sleep, which gives way to either spindle- and K-complex-rich NREM 2 or the ‘deep 

sleep’ stage NREM 3. NREM sleep makes up the majority of the total sleep time, around 80% for adults 

(Colten et al., 2006). The cortical activity during NREM sleep is typically low frequency, high amplitude 

– in juxtaposition to the wakeful brain EEG (Brown et al., 2012). The three NREM sleep stages have 

varying oscillatory profiles (Figure 6.2- above), which reflect the shifting functional roles of the stages. 

 

Broadly, NREM is conceptualised as the sleep stage for rest, repair and consolidation (Brown et al., 

2012). During NREM2, the dominant microarchitectural features are the neocortical sleep spindle and 

k-complex and the subcortical sharp wave ripple (Brown et al., 2012). K-complexes are maximal in 

frontocentral regions, and are large biphasic oscillations with a negative deflection (wherein neurons 

are hyperpolarised) followed by a positive, depolarised deflection: this oscillation profile has led to 

the hypothesis that K-complexes are in fact isolated slow waves (Amzica & Steriade, 2002). Indeed, K-

complexes are accompanied by increases in cortical delta power (Latreille et al., 2020) and are 

confirmed to represent cortical down states (Cash et al., 2009). The function of the K-complex has 

been linked to arousals since experiments in 1938 first showed that K-complexes (often accompanied 

by microarousals) could be elicited during NREM sleep by presentation of an auditory stimulus (Loomis 

et al., 1938). Recent simultaneous scalp- intracranial EEG recordings have advanced this idea by 

showing that the effect of the K-complex down state can either have sleep-promoting or arousal-

promoting effects, dependent on the brain region it occurs in (Latreille et al., 2020). 

 

Another key microarchitectural feature of NREM sleep are slow waves, which are most prominent 

during NREM 3 sleep. Slow wave sleep has high power in the delta (1-4Hz) and cortical slow oscillation 

(0.25-1Hz) frequencies caused by large-scale cortical synchronisation. As excitatory cholinergic and 

noradrenergic inputs decrease with increasing NREM sleep depth, cortical and thalamocortical 

neurons become hyperpolarised with high-frequency burst firing patterns causing up and down states 

of respective mass excitation and inhibition (Crunelli & Hughes, 2010). These low frequency, high 

amplitude oscillations have been linked to the ‘restorative’ functions of NREM sleep such as clearance 

of waste metabolites via the glymphatic system (Iliff et al., 2012; Mestre et al., 2020), tissue repair 

(Besedovsky et al., 2022; Facchin et al., 2020) and metabolic regulation (Wisor et al., 2013).  

 

Another well-established function of NREM sleep is memory consolidation, which has been linked to 

sleep spindles and hippocampal sharp wave ripples. Spindles occur in two frequency ranges spanning 

the alpha and sigma bands: 9-12Hz frontal slow spindles and 12-15Hz centroparietal fast spindles 
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(Anderer P et al., 2001) and often follow a K-complex or occur during a slow oscillation up state 

(Buzsáki, 2006). Spindles are generated by interplay between thalamocortical neurons, layer 6 cortical 

neurons and GABAergic reticular thalamic neurons (Clawson et al., 2016). Spindles increase in the 

sleep period after learning and the density of spindles correlates with memory performance tasks 

(Gais et al., 2002). The majority of sleep spindles co-occur with hippocampal sharp wave ripples, high 

velocity positive deflections followed by an high frequency 100-250Hz oscillation train (Azimi et al., 

2021). Sharp wave ripples are not unique to NREM sleep however and occur also during idle 

wakefulness (Roumis & Frank, 2015). This dual-state occurrence drives hippocampal cell activity replay 

for action planning during wake and memory consolidation during sleep (Roumis & Frank, 2015). 

 

Although slow wave oscillations, sharp wave ripples, spindles and K-complexes have distinct 

oscillatory characteristics, they frequently co-occur and influence one another’s activity (Diekelmann 

& Born, 2010). Depolarising slow oscillation up-states enable sleep spindle oscillations, which cluster 

hippocampal ripples and increase neocortical-hippocampal coupling (Ngo et al., 2020; Staresina et al., 

2015), ultimately increasing memory consolidation. 

 

REM Sleep 
Cortical oscillatory activity during REM (as measured using EEG) is similar to that seen in wakefulness 

with high frequency, low amplitude activity due to desynchronised pyramidal neuron firing. REM sleep 

is characterised by two distinct physiological phenomena: the presence of rapid eye movements 

(REMs) and the absence of skeletal muscle tone (atonia). Muscle atonia is unique to the REM sleep 

stage and is mediated by two motor systems: one controls brainstem input to spinal cord 

motoneurons to generate muscle atonia (extrapyramidal), and the other controls motor cortex 

activation to suppress locomotor activity (pyramidal). Thus, a state of REM can be detected by 

observing wake-like EEG activity coupled to an absence of muscle tone in an electromyogram (EMG) 

trace.   

 

The majority of dreaming occurs during REM sleep, and REM has been functionally associated with 

hippocampal memory consolidation (Boyce et al., 2016), emotional processing (Groch et al., 2013), 

gist extraction and creative processing (Lewis et al., 2018) and energy allocation (Schmidt, 2014).  

 

REM sleep can be further subdivided into the functionally and electrophysiologically distinct tonic and 

phasic REM. Tonic REM is the predominant phase of REM where rapid eye movements (REMs) do not 

occur. Phasic REM, on the other hand, is associated with REMs, increased arousal thresholds (Ermis et 

al., 2010) and enhanced thalamocortical activity (especially thalamic) compared to its tonic 
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counterstate (Wehrle et al., 2007). The anatomy and physiology underlying REMs generation is 

discussed in greater detail in Chapter 7. The mechanism controlling REM microstate transitions is 

unknown. Of particular interest to this research is the finding that during phasic REM, neural activity 

in the central EEG region/motor cortex increases (De Carli et al., 2016; Sunwoo et al., 2019).  

 

Similar to the characteristic oscillations of NREM (e.g. spindles, slow waves), REM sleep also has 

unique oscillations that occur, mainly during phasic REM sleep. These include alpha bursts, sawtooth 

waves and theta waves. The elusive function of REM has led to an under-researching of REM 

oscillations, but they have been linked to the occurrence of ponto-geniculo-occipital (PGO) waves 

(Frauscher et al., 2018, 2020). PGO wave occurrence is strongly correlated with REM EMs and have 

been recorded in rats, cats and primates (Gott et al., 2017) – however, the location of the pons and 

lateral geniculate nucleus make recording the full scope of these waves inaccessible in humans. 

Opportunistic intracranial recordings have identified partial PGO patterns from the pons and cortex – 

it is therefore likely they do occur in humans (A. S. Lim et al., 2007). 

 

Arousals, Transitions and Local Sleep 
Transitions between sleep stages and microarousals are determined by the underlying network 

dynamics detailed in Figure 6.4 above (Lo et al., 2013). The use of limited numbers of electrodes, 30s 

scoring epochs as defined by the American Academy of Sleep Medicine (AASM) (Berry et al., 2017) 

and stark EEG differences between Wake, NREM and REM states has led to the different sleep stages 

being viewed as isolated and reasonably uniform states. However, the advent of high-density 

electrode arrays, multi-site recordings and less-rigid approaches to sleep stage classification (e.g. using 

data-driven approaches (Koch et al., 2014)) has revealed phenomena such as local sleep (Krueger et 

al., 2019) and latent sleep stages, calling into question this traditional view of brain state homogeneity 

and well-defined sleep stages. 

 

Disordered sleep 
Sleep disorders arise from disruptions to the many processes of sleep and can give us an insight into 

normative and disease-state sleep physiology. Sleep disorders can be characterised by changes to 

macro- and microarchitecture, though rarely are these changes clearly differentiating. However, it is 

important to highlight that interpreting sleep changes can be challenging – are they the result of other 

disease symptoms, or are they a feature of the disease state in their own right? 
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Sleep in Parkinson’s Disease 
Sleep-related symptoms are common in people with PD – ranging from insomnia, fragmented sleep 

and daytime fatigue to cramping muscles and restless legs during the night (Barone et al., 2009). It is 

estimated that some ~42% with PD will have concomitant RBD which can further impact their sleep 

(Poryazova et al., 2013). Given the extent of the wide-ranging synuclein pathology at PD diagnosis, 

and the prevalence of sleep symptomatology, it can be difficult to untangle one from the other and 

determine causality. 

 

Synuclein pathology has been shown to target nuclei involved in sleep-wake regulation. Ex vivo patch 

clamp studies in mouse brains show recombinant human alpha-synuclein initially causes increased 

excitation of the cholinergic laterodorsal tegmentum (LDT) and pedunculopontine tegmentum (PPT) 

before neuronal degeneration (Dos Santos et al., 2021). The LDT/PPT are key wake-promoting and 

REM-active parts of the ARAS, and the pathology identified by (Dos Santos et al., 2021) may contribute 

to increased arousal during sleep and subsequent sleep fragmentation commonly seen in PD. Post 

mortem histological studies in people with PD with and without sleep disorders found significantly 

increased alpha-synuclein pathology in brainstem (locus coeruleus, raphe nuclei), hypothalamic 

(paramammillary nuclei, posterior hypothalamus) and subcortical (amygdala, thalamus) brain regions, 

which all contribute to sleep-wake regulation (Kalaitzakis et al., 2013). Elevated cortisol and reduced 

melatonin have been found in early-stage PD, suggesting circadian rhythmicity is also disrupted by 

synuclein pathology, potentially through mechanisms of dopamine deficiency or suprachiasmatic 

nucleus degeneration (Breen et al., 2014). 

 

A recent meta-analysis found that the majority of standard polysomnography statistics were 

significantly different in PD cohorts compared to Controls (Zhang et al., 2020). Overall, PD groups had 

significant (but not large) decreases in total sleep time, sleep efficiency, NREM 2 (2.3% difference), 

slow wave sleep (1.5% difference) and REM sleep (3% difference), and significantly increased Wake 

after Sleep Onset (18 minute difference) and REM latency (Zhang et al., 2020). These findings are 

invariably hallmarks of fragmented sleep and insomnia, two major complaints in people with PD. The 

meta-analysis found two intriguing phenomena that are reported in many disease states: that 

cognitive impairment was associated with decreased total sleep time and slow wave sleep, and that 

increased PD duration was associated with increased WASO and decreased SWS and REM percentage 

(Zhang et al., 2020). Indeed, sleep macroarchitecture changes are limited in early-stage PD cohorts 

(Breen et al., 2014; Brunner et al., 2002; Diederich et al., 2013).  
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With little evidence of altered sleep latencies or stage durations, studies have therefore turned to 

investigations of sleep microarchitecture.  

 

As is often the case, investigations of sleep microarchitecture changes in PD report inconsistent 

findings. (Happe et al., 2004) found no changes to quantity or characteristics of sleep spindles or K-

complexes in people with PD (disease duration 6.25±4.49; all were taking PD medications), concluding 

sleep microarchitecture is unchanged in PD. Conversely, (Christensen et al., 2015) found sleep spindle 

morphological changes in PD with decreased density, lower frequency and increased duration and 

amplitude compared to Controls (disease duration 6.7±4.5; 67% were taking PD medications). In a 

cohort of earlier-stage PD (median disease duration 2 years, IQR 1-5), (Papp, Horváth, Gombos, et al., 

2022) found a significant reduction in the fast spindle amplitude, but no further differences between 

Control and PD groups for other fast or slow spindle characteristics. Spindle features were significantly 

correlated with cognitive and memory measures in the Control group (Papp, Horváth, Gombos, et al., 

2022), hinting at a confounding influence of cognitive function when not controlled for in sleep 

microarchitecture studies. 

 

This latter point is seen also in investigations of spectral power across sleep stages in PD populations. 

Overall EEG slowing and spectral power changes are seen in people with PD with MCI/PD dementia 

(PDD), but not in people with PD without cognitive impairment when compared to Controls (Latreille 

et al., 2016; C. Zhang et al., 2021). This same pattern is reported in investigations of slow wave sleep 

dynamics: people with PD with MCI/PDD exhibit decreased slow wave sleep compared to people with 

PD without cognitive impairment (Schreiner et al., 2021; Wood et al., 2021). NREM microarchitecture 

changes in PD are therefore strongly influenced by cognitive function, which in itself is indicative of 

more extensive neuropathology and a worse PD prognosis. 

 

Investigations of NREM stability as measured by cyclic alternating pattern (CAP) have also produced 

conflicting results: (Priano et al., 2019) found significantly increased CAP rate in both mild and 

moderate PD disease states compared to Controls, whereas (C. E. J. Doppler et al., 2021) found 

significantly decreased CAP rate in PD (mean disease duration 6.3 ± 4.2). CAP can be elicited with 

sensory stimulation during sleep (Terzano et al., 1990) and therefore, like the K-complex, is thought 

to be related to arousal regulation; CAP alterations may therefore explain the increased sleep 

fragmentation seen in PD.  
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Of additional note is one study which investigated the impact of dopaminergic medication on 

microarchitecture changes in newly-diagnosed people with PD (Brunner et al., 2002). Drug-naïve 

people with PD exhibited significantly increased sigma power and decreased delta power during NREM 

sleep compared to Controls – after dopaminergic therapy (mean  treatment duration 42 ± 24 days), 

the sleep profile was characterised by significantly increased number of awakenings, increased NREM 

1 duration, decreased slow wave sleep and a rescue of elevated sigma activity to levels seen in 

Controls (Brunner et al., 2002). 

 

REM microarchitecture has been investigated to a limited extent, though elevations in REM high 

theta/alpha activity have been reported in drug-naïve people with PD (mean disease duration 

3.4 ± 0.6) (Wetter et al., 2001).  

 

Clearly many different metrics of sleep microstructure can be investigated but often conflicting results 

arise, making it difficult to draw conclusions or hypothesise pathological causes. Changes which are 

reported may be linked to specific features of the disease state: some inherent such as cognitive 

impairment and some external such as dopaminergic medications. Sleep-related impacts of 

neurodegeneration therefore present as one of the more nuanced, heterogenous symptoms of PD 

compared to other more robust symptoms such as olfactory dysfunction and motor impairment. 
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Sleep in RBD 
Although in the previous chapters we have seen that RBD is accompanied by a plethora of impairments 

and dysfunctions, it is in its simplest form a sleep disorder. The REM-specific symptoms of RBD are 

vocalisations, complex motor behaviours and REM Sleep Without Atonia (RSWA); crucially, these 

symptoms must be long-standing to rule out differential diagnoses (American Academy of Sleep 

Medicine, 2014). The motor aspects of this condition are due to the lack or attenuation of normative 

REM atonia, which leads to the acting out of often-violent dreams. The former symptom is the result 

of dysfunction within brainstem nuclei which control spinal motoneuron activation during REM sleep 

(Figure 6.5) while the latter is thought to be due to limbic system pathology causing hyperactivity in 

brain regions linked to emotional regulation and fear (Iranzo, 2018). How the two systems integrate 

(whether abnormal REM movements trigger a violent dream or vice-versa) is unknown.  

Figure 6.5: Normative mechanisms of REM atonia (left) and the breakdown of brainstem control of 

REM atonia in RBD. 

 

Despite the potential for incredibly disrupted sleep, people with RBD do not tend to report sleep issues 

such as daytime sleepiness or sleep fragmentation, and the major complaints relate to dream 

enactment injuries or disturbing their bed partner with movements in the night (X. Zhang et al., 2019). 

Objective measures support this experience: the majority of studies find no significant difference in 

sleep macro-structure; for example, the percentage of time spent in different sleep stages, between 

RBD individuals and controls (Ferri et al., 2017; X. Zhang et al., 2019).  
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RBD therefore presents with a sleep macroarchitecture profile similar to that seen in early-stage PD, 

and efforts turn to microarchitecture to identify biomarkers of neurodegeneration. 

 

In people with RBD (and PD+RBD), sleep spindle density was found to be reduced in both NREM 2 and 

NREM 3 sleep (Christensen et al., 2014). Further to this, O’Reilly et al. found both a decrease of spindle 

density and frequency in central cortical region C3 in RBD, as well as an overall increase of slow 

spindles and decrease in fast spindles (O’Reilly et al., 2015). However, whether these spindle 

alterations are a) in the case of Christensen et al. (Christensen et al., 2014), specific to RBD and not 

just the associated gross neurodegeneration or b) simply a demonstration of overall slowing of 

spindles or the EEG in general, not a segregated increase/decrease as concluded by O’Reilly et al. 

(O’Reilly et al., 2015), remains to be further investigated.  

 

These studies again call into question the influence of common concomitant symptoms in RBD – 

neither (O’Reilly et al., 2015) nor (Christensen et al., 2014) reported cognitive function of participants. 

Further, K-complex density is reduced (Galbiati et al., 2021) and the REM EEG is slower (S.-Y. Gong et 

al., 2022; Sasai et al., 2013) in RBD+MCI compared to people with RBD+normative cognition.  

 

Few studies have analysed REM microstate changes in RBD. Frauscher et al. found that the majority 

of ‘major’ RBD motor events (identified as either violent, complex, whole-body/ gross movements) 

were initiated or performed during phasic REM sleep, whereas distribution of ‘minor’ movements such 

as finger twitches or mouth openings was distributed evenly between phasic and tonic REM (Frauscher 

et al., 2009). Though such minor twitches are also exhibited in healthy REM sleep, control ‘healthy’ 

individuals exhibited these significantly less frequently than RBD patients. Manni et al. found that 

complex RBD motor events were significantly more likely to occur in association with REMs, sawtooth 

waves and alpha bursts (Manni et al., 2009). High density alpha burst activity was found to be more 

strongly associated with complex RBD events involving vocalisations (Manni et al., 2009). That phasic 

REM occurs only as a small percentage of total REM sleep time is in line with the fact that RBD 

behaviours occur infrequently during the night. Increased motor cortex activity, demonstrated by 

decreased sigma and beta power, as well as increased fronto-parietal functional connectivity were 

both found in RBD patients during phasic, but not tonic, REM compared to controls (Sunwoo et al., 

2019).   

 

Notably in RBD individuals, it was found that circadian rhythmicity of REM sleep duration and REMs 

was lost (Arnaldi, Latimier, Leu-Semenescu, Vidailhet, et al., 2016). In a standard night’s sleep, the 
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duration of each REM period increases over the course of the subjective night- however, this increase 

was not seen in RBD patients nor PD compared to controls, suggesting an impact of synucleinopathic 

neurodegeneration upon circadian mechanisms (Arnaldi, Latimier, Leu-Semenescu, Vidailhet, et al., 

2016). Additionally, in RBD and PD+RBD patients there was a diminished REMs increase over the night 

course (Arnaldi, Latimier, Leu-Semenescu, Vidailhet, et al., 2016). Despite these findings, the 

macroarchitecture was unaffected and overall percentage of time spent in REM was not significantly 

different between control and RBD individuals (Ferri et al., 2017). 

 

Most relevant to this thesis is the recent research by (Valomon et al., 2021) who conducted high-

density sleep EEG in people with RBD compared to Controls. They report a lack of overall REM or 

NREM spectral differences between groups, but REM microstate analysis revealed a decrease in beta 

power across the cortex during phasic REM (Valomon et al., 2021). This finding is in contrast to 

(Sunwoo et al., 2019) who reported increased beta activity in the motor cortex during phasic REM. 

Nevertheless, these investigations suggest REM microstates may be subject to subtle changes early 

on in the neurodegenerative process. They also report for the first time a blunted homeostatic 

response in the RBD group, with a smaller reduction in delta and theta power as the night progresses 

compared to Controls (Valomon et al., 2021). While the authors controlled for medications, they did 

not report cognitive function in participants which, considering the previous literature, calls into 

question any proposed mechanisms underlying these changes. 

 

Longitudinal studies of sleep features in RBD have not been conducted and therefore it is unknown 

whether changes to microarchitecture such as sleep spindles and motor cortex activation are stable 

or progressive biomarkers.  
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Rationale and Hypotheses 

Subjective sleep problems are a key feature of PD and are incredibly varied; conversely, people with 

RBD report few sleep issues beyond their night-time behaviours. Sleep issues are common in the 

general population with numerous potential causes and thus alone they have low specificity for 

disease diagnosis or prognosis. Objective sleep measures derived from EEG recordings have the 

potential to reveal circadian, homeostatic and cellular changes in disease states and may have 

increased prognostic utility.  

 

However, consistent evidence for changes in sleep macro- and microarchitectural features in people 

with PD or RBD is lacking. The reasons for this are diverse and reflect the influences of individual 

differences (Buckelmüller et al., 2006; Yetton et al., 2018) and heterogenous disease pathology 

(Martínez et al., 2021) on sleep. To begin, many investigations are in small cohorts which automatically 

decreases external validity and generalisability of the results. When coupled with extremely 

heterogenous disease presentations, as seen in PD populations, the external validity further reduces. 

The heterogeneity of PD means variable cognition function, levodopa dosage and symptom severity 

which all have clear impacts on sleep and are confounding factors. Both PD and RBD disease duration 

and variable progression rates additionally impact sleep markers. Finally, inconsistencies in sleep 

feature detections (e.g. choice of features to investigate, separation or summation of fast and slow 

sleep spindles) and a lack of standardised methods for feature detection often make results from 

similar studies difficult to directly compare. 

 

Despite these challenges, sleep serves incredibly important functions in health, is impacted variably in 

RBD and PD and any changes have the potential to exacerbate disease progression. Sleep also holds 

the potential for identifying pathological changes which may not be evident during the awake state. 

Sleep phenotyping using subjective participant reported outcome measures and high-density EEG was 

conducted in the study cohort, and machine learning feature extraction was used to explore the 

prognostic value of brain activity during sleep. 

 

Based on the literature, it was hypothesised that the macroarchitecture of sleep would not differ 

significantly between groups. REM microstate macroarchitecture has not been reported in healthy 

populations nor RBD or PD disease states and this study sought to investigate this for the first time. 

The underlying mechanism determining tonic and phasic REM coordination is unknown but may be 

linked to the PGO wave occurrence, which often precedes phasic REM features such as REMs. RBD 

pathology is primarily concerned with inadequate gating of muscle tone and it was expected that the 
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Control and RBD groups would not have significantly different microstate organisation. However, 

given the previous evidence that homeostatic drive are altered in RBD (Valomon et al., 2021), it was 

predicted that any homeostatic changes of REM microstates between the first and last REM episodes 

of the night would be blunted in the RBD group. There have been no investigations into homeostatic 

pressure in PD to the author’s knowledge, and therefore it was hypothesised that the homeostatic 

alterations in RBD may reflect early neurodegeneration and PD group would also present with blunted 

changes in REM microstate organisation during the night. 

 

It was expected that the sleep EEG microarchitecture features would be able to differentiate groups 

from one another and potentially hold prognostic power. The novel classification model described in 

Chapter 5, developed by Amarpal Sahota, was enlisted to test this hypothesis.  
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Methods 

The previous chapters of this thesis have for the most part conducted statistical analysis between 3 

groups: Control, RBD and PD, with secondary analyses splitting the PD group into PD+RBD and PD- 

subgroups where appropriate. However, given a proportion of the PD participants have probable RBD, 

and sleep profile is greatly influenced by presence of RBD, all analyses within this chapter consider 

PD+RBD and PD- minus groups separately. These analyses are therefore in the first instance conducted 

between 4 groups.  

 

Separating the 3 principal groups into 4 reduces statistical power and robustness to unequal variance 

as the sample sizes for the groups becomes imbalanced (maximum group sizes: Control = 19; RBD = 

16; PD- = 11; PD+RBD = 6). As with previous secondary analyses, variance and normality of group data 

were assessed to determine appropriate statistical tests in light of the sample size imbalance. 

 

Subjective Measures of Sleep & Circadian Function 
The following questionnaires were completed independently by participants during their Clinical 

Assessment session: 

 

• REM Sleep Behaviour Disorder Screening Questionnaire (RBDSQ) – 10-item questionnaire with 

maximum score of 13 points indicating high likelihood of RBD. Cut-off value of 5 is considered 

diagnostic, with values over 5 indicating RBD diagnosis. 

• Epworth Sleepiness Scale (ESS) – an 8-item questionnaire to assess daytime sleepiness. Score 

is out of 24, with a ‘normative’ score being between 0-10. Scores >11 represent excessive 

daytime sleepiness.  

• Parkinson’s Sleep Scale (PSS) – A 15-item rating scale assessing common features of sleep 

disturbance which may affect individuals with Parkinson’s disease. Total score out of 150, with 

high scores indicating good sleep and low scores indicating disturbed or poor-quality sleep. 

• Morningness-Eveningness Questionnaire (Horne & Ostberg, 1976a) – 19-item questionnaire 

assessing circadian profile with maximum score of 86. Circadian profile (morning person vs. 

evening person) is determined by score as follows: Score 16-30 = definite evening; Score 31-41 

= moderate evening; Score 42-58 = intermediate; Score 59-69 = moderate morning; Score 70-

86 = definite morning. 

• Pittsburgh Sleep Quality Index (PSQI) – 19-item questionnaire assessing quality of sleep. 

Maximum score is 21, with high scores indicating worse sleep quality.  



 177 

Preliminary bivariate correlation analyses were separately conducted between the above subjective 

sleep measures, age and cognitive function (MoCA total score) to determine the relationship between 

these factors. There were no significant correlations between variables (except for MoCA total 

score*PSS; PD group r=-0.73, p=0.01), however given then consistent evidence in the literature that 

age and cognition have significant influence upon subjective sleep quality and chronotype, it was 

deemed appropriate to perform all subsequent analyses controlling for age and cognition. All analyses 

were conducted with and without controlling for age and cognitive function covariates, to fully 

understand the investigated relationships. Analyses presented in the Results section are controlled for 

covariates. 

 

Objective Measures of Sleep  
As described in Chapter 2 (Methods), all participants underwent a minimum of 2 nights at-home sleep 

study.  

 

The literature reports cognitive function, and specifically the presence of MCI, can cause decreased 

total sleep time (TST) and sleep efficiency (SE) (Hita-Yañez et al., 2013; Hu et al., 2017) and may 

respectively increase NREM 1 % and decrease NREM 2 % in the case of amnesic MCI (Cai et al., 2020). 

PD-specific research has shown decreased sleep efficiency in PD+MCI, but no further clear differences 

in sleep macroarchitecture between people with PD and normal cognition or MCI (Sobreira et al., 

2019; C. Zhang et al., 2021). A recent meta-analysis found incremental changes with age to sleep 

macroarchitecture were not significantly different (Boulos et al., 2019), however the difference 

between the youngest and oldest age groups investigated were stark. Additionally, age and cognitive 

function have been shown to cause significant changes to sleep microarchitecture (Djonlagic et al., 

2020; Parker et al., 2022; Schwarz et al., 2017). Thus, macroarchitecture analyses were controlled for 

age and microarchitecture analyses were controlled for age and cognitive function. All analyses were 

conducted with and without controlling for age and cognitive function covariates, to fully understand 

the investigated relationships. Analyses presented in the Results section are controlled for covariates. 

 

EEG data preprocessing 
EEG data were manually scored in 30-second epochs according to AASM scoring guidelines (Berry et 

al., 2017), thus labelling data segments as Wake, NREM stages 1-3, REM or Artefact. The scored data 

were then preprocessed and analysed using custom Python scripts (version 3.7). Phasic and Tonic REM 

microstates were extracted using the processing techniques detailed in Chapter 7 (Motor).  
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Briefly, EEG data were downsampled from 512Hz to 256Hz and bandpass filtered between 0.25 – 

40Hz. Bad channels were identified and removed using manual inspection of the signal and power 

spectral density plots. The online reference channel FCz was added into the data and the data was 

offline re-referenced to an average reference. ‘Bad’ data segments (e.g. those with electrode, 

movement or sweat artefact) were manually labelled and removed from further analysis. 

 

The data was then split according to the sleep stage label and further artefact removal was conducted 

using Independent Component Analysis (ICA). ICA was conducted separately on each sleep stage due 

to the stage-specificity of artefacts such as eye movements. Data were highpass filtered from 1Hz and 

the signal was decomposed into 40 independent components using the ‘fastica’ method (Hyvärinen & 

Oja, 2000). The components represent both artefactual and neural data and time-series and 

topographic visualisation of the components were manually inspected and classified as such. Artefact 

components were labelled for removal from the data.  

 

After excluding artefact components from the data, bad channels were interpolated. The data was 

then re-referenced using the REST referencing technique (Dong et al., 2017; HaoZ, 2019/2021; D. Yao, 

2001). 

 

Spectral Density Estimation and Bandpower Analyses 
Spectral density estimation and bandpower extraction was calculated for each sleep stage using the 

following methods. 

 

The bandpower for 6 frequency bands was calculated for each channel using Welch’s Fast Fourier 

Transform method (Welch, 1967), as described in Chapter 5. A 4-second window with 2-second 

overlap was chosen for the periodogram calculation using the Discrete Fourier Transform. The 

periodograms are then averaged. The power spectral densities (PSD) within the defined power bands 

are calculated by integrating the area under the PSD curve for the corresponding frequency band. The 

frequency bands extracted were Delta (0.5-4Hz), Theta (4-8Hz), Alpha (8-12Hz), Sigma (12-16Hz), 

Beta(16-30Hz) and Gamma (30-40Hz). 

 

Relative bandpower is reported, as this controls for the influence of individual differences in physical 

characteristics (e.g. skull thickness) and experimental set-up (e.g. electrode impedance) between 

participants. Relative bandpower is calculated by dividing the absolute power for each frequency band 

by the total absolute power.  
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The channels were grouped into 13 regions per (Adebimpe et al., 2015) and as described in Chapter 

5. Kruskal Wallis One-way Analysis of Variance was used to test for significant differences in 

bandpower between groups for each region. Topoplots used to visualise bandpower distribution on 

the scalp display the power from individual electrodes as opposed to regional representations.  

 

Machine Learning Classifier Analysis Pipeline 
The analysis pipeline was the same as detailed in Chapter 5 methods (pages 119-122) using the Mr-

SEQL model. Each sleep stage (NREM 2, NREM 3, REM) was treated separately for analysis and 

therefore classifiers were trained on the regional bandpower coefficient time series for each sleep 

stage.  

Machine Learning Classifier Experimental methods 
Experimental method was the same as detailed in Chapter 5 methods (pages 122-123) using the Mr-

SEQL model. The following adaptations were made to accommodate the sleep data: 

The analysis was adapted from the 3-class multiclass model used in Chapter 5 to a 4-class multiclass 

model, separating the PD group into PD+RBD and PD-. This was so that the analyses were in line with 

the other analyses conducted in this chapter. 

 

Due to the multi-night nature of the sleep recordings and available data, during SEQL cross-validation 

where two samples were present from one individual (e.g. 2 nights of data from 1 participant), they 

were kept in the same fold to avoid cross-contamination. Performance metrics were generated for 

each of the sleep stages (NREM 2, NREM 3, REM). 

 

Table 6.1 details the sample n per group and the number of epochs used in the analyses. 
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Sleep Stage Sample n/group 
Length (number of 20-second epochs ± 

standard deviation) 

NREM 2 

Control = 26 

294 ± 110 
RBD = 24 

PD+RBD = 6 
PD- = 15 

NREM 3 

Control = 26 

155 ± 49 
RBD = 24 

PD+RBD = 7 
PD- =15 

REM 

Control = 26 

93 ± 41 
RBD = 22 

PD+RBD = 7 
PD- =14 

Table 6.1: Sample details for Sleep Stage EEG analysis. 
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Results 

Subjective Measures of Sleep & Circadian Function 
Subjective measures of sleep quality, chronotype and sleep symptoms were analysed controlling for 

age and cognitive function (Table 6.2). Overall, all disease groups scored worse than controls on the 

PSS, demonstrating a common theme of sleep issues. The RBD and PD+RBD groups reported worse 

sleep compared to Control and PD groups, as measured with the RBDSQ, PSS and PSQI. The difference 

was significant only for the RBDSQ score (p=<0.001) and between Control and RBD groups for the PSS 

(p=0.001). Before controlling for age and cognitive function, the RBD group had a significantly elevated 

PSQI score compared to Controls (F(3,47)=2.98, p=0.043, ◊ < † p=0.031) indicating poorer sleep, 

however this significance was not evident after controlling for covariates.  

 

The PD groups had a non-significant increase in their ESS scores indicating higher levels of daytime 

sleepiness compared to Control and RBD groups. 

 

The MEQ score was similar between groups, with all groups presenting with ‘moderate morning’ 

chronotypes. There was a slight shift towards morning-type for PD groups, whereas RBD and Control 

groups had some participants who have more evening chronotypes. The clinical relevance of these 

trends is uncertain. 
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Control 
◊ 

n=19 

RBD 
† 

n=15* 

PD+RBD 
Ξ 

n=6 

PD- 
˫ 

n=11 
Test Statistic 

p-value 
 

Post-Hoc 
Effect 
Size 

RBDSQ Total 
Score* 

2.11 ± 
1.6 

10.19 
± 2.07 

8.17 ± 
2.6 

2.64 ± 
1.43 

F(3,48)=61.36 <0.001e 

◊ < †,  Ξ 
p=<0.001 

˫ < †, Ξ 
p=<0.001 

0.8 

Parkinson’s 
Sleep Scale 
(PSS) Total 

Score 

122.05 
± 14.84 

98.27 
± 

20.28 

104.48 
± 19.61 

109.97 
± 

18.28 
F(3,47)=6.07 0.001e ◊ > † p=<0.001 0.29 

Pittsburgh 
Sleep Quality 
Index (PSQI) 
Total score 

5.89 ± 
2.51 

7.27 ± 
2.6 

6.83 ± 
2.48 

4.36 ± 
2.62 

F(3,47)=2.7 
 

0.056e - 0.15 

Epworth 
Sleepiness 
Scale (ESS) 
Total Score 

5.16 ± 
4.02 

5.13 ± 
3.99 

7.17 ± 
5.67 

6.91 ± 
4.97 

F(3,48)=0.58 0.63f - 0.1 

Morningness-
Eveningness 

Questionnaire 
(MEQ) Total 

Score 

59 ± 
8.07 

57.53 
± 

6.67 

63.67 
± 8.33 

63.73 
± 7.9 

F(3,47)=2.11 
 

0.11f - 0.06 

Table 6.2: Subjective sleep and chronotype measures controlled for Age and MoCA score covariates. 

All values are given as mean ± standard deviation (SD). For p-values & statistical tests, e= ANCOVA 

with Bonferroni post-hoc, f=QUADE ANCOVA with Bonferroni post-hoc. * RBD n=15 for the majority 

of measures as 1 participant did not fully complete the questionnaires; RBDSQ score RBD n=16. 

 

Despite the scores for disease state groups indicating a higher prevalence of sleep issues, the majority 

of study participants reported good sleep overall: in response to the PSQI Item 9 ‘During the past 

month how would you rate your sleep quality overall?’, 78.9% of Control participants responded ‘Very 

Good’ or ‘Fairly Good’, comparable to the RBD group (73.3%, n=11) and PD- group (81.8%, n=9). The 

PD+RBD group (n=6) had the lowest sleep quality, with 50% responding ‘Very Good’ or ‘Fairly Good’ 

and 50% answering ‘Fairly Bad’ or ‘Very Bad’. This poorer sleep quality may be due to additive PD and 

RBD symptoms, or may be the result of a low sample size.  

 

Prevalence of sleep complaints and issues (as measured with the RBDSQ and PSS) between groups is 

visualised in Figures 6.6 and 6.7. In the RBDSQ (Figure 6.6), RBD and PD+RBD groups reported every 

symptom at a higher percentage than Control and PD groups, except for the symptom of ‘frequently 
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disturbed sleep’ which 100% of PD+RBD and PD participants responded ‘yes’ to. Only 50% of the RBD 

group reported their sleep being frequently disturbed. One of the most common symptoms reported 

in all groups was ‘vivid dreams’. RBD groups were more likely to report aggressive dreams than 

Controls and PD- group.  

 
Figure 6.6: RBD Symptom Prevalence as measured with the RBDSQ. 

 

The PSS (Figure 6.7) can be used to assess sleep issue commonality using the mean score for each item 

in the questionnaire. A continuous score, as opposed to the binary Yes/No response used in the RBDSQ 

leads to more nuanced symptom presentation within the groups. Nonetheless, the RBD and PD+RBD 

groups score worse for symptoms relating to movements (limb restlessness, fidgeting in bed) and 

distressing dreams compared to the other groups, and the Control group reports a relatively high 

(‘good’) score for most items. The PD groups report worse mean scores for sleep issues linked to pain 

and motor symptoms (painful posting, tremor on wake, muscle cramps). All 4 groups report nocturia 

disturbs their sleep in the night, reflecting the demographics of the participants (men of relatively 

advanced age).  
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Figure 6.7: Mean Scores for sleep-related issues as measured with the PSS. 

 

Sleep Macroarchitecture 
A repeated measures analysis of covariance (ANCOVA) was used to test differences in sleep 

macroarchitecture between nights, between groups. The analysis controlled for age and cognitive 

function. For the majority of measures, there were no significant differences (Table 6.3, Table 6.4). 

There was minimal first-night-effect, with no significant within-subject effects. Although not 

significantly different, the RBD and PD+RBD groups demonstrated greater sleep efficiency on the first 

night compared to the second – potentially demonstrating a Reverse First Night Effects (RFNE). There 

was minimal impact of disease state on sleep macroarchitecture, with few significant between-

subjects effects. The only significant between-subjects effects reported were for REM 

duration/percentage (REM percentage is a function of duration), with a significant difference between 

RBD and PD+RBD groups (duration p=0.03; percentage p=0.02). On both nights, PD+RBD group has 

significantly less REM than the RBD group, and less REM than PD and Controls. Given the NREM 3 

durations/percentages are relatively similar across the groups on both nights, this REM discrepancy 

may be the result of increased artefact scoring in the PD+RBD group during the REM sleep stage. 

Indeed, the PD+RBD group had a larger number of epochs scored as artefactual compared to the RBD 
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group. The REM macroarchitecture changes therefore may be the result of analytic discrepancies as 

opposed to physiological changes.   

 

Table 6.3 (Next page): Night 1 and Night 2 sleep study summary statistics. All values are given as mean 

± standard deviation (SD). 
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Night 1 Night 2 
Control 

◊ 
n=14 

RBD 
† 

n=13 

PD+RBD 
Ξ 

n=6 

PD- 
˫ 

n=7 

Control 
◊ 

n=14 

RBD 
† 

n=13 

PD+RBD 
Ξ 

n=6 

PD- 
˫ 

n=7 

Total Sleep Time 
357.8 ± 
39.33 

391.14 ± 
43.08 

386.57 ± 
47.6 

342.55 ± 
68.82 

388.04 ± 
41.41 

386.83 ± 
55.41 

374.05 ± 
52.09 

376.54 ± 
67.52 

Sleep Period Time 
423.38 ± 

51.23 
442.37 ± 

57.8 
435.4 ± 
34.62 

432.77 ± 
63.79 

443.14 ± 
41.34 

445. ± 
70.54 

444.9 ± 
49.18 

439.61 ± 
79.36 

Sleep Efficiency 
83.9 ± 
11.03 

86.18 ± 
7.62 

87.76 ± 
5.4 

75.26 ± 
15.44 

86.99 ± 
5.89 

81.4 ± 
12.59 

80.62 ± 
7.82 

83.98 ± 
11.01 

N1 Duration 
(minutes) 

18.02 ± 
8.05 

22 ± 10.76 
19.58 ± 
10.91 

27.64 ± 
15.05 

16.62 ± 
5.76 

23.42 ± 
11.17 

24.33 ± 
16.01 

22.66 ± 
14.9 

N2 Duration 
(minutes) 

185.64 ± 
37.05 

201.46 ± 
41.48 

233.75 ± 
20.56 

182.14 ± 
42.46 

206.55 ± 
37.28 

209.92 ± 
41.91 

208.67 ± 
22.71 

190.51 ± 
26.93 

N3 Duration 
(minutes) 

90.3 ± 
15.56 

87.5 ± 
23.14 

81 ± 
23.96 

76.86 ± 
29.21 

89.7 ± 
33.87 

82.27 ± 
17.12 

87 ± 
25.17 

83.57 ± 
24.27 

REM Duration 
(minutes) 

64.11 ± 
22.32 

79.96 ± 
25.68 

51.67 ± 
27.34 

55.83 ± 
11.43 

74.89 ± 
14.91 

83.51 ± 
18.03 

53.65 ± 
26.18 

79.59 ± 
21.66 

Artefact Duration 
(minutes) 

0 ± 0 
0.15 ± 
0.43 

0.58 ± 
1.02 

0.07 ± 
0.19 

0.18 ± 
0.54 

0.12 ± 
0.22 

0.42 ± 
0.66 

0.22 ± 
0.59 

WASO Duration 
(minutes) 

65.57 ± 
51.08 

51.23 ± 
31.51 

48.83 ± 
21.73 

90.21 ± 
62.82 

55.11 ± 
25.81 

58.27 ± 
37.21 

70.85 ± 
36.12 

63.07 ± 
61.39 

N1 Percentage 
(%) 

4.28 ± 
2.13 

5.03 ± 
2.72 

4.48 ± 
2.44 

6.38 ± 
3.22 

3.75 ± 
1.24 

5.08 ± 
2.06 

5.29 ± 
3.17 

4.92 ± 
3.22 

N2 Percentage 
(%) 

44.12 ± 
8.08 

45.93 ± 
9.52 

43.7 ± 
2.44 

41.86 ± 
6.59 

46.5 ± 
6.53 

47.98 ± 
11.8 

47.35 ± 
7.06 

44.06 ± 
6.1 

N3 Percentage 
(%) 

21.63 ± 
4.73 

19.63 ± 
3.82 

18.68 ± 
5.55 

18.1 ± 
6.99 

20.36 ± 
7.98 

18.87 ± 
4.48 

19.28 ± 
3.81 

19.19 ± 
4.67 

REM Percentage 
(%) 

15.27 ± 
5.26 

18.18 ± 
5.73 

11.63 ± 
5.54 

13.06 ± 
2.82 

16.94 ± 
3.2 

18.9 ± 
3.37 

12.16 ± 
5.68 

18.39 ± 
4.58 

Artefact 
Percentage (%) 

0 ± 0 
0.04 ± 
0.12 

0.14 ± 
0.24 

0.02 ± 
0.04 

0.04 ± 
0.11 

0.03 ± 
0.05 

0.09 ± 
0.15 

0.05 ± 
0.14 

WASO 
Percentage (%) 

14.75 ± 
10.2 

11.18 ± 
6.18 

11.38 ± 5 
20.58 ± 
12.65 

12.4 ± 
5.76 

12.6 ± 
6.98 

15.82 ± 
7.84 

13.4 ± 
11.85 

Sleep Latency 
8.91 ± 
10.93 

13.69 ± 
15.20 

4.26 ± 
4.73 

23.77 ± 
31.58 

4.08 ± 
4.1 

20.8 ± 
26.01 

18.67 ± 
25.13 

13.68 ± 
9.72 

N2 Latency 
10.56 ± 
11.47 

16.96 ± 
16.37 

6.42 ± 
4.45 

26.82 ± 
31.25 

5.53 ± 
4.89 

24.53 ± 
26.85 

26.33 ± 
25.7 

16.18 ± 
10.1 

N3 Latency 
24.52 ± 
15.85 

34.7 ± 
23.5 

22.59 ± 
9.11 

42.16 ± 
35.88 

22.76 ± 
19.34 

37.59 ± 
26.25 

36.75 ± 
26.79 

27.18 ± 
10.21 

REM Latency 
93.96 ± 
39.02 

129.13 ± 
88.91 

183.17 ± 
77.56 

135.58 ± 
46.13 

76.84 ± 
22.81 

132.78 ± 
100.69 

127.33 ± 
75.78 

80.22 ± 
23.68 

  



 187 

 

 Within subject effects 
Between Subject 

Effects 

df 
Time(t) Time*group group 

F p 
Effect 
size 

F p 
Effect 
size 

F p 
Effect 
size 

Total Sleep 
Time 

1,34 0.69 0.41 0.02 1.35 0.27 0.11 0.99 0.41 0.08 

Sleep 
Period Time 

1,34 3.8 0.06 0.1 0.61 0.62 0.05 0.44 0.73 0.04 

Sleep 
Efficiency 

1,34 2.56 0.12 0.07 1.63 0.2 0.13 0.88 0.46 0.07 

N1 Duration 1,34 2.5 0.12 0.07 0.67 0.58 0.07 0.67 0.58 0.06 

N2 
Duration 

1,34 0.89 0.35 0.026 1.51 0.23 0.12 1.99 0.13 0.15 

N3 
Duration 

1,34 0.2 0.66 0.006 0.44 0.73 0.04 0.44 0.73 0.04 

REM 
Duration 

1,34 0.27 0.61 0.08 1.59 0.21 0.12 3.4 0.029 0.231 

Artefact 
Duration 

1,34 1.08 0.31 0.031 0.14 0.93 0.013 1.29 0.29 0.103 

WASO 
Duration 

1,34 3.04 0.09 0.08 0.52 0.67 0.04 0.61 0.61 0.05 

N1 
Percentage 

1,34 1.72 0.19 0.05 0.79 0.5 0.07 1.27 0.3 0.1 

N2 
Percentage 

1,34 0.46 0.5 0.01 1.02 0.39 0.08 1.13 0.35 0.09 

N3 
Percentage 

1,34 2.36 0.13 0.07 0.55 0.65 0.05 0.82 0.49 0.07 

REM 
Percentage 

1,34 0.31 0.58 0.09 1.24 0.31 0.09 3.96 0.02 0.26 

Artefact 
Percentage 

1,34 1.51 0.23 0.04 0.14 0.94 0.01 1.27 0.3 0.1 

WASO 
Percentage 

1,34 2.33 0.14 0.06 0.98 0.41 0.08 0.74 0.54 0.06 

Sleep 
Latency 

1,42 1.17 0.29 0.03 1.72 0.18 0.11 1.72 0.18 0.11 

N2 Latency 1,42 2.25 0.14 0.05 2.39 0.08 0.15 1.85 0.15 0.12 
N3 Latency 1,42 0.74 0.39 0.02 1.32 0.28 0.09 1.21 0.32 0.08 

REM 
Latency 

1,40 0.16 0.69 0.004 2.7 0.06 0.17 1.28 0.29 0.09 

Table 6.4: Sleep macroarchitecture Repeated measures ANCOVA (controlling for Age and MoCA 

score). Significant differences between RBD and PD+RBD group for REM duration and percentage are 

highlighted in bold.  
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Sleep Transitions and Sleep Stability 
Building upon the macroarchitecture analyses, the sleep stage transition profiles of the groups was 

investigated. Count and probability matrices for sleep stage transitions are shown in Figure 6.8. The 

number of transitions and probability of transition between specific stages was for the most part 

comparable between groups. Given the large number of transition comparisons, only the significant 

transitions have been detailed further in this section. 

 

The only significant differences between groups were related to REM stage transitions (Table 6.5) and, 

given that transition probability is a function of count, REM probabilities were similarly significantly 

different between groups (Table 6.6). For transition count analysis, the RBD groups transitioned 

significantly fewer times from REM to Wake compared to Control and PD- groups (Table 6.5) and all 

disease state groups transitioned more times from REM to N2, though this was only significantly 

increased in the PD+RBD group compared to Controls (p=0.0017). The RBD group had the most stable 

REM sleep, with the highest count and probability of REMREM transitions (Table 6.6); this was 

significantly greater than the PD+RBD group on both measures (count p=0.009; probability p=0.003) 

who had the lowest REMREM transition counts and probability of all the groups. 

 

 
 

Control 
◊ 

n=14 

RBD 
† 

n=14 

PD+RBD 
Ξ 

n=6 

PD- 
˫ 

n=8 
Test Statistic 

p-value 
 

Post-Hoc 
Effect 
Size 

REM  Wake 
Transition 

8.43 ± 
3.61 

4.29 ± 
2.46 

4.17 ± 
2.56 

6.0 ± 
2.56 

F(3,41)=5.57 0.003a 
◊>† p=0.003 
◊>Ξ p=0.025 

0.46 

REM  N2 
Transition 

1.07 ± 
1.07 

1.93 ± 
1.73 

4.0 ± 
2.76 

2.63 ± 
2.62 

F(3,41)=3.54 0.023a ◊<Ξ p=0.017 0.38 

REM  REM 
Transition 

141.07 
± 30.66 

163.43 
± 41.84 

98.33 ± 
51.41 

149.38 
± 39.45 

F(3,41)=3.89 0.016a †>Ξ p=0.009 0.39 

Table 6.5: REM stage transition counts and significance tests using One-Way ANOVA with Bonferroni 

correction. All values are given as mean ± standard deviation (SD). 

  



 189 

 
 

Control 
◊ 

n=14 

RBD 
† 

n=14 

PD+RBD 
Ξ 

n=6 

PD- 
˫ 

n=8 
Test Statistic 

p-value 
 

Post-Hoc 
Effect 
Size 

REM  Wake 
Transition 

0.06 ± 
0.02 

0.03 ± 
0.01 

0.04 ± 
0.02 

0.04 ± 
0.03 

F(3,41)=5.05 0.005a ◊>† p=0.002 0.45 

REM  N2 
Transition 

0.01 ± 
0.01 

0.01 ± 
0.01 

0.04 ± 
0.05 

0.01 ± 
0.01 

F(3,41)=5.05 0.005a 

◊<Ξ p=0.003 
†<Ξ p=0.003 
˫<Ξ p=0.048 

0.45 

REM  REM 
Transition 

0.93 ± 
0.03 

0.96 ± 
0.02 

0.91 ± 
0.05 

0.94 ± 
0.02 

F(3,41)=5.14 0.004a †>Ξ p=0.003 0.45 

Table 6.6: REM stage transition probabilities and significance tests using One-Way ANOVA with 

Bonferroni correction. All values are given as mean ± standard deviation (SD). 

 

Overall sleep stability was calculated by taking the average of the N2N2, N3N3 and REMREM 

transition probabilities. All groups demonstrated high sleep stage stability (Table 6.7), with the RBD 

group demonstrating the highest stability. The average RBD stability was significantly greater than the 

PD+RBD group (p=0.035). 

 

 
 

Control 
◊ 

n=14 

RBD 
† 

n=14 

PD+RBD 
Ξ 

n=6 

PD- 
˫ 

n=8 
Test Statistic 

p-value 
 

Post-Hoc 
Effect 
Size 

Overall Sleep 
Stability 

0.94 ± 
0.01 

0.95 ± 
0.01 

0.92 ± 
0.03 

0.94 ± 
0.013 

X2(3,42)=8.85 0.031b †>Ξ p=0.035 0.1 

Table 6.7: Overall sleep stability and significance test using Kruskal Wallis One-Way analysis of 

variance. All values are given as mean ± standard deviation (SD). 

 

 

Figure 6.8 (next page): Transition counts (left column) and probabilities (right column) matrices. Sleep 

stages are indexed as follows: 0=Wake; 1=NREM 1; 2=NREM 2; 3=NREM 3; 4=REM.  
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REM Sleep Microstate Analysis 
It has not been previously reported in the literature whether cognition or age correlate with phasic or 

tonic REM (pREM; tREM) macro- or microarchitecture. Correlation analyses found no significant 

correlations between age, cognition and REM microstate durations across the groups (results not 

shown), thus uncontrolled analyses were conducted. 

 

The total number of REM episodes across the night sleep was lower in disease states compared to 

Controls (Table 6.8) but not significantly so. A non-significant increase in pREM percentage was found 

in PD groups compared to Controls and RBD. There was a significantly increased artefact percentages 

in RBD groups compared to Controls and PD- (Table 6.8). 

 

 
 

Control 
◊ 

n=15 

RBD 
† 

n=13 

PD+RBD 
Ξ 

n=5 

PD- 
˫ 

n=10 
Test Statistic 

p-value 
 

Post-Hoc 
Effect 
Size 

Number of 
REM Episodes 

8.6 ± 
3.16 

7.07 ± 
2.5 

7.0 ± 
2.97 

7.0 ± 
3.4 

F(3,44)=0.912 0.44a - 0.063 

Total pREM 
Duration (s) 

1169.45 
± 

403.51 

1288.02 
± 

654.95 

1280.56 
± 

861.29 

1746.12 
± 

1058.31 
F(3,42)=1.354 0.27a - 0.094 

Total pREM 
Percentage 

38.11 ± 
13.42 

38.35± 
13.55 

45.45 ± 
15.14 

49.74 ± 
16.23 

F(3,42)=1.712 0.27a - 0.18 

Total tREM 
Duration (s) 

1730.62 
± 

618.54 

1568.97 
± 

986.25 

1108.17 
± 

602.14 

1168.79 
± 

528.88 
X2(3,43)=5.98 0.11b - 0.025 

Total tREM 
Percentage 

54.27 
± 

11.16 

45.34 
± 

10.13 

39.26 
± 

15.19 

42.21 
± 

17.26 

X2(3,43)=7.05 
 

0.07b - 0.052 

Total 
Artefact 

Duration (s) 

238.94 
± 

174.45 

599.02 
± 

525.58 

503.29 
± 

428.53 

247.1 
± 

141.11 

X2(3,43)=8.979 
 

0.03 b 
◊<† 

p=0.037 
0.1 

Total 
Artefact 

Percentage 

7.62 ± 
4.98 

16.31 
± 6.86 

15.28 
± 5 

8.05 ± 
3.96 

X2(3,43)=16.33 
 

<0.001 b 

◊<† 
p=0.004 

˫<† 
p=0.02 

0.29 

Table 6.8: REM sleep microstate measures. All values are given as mean ± standard deviation (SD). 

For p-values & statistical tests, a=One-Way ANOVA with Tukey HSD post-hoc, b=Kruskal Wallis one-

way analysis of variance with Bonferroni post-hoc. 

 

Further analyses testing differences between the first and last REM episodes of a night were 

conducted (Table 6.9). Repeated measures ANOVA found no significant within-subject or between-
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subject effects (Table 6.10). In the Control group, the duration and therefore percentage of pREM 

increased from the first REM episode to the last REM episode of the night, however this increase was 

moderate (first episode pREM = 38.97%; last episode pREM = 40.49%) and statistically non-significant. 

The disease states reported an inverse effect, with slightly decreased pREM duration and percentage 

in the last episode compared to the first (Table 6.9). 

 

 

First Episode Last Episode 
Control 

◊ 
n=15 

RBD 
† 

n=13 

PD+RBD 
Ξ 

n=5 

PD- 
˫ 

n=10 

Control 
◊ 

n= 

RBD 
† 

n= 

PD+RBD 
Ξ 

n= 

PD- 
˫ 

n= 

Total Duration 
(s) 

479  ± 
513.72 

618.93  
± 

528.38 

378 ± 
227.09 

365.4 ± 
209.88 

638 ± 
590.11 

670.16 
± 

555.19 

412.8 ± 
461.44 

392.4 ± 
212.17 

pREM 
Duration (s) 

208.1 ± 
281 

221.81 
± 

207.33 

181.69 
± 

134.26 

207.73 
± 

174.57 

218.78 
± 

197.57 

237.74 
± 

212.91 

124.42 
± 132.5 

170.77 
± 

123.45 
pREM 

Percentage 
38.97 ± 
20.23 

38.42 ± 
18.78 

48.39 ± 
19.45 

52.09 ± 
23.39 

40.49 ± 
19.18 

36.1 ± 
22.99 

38.05 ± 
32.84 

43.08 ± 
22.65 

tREM Duration 
(s) 

240.22 
± 243.1 

256.13 
± 

225.18 

146.86 
± 84.61 

131.28 
± 87.05 

360.42 
± 

394.91 

302.59 
± 

313.05 

236.06 
± 

368.94 

187.1 ± 
133.78 

tREM 
Percentage 

54.36 ± 
17.02 

43.5 ± 
18.98 

37.73 ± 
19.46 

40.83 ± 
22.31 

50.55 ± 
18.03 

45.33 ± 
23.79 

52.86 ± 
34.56 

45.67 ± 
23.8 

Artefact 
Duration (s) 

30.68 
± 

50.63 

147.05 
± 

294.86 

49.45 
± 

33.46 

26.39 
± 

25.46 

58.79 
± 

74.71 

129.83 
± 

166.83 

52.33 
± 

78.07 

34.53 
± 

22.18 

Artefact 
Percentage 

6.67 ± 
7.7 

18.09 
± 

18.44 

13.87 
± 5.36 

7.08 ± 
4.85 

8.97 ± 
6.92 

18.56 
± 

16.36 

9.09 ± 
6.52 

11.25 
± 9.17 

Table 6.9: REM sleep microstate measures summary statistics for the first and last REM episode of 

the night. All values are given as mean ± standard deviation (SD). 
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 Within subject effects 
Between Subject 

Effects 

df 
Time(t) Time*group group 

F p 
Effect 
size 

F p 
Effect 
size 

F p 
Effect 
size 

Total 
Duration 

1,39 0.32 0.57 0.008 0.092 0.96 0.007 1.76 0.17 0.12 

pREM 
Duration 

1,39 0.11 0.74 0.003 0.12 0.95 0.009 0.12 0.95 0.009 

pREM 
Percentage 

1,39 1.77 0.19 0.04 0.6 0.62 0.04 0.6 0.62 0.04 

tREM 
Duration 

1,39 1.48 0.23 0.04 0.1 0.96 0.008 1.42 0.25 0.09 

tREM 
Percentage 

1,39 1.57 0.22 0.04 1.04 0.38 0.07 0.68 0.57 0.05 

Artefact 
Duration 

1,39 0.045 0.83 0.001 0.2 0.89 0.02 2.14 0.11 0.142 

Artefact 
Percentage 

1,39 0.1 0.75 0.003 0.96 0.42 0.07 2.77 0.05 0.176 

Table 6.10: Statistical testing of REM sleep microstate measures for the first and last REM episode of 

the night. Mixed between-within ANOVA was used. All values are given as mean ± standard deviation 

(SD). 
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REM Sleep Microarchitecture 
Finally, the timing and duration of individual clusters of eye movement within a phasic REM episode 

was investigated. There were no significant differences in cluster characteristics between groups 

(Table 6.11). The duration of each cluster of eye movements (Cluster Duration) was slightly elevated 

in the PD groups compared to RBD and Controls, and the duration between clusters occurring (Cluster 

Density) was slightly reduced in PD groups, meaning their phasic REM periods were occurring closer 

to one another. The corresponding duration between clusters of eye movements (Inter-Cluster 

Interval) was reduced in the PD groups compared to RBD and Controls. There was no clear difference 

between groups in the number of eye movements occurring within a cluster (Intra-Cluster Density) or 

the corresponding duration between eye movements within a cluster (Intra-Cluster Interval). 

 

 
 

Control 
◊ 

n=15 

RBD 
† 

n=13 

PD+RBD 
Ξ 

n=5 

PD- 
˫ 

n=10 
Test Statistic 

p-value 
 

Post-Hoc 
Effect 
Size 

Cluster 
Duration (s) 

6.14 ± 
2.15 

6.17 ± 
1.47 

7.43 ± 
1.77 

7.58 ± 
2.43 

F(3,43)=1.58 0.21a - 0.11 

Cluster 
Density (s) 

20.18 ± 
2.55 

22.81 ± 
7.03 

19.71 ± 
3.31 

18.94 ± 
2.81 

F(3,43)=1.59 0.21a - 0.11 

Inter-Cluster 
Interval (s) 

27.77 ± 
10.09 

35.2 ± 
27.09 

21.55 ± 
9.67 

19.7 ± 
6.68 

F(3,43)=1.84 0.16a - 0.12 

Intra-Cluster 
Interval (s) 

1.11 ± 
0.06 

1.07 ± 
0.1 

1.12 ± 
0.05 

1.14 ± 
0.08 

F(3,43)=1.38 0.26a - 0.09 

Intra-Cluster 
Density 

1.6 ± 
0.23 

1.68 ± 
0.3 

1.51 ± 
0.21 

1.48 ± 
0.22 

F(3,43)=1.39 0.26a - 0.09 

Table 6.11: REM sleep microarchitecture measures. All values are given as mean ± standard deviation 

(SD). For p-values & statistical tests, a=One-Way ANOVA with Tukey HSD post-hoc. 
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Sleep Microarchitecture Feature Extraction and Analysis 
A multiclass classification task was performed using the Mr-SEQL model to test whether sleep brain 

activity could differentiate Control, RBD and PD groups from one another. A high classification 

accuracy would indicate that the information within the EEG data was physiologically relevant to 

disease state. 

 

Measures of accuracy, recall and precision of the classifier were calculated for NREM 2 (Table 6.12), 

NREM 3 (Table 6.13) and REM (Table 6.14). For all sleep stages, the prefrontal brain region had the 

highest accuracy, precision and recall metrics. The NREM 2 stage had highest accuracy (70%) overall.  

 

Brain Region Accuracy (%) Precision (%) Recall (%) 
Prefrontal 82 ± 15 69 ± 22 69 ± 16 

Frontal 70 ± 17 47 ± 15 52 ± 11 
Left Frontal 74 ± 17 55 ± 19 56 ± 14 

Right Frontal 77 ± 14 61 ± 20 62 ± 14 
Central 65 ± 14 43 ± 13 49 ± 10 

Left Central 70 ± 15 48 ± 12 54 ± 11 
Right Central 68 ± 18 44 ± 15 50 ± 11 
Left Temporal 66 ± 17 51 ± 18 49 ± 12 

Right Temporal 70 ± 17 49 ± 16 53 ± 11 
Parietal 71 ± 15 47 ± 14 54 ± 9 

Left Parietal 62 ± 20 40 ± 18 45 ± 14 
Right Parietal 69 ± 17 45 ± 16 51 ± 11 

Occipital 70 ± 16 49 ± 18 55 ± 14 
All Regions 70 ± 16 49 ±16 53 ±12 

Table 6.12: Accuracy, Precision and Recall measures of the multiclass classifier for NREM 2 sleep. The 

‘best performing’/ most informative brain region for classification was Prefrontal region. ‘All Regions’ 

(bold) is mean metric value for the sleep stage when all regions are combined. All values presented as 

mean ± standard deviation. 
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Brain Region Accuracy (%) Precision (%) Recall (%) 
Prefrontal 86 ± 16 87 ± 20 87 ± 19 

Frontal 74 ± 15 58 ± 17 64 ± 14 
Left Frontal 79 ± 14 68 ± 16 70 ± 14 

Right Frontal 77 ± 13 62 ± 14 66 ± 12 
Central 68 ± 11 58 ± 18 59 ± 14 

Left Central 61 ± 10 48 ± 12 52 ± 11 
Right Central 64 ± 11 48 ± 13 51 ± 12 
Left Temporal 62 ± 11 47 ± 13 51 ± 11 

Right Temporal 69 ± 13 52 ± 13 58 ± 13 
Parietal 65 ± 14 50 ± 20 53 ± 16 

Left Parietal 58 ± 15 44 ± 15 49 ± 14 
Right Parietal 65 ± 14 48 ± 15 54 ± 13 

Occipital 62 ± 13 53 ± 17 54 ± 13 
All Regions 68 ± 13 56 ± 15 59 ± 13 

Table 6.13: Accuracy, Precision and Recall measures of the multiclass classifier for NREM 3 sleep. The 

‘best performing’/ most informative brain region for classification was Prefrontal region. ‘All Regions’ 

(bold) is mean metric value for the sleep stage when all regions are combined. All values presented as 

mean ± standard deviation. 

 

Brain Region Accuracy (%) Precision (%) Recall (%) 
Prefrontal 80 ± 17 66 ± 27 65 ± 20 

Frontal 60 ± 14 34 ± 17 42 ± 13 
Left Frontal 69 ± 17 49 ± 22 53 ± 16 

Right Frontal 69 ± 16 54 ± 23 52 ± 15 
Central 61 ± 14 39 ± 16 42 ± 13 

Left Central 63 ± 14 42 ± 14 44 ± 12 
Right Central 63 ± 15 37 ± 16 44 ± 13 
Left Temporal 63 ± 14 40 ± 16 44 ± 12 

Right Temporal 60 ± 14 37 ± 16 41 ± 11 
Parietal 67 ± 14 46 ± 19 48 ± 13 

Left Parietal 64 ± 16 39 ± 17 46 ± 13 
Right Parietal 61 ± 14 39 ± 16 42 ± 13 

Occipital 60 ± 15 39 ± 16 42 ± 14 
All Regions 65 ± 15 43 ± 18 47 ± 13 

Table 6.14: Accuracy, Precision and Recall measures of the multiclass classifier for REM sleep. The 

‘best performing’/ most informative brain region for classification was Prefrontal region. ‘All Regions’ 

(bold) is mean metric value for the sleep stage when all regions are combined. All values presented as 

mean ± standard deviation. 
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The sleep stages were combined and the difference between regions for these 3 measures was tested 

using a Friedman Chi-square test and Nemenyi post-hoc test (Table 6.15). There was a significant 

difference in accuracy, precision and recall between regions, and all measures were significantly 

increased in the Prefrontal Cortex compared to other regions (see post-hoc results in Table 6.15). 

 

Measure Test Statistic p-value Post-Hoc 

Accuracy X2(38)=192.38 <0.001 

Prefrontal > Frontal p=0.001 
Prefrontal > Central p=0.001 
Prefrontal > Left Central p=0.001 
Prefrontal > Right Central p=0.001 
Prefrontal > Left Temporal p=0.001 
Prefrontal > Right Temporal p=0.001 
Prefrontal > Parietal p=0.001 
Prefrontal > Left Parietal p=0.001 
Prefrontal > Right Parietal p=0.001 
Prefrontal > Occipital p=0.001 

Precision X2(38)=165.14 <0.001 

Prefrontal > Frontal p=0.001 
Prefrontal > Central p=0.001 
Prefrontal > Left Central p=0.001 
Prefrontal > Right Central p=0.001 
Prefrontal > Left Temporal p=0.001 
Prefrontal > Right Temporal p=0.001 
Prefrontal > Parietal p=0.001 
Prefrontal > Left Parietal p=0.001 
Prefrontal > Right Parietal p=0.001 
Prefrontal > Occipital p=0.001 

Recall X2(38)=186.71 <0.001 

Prefrontal > Frontal p=0.001 
Prefrontal > Central p=0.001 
Prefrontal > Left Central p=0.001 
Prefrontal > Right Central p=0.001 
Prefrontal > Left Temporal p=0.001 
Prefrontal > Right Temporal p=0.001 
Prefrontal > Parietal p=0.001 
Prefrontal > Left Parietal p=0.001 
Prefrontal > Right Parietal p=0.001 
Prefrontal > Occipital p=0.001 

Table 6.15: Statistical test results for between-region differences for Accuracy, Precision and Recall 

measures. 
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To build upon the above results, preliminary bandpower analyses were conducted to further 

investigate the regional changes in bandpower between groups according to sleep stage.  

Due to the high dimensionality of the regional bandpower dataset, the main significant bandpower 

differences between groups are summarised below. The full statistical test outputs are provided on 

https://github.com/agpr141/Thesis_documents. 

 

Summary of NREM 2 significant differences between groups 
The topographic distribution of bandpower for NREM 2 sleep can be seen in Figure 6.9 (next page).  

 

RBD NREM 2 sleep was characterised by significant decreases in Central Alpha power compared to 

Control and PD- groups. 

 

PD+RBD NREM 2 sleep was characterised by Frontal, Central and Parietal, Temporal and Occipital 

significant decreases in Theta power compared to all groups and significantly decreased Alpha power 

compared to Controls and PD-. The PD+RBD group had significantly increased Delta power in the Right 

and Left Central and Occipital regions compared to Controls. 

 

PD- NREM 2 sleep was characterised by significantly decreased Delta bandpower activity in the frontal, 

central, parietal (left, right, central) regions when compared to all other groups. Beta power was 

significantly increased in the frontal and central regions compared to the Control and RBD groups, and 

frontal central Gamma power was increased compared to Controls.  

 

There were no regional significant differences in Sigma power between groups.  

 

When guided by the classifier results and specifically looking at Prefrontal bandpower changes, all 

disease state groups exhibited slightly elevated Delta power (greatest elevation seen in the PD+RBD 

group) and slightly decreased Alpha power compared to Controls. However, these changes were not 

statistically significant.  
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Figure 6.9: Topoplots for NREM 2 sleep. Units for frequency colourmaps=µV2/Hz. 
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Summary of NREM 3 significant differences between groups 
The topographic distribution of bandpower for NREM 3 sleep can be seen in Figure 6.10 (next page).  

 

RBD NREM 3 sleep was characterised by significantly increased Beta activity in the Right Frontal, Right 

Central and Left Temporal regions and decreased Alpha activity in the Frontal and Central regions 

compared to Controls.  

 

PD+RBD NREM 3 sleep was characterised by a significant increase in Occipital Delta activity and 

significant decrease in Central and Occipital Theta. A decrease in Frontal and Central Alpha compared 

to Control (significant), PD- (significant) and RBD (non-significant) groups was found. A significant 

increase in Central Sigma power compared to Controls was found.  

 

PD- NREM 3 sleep was characterised by significantly increased Central Beta power compared to 

Controls.  

 

When guided by the classifier results and specifically looking at Prefrontal bandpower changes, similar 

to NREM 2, the disease state groups exhibited non-significant increases in Delta power compared to 

Controls. The PD groups additionally had non-significant decreases in prefrontal Theta compared to 

Control and RBD groups. 
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Figure 6.10: Topoplots for NREM 3 sleep. Units for frequency colourmaps=µV2/Hz. 
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Summary of REM significant differences between groups 
The topographic distribution of bandpower for REM sleep can be seen in Figure 6.11 (next page).  

 

RBD REM sleep was characterised by significantly decreased Frontal and Central (Left, Right) Beta 

activity compared to Controls.  

 

PD+RBD REM sleep was characterised by significantly decreased Occipital Theta and Alpha power 

compared to Controls. Beta and Gamma increases visualised in Figure 6.11 topoplots were driven by 

two participants and thus these increases were not significant compared to Controls. 

 

PD- REM sleep was characterised by significantly decreased Delta activity in Central regions and 

increased Central Alpha power compared to Controls. Beta increases were non-significant.  

 

When guided by the classifier results and specifically looking at Prefrontal bandpower changes, 

significant differences were found between the PD+RBD and PD- groups for Delta, Theta and Alpha 

power. 
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Figure 6.11: Topoplots for REM sleep. Units for frequency colourmaps=µV2/Hz. 
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Discussion 

Sleep disturbances are commonly reported in the general population and form a core feature of both 

synucleinopathies. However, the evidence of objective sleep changes in RBD and PD early disease 

states, as measured with electrophysiology, can be contradictory. The analyses presented in this 

chapter sought to determine the extent of sleep disturbances in the study cohort and to identify EEG 

biomarkers of the presumed neurodegenerative process. 

 

The influence of overall health and age on sleep is important to consider in an aged population as the 

one presented in this study. Both isolated RBD and PD occur at advanced ages (typically >60 years old) 

which is the age at which normative sleep naturally begins to decline in quantity and quality (Vaz 

Fragoso & Gill, 2007). Advanced age is characterised by a shifting chronotype and an increase in sleep 

complaints, including sleep fragmentation and nocturia: thus, some sleep complaints may be the 

result of aging rather than disease (Vaz Fragoso & Gill, 2007). Additionally, previous studies have found 

that cognitive function may be a better predictor of sleep dysfunction than synucleinopathy or RBD in 

itself. The correlation between sleep measures, cognition and age was tested for each analysis 

reported in the chapter and it was found that there were no significant correlations, except for in the 

case of the PD groups with MoCA score*PSS total score. Despite this, given the evidence in the 

literature the majority of analyses controlled for cognition and age. 

 

Subjective sleep profiles are specific to disease state, not extent of neurodegeneration 
Subjective sleep measures and reported dream enactment behaviours show that sleep is impacted by 

both RBD and PD disease states within this cohort.  As expected, the RBD and PD+RBD groups had 

increased symptoms of RBD compared to Control and PD groups as detected with the RBDSQ. 

Interestingly, the majority of the Control group (57.9%, n=11/19) responded ‘yes’ to Item 1: ‘I 

sometimes have very vivid dreams’, highlighting the universality of the vivid dreaming experience. It 

should be remarked upon that the majority of people participated in the research study in the 

immediate period following the COVID pandemic and first lockdown, which may have changed their 

sleep and dreaming: indeed, it has been reported in several studies that the COVID pandemics caused 

more vivid dreaming experiences in the general population (Conte et al., 2022; Gorgoni et al., 2021).  

A larger proportion of the RBD and PD+RBD group participants reported aggressive or action-packed 

dream content (RBD 87.5%, n=14; PD+RBD 50%, n=3) in the RBDSQ compared to Control and PD- 

groups. While studies enlisting self-report questionnaires, such as the RBDSQ used here, frequently 

report this pattern, dream content analyses have produced conflicting results: some have identified 

increased aggressive dream content in RBD groups (Fantini et al., 2005) while others have not 



 205 

(D’Agostino et al., 2012). This discrepancy may be due to the limited specificity of the RBDSQ question 

item (‘My dreams frequently have an aggressive or action-packed content’), or a recall bias for 

aggressive dream content given the emotive aspect of aggressive or action dreams. 

 

Although the questionnaires assessing subjective sleep quality found some differences between 

groups, they did not identify patterns which might indicate a progression from RBD to PD disease 

state. Rather, the RBD group in this study reported worse sleep than other groups in the PSQI and PSS 

self-reported measures. It should be noted that these scores were heavily influenced by the questions 

relating to movements during the night. All disease groups reported greater sleep disturbance relating 

to problems staying asleep and sensory issues (pain, numbness, tingling) during the night. Therefore, 

the sleep profile of RBD is worse than the PD- group and subjective sleep measures may not enhance 

prediction of neurodegeneration progression. 

 

At-Home Sleep Studies Improve Study Ecological Validity with Limited First Night Effects 
The limitations of questionnaires and self-report (especially in the context of sleep where 

consciousness and self-awareness are already attenuated) were clear at the study inception and thus 

EEG was used to obtain objective data on sleep processes. The manual analyses of EEG data focused 

on macroarchitecture, sleep stage transitions and REM microstates, while the automatic EEG data 

analysis extracted microarchitecture features and used machine learning to classify participants. 

 

In all groups there was a minimal first-night effect found for the at-home sleep study. Both RBD and 

PD+RBD groups demonstrated a non-significant Reverse First-Night Effect (RFNE) with increased sleep 

efficiency, shorter sleep latencies and increased NREM sleep stage percentages, which has recently 

been reported for the first time in an RBD population from in-patient PSG studies (Byun et al., 2019). 

RFNE means that the sleep on the first night of a sleep study is better than the second night, which 

(Byun et al., 2019) et al. postulate is due to RBD symptoms offsetting the discomfort of a new sleep 

environment or the PSG set-up. However, in-patient PSG studies have also been shown to elicit weak 

first night effects in RBD populations (J. Zhang et al., 2008). To the authors knowledge this is the first 

time the first night effect has been tested in a PD population, either at-home or in-clinic. The findings 

from the study presented in this thesis demonstrate that at-home sleep studies are viable in RBD and 

PD populations and may produce more meaningful sleep data given the increased ecological validity. 

Anecdotally, few participants in the study reported discomfort or sleep difficulties related to the EEG 

set-up. 
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Sleep macroarchitecture does not differentiate early-stage PD from Controls 
As expected from the literature, there were no clear differences in sleep macroarchitecture between 

groups. The sleep stage percentages and durations reported were within normal ranges, and sleep 

efficiency of participants was high. Thus, the neurodegenerative processes underlying RBD and early-

stage PD is concluded to have a minimal impact on gross sleep structure. One limitation of this study 

is that sleep was scored according to the AASM 30-second epoch scoring criteria (Berry et al., 2017). 

In light of the finding that prefrontal EEG activity across the sleep stages carries discriminatory 

information for group classification, and preliminary analyses suggesting increased Beta activity (a 

marker of sleep fragmentation) is increased in the disease state groups during NREM sleep stages, 

future analyses of this dataset should use more sensitive scoring criteria to account for microarousals 

for improved quantification of sleep fragmentation.  

 

The summary statistics commonly used to describe the macroarchitecture of sleep do not consider 

the transitions between sleep stages, and therefore the macroarchitecture analyses were expanded 

upon to determine whether disease states were associated with changes to sleep stage stability and 

transitions. Overall, the 4 groups presented with a similar number of transitions throughout the night 

and the probability of transitioning from one stage to another was, for the most part, not significantly 

different. The only significant differences found were between the Control, RBD and PD+RBD groups 

when REM-related transitions were tested. Briefly, the RBD and PD+RBD groups were less likely to 

transition from REMWake and the PD+RBD group was more likely to transition from REMN2 than 

other groups. These changes were subsequently reflected in the REMREM transition count and 

probability, with the PD+RBD group less likely to transition REMREM and thus demonstrating 

reduced REM stability. This is also reflected in the overall sleep stability statistics of the groups: the 

RBD group had the highest sleep stage stability which was significantly higher than the PD+RBD group. 

These results prompt several lines of thought: are REM-maintaining mechanisms aberrant in the 

PD+RBD group? Does RBD result in a compensatory mechanism to maintain sleep despite the motor 

disturbances, resulting in greater sleep stability? The resolution of the EEG data limits the conclusions 

which can be drawn from these results. Another explanation may be the increased epochs scored as 

artefacts across the night’s sleep for the RBD and PD+RBD groups, as seen in the macroarchitecture 

summary statistics. The transition analyses do not take into account artefact scoring and therefore a 

reduced number of transitions from REMWake in these groups is likely to reflect the fact that RBD 

groups were more likely to have a REMartefact epoch scoring. The transition analyses were 

calculated from the same hypnograms as the macroarchitecture statistics and therefore they also do 

not take into account microarousals and should be interpreted under this understanding. The 
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transition analyses presented here therefore are useful for visualising and gaining an overview of the 

sleep transitions, but ultimately they are limited by their resolution. 

 

REM microstates do not differentiate early-stage PD from Controls 
One of the novel aspects of the sleep analyses completed within this chapter was the focus on REM 

microstates and their macro- and microarchitecture, which have not been reported in healthy or 

disease populations as far as I am aware. As with other sleep analyses, there were no significant 

differences identified between groups on a range of measures coupled with an observed increase in 

artefact scoring in the RBD groups. However, some differences were detected which warrant future 

investigation, such as a small decrease in the number of total REM episodes in the disease states. 

While the Control group demonstrated a modest increase in the amount of phasic REM (and 

corresponding decrease in tonic REM) from the first REM episode of the night to the last, this was not 

found in the disease states and in fact the reverse was observed. This may reflect homeostatic 

alterations as hypothesised, or may reflect fluctuations in artefact scoring as previously discussed.  

 

Considering the microarchitecture of the phasic REM periods, the PD groups had an increased duration 

of each cluster of eye movements (phasic episode) but no increase in the amount of eye movements 

within the cluster, suggesting slower, bradykinetic eye movements overall. Finally, the timing of the 

cluster initiation was tested to determine if there was consistency to when phasic REM begins. All 

groups had a similar duration (~20 seconds ) between clusters being initiated. Both PD groups had 

slightly shorter durations (19.7 and 18.9 seconds respectively) while the RBD group had a longer 

duration (22.8 seconds) compared to Controls (20.2 seconds). These small mean variations were not 

significantly different and therefore the physiological relevance of them is unlikely. Importantly, this 

is the first time a timing of phasic REM density of ~20 seconds has been reported, in any population. 

  

Sleep Stage-specific brain activity contains information to differentiate between participant 
groups 
The results from the EEG classification task suggest that, similar to the Wake EEG analysis, the 

prefrontal brain activity provides key information for group classification and therefore detailed 

analysis of sleep microarchitecture in this region may establish a prognostic biomarker. The caveats 

of the sleep EEG analysis with the Mr-SEQL pipeline and classifier mirror those discussed in Chapter 5: 

relatively low performance metrics for the multiclass classification task, even in the ‘best performing’ 

prefrontal region, limited interpretability and explainability of the model and a high-level output. As 

in Chapter 5’s wake EEG analysis, a similar binary class task with only Control and PD group sleep data 

performed far better for all sleep stages compared to the multiclass classifier reported in this chapter 
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(Accuracy >94% for all prefrontal models in all sleep stages; analyses not shown, manuscript in 

submission (Sahota et al. 2022)). This again suggests that the inclusion of the RBD group or separating 

the PD group into PD+RBD reduces the performance metrics of the ensemble classifier. This could be 

due to RBD-specific features being included as a key feature for 2 groups (RBD group and PD+RBD 

group), making correct prediction more difficult. It may also be due to the heterogenous presentation 

of the RBD group and their likely heterogenous disease endpoints influencing their sleep brain activity.  

 

The explainability of the Mr-SEQL classifier model is currently poor, as the only output information are 

performance metrics and there is no further information provided related to feature importance or 

class importance. I therefore conducted regional bandpower analyses to determine where group 

differences may be occurring for the specific sleep stages. The group differences were interpreted in 

relation to Control group bandpowers. For NREM 2 and 3 sleep, there was an array of power 

alterations across brain regions and frequencies for the disease states. The RBD group was mainly 

characterised by decreased Alpha and increased Beta activity in frontal and central regions. The PD- 

group similarly showed increased Beta activity in frontal and central regions and significantly 

decreased Delta power. The PD+RBD group had numerous regional changes including increased Delta 

power, decreased Theta and Alpha power and an NREM 3-specific increase in Central Sigma. 

Significant regional bandpower differences were far fewer for REM sleep, though all disease state 

group exhibited some extent of altered Beta power in frontal and central regions (increased in PD 

groups, decreased in RBD group). Delta, Theta and Alpha changes were seen in the PD groups to 

variable degrees. These group differences demonstrate the impact of RBD or PD disease states on 

sleep microarchitecture, and suggest that NREM sleep processes are disrupted to a greater extent 

than REM sleep. Given that regional bandpower is a high-level overview of neural dynamics, the 

specific effects of bandpower alterations are difficult to conclude. 

 

Given that prefrontal EEG activity achieved the greatest accuracy for the multiclass machine learning 

experiments, I specifically looked for bandpower changes in the prefrontal region. Interestingly, for 

the NREM 2 and 3 sleep stages there were no significant differences between groups. The disease 

state groups did show slightly increased Delta power and decreased Alpha (NREM 2) and Theta (NREM 

3) power, but these trends were not significant. For REM sleep, there were significant differences 

found only between the PD+RBD and PD- groups for Delta, Theta and Alpha power. It may be that in 

the case of NREM sleep, it is time domain information which differentiates groups rather than 

frequency domain (i.e. bandpower) information. The Mr-SEQL model extracts both time and 

frequency information. In light of the prefrontal region being the most informative region despite no 
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significant between-group differences (despite other regions having clear between-group 

differences), it is possible that the temporal dynamics of the EEG hold predictive power. For REM 

sleep, it appears that the frequency domain differences between PD groups could be the driver for 

the prefrontal predictive model. Time domain information may also contribute to the classifier, in the 

same way that I hypothesise it to inform the NREM models. 

 

Despite the extensive manual and automatic EEG analyses, the differences between groups are slight 

(classifier) and variable (bandpower). It may be that EEG is not sensitive enough to capture the subtle 

dysfunctions occurring at this stage of neurodegeneration, or that global and network dynamics 

initially compensate for the neurodegenerative pathology until a threshold has been reached. 

Nevertheless, the results described in this thesis provide impetus for further analyses of the sleep 

microarchitecture, including exploring relationships between microarchitecture changes and 

symptoms such as cognitive impairment. 

 

Conclusion 

The results in this chapter demonstrate minimal impact of RBD or early-stage PD disease states on 

clinical and macroarchitecture sleep measures. Disease states were differentiable from one another 

using subjective scores on movements during sleep (RBD groups) and pain and motor impacts on sleep 

(PD groups). Thus, the sleep profile of these groups reflect the two separate conditions, rather than 

broadly reflecting a state of early neurodegeneration. Alone, the sleep measures analysed do not 

appear to hold value as prognostic biomarkers, but the preliminary EEG regional microstructure 

analyses hold promise for establishing further prognostic biomarkers and may add predictive power 

to prognostic models. 
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Chapter VII: Motor Function 
 
“I have to do everything a lot slower than I’ve ever done it before … every year it seems to get a little 

worse.” 

Person with PD, quote from (Bonner et al., 2020) 

 

By the time of a PD diagnosis, gross motor symptoms are evident and midbrain neurodegeneration is 

advanced. The earliest motor symptoms, such as hypomimia, occur in early-stage PD in line with Braak 

Stage I/II, providing impetus to test for other subtle motor dysfunctions which may hold prognostic 

value. 

 
Introduction 

Motor dysfunction is a core feature of PD and is perhaps the most noticeable, distressing and, 

eventually, disabling symptom of the disease (Gökçal et al., 2017). A PD diagnosis requires at least 2 

of the following symptoms to be present: bradykinesia, rigidity, rest tremor and postural instability 

(Clarke et al., 2016). However, these 4 broad symptoms can manifest in different ways alongside 

several other motor manifestations (Figure 7.1). Both voluntary and automatic movements are 

impacted by PD, and as with other domains, the motor symptom presentation is heterogenous within 

PD populations (Moustafa et al., 2016).  

 
Figure 7.1: Motor symptoms of Parkinson’s disease. 
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Although it is clear that the neurodegenerative process of PD starts long before visible symptoms 

occur, people usually only seek medical advice when motor symptoms, such as a tremor or dragging 

foot, develop. This is likely because motor symptoms are a clear, physical dysfunction that people 

associate specifically with PD, as opposed to other differential diagnoses (Alyamani et al., 2018; Youn 

et al., 2016). 

Indeed, within the cohort studied in this thesis, the majority of PD diagnoses were prompted by the 

emergence of a motor symptom. For some, motor dysfunction came to light as it impacted on a hobby- 

one individual noticed they were losing their voice during choir practice, while another was an avid 

cyclist and runner and noticed their left leg kept catching and getting injured. The majority of 

participants (n=12, 71%) sought medical advice after the emergence of a tremor. However, as shown 

in previous chapters, the path to a PD diagnosis is not linear from tremor emergence- a proportion of 

people are initially diagnosed with essential tremor (n=5, 29%) before further tests diagnose PD.  

 

Pathophysiology of PD Motor Dysfunction 
The heterogeneity of motor symptoms seen in PD is reflected by an equally heterogenous pathology 

involving multiple neural circuits and neurotransmitters. The complexity of co-occurring symptoms 

has resulted in much conflict surrounding which pathologies are responsible for which motor 

symptom (for review see (Moustafa et al., 2016)), and contributes to the variable pharmacotherapy 

and electrophysiological treatment responses seen for PD motor symptoms. 

 

The dominant narrative of PD is one of dopamine depletion. The localisation of dopamine to the 

striatum and discovery of the neurotransmitter’s role in movement control (Bertler & Rosengren, 

1959; Carlsson et al., 1957) quickly led to theories of dopamine dysfunction as the cause of PD’s motor 

symptoms. Subsequent experiments found reduced dopamine in the urine of PD patients (Barbeau et 

al., 1961; Greer & Williams, 1963) and the first trials of dopaminergic therapies in people with PD were 

conducted (Cotzias et al., 1969; Mcgeer & Zeldowicz, 1964; Yahr et al., 1969). Experimental dopamine 

depletion or knockout in animal models further consolidated the role of dopamine in motor symptoms 

of PD (Duty & Jenner, 2011). 

 

PD pathology is thought to affect the dopaminergic system by Braak Stage 3 (H. Braak et al., 2003), 

when pathological alpha-synuclein spread reaches the basal ganglia, a group of subcortical structures 

which modulate the activity of the motor cortex and descending motor pathways. In health, the basal 

ganglia influence movement through 3 key pathways: the direct pathway, indirect pathway and 

nigrostriatal pathway (Figure 7.2). Classically, the net effect of the direct pathway promotes 

movement while the indirect pathway inhibits it (Calabresi et al., 2014). 
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Figure 7.2: The direct and indirect motor pathways of the basal ganglia. The striatonigral pathway is 

shown in dark blue, projecting from the Substantia Nigra pars compacta (SNpc) to Putamen. In the 

direct pathway, cortical activation stimulates the putaminal medium spiny neurons via cortical 

glutamatergic projections and SNpc dopaminergic projections acting on D1 receptors (D1R). The 

putamen inhibits Globus Pallidus internal (GPi) neurons (themselves inhibitory), which releases 

thalamic neurons from inhibitory control and allows for cortical excitation and movement. 

Conversely, in the indirect pathway a different subset of medium spiny neurons in the putamen 

receive concurrent excitation and inhibition from the cortex and SNpc (via D2R). The putamen inhibits 

inhibitory Globus Pallidus external (GPe) neurons projecting to the Subthalamic Nuncleus (STN). The 

STN becomes disinhibited, excites inhibitory neurons of the GPi which then inhibit excitatory 

thalamocortical neurons. Thus, net effect is movement inhibition. Informed by (Calabresi et al., 2014; 

Squire et al., 2012). 

 

The basal ganglia structure most affected in PD is the midbrain Substantia Nigra pars compacta (SNpc), 

a subset of neuromelanin-enriched dopaminergic neurons within the larger Substantia Nigra 

structure. As PD progresses and motor symptoms emerge, long Lewy Neurites and Lewy Body 

inclusions develop in the ventrolateral SNpc neurons, leading to widespread cellular dysfunction. 

Alpha-synuclein aggregations in the SNpc have been shown to disrupt mitochondrial function (Di Maio 

et al., 2016), cause synaptopathy (Bridi & Hirth, 2018) and reduce neuronal excitability (Hill et al., 
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2021).  Later, significant dopaminergic cell death occurs in Braak Stage 4 (H. Braak et al., 2003). Motor 

symptoms of PD develop once 50-60% of SNpc striatal axon terminals have been lost and ~30% SNpc 

neurons have died (Cheng et al., 2010; Fearnley & Lees, 1991; Greffard et al., 2006), indicating a period 

of sub-clinical motor dysfunction and compensatory mechanisms (Brotchie & Fitzer-Attas, 2009; 

Villain et al., 2019). 

 

Bradykinesia is the main motor symptom which correlates with striatal dopaminergic depletion 

(Bologna et al., 2019) and perhaps has the clearest pathology of all the PD motor symptoms. When 

SNpc neurons become diseased in PD the striatum receives reduced dopaminergic input and the 

nigrostriatal pathway influence upon the basal ganglia diminishes, resulting in a bias towards the 

indirect pathway and thalamic inhibition (Squire et al., 2012). The result of this is the slowing of 

movement initiation and action seen in PD (Duty & Jenner, 2011). 

 

A more complex picture arises when considering the pathophysiology of tremor and rigidity, which 

deviate from purely basal ganglia and dopaminergic dysfunction. Studies have linked both symptoms 

with broader motor circuits, including hyperexcitation of the motor cortex (Yu et al., 2007) and 

cerebellum (Lefaivre et al., 2016) and altered connectivity between cerebellar, basal ganglia and 

cortical regions (Baradaran et al., 2013; Lauro et al., 2021). While rigidity severity correlates with 

striatal dopaminergic depletion (Mito et al., 2020), tremor has been linked to noradrenergic and 

serotonergic excitation imbalances (Kinnerup et al., 2021; Pasquini et al., 2018) against the backdrop 

of dopaminergic degeneration (Isaias et al., 2007). 

 

Motor Dysfunction and RBD 
A defining feature of RBD is motor dysfunction during sleep with a lack of normative REM atonia. This 

sleep hypertonia contrasts with the wake hypertonia seen in PD rigidity, and it has been shown that 

people with PD and concomitant REM Sleep Without Atonia (RSWA) (a core feature of RBD) have 

significantly higher rigidity scores compared to PD individuals without RSWA (Linn-Evans et al., 2020). 

An association of RBD with non-tremor predominant PD subtype has been reported previously (Kumru 

et al., 2007; Postuma et al., 2008; Romenets et al., 2012) – however, work by Arnaldi et al. suggests 

the two instances of hypertonia may be parallel but unconnected motor features (Arnaldi, Latimier, 

Leu-Semenescu, De Carli, et al., 2016). 

The presence of wake motor dysfunction in an individual with idiopathic RBD suggests advancing 

neurodegeneration and a 3-fold increased risk of phenoconversion to an alpha-synucleinopathy 

(Postuma et al., 2019). While most people with RBD will not experience noticeable motor problems, 

many may exhibit subtle, sub-clinical dysfunctions. This is evidenced by reports of non-significantly 
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elevated MDS-UPDRS III scores for RBD groups compared to Controls (Arora et al., 2018; Fantini et al., 

2006b; Y. Li et al., 2019; Wan et al., 2016). 

 

More specific investigations of different domains have found several changes in RBD motor function 

compared to Controls. Gait analysis found people with RBD have greater step length asymmetry 

(Ehgoetz Martens et al., 2019), reduced step velocity, variability and rhythm (Del Din et al., 2020) and 

impairments in gait initiation similar to those seen in people with PD (Alibiglou et al., 2016). RBD fine 

motor skill assessment shows decreased dexterity on the pegboard task (Nisser et al., 2022) and 

smartphone tasks detect bradykinesia, as evidenced by decreased tapping amplitude and velocity 

decrement (Krupička et al., 2020). Changes in speech production have been reported, with a sustained 

phonation task found to be discriminant between RBD and Controls (Arora et al., 2018). A 

comprehensive multi-centre study of speech changes found reduced pitch variability in RBD and PD 

groups compared to Controls (Rusz et al., 2021). One limitation for many of these investigations is the 

lack of follow-up to determine how these motor dysfunctions relate to future disease course. 

 

Another way to explore the presence and relevance of motor dysfunction in RBD is to retrospectively 

track motor symptoms in RBDPD phenoconverted populations. In one such study using regression 

analysis, the first motor symptoms to emerge in RBD are voice and face akinesia (9.8 years prior to PD 

diagnosis), before the emergence of cardinal PD features such as rigidity (4.4 years), gait abnormalities 

(7.4 years) and limb bradykinesia (4.2 years) (Postuma et al., 2012). The last motor symptom to 

develop prior to PD diagnosis was tremor (1.3 years) (Postuma et al., 2012). These findings have been 

supported by (Fereshtehnejad et al., 2019; Postuma et al., 2019). 

 

Eye Movements as a window into motor (dys)function 
Evidently, subtle motor dysfunctions are present in RBD and have prognostic relevance. One of the 

earliest bradykinesic signs in both RBDPD phenoconverters (Postuma et al., 2012) and early-stage 

PD populations (Fereshtehnejad et al., 2017, 2019; Postuma et al., 2012) is a reduction in facial 

movement and expression (hypomimia), including eye movements.  

 

Early involvement of the oculomotor and facial muscles is due to the neuroanatomical location of their 

nuclei in the brainstem, in keeping with the Braak staging of PD wherein early symptoms of PD are 

caused by dysfunctions in lower-level regions of the peripheral and central nervous system (H. Braak 

et al., 2003). Voluntary and goal-orientated eye movements are additionally under the control of the 

basal ganglia (Kennard & Lueck, 1989) and thus can act as signatures of mesencephalic and 

telencephalic degeneration. 
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Eye movements are electrophysiologically accessible and objectively quantifiable using minimal 

electrode arrays, and occur in both wake and sleep states. They are therefore a convenient motor 

domain to offer insights into the health or subclinical dysfunction of underlying neural circuits. 

 

Wake Eye movements  
Question 3.2 in the MDS-UPDRS Part III pertains to facial expression, with the ‘slight’ severity score 

assigned if an individual presents with ‘Minimal masked facies manifested only by decreased 

frequency of blinking’ (Goetz et al., 2007). Given this PD feature and the incidental eye blink data 

collected during this study, I focused my initial eye movement analyses on spontaneous blinking. 

Wake eye movements broadly serve two purposes: 1) to capture visual information from the 

environment to relay to sensory brain regions and 2) protect and maintain the function of 1). Eye 

blinks are brief and coordinated closures of the eyelids and fall into the latter category. There are 

three distinct types of eye blink- spontaneous, reflexive, and voluntary (Table 7.1), each serving 

different functions and involving different nervous system structures.  

 

Blink Type Induced by Function 
Brain regions 

involved 
Spontaneous 

(SB) 
Endogenous pattern 

generator 
Tear film 

distribution 
Brainstem 

Reflex Corneal stimulation Protection Brainstem 

Voluntary Conscious volition 
Task-

dependent 
Cortex, Brainstem 

Table 7.1: Eye blink categories, function and neuroanatomical correlates. Informed by (Cruz et al., 

2011). 
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While the neuroanatomical basis of reflex blinks has been well characterised (Jerath & Kimura, 2019), 

there has been limited investigation of spontaneous blink pathways- however, there is undoubtedly 

considerable neuroanatomical overlap between the two. Two muscles are responsible for a blinking 

behaviour- the Pretarsal Palpebral portion of the Orbicularis Oculi Muscle (OOpp) which closes the 

eyelid and the Levator Palpebrae Superioris (LPS) which elevates the eyelid. These two muscles are 

anatomically superior to the eyeball and palpebral fissure and functionally demonstrate an 

antagonistic relationship during the eyeblink sequence (Cruz et al., 2011), demonstrated in Figure 7.3.  

Figure 7.3: Antagonistic firing of the Pretarsal Palpebral portion of the Orbicularis Oculi Muscle 

(OOpp) (top trace) and Levator Palpebrae Superioris (LPS) (bottom trace) oculomotor muscles during 

an eyeblink. Adapted and informed by (Cruz et al., 2011). 

 

Given that spontaneous blinking is an automatism and occurs independently of – though is modulated 

by – external stimuli, it has been hypothesised that a pattern generator is responsible for the rhythmic 

spontaneous blink patterns. The preservation of spontaneous blinks in persistent vegetative state 

patients (Bonfiglio et al., 2005) points to a lower-level anatomical location for such a pattern 
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generator, and indeed it was shown as early as 1968 that triphasic discharges occur in the pontine 

reticular formation prior to spontaneous blink occurrence (Cohen & Feldman, 1968).  

 

Based on human and rat studies, the hypothesised location for the spontaneous blink pattern 

generator is within the spinal trigeminal nuclei (sTN) (Kaminer et al., 2011) (Figure 7.4). The sTN is well 

placed as this central oscillator as it receives direct sensory input from the corneal surface and has 

reciprocal connections with the superior colliculus (Dauvergne et al., 2004) which in turn coordinates 

the OOpp and LPS muscles (Hamedani & Gold, 2017) via their respective cranial nerve nuclei 

(Morcuende et al., 2002; VanderWerf et al., 1997).  

Figure 7.4: Spontaneous blink pathways. The spinal trigeminal nuclei (sTN) is a proposed pattern 

generator for spontaneous blinks, and exerts its effects primarily via the superior colliculus. Excitatory 

pathways shown with solid line, inhibitory with dotted line. Substantia Nigra pars reticulata (SNpr); 

superior colliculus (SC); facial nerve nucleus (FNN); pontine trigeminal nucleus (pTN); nucleus raphe 

magnus(nRM); central caudate subnucleus(CCN).  

 

Spontaneous blinking is influenced by a multitude of endogenous and environmental factors, many of 

which interact with dopaminergic and cholinergic systems. For example, different attentional and 

behavioural tasks modulate spontaneous blink rate (SBR). ‘Primary Gaze Spontaneous Blink Rate’, 

wherein the SBR is measured while the participant is in a quiet wakeful state with gaze fixated on a 

point in space ahead of them, provides the best baseline measure albeit under slightly unnatural 
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conditions (Doughty, 2001). Reading (Doughty, 2001), cognitively intense tasks and mental fatigue 

(Maffei & Angrilli, 2018) have been shown to lower the SBR, whereas conversation (Doughty, 2001), 

physical pain (Paparella et al., 2020) and reward (Peckham & Johnson, 2016) increase the SBR.  

 

Extending these observations, investigations into healthy and PD human populations and PD animal 

models have shown that spontaneous blinking during wake correlates with dopamine levels in the 

brain (Iwaki et al., 2019; Jongkees & Colzato, 2016; J. R. Taylor et al., 1999). The involvement of the 

dopamine system can be traced to the striatonigral pathway and inhibitory projections from the 

substantia nigra pars reticulata (SNpr) to the superior colliculus (Hamedani & Gold, 2017). Under 

endogenous or pharmacological conditions of decreased dopamine levels, the basal ganglia direct 

pathway weakens in influence, and D1R medium spiny neurons of the ventromedial caudate nucleus 

(J. R. Taylor et al., 1999) which would normally inhibit SNpr neurons (F.-M. Zhou & Lee, 2011) 

themselves become inhibited. The SNpr becomes disinhibited, thus inhibiting the superior colliculus 

and reducing spontaneous blink characteristics such as SBR and blink amplitude (Adamson, 1995; 

Agostino et al., 2008; Kaminer et al., 2011; Korosec et al., 2006). The opposite effect is seen in 

conditions with elevated dopamine levels and with dopamine agonists (Adamson, 1995; Kaminer et 

al., 2011).  

 

Diurnal and seasonal variation in spontaneous blinking (Barbato et al., 2000, 2018) have both been 

linked to dopaminergic influence. Given that dopaminergic neurons of the ventral tegmental area 

(VTA) and SNpc do not exhibit firing fluctuations across the sleep-wake cycle (Miller et al., 1983; 

Steinfels et al., 1983; Trulson et al., 1981; Trulson & Preussler, 1984), variations in SBR are likely 

regulated by dopamine transporter (DAT) which directly governs diurnal changes in extracellular 

dopamine tone (Ferris et al., 2014).   

 

Sex hormones may also affect spontaneous blink dynamics, with some studies reporting no difference 

between sexes (Doughty, 2002; Karson et al., 1981) while others report women have a significantly 

higher SBR than their male counterparts (Godfrey et al., 2019; Pult et al., 2013; Sforza et al., 2008). 

There is some evidence to suggest this sex difference may be an artefact of contraceptive oestrogen 

medications (Yolton et al., 1994), though endogenous hormonal fluctuation across the menstrual cycle 

(wherein oestrogen levels in the luteal phase can reach 10x those provided by oestrogen 

contraceptives (Mishell et al., 1972; Stricker et al., 2006)) was not shown to impact SBR (Hidalgo-Lopez 

et al., 2020).  
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The prognostic potential of spontaneous blink characteristics and other wake eye movements and 

characteristics have been investigated to a limited extent in RBD populations. RBD groups have 

decreased blink rate, pupil constriction and dilation compared to Controls (Perkins et al., 2021) and 

have significantly increased error rates on horizontal antisaccade task (Hanuška et al., 2019) (though 

this latter test also reflects cognitive deficits). People with RBD were also found to have decreased eye 

movements during night-time wakeful periods, whereas people with PD exhibited a mirror diurnal 

effect with decreased eye movements during wake (Christensen et al., 2021). These studies were 

conducted in populations with larger sample sizes to this research: (Perkins et al., 2021) and (Hanuška 

et al., 2019) had n=22 and n=24 RBD participants respectively, while (Christensen et al., 2021) had 

n=50 RBD participants. Effect sizes were not reported, but p-values were small, making a strong case 

for a true effect. 

 

REM Sleep Eye Movements 
Eye movements (EMs) during sleep are differentiable into slow (SEMs) and rapid (REMs) eye 

movements. SEMs are classically associated with drowsiness and light stages of sleep, while REMs are 

observed in their eponymous sleep stage (Berry et al., 2017) – however, SEMs also occur during REM 

sleep (Pizza et al., 2011) and REMs have been reported in non-REM sleep stages (Schenck et al., 1992).  

Ultrasonographic investigations reveal EMs akin to REMs occur from human gestational age 24 weeks 

and increase in line with neural maturation (André et al., 2010; Nijhuis et al., 1982; Okawa et al., 2017). 

The defining characteristics of adult sleep EMs are shown in Figure 7.5: 
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Figure 7.5: Criteria of rapid and slow eye movements during REM sleep. Rapid eye movements (dark 

blue arrows; 1,2) and slow eye movements (light blue arrows; 3,4,5,6) and their defining criteria 

(Berry et al., 2017; Takahashi & Atsumi, 1997). 

 

The previous chapter found REM eye movement onset to occur roughly every 20 seconds and  REMs 

have been shown to exhibit a robust ~2 minute density periodicity (Ktonas et al., 2003; Spreng et al., 

1968). These findings argue against random occurrence of REM eye movements and a hypothesised 

REMs burst generator has been proposed to be located within the pontine tegmentum (Figure 7.6). 

(Vanni-Mercier & Debilly, 1998) showed inhibition of the ventromedial caudal pontine tegmentum 

(VMPCT) with cholinergic agonist atropine suppressed REMs bursts, while the cholinergic agonist 

carbachol increased them (Vanni-Mercier & Debilly, 1998). Pontine projections stimulate the 

ipsilateral abducens nucleus, which projects to the contralateral oculomotor nucleus. Acetylcholine is 

therefore a candidate primary neurotransmitter for REMs elicitation. Single REMs events are thought 

to occur independently from this pontine generator and are the result of spontaneous abducens firing 

under serotonergic and catecholaminergic inhibitory control, which is reduced under normative REM 

conditions (Arnulf, 2011). The VMPCT similarly receives serotonergic and catecholaminergic inhibitory 

inputs, which may modulate the effects of acetylcholine. Recently, a cluster of calbindin-positive 

neurons in the dorsal paragigantocellular nucleus of the medulla, termed the nucleus papilio, have 

been described in relation to REM EMs (Gutierrez Herrera et al., 2019). These neurons receive input 

from regions linked to REM sleep control, send glutamatergic projections to the abducens, oculomotor 
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and trochlear nuclei and fire prior to REMs initiation (Gutierrez Herrera et al., 2019). Optogenetic 

stimulation of these neurons in mice significantly increased the number of REMs, while genetic 

ablation or optogenetic silencing of these neurons significantly reduced REMs, but did not completely 

abolish them (Gutierrez Herrera et al., 2019). This suggests the nucleus papilio may modulate pontine 

REMs control through the common target of the abducens. The occurrence and direction of REMs 

correlates strongly with PGO waves (Gott et al., 2017; Nelson et al., 1983; Peigneux et al., 2001)- phasic 

electrical activity which propagates from the pons to the lateral geniculate nucleus and then on to the 

occipital cortex. Whether activation of burst cells in the pons during PGO waves causes REMs, or 

whether the two simply co-occur, remains to be seen.  

 
Figure 7.6: REM Sleep eye movement pathways. The ventromedial caudal pontine tegmentum 

(VMCPT) is a key region involved in REM sleep eye movement generation. The VMCPT is modulated 

by serotonergic, catecholaminergic and cholinergic neurotransmission, and projects to the abducens 

nucleus (AN). The AN projects to the oculomotor nucleus (OMN) and controls the lateral rectus eye 

muscle. The OMN controls the superior rectus, medial rectus, inferior rectus and inferior oblique 

muscles. The gigantocellular nucleus/nucleus papilio (Gi/NP) projects to the AN, OMN and trochlear 

nucleus (TN), additionally influencing oculomotor muscle activity during REM sleep.  

 

The function of EMs during sleep is unknown, with most of the literature focusing on REM sleep REMs. 

REM sleeps’ dominant association with dreaming has led to the hypothesis that REMs are an inherent 

motor pattern of the dream experience, allowing the dreamer to scan the imagined environment, 

though there is conflicting evidence for this theory (for review see Arnulf, 2011). Other REMs function 
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theories include emotional regulation and processing (Corsi-Cabrera et al., 2016; Maranci et al., 2022; 

Stickgold, 2002) and tear secretion and distribution to humidify the ocular surface (Murube, 2008).  

 

REMs are subject to homeostatic influence, and have been shown to increase in density and amplitude 

with successive REM periods across the night (Darchia et al., 2004; Feinberg, 1974). However, these 

trends are abolished in the elderly (mean >70 years) (Darchia et al., 2003, 2004; Feinberg, 1974), 

reflecting wider destabilisations of circadian and homeostatic function which accompany aging 

(Taillard et al., 2021). REMs have been shown to be affected by transient states of physiological and 

psychological stress: for example, REMs frequency decreases after sleep deprivation (De Gennaro et 

al., 2000) and increases in the period after bereavement (Reynolds et al., 1993). Chronic pathologies 

can have impacts on REMs also – both PTSD and depression are associated with increased REMs 

density (Habukawa et al., 2018; Wichniak et al., 2000) and increased latency to REMs (Wichniak et al., 

2000). Whether due to aging processes, disease states or stress, imbalances to the serotonergic, 

cholinergic and catecholaminergic neurotransmitter systems evidently alter EMs. Given the 

uncertainty around the function of sleep EMs, it is unclear whether these alterations have damaging 

effects. In disease states, these changes could serve as a biomarker. 

 

The brainstem cholinergic centre pedunculopontine tegmentum/laterodorsal tegmentum (PPT/LDT) 

degenerates in PD with up to 50% cell loss (Bohnen & Albin, 2011) and thus there is rationale that 

sleep EMs will be affected in this disease state. Yet, sleep EMs have been investigated to a limited 

extent in RBD or PD populations.  

 

The potential utility of sleep EMs was first demonstrated by Christensen et al using machine learning 

algorithms, who showed that PD and RBD populations can be classified by their disease-state using 

sleep EOG data (Christensen et al., 2012, 2013). More recently, they have shown that sleep EMs are 

elevated in PD populations during NREM stage 2 sleep compared to Controls- however, there was no 

change in sleep EMs in the RBD group, nor REMs in the PD group (Christensen et al., 2021). The main 

sleep EM parameter to be reported in the literature with respects to PD is REMs density, calculated as 

number of REMs divided by time spent in REM sleep (Dijkstra et al., 2021; L. A. Schroeder et al., 2016; 

Zhu et al., 2021). However, studies have reported elevated (Zhu et al., 2021), decreased (L. A. 

Schroeder et al., 2016) and unchanged (Dijkstra et al., 2021) REMs density in PD populations. These 

discrepancies highlight the variability in PD cohorts and across the disease course- for example, 

Schroeder et al. found that REM density was only significantly reduced in middle-stage (duration >3 
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years) PD group compared to Controls, with a non-significant decrease seen between early-stage PD 

and Controls (L. A. Schroeder et al., 2016).   

 

Rationale and Hypotheses 

PD diagnoses are usually made once noticeable limb motor changes begin, in line with significant 

degeneration of the dopaminergic SNpc. Clinical assessment tests are often not sensitive enough to 

detect the subclinical motor changes which have previously been described in RBD populations.  

 

I hypothesised that electrophysiological recordings of EMs during sleep and wake would be more 

sensitive to subtle, lower-order motor changes occurring in RBD and early-stage PD and would reliably 

distinguish between the disease states and Controls. Specifically, I predicted that the RBD and PD 

groups would demonstrate bradykinetic signatures of PD motor dysfunction in their Wake and Sleep 

EMs with decreases in EM amplitude and frequency, reflective of dopaminergic denervation.  
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Methods 

Participants 
Psychophysical and electrophysiological data were collected from all participants.  

 

Clinical Assessment Measures of Motor Function 
The following tests were used to assess motor function during the Clinical Assessment session: 

 

• Movement Disorders Society – Unified Parkinson’s Disease rating Scale Part III: Motor 

Examination (MDS-UPDRS III) (Goetz et al., 2007) – extensive motor function assessment of 

Parkinson’s disease. Total score of 132, with high scores indicating impaired motor ability. 

• Purdue Pegboard (Tiffin & Asher, 1948) – test of fine and gross motor dexterity and 

coordination or both dominant and non-dominant hands. Participants are given 30s or 60s to 

complete a task involving placement of pegs or assembly of structures into a pegboard. Scores 

are given for the number of pegs successfully placed or the number of structures assembled. 

Preliminary statistical correlation analyses found that participant age was significantly correlated with 

Hoehn & Yahr score (PD group), MDS UPDRS III score (RBD and PD groups) and variably with Purdue 

Pegboard Scores (Control, RBD and PD groups). RBD duration, PD duration and Levodopa Equivalent 

Daily Dose (LEDD, PD group only) were not significantly correlated with clinical assessment motor 

scores. Therefore, statistical analyses of the clinical assessment measures of motor function are 

controlled for age using covariate analysis methods.  
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Eye Movement Motor Function 
EOG signals recorded during the overnight at-home sleep study sessions were analysed to assess eye 

movement motor function. Preliminary statistical correlation analyses found that participant age, 

MDS-UPDRS III score, Hoehn & Yahr score, PD/RBD disease duration and LEDD were not significantly 

correlated with eye movement measures. These analyses are therefore not controlled for covariates. 

 

Eye movements generate an electrophysiological signature due to activity of the ocular muscles and 

the corneo-retinal dipole. When the eyes fixate on a central point, the amplitude of the EOG signal 

fluctuates within a small range around 0μV. When the eyeball position changes, there is a 

corresponding shift in the electrical charge measured at the EOG electrode (Jia & Tyler, 2019). Thus, 

the charge recorded is influenced by the placement of the electrode in relation to the eyeball and the 

underlying muscles, as well as the orientation of the eye movement. 

 

There was no eye movement-tracking in this study and therefore all subsequent assumptions based 

on eye movement type & position were inferred from biocalibration recordings during the EOG/EEG 

set-up, previous literature and theoretical understanding of electrophysiological signals. 

 

Wake Eye Movements 
Wake eye movements were isolated from restful, eyes-open recordings. At the beginning of their 

sleep study night, between the hours of 5pm-10pm, participants were instructed to sit quietly and 

look straight ahead for 5 minutes. They were instructed to move as little as possible and not to talk, 

but were free to blink as they wished. 

 

During wake, spontaneous eye blinks were investigated. Data were preprocessed and analysed as 

follows.  

 

Preprocessing 
The 2 EOG channels were re-referenced offline to channel Fpz (central forehead) as recommended by 

the manufacturer. Fp1 and Fp2 electrodes were online referenced to common reference channel Fcz. 

Data were filtered with a low-pass filter of 10Hz according to (Agarwal & Sivakumar, 2019), as the 

majority of the vertical eye blink power is concentrated between 0.5-3Hz (Kruis et al., 2016). All signals 

were visually inspected with the ECG signal to ensure detected peaks were not ECG artefact. 
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Blink Detection 
I wrote a custom automatic blink detection algorithm in Python (version 3.7). Code can be viewed at 

https://github.com/agpr141/EOG_REMS. 

 

The maximal vertical blink signal is seen as a positive deflection at Fp1/Fp2 electrodes. The lateral EOG 

channels were used to differentiate between positive deflections caused by vertical blinks and those 

caused by oblique and horizontal eye movements (Figure 7.7A). The EOG signals were inverted so that 

a blink movement was represented by a positive deflection in all channels. 

 

Thus, a blink event was defined as a positive peak in the signal present in all 4 channels (Figure 7.7B & 

C). Potential blinks were identified as peaks greater than 1 standard deviation of the mean signal 

voltage. These potential blinks were then compared to a blink template based on a gamma distribution 

(Makowski et al., 2021) (Figure 7.7D). The root-mean-square error (RMSE) between the potential blink 

and blink template was then calculated, and a cut-off threshold (0.33) was manually identified for 

classification of potential blinks as true blinks. 

 

The identified peak indices for each channel were then compared to determine whether peaks 

occurred in all channels at the same time. The peak in the Fp1 channel was taken as the blink peak, 

and peak indexes of the remaining 3 channels had to occur within 30 samples (17.07ms) of the Fp1 

peak. This 30-sample cut-off was optimised manually. If the peaks of all 4 channels occurred within 30 

samples, the peak was accepted as a blink and further analysed. 

 

Using the signal velocity (Figure 7.7E), five landmarks were identified on each accepted blink to enable 

calculations (Figure 7.7F). 
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Figure 7.7: Process for blink detection. A) Scale (Fp1, Fp2) and face (EOG1, EOG2) electrode positions 

for eye movement detection. Common reference for scalp electrodes was FCz and common reference 

for EOG electrodes was Fpz (BrainProducts GmBH). Corresponding electrode traces are shown to the 

right. Eye movements highlighted in pink (1,2) are horizontal eye movements as evidenced by the 

divergent signal between EOG1 and EOG2 electrodes and the small deflection seen in the scalp 

electrodes. Eye movements highlighted in orange (3,4,5) represent spontaneous blinks, characterised 
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by large deflections in the scalp electrodes and convergent, small deflections in the face electrodes. 

B) After inverting the EOG channels, a peak detection function was used to identify peaks in all 4 

signals. An eye movement was classified as a blink if a peak was detected in all 4 channels within 30 

samples of each other. A spontaneous blink can be seen on the left, evidenced by peak markers on 

each channel, whereas to the right a horizontal eye movement can be seen. One EOG channel has a 

divergent deflection from the other channels. C) Magnified trace for peak detection of a spontaneous 

blink. D) Blink template (black dotted line) and identified potential blinks. Those blinks with RMSE 

<0.33 were classified as true blinks. E) Velocity (blue line) of a blink signal (orange line, Fp1) channel 

was calculated, and the velocity minima and maxima identified. These landmarks served for 

identifying the ‘Left Base’ and ‘Right Base’ local minima on either side of the blink peaks shown in F). 

F) Key landmarks of the blink signal. Left Base was defined as the local minima to the left of the 

velocity minima, and vice versa for the Right Base/right minima. Left Base was considered the start 

or initiation of the blink, and Right Base was considered the end of the blink event. The Left Base, 

Right Base and Peak indexes were used to calculate all further blink characteristics. 
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Blink Characteristics 
Using 3 landmarks (Figure 7.7F), the following blink characteristics were extracted from Fp1 and Fp2 

channels: 

 

Measure Description 
Blink Number Total number of blinks in recording period 

Blink Rate Blink Number/Length of Recording (minutes) 
Inter-blink Interval (s) Average number of seconds between blink peaks 

Blink Amplitude (μV)* 
Average amplitude of blink in μV 

(Peak amplitude-Left Base amplitude) 

Blink Duration (ms)* 
Average blink duration from start of the blink to end of the blink 

in milliseconds 
((Right Base index-Left Base index)/sample rate) 

Up Phase Duration (ms)* 
Average duration of up-phase (eye closing) in milliseconds 

((Peak index-Left Base index)/sample rate) 

Down Phase Duration (ms)* 
Average duration of down-phase (eye opening) in milliseconds 

((Right Base index-Peak index)/sample rate) 

Up Phase Gradient (μV/s)* 
Average gradient of up-phase in arbitrary units 

((Peak amplitude-Left Base amplitude)/(Peak index-Left Base 
index)) 

Down Phase Gradient (μV/s)* 
Average gradient of down-phase in arbitrary units 

((Right Base amplitude-Peak amplitude)/(Right Base index-Peak 
index)) 

Blink Order 
Categorical assignment whether blink was first initiated in left or 
right eye first or if blink was initiated in both eyes at same time 

(measured by comparing Fp1 Left Base to Fp2 Left Base) 

Right Initiation Delay (ms) 
Delay in milliseconds between right eye blink initiation and left 

eye blink initiation 
(Fp1 Left Base index-Fp2 Left Base index) 

Left Initiation Delay (ms) 
Delay in milliseconds between left eye blink initiation and right 

blink initiation 
(Fp2 Left Base index-Fp1 Left Base index) 

Table 7.2: Spontaneous blink characteristics and how they were calculated. Measures denoted with * 

indicate variable is computed for Fp1 and Fp2 channels separately and averaged for later 

comparison. 
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REM Sleep Eye Movements 
REM sleep eye movements were isolated from sleep periods manually scored as ‘REM’. The laterally 

placed EOG electrodes were chosen for the signal analysis as they best captured the horizontal eye 

movements typical of REM sleep. 

 

Most studies of REM eye movements focus on the eponymous ‘rapid eye movements’ (REMs)- the 

saccadic horizontal eye movement with a sharp initial deflection lasting <500ms, large amplitude 

(>50μV) (Silber et al., 2007) and a corresponding divergent peak. However, phasic REM sleep contains 

a wealth of eye movements beyond REMs including rolling oblique movements and slow eye 

movements (SEMs) (Betta et al., 2015; Hansotia et al., 1990; Pizza et al., 2011).  For this reason, REM 

eye movement detection in this study did not threshold only for REMs, but sought to investigate the 

full complexity of sleep eye movements within the groups. 

 

Data were preprocessed and analysed as follows.  

 

Preprocessing 
The 2 EOG channels were re-referenced offline to channel Fpz (central forehead) (Figure 7.8A) as 

recommended by the manufacturer. A 6th-order Butterworth 0.25 – 7.5Hz band-pass filter was applied 

before the two signals were detrended and smoothed with a Savitzky-Golay filter.  

 

REM Eye Movement Detection 
A custom, semi-automatic eye movement detection algorithm was written in Python (version 3.7). 

The EOG signals were aligned with the manually-scored hypnogram and epochs labelled as ‘REM’ were 

extracted. To reduce the impact of unstable/transitioning sleep stages on the results, only REM 

periods longer than 60s were further analysed. A 30s buffer was added to either side of the extracted 

REM period to further control for sleep stage transitions. 

 

Each REM episode was manually inspected to control for poor data quality: artefactual data stretches 

were excluded from further analysis and the entire episode was excluded if it was consistently noisy. 

The following analyses were then completed for each REM episode in turn. 

 

All ‘crossing-points’ where the EOG signals converged (Figure 7.8B) were identified and inferred to 

correspond to the central-point orientation of the eyes.  Eye movements were identified as signal 

peaks in both channels greater than 20μV were identified using the scipy ‘find_peaks’ function with 
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additional parameters of a minimum distance of 120 samples between peaks and prominence of 10μV 

from neighbouring points. 

 

A ‘true’ REM eye movement had to meet the following criteria: 

• Had a peak greater than 20μV between two crossing-points 

• Had a corresponding, but divergent, peak in the other channel 

• Corresponding divergent peaks must occur within 152 samples (~330 seconds) (Collewijn et 

al., 1988; Porte, 2004) 

The ‘true’ REM eye movements were then plotted and manually assessed to make sure no artefactual 

signal features were marked inappropriately. At this stage, any missed ‘true’ peaks could be manually 

added in. 
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Figure 7.8: Process for REM eye movement detection. A) EOG electrode positions and common 

reference Fpz. B) Channel crossings (pink circles) identified as indices where EOG1 signal value == 

EOG2 signal value. C) EOG channel signals with detected peaks and troughs representing maximal 

eye position during a movement. Period with no detected eye movements are classified as tonic REM. 

D) Key landmarks of the REM eye movement signal. The initiation of the eye movement can be 

interpreted either as the Left Base (local minima preceding pre-peak crossing, green circle) or as the 

pre-peak crossing (pink circle). Calculations of eye movement characteristics tested both these start 

points. Right Base, or end of the eye movement, was interpreted as the post-peak crossing (red 

diamond). 
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REM Eye Movement Characteristics 
Using 4 landmarks (Figure 7.8D), the following REM sleep eye movement characteristics were 

extracted from EOG1 and EOG2 channels for the total REM duration: 

 

Measure Description 
Eye Movement Rate Total number of eye movements across all REM periods 

Inter-Eye Movement Interval* 
Average interval between peaks within a cluster of eye 

movements 
Within-Cluster Peak Density* Number of peaks/ second in a given cluster of eye movements 

Amplitude (μV)* 
Average amplitude of eye movements in μV 

(Peak amplitude-Left Base amplitude) 

Eye Movement Duration (ms)* 
Average eye movement duration from leftbase to rightbase in 

milliseconds 
((Right Base index-Left Base index)/sample rate) 

Peak Duration (ms)* 
Average duration from preceding channel crossing to peak in 

milliseconds 
((Peak index-Crossing index)/sample rate) 

Decay Phase Duration (ms)* 
Duration of decay from peak to following channel crossing 

((Right Base index-Peal index)/sample rate) 

Peak Gradient (μV/s)* ˚ 
Gradient of slope from preceding channel crossing to peak 
((Peak amplitude-Crossing amplitude)/(Peak index-Crossing 

index)) 

Decay Gradient (μV/s)* ˚ 
Gradient of slope from peak to following channel crossing 

((Right Base amplitude-Peak amplitude)/(Right Base index-Peak 
index)) 

Percentage SEMs Percentage of eye movements with peak duration >500ms 
Percentage REMs Percentage of eye movements with peak duration <500ms 

Table 7.3: REM eye movement characteristics and how they were calculated. Measures denoted with 

* indicate variable is computed for EOG1 and EOG2 channels separately and averaged for later 

comparison. ˚ Gradients were calculated and used for further classification of REMs vs SEMs as per 

(Takahashi & Atsumi, 1997), however these features were not further investigated between groups 

given the uncoupled relationship between REM amplitude and velocity (Aserinsky et al., 1985) which 

makes it difficult to draw conclusions from these features. 
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Sleep Eye Movement Classification 
Rapid Eye Movements were differentiated in accordance with parameters defined by (Takahashi & 

Atsumi, 1997):  

• Amplitude >30μV 

• Initial deflection <0.5 seconds 

• Gradient >248.3μV/s 

Slow Eye Movements were defined in accordance with (Berry et al., 2017; Takahashi & Atsumi, 1997): 

• Initial deflection >0.5 seconds 

• Gradient <248.33μV/s 
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Results 

Clinical Assessment 
The PD group scored ‘worse’ than the Control and RBD groups in the majority of clinical assessment 

motor measures (Figure 7.9; Table 7.4).  

 

 
 

Control 
◊ 

n=19 

RBD 
† 

n=16 

PD 
‡ 

n=17 
Test Statistic 

p-value 
 

Post-Hoc 
Effect 
Size 

MDS-
UPDRS Part 

III 

1.42 ± 
1.58 

6.06 ± 
8.39 

23.53 ± 
7.19 

F(2,49)=48.27 <0.001f 
◊ < ‡ p=<0.001 
† < ‡ p=<0.001 

0.96 

Hoehn & 
Yahr Score 

0 ± 0 
0.13 ± 

0.5 
1.47 ± 
0.62 

F(2,49)=157.69 <0.001f 
◊ < ‡ p=<0.001 
† < ‡ p=<0.001 

3.3 

Purdue 
Pegboard: 
Dominant 

Hand 

11.79 ± 
1.78 

11.63 ± 
2.28 

11.18 ± 
1.74 

F(2,52)=1.61 0.21e - 0.06 

Purdue 
Pegboard: 

Non-
Dominant 

Hand 

11.63 ± 
1.64 

10.94 ± 
1.91 

9.82 ± 
1.6 

F(2,52)=7.88 0.001e ◊ > ‡ p=<0.001 0.25 

Purdue 
Pegboard: 
Difference 
between 

hands 

0.16 ± 
1.46 

0.69 ± 
2.02 

1.35 ± 
1.58 

F(2,52)=1.96 0.152e - 0.08 

Purdue 
Pegboard: 

Both 
hands 

19.63 ± 
3.52 

18.5 ± 
4.35 

15.88 ± 
3.66 

F(2,49)=11.5 <0.001f 
◊ > † p=0.01 

◊ > ‡ p=<0.001 
0.16 

Purdue 
Pegboard: 
Assembly 

21.37 ± 
5.93 

18.75 ± 
5.46 

20.82 ± 
7.14 

F(2,49)=2.15 0.127f - 0.04 

Table 7.4: Clinical assessment motor function test scores. All values are given as mean ± standard 

deviation (SD). For p-values & statistical tests, e= ANCOVA with Bonferroni post-hoc, f=QUADE 

ANCOVA with Bonferroni post-hoc. 

 

In the MDS-UPDRS Part III, the PD group scored significantly higher than the Control and RBD groups 

and had a significantly higher Hoehn & Yahr score.  
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The PD group scored significantly lower on the Purdue Pegboard ‘Non-Dominant Hand’ (Control vs. 

PD p=<0.001) and ‘Both Hands’ (Control vs. PD p=<0.001). The RBD similarly scored significantly lower 

than the Control group on the ‘Both Hands’ pegboard task (Control vs. RBD p=0.01). 

 

The only tests which did not show a clear differentiation of groups were the Purdue Pegboard 

‘Dominant Hand’ and ‘Assembly’ tasks. In both these tasks, the PD group performed comparably to 

the rest of the cohort. 

 

Figure 7.9 (next page): Boxplots for clinical assessment motor function test results per group. A) MDS-

UPDRS III total score B) Hoehn & Yahr score C) Purdue Pegboard Dominant Hand score D) Purdue 

Pegboard Non-Dominant Hand score E) Purdue Pegboard Difference between Hand score F) Purdue 

Pegboard Both Hands score G) Purdue Pegboard Assembly score. Significant differences are indicated 

with brackets and p-values displayed. Outliers are indicated with a grey diamond. Individual datapoints 

are shown as dots. Solid line in each box plot indicates median, dotted line indicates mean. 
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Further analysis was conducted to determine whether the Purdue Pegboard scores were impacted by 

the unilateral presentation of PD (Table 7.5).  

 

 
Dominant Side 
Affected (n=8) 

Non-Dominant 
Side Affected 

(n=8) 
Test Statistic p-value 

Effect 
Size 

Pegboard Dominant 
Hand Score 

10.75 ± 2.12 11.75 ± 1.28 t(14)=-1.14 0.273 0.085 

Pegboard Non-
Dominant Hand 

Score 
10 ± 1.69 9.75 ± 1.58 t(14)=0.306 0.764 0.007 

Pegboard Difference 
in Hand Score 

0.75 ± 139 2 ± 1.69 t(14)=-1.62 0.128 0.16 

Pegboard Both 
Hands Score 

16.25 ± 4.33 15.75 ± 3.33 t(14)=0.259 0.8 0.005 

Pegboard Assembly 20.5 ± 8.93 22 ± 5.35 t(14)=-0.408 0.69 0.01 
Table 7.5: Independent samples t-test to test the relationship between unilateral PD motor symptoms 

(dominant vs. non-dominant side affected) and fine motor function (Purdue Pegboard scores). 

Analysis completed in the PD group only. All values are given as mean ± standard deviation (SD). 

Effect size = Cohen’s d. 

 

The side of the body primarily affected by PD motor symptoms (whether that be the ‘dominant’ or 

‘non-dominant’ side) did not significantly impact the Pegboard task scores (Table 7.5). However, slight 

differences with small effect sizes were found. Individuals with dominant side affected scored lower 

on the Pegboard Dominant Hand Task compared to individuals with non-dominant side affected. The 

reverse was true for the Pegboard Non-Dominant Hand Task. Individuals with non-dominant side 

affected had a greater difference between their Dominant/Non-Dominant Hand scores and scored 

slightly lower in the Both Hands task. 

 

The relationship between motor symptom severity and RBD concomitance was explored by splitting 

the PD group into those with concomitant RBD (PD+RBD) and those without (PD-). In this cohort, the 

PD- group scores indicated greater motor dysfunction than the PD+RBD group, though not significantly 

so. With the PD group split, significant differences were found only between Control and PD- groups 

for the Purdue Pegboard ‘Non-Dominant’ and ‘Both Hands’ tasks. The MDS-UPDRS III was significantly 

higher in the PD- and PD+RBD groups compared to Control and RBD groups.  
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Wake Eye Movements 
The clinical motor assessments demonstrated decreased gross and fine motor skills in the PD group. 

Wake eye movements were next investigated to determine the extent of subtle, automatic motor 

dysfunctions in the PD and RBD groups. 

 

Overall, the PD group had fewer spontaneous blinks, as measured by Blink Rate and Inter-Blink 

Interval, compared to the Control and RBD groups (Figure 7.10A & B). The mean differences were not 

significant, but a trend was evident, with the RBD group intermediate between Control and PD groups. 

The PD group had a decreased blink amplitude compared to Controls and RBD individuals – initial One-

Way ANOVA analyses with the full PD dataset found a significant between-group differece 

(F(2,44)=3.28, p=0.047, partial Eta Squared=0.13) with no further significant differences found using 

Tukey post-hoc analyses. Removal of a PD outlier found significant difference between the RBD and 

PD group (One-Way ANOVA F(2,43)=4.824; p=0.013; RBD > PD p=0.014). There was also a significant 

decrease in Up-Phase Gradient for the PD group compared to Control and RBD groups (One-Way 

ANOVA (Welch) F(2,25.082)=14.342; p<0.0001; Control > PD p=0.03; RBD>PD p=0.03). There was no 

significant difference in blink half-base or up/down phase durations between groups.   
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Control 
◊ 

(n=17) 

RBD 
† 

(n=15) 

PD 
‡ 

(n=15) 
Test Statistic 

p-
value 

 
Post-Hoc 

Effect 
Size 

Blink Rate 
(#/minute) 

19.58 ± 
13.89 

16.16 ± 
13.05 

12.48 ± 
10.1 

X2(2,46)=2.228 0.328b - 0.041 

Inter-blink 
Interval (s) 

4.45 ± 
2.72 

10.45 ± 
16.17 

9.42 ± 9.6 X2(2,46)=1.852 0.396b - 0.049 

Blink Amplitude 
(uV)* 

152.37 ± 
58.27 

166.58 ± 
58.02 

108.51 ± 
35.65 

F(2,43)=4.824 0.013a † > ‡ 0.014 0.183 

Half-Base 
Duration (ms) 

129.55 ± 
22.74 

141.82 ± 
29.67 

128.39 ± 
24.74 

X2(2,47)=2.347 0.309b - 0.037 

Up-Phase 
Duration (ms) 

136.69 ± 
23.76 

153.48 ± 
27.44 

143.53 ± 
22.22 

F(2,44)=1.876 0.165a - 
0.078 

 
Down-Phase 

Duration (ms) 
248.62 ± 

53.91 
265.9 ± 
56.53 

237.89 ± 
34.13 

F(2,44)=1.228 0.303a - 
0.052 

 
Up-Phase 
Gradient 

1213.84 ± 
496.07 

1173.97 ± 
390.14 

833.09 ± 
361.09 

X2(2,46)=8.495 0.014b 
◊ > ‡ 0.034 
† > ‡ 0.031 

0.104 

Down-Phase 
Gradient 

-629.51 ± 
198.94 

-681.45 ± 
246.53 

-518.42 ± 
168.35 

F(2,44)=2.443 0.099a - 0.99 

Left Eye Initiation 
Delay (ms) 

15.65 ± 
8.67 

16.67 ± 
7.41 

21.51 ± 
11.94 

X2(2,47)=2.71 0.258b - 0.029 

Right Eye 
Initiation Delay 

19.95 ± 
10.08 

19.08 ± 
7.09 

17.19 ± 
12.69 

F(2,43)=0.296 0.745a - 
0.013 

 

Right Eye First % 
34.94 ± 
14.63 

38.47 ± 
14.56 

46.8 ± 
14.03 

F(2,44)=2.448 0.098a - 
0.099 

 

Left Eye First % 
49.59 ± 
15.88 

40.87 ± 
16.75 

32.93 ± 
12.96 

F(2,44)=4.735 0.014a ◊ > ‡ 0.011 
0.177 

 
Simultaneous 

Eye Blink % 
15.53 ± 

7.35 
20.8 ± 
12.57 

20.47 ± 
16.14 

X2(2,47)=1.275 0.529b - 0.062 

Table 7.6: Overall Wake blink characteristics and statistical analysis results. All values are given as 

mean ± standard deviation (SD). For p-values & statistical tests, a=One-Way ANOVA with Tukey HSD 

post-hoc, b=Kruskal Wallis one-way analysis of variance with Bonferroni post-hoc. *Blink amplitude 

analyses were conducted with PD outlier removed (PD n=14). 

 

The impact of motor symptom laterality was explored in relation to wake eye blinks by quantifying the 

delay in blink initiation between the eyes. It was hypothesised that individuals with unilateral motor 

symptoms would exhibit ipsilateral bradykinesia of eye movements – for example, if an individual was 

right-side affected it would be expected that they would have a delay in blink initiation in their right 

eye. Analyses showed the PD group had a significant reduction in the number of eye blinks led by the 

left eye (One-Way ANOVA F(2,42)=7.743; p=0.001; Control > PD p=0.001, RBD > PD p=0.042) and had 
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a non-significant increase in the delay for left eye blink initiation (One-Way ANOVA F(2,43)=3.092; 

p=0.056).  

However, when further analyses were completed in the PD group taking into account motor symptom 

laterality (‘side-affected’), there was no clear influence of side affected on the blink delays (Table 7.7). 

For both left and right eye initiation delays, the ‘Left Side Affected’ PD participants had shorter delay 

durations. 

 
Right Side 

Affected (n=5) 
Left Side 

Affected (n=10) 
Test Statistic p-value 

Effect 
Size 

Right Eye Initiation 
Delay 

21.57 ± 13.99 14.99 ± 12.15 t(13)=0.26 0.34 0.52 

Left Eye Initiation 
Delay 

28.97 ± 15.66 17.77 ± 8.13 t(13)=0.24 0.09 1.02 

Table 7.7: Independent samples t-test to test the relationship between unilateral PD motor symptoms 

and blink initiation delays. Analysis completed in the PD group only. All values are given as mean ± 

standard deviation (SD). Effect size = Cohen’s d. 

 

Figure 7.10 (next page): Boxplots for Wake Eye Movement results per group. A) Blink Rate B) Inter-

Blink Interval C) Blink Amplitude D) Up-Phase Gradient E) Percentage of time the left eye initiated a 

blink first F) Percentage of time the right eye initiated a blink first G) Percentage of time the eye blinks 

were initiated simultaneously H) Left eye initiation delay duration I) Right eye initiation delay duration. 

Significant differences are indicated with brackets and p-values displayed. Outliers are indicated with 

a grey diamond. Individual datapoints are shown as dots. Solid line in each box plot indicates median, 

dotted line indicates mean.  
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REM Sleep Eye Movements 
Total Eye Movements, REMs and SEMs characteristics were calculated for the total REM period (all 

REM episodes combined). Changes to REMs characteristics between the first and last REM episode of 

the night were analysed.  

Overall REM EM Characteristics (figure xA-X) 
When all REM sleep eye movements were considered (REMs and SEMs across the entire night), there 

were few significant differences between groups. The PD group showed a non-significant decrease in 

REM eye movement amplitude compared to Control and RBD groups (Figure 7.11A, One-Way ANOVA 

F(2,41)=1.878; p=0.16) and variable increase in Up-Phase Duration.  

 

The PD group showed a non-significant increase in Inter-Eye Movement Intervals and a decrease in 

Within-Cluster Peak Density (Figure 7.11B & C), demonstrating a small reduction in the number of eye 

movements in a phasic REM cluster of eye movements.  

 

The percentage of eye movements classified as SEMs or REMs showed a trend between groups – the 

PD group had a non-significant increase in the SEMs percentage (and corresponding non-significant 

decrease in the REMs percentage) compared to Controls, with RBD group as an intermediary in 

between.  
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Control 
◊ 

(n=15) 

RBD 
† 

(n=14) 

PD 
‡ 

n=16) 
Test Statistic 

p-
value 

 
Post-Hoc 

Effect 
Size 

Total Number 
of Eye 

Movements 

586.87 ± 
232.27 

654.86 ± 
407.6 

854 ± 
616.4 

F(2,24.54)=1.305 
 

0.289a 
 

- 0.065 

SEMs % 
68.6% ± 

5.5 
70.2% ± 

7.5 
73.2% ± 

5.7 
F(2,40)=1.973 

 
0.152a - 0.089 

REMs % 
31.4% ± 

5.5 
29.8% ± 

7.5 
26.8% ± 

5.7 
F(2,40)=1.973 0.152a - 0.089 

EMs Absolute 
Amplitude (uV) 

45.16 ± 
12.41 

46.18 ± 
9.9 

39.43 ± 
8.43 

F(2,42)=1.901 0.162a - 0.083 

EMs Peak 
Gradient 

1324.1 ± 
604.5 

810.27 ± 
458.94 

1069.42 
± 541.68 

F(2,42)=3.277 0.048a 
◊ > † 

p=0.037 
0.135 

EMs Decay 
Gradient 

-104.65 ± 
45.46 

-66.05 ± 
35 

-97.22 ± 
46.06 

F(2,42)=3.308 0.046a ◊ > † p=0.05 0.136 

EMs Peak 
Duration (ms) 

543.85 ± 
42.81 

536.26 ± 
48.48 

552.4 ± 
52.25 

X2(2,45)=0.376 0.829b - 0.086 

EMs Decay 
Duration (ms)* 

609.63 ± 
31.64 

582.86 ± 
45.05 

607.08 ± 
30.15 

X2(2,42)=9.281 0.01b 
◊ > † p=0.01 

 
0.295 

Average Inter-
Eye Movement 

Interval 
Duration (ms) 

1148.66 
± 68.67 

1119.77 
± 77.77 

1183.04 
± 57.71 

X2(2,44)=5.523 0.063b - 0.037 

Table 7.8: Overall REM EM characteristics and statistical analysis results. All values are given as 

mean ± standard deviation (SD). For p-values & statistical tests, a=One-Way ANOVA with Tukey HSD 

post-hoc, b=Kruskal Wallis one-way analysis of variance with Bonferroni post-hoc. *EM decay 

duration analyses were conducted with PD outliers removed (PD n=14).  
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Figure 7.11: Boxplots for REM Eye Movement results per group. A) Eye movement absolute amplitude 

B) Eye movement up-phase duration C) Eye movement decay duration D) Average Inter-Eye 

Movement interval E) Within-cluster peak density F) Percentage slow eye movements (SEMs) G) 

Percentage rapid eye movements (REMs). Significant differences are indicated with brackets and p-

values displayed. Outliers are indicated with a grey diamond. Individual datapoints are shown as 

dots. Solid line in each box plot indicates median, dotted line indicates mean.  
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REMs Characteristics 
REM eye movement macroarchitecture and microarchitecture did not significantly differentiate 

between the 3 groups, and therefore the movements were split according to REMs or SEMs profile. 

As before, the PD group had a non-significant decrease in their REMs amplitude (Figure 7.12B, One-

Way ANOVA F(2,39)=2.144; p=0.13) and a significant increase in Up-Phase duration (Figure 7.12C, 

One-Way ANOVA F(2,41)=5.47; p=0.02), suggesting slower and smaller REMs compared to Controls 

and RBD.  

 

The RBD group had a significantly decreased Decay Duration, though the physiological relevance of 

this is unclear. 

 

Organisation of REMs occurrence was not changed by either of the disease states, evidenced by no 

significant difference between the groups for inter-REMs interval duration. 

 

 
 

Control 
◊ 

(n=15) 

RBD 
† 

(n=14) 

PD ‡ 
(n=16) 

 
Test Statistic 

p-
value 

 
Post-Hoc 

Effect 
Size 

REMs Absolute 
Amplitude (uV) 

77.17 ± 
21.22 

74.73 ± 
13.07 

66.56 ± 
10.67 

X2(2,45)=2.827 0.243b - 0.028 

REMs Up-Phase 
Gradient 

3041.32 
± 

1372.46 

1900.22 
± 

1075.11 

2308.71 
± 933.25 

X2(2,44)=7.456 0.024b ◊ > † p=0.019 0.084 

REMs Decay 
Gradient 

-177.76 ± 
76.4 

-113.4 ± 
62.71 

-151.96 ± 
58.7 

F(2,41)=3.426 0.042a ◊ > † p=0.03 0.143 

REMs Up-Phase 
Duration (ms) 

235.56 ± 
23.65 

236.8 ± 
22.61 

256.91 ± 
19.49 

F(2,40)=4.2 0.022a ◊ > ‡ p=0.03 0.175 

REMs Decay 
Duration (ms) 

746.64 ± 
38.14 

687.96 ± 
62.91 

714.36 ± 
60.12 

F(2,39)=3.792 0.031a ◊ > † p=0.024 0.163 

Average Inter-
REM Interval 
Duration (ms) 

1148.66 
± 68.67 

1119.77 
± 77.77 

1183.04 
± 57.71 

X2(2,45)=1.471 0.479b - 0.06 

Table 7.9: REMs scores and statistical analysis results. All values are given as mean ± standard 

deviation (SD). For p-values & statistical tests, a=One-Way ANOVA with Tukey HSD post-hoc, 

b=Kruskal Wallis one-way analysis of variance with Bonferroni post-hoc. 
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Figure 7.12: Boxplots for REM sleep Rapid Eye Movement (REMs) results per group. A) Inter-REMs 

interval B) REMs amplitude C) REMs up-phase duration D) REMs decay duration. Significant 

differences are indicated with brackets and p-values displayed. Outliers are indicated with a grey 

diamond. Individual datapoints are shown as dots. Solid line in each box plot indicates median, 

dotted line indicates mean.  

A  B  

C  D  
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SEMs Characteristics  
The SEMs characteristics were far more uniform across groups, with no significant differences in any 

of the microarchitectural features (Table 7.10, Figure 7.13). The only clear difference between groups 

was a significant decrease in Inter-SEMs Interval for the RBD group compared to Controls and PD 

(Kruskal Wallis analysis of variance, Control > RBD p=0.047; PD > RBD p=0.009), indicating SEMs 

clustering closer together. This reflects the non-significant decrease in RBD Inter-EMs Interval for all 

eye movements seen in (Figure 7.11D) and the non-significant mean increase in REM Eye Movement 

Within-Cluster Peak Density (Figure 7.11E). 

 

 
 

Control 
◊ 

(n=15) 

RBD 
† 

(n=14) 

PD 
‡ 

(n=16) 
Test Statistic 

p-
value 

 
Post-Hoc 

Effect 
Size 

SEMs Absolute 
Amplitude (uV) 

24.23 ± 
8.03 

28.74 ± 
7.46 

24.3 ± 
7.28 

F(2,42)=1.675 0.2a - 0.074 

SEMs Up-Phase 
Gradient 

134.57 
20.21 

113.3 
24.85 

127.56 ± 
32.87 

F(2,41)=2.29 0.114a - 0.1 

SEMs Decay 
Gradient 

-40.91 ± 
17.11 

-30.55 ± 
11.20 

-36.77 ± 
14.09 

F(2,41)=1.89 0.164a - 0.084 

SEMs Up-Phase 
Duration (ms) 

987.36 ± 
52.71 

939.44 ± 
52.55 

990.63 ± 
58.29 

X2(2,43)=5.94 0.051b - 0.049 

SEMs Decay 
Duration (ms) 

485.46 ± 
43.11 

458.25 ± 
50.63 

485.65 ± 
41.41 

F(2,41)=1.751 0.186a - 0.078 

Average Inter-
SEM Interval 
Duration (ms) 

1531.78 ± 
87.71 

1421.98 ± 
101.09 

1568.67 ± 
137.11 

X2(2,45)=9.812 0.007b 
◊ > † p=0.047 
† < ‡ p=0.009 

0.138 

Table 7.10: SEMs scores and statistical analysis results. All values are given as mean ± standard 

deviation (SD). For p-values & statistical tests, a=One-Way ANOVA with Tukey HSD post-hoc, 

b=Kruskal Wallis one-way analysis of variance with Bonferroni post-hoc. 
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Figure 7.13: Boxplots for REM sleep Slow Eye Movement (SEMs) results per group. A) Inter-SEMs 

interval B) SEMs amplitude C) SEMs up-phase duration D) SEMs decay duration. Significant 

differences are indicated with brackets and p-values displayed. Outliers are indicated with a grey 

diamond. Individual datapoints are shown as dots. Solid line in each box plot indicates median, 

dotted line indicates mean.  
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Discussion 

Motor dysfunction is arguably the best-known symptom of PD. While gross motor changes are hard 

to detect visually in RBD populations using standard clinical assessments such as the MDS-UPDRS Part 

III, there is evidence of subtle motor changes in this population.  

 

The investigations described in this chapter sought to quantify the extent of large- and small-scale 

motor changes in an RBD population using validated psychophysical motor tests and novel 

electrophysiological analyses of eye movements. 

 

UPDRS and Pegboard show clear PD motor dysfunction and subclinical RBD motor changes 
The clinical assessment tests clearly differentiated PD motor function from that of Controls. For the 

majority of the test outputs, the RBD group had intermediate scores in between Control and PD groups 

which were not significantly different from either group. 

 

As previously reported (Arora et al., 2018; Fantini et al., 2006b, p. 20; Y. Li et al., 2019; Wan et al., 

2016), the RBD group had a non-significantly elevated MDS-UPDRS Part III total score compared to 

Controls (Control = 1.42 ± 1.58 vs RBD = 6.06 ± 8.39). Given the age and overall health of the Control 

group, a mean score > 0 on the MDS-UPDRS Part III was expected- in a cohort of 194 non-parkinsonian 

aged individuals, Keezer et al. found that the majority (69%) had a Part III score >2, 16% had a Part III 

score >10 and the total Part III score increases on average 2.2 points every 10 years (Keezer et al., 

2016).  

 

The Purdue Pegboard tasks found significant group differences between Control and PD groups for 

the Non-Dominant Task variation (p=<0.001), and between Control-PD and Control-RBD groups for 

the Both Hands task variation (p=<0.001 and p=0.01 respectively). Except for the assembly task which 

showed no clear group differences, the other Pegboard tasks showed the trend of RBD group as an 

intermediary between Control and PD scores.  

 

The difference in Both Hands score likely reflects the impeded function of the non-dominant hand and 

thus the effect of PD symptom laterality was investigated. A non-significant but explainable effect of 

PD laterality and its relationship with dominant handedness was found. Those individuals with PD 

affecting their dominant side scored slightly lower on the Dominant Hand Pegboard task, whereas 

non-dominant side affected people scored slightly lower on the Non-Dominant Pegboard task. Those 

people with non-dominant side affected scored slightly worse on the Both Hands task and when the 
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difference between their left and right hand scores were calculated, which can be explained by the 

additive effect of reduced non-dominant function. Conversely, those with non-dominant side affected 

scored slightly better in the assembly task than those with dominant-side affected, as their dominant 

and most skilful hand is less impacted. 

 

When the PD group was subdivided into PD+RBD and PD- (Appendix Table 8), the only significant 

difference for the Pegboard Non-Dominant and Both Hands tasks was between Control and PD- 

groups. While other studies did not find significant motor symptom differences between PD+RBD and 

PD-RBD groups (Bugalho & Viana-Baptista, 2013; Rolinski et al., 2014), in this cohort the PD- group 

scored worse than the PD+RBD group on all clinical assessment measures. One explanation may be 

that the PD- group had a slightly longer symptom duration (PD+RBD = 4.67 ± 2.73 years vs. PD- = 6.55 

± 8.26 years) and time since diagnosis (PD+RBD = 1.67 ± 0.82 years vs PD- = 1.91 ± 0.94 years). This 

increased disease duration will have a positive correlation with extent of neurodegeneration, which 

may account for the change in motor symptoms. However, preliminary analyses between PD duration 

and MDS-UPDRS III score found no significant correlation between the two variables.  

 

Overall, the MDS-UPDRS Part III and Purdue Pegboard tasks demonstrated an expected compromised 

motor function in the PD group and found the RBD group to be somewhere in between. However, 

with limited marked significance between RBD and Control groups, none of the individual measures 

were capable to distinguish the RBD group and thus make prognostic predictions difficult. 

 

PD Wake Eye Movements are Bradykinetic 
Electrophysiological motor function measures were investigated under the hypothesis that the clinical 

assessment measures might not capture subtle motor changes in the RBD group. It was expected that 

significant differences in a range of eye movement measures would be detected between not just the 

Control and PD groups, but also between the Control and RBD groups and thus new biomarkers of 

early-stage neurodegeneration would be identified. However, this was not the result for either the 

Wake or REM sleep eye movements. It should be noted that neither Wake nor REM sleep eye 

movements were correlated with MDS-UPDRS III score or PD duration (preliminary analyses, results 

not shown). 

 

Wake eye movement analysis was restricted to spontaneous eye blinks due to the available data. 

There was also a strong rationale for investigating spontaneous blinks given their reported 

dopaminergic modulation. 
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This study found a non-significant decrease in Blink Rate and non-significant increase in Inter-Blink 

Interval for the PD group, indicating mild bradykinesia of oculomotor muscles. For these 2 measures, 

the RBD group had intermediate scores between Controls and PD. The PD group had a significantly 

decreased Blink Amplitude compared to RBD (RBD 166.58mV ± 58.02, PD 108.51mV ± 35.65; p=0.014), 

though the Control amplitude was similar to that of RBD (152.37mV ± 58.27).  

 

This decreased motor amplitude and reduced blink rate are hallmark bradykinetic features reported 

in other studies (Alarcón et al., 2020; Kimura et al., 2017; Korosec et al., 2006), but as always there is 

complexity to their physiological relevance. The link between SBR and dopamine is often investigated 

under pharmacological interventions or disease states, which may not recapitulate endogenous 

mechanisms as evidenced by recently PET imaging studies (Dang et al., 2017; Sescousse et al., 2018). 

Additionally, the heterogeneity of PD aetiology and treatment responses has led to conflicting 

spontaneous blink results: blink amplitude is increased in Parkin mutation carriers (Helmchen et al., 

2006) and there are often reported to be ‘high’ and ‘low’ blink groups within a single PD cohort 

(Kimber & Thompson, 2000; Kimura et al., 2017; Korosec et al., 2006). Indeed, in this study several PD 

participants exhibited a much higher Inter-Blink Interval than their peers. Another consideration for 

this study is the use of dopaminergic medications within the PD group. Iwaki et al. demonstrated blink 

index correlates with plasma levodopa levels in a small sample of people with PD (n=3) (Iwaki et al., 

2019). Given that most of the PD participants in this study were taking PD medications, it is likely that 

the disease phenotype was rescued to some degree. 

 

The final spontaneous blink feature explored was any evidence or impact of PD laterality on blink 

dynamics. This was investigated by looking at the simultaneous blink initiation of the left and right 

eyes and determining any aberrant coordination. These investigations were exploratory and assessed 

two features: whether a blink was initiated by the left eye, right eye or simultaneously and how long 

the delay was in blink initiation between the eyes. 

 

In all groups a similar proportion of blinks were initiated simultaneously. The PD group had a 

significantly decreased proportion of blinks initiated by the left eye compared to Controls, and a 

corresponding non-significant increase in proportion of blinks initiated first by the right eye. When 

non-synchronous blink initiations were further considered, the PD group had an increased delay in the 

initiation of left eye compared to RBD and Controls, but there was no clear differences for right eye 

delay.   
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These asymmetric changes to blink initiation did not appear to be linked to unilateral PD presentation 

upon further analysis: the ‘Left Side Affected’ group exhibited shorter delay durations for both the left 

and right eye blink initiations compared to ‘Right Side Affected’ PD participants. This suggests that 

motor symptom laterality does not affect blink initiation. It is likely the differences identified between 

the ‘Left’ and ‘Right Side Affected’ group is due to high within-group variance and small sample size. 

The standard deviations for the blink initiation delays were relatively large (8-15ms) compared to the 

mean values, which indicates high variance in the individual participant measures. Additionally, there 

was only an n=5 in the ‘Right Side Affected’ group, with the majority (n=10) classified as ‘Left Side 

Affecting’: the analyses are therefore imbalanced and likely to be skewed by high variance.  

 

Sleep REMs, but not SEMs, Show Bradykinetic Trends 
Finally, sleep eye movements were analysed to test whether bradykinetic symptoms were evident 

across behavioural states. Eye movements of REM sleep were chosen as they are the most prominent 

and best-characterised eye movements in sleep. Rapid REM eye movements (REMs) are also thought 

to be under the control of cholinergic (and to a lesser extent serotonergic and catecholaminergic) 

mechanisms and thus could offer an insight into non-dopaminergic dysfunction in a PD and RBD 

population, without any rescue of phenotype associated with medications.  

 

When all REM eye movements were considered, there was a non-significant decrease in Amplitude 

for the PD group and a non-significant increase in Inter-Eye Movement Interval and decrease in 

Within-Cluster Eye Movement Density, indicating decreased eye movements and mild bradykinesia 

impacting sleep eye movements in PD. The PD group also had a slight increase in the number of eye 

movements classified as SEMs. One previous study has reported decreased REMs density in middle-

stage PD and to a lesser extent early-stage PD (L. A. Schroeder et al., 2016) which aligns with the results 

presented here. It is important to note that the equivalent REM density calculated in this study 

(referred to as ‘Within-Cluster Peak Density’ with a corresponding Inter-EM Interval Duration) is 

calculated not as number of eye movements divide by total REM time, but instead is calculated 

according to the occurrence of REMs within clusters or bursts. The calculation used here was selected 

as it reflects the periodicity of phasic REM and therefore should be an accurate reflection of REM burst 

dynamics. 

 

The REM eye movements were split according to their classification as REMs or SEMs and analysis was 

repeated. The SEMs did not have clear differences between any groups and therefore mechanisms of 

slow eye movements during sleep appear to be unaffected in PD. The REMs analysis again revealed 
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non-significant decreased Amplitude and increased Up-Phase Duration for the PD group, though there 

was no change in the REMs density.  

One explanation for lack of clear changes to REM eye movements in either RBD or PD disease states 

may be the extent of neurodegeneration in neuronal populations controlling sleep EMs. Interestingly, 

one of the distinguishing features of the REMs-modulating nucleus papilio neurons which act upon 

the abducens is the expression of calbindin (Gutierrez Herrera et al., 2019). Calbindin is a calcium-

binding protein which regulates intracellular Ca2+ concentration- a function of interest given the 

involvement of  Ca2+ in neurodegeneration and alpha-synuclein regulation (Rcom-H’cheo-Gauthier et 

al., 2016). Histological studies show relative sparing of calbindin+ neurons in the SNpc (Yamada et al., 

1990) and experimental models of PD (Inoue et al., 2019), and calbindin+ neurons have been identified 

in the REM EM-linked PPT/LDT complex as well as other REM sleep brainstem nuclei (Bhagwandin et 

al., 2013; Martinez-Gonzalez et al., 2014). Though speculative, it may be that the REMs-controlling 

nuclei have some neuroprotective feature, such as calbindin expression, which retains their function 

in spite of other PD degenerative processes.  

 

Conclusions 

The results detailed in this chapter show robust, large-scale motor changes in the PD population, 

confirming the expected clinical findings and the utility of this cohort as typical of early PD. None of 

the individual motor measures distinguished the RBD group from controls, highlighting the 

requirement for more sensitive and discriminating tests. To this end, I developed methods to 

objectively quantify both waking and REM sleep eye movements based on my EOG recordings. Small 

and variable changes to eye movement motor function for either RBD or PD groups did not provide a 

basis for classification based on group differences, but did generate measures that can be integrated 

with other modalities with a view to developing more accurate prognostic tests. 
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Chapter VIII: Developing Models for Prognosis Prediction in RBD 
 

“Through the practice of clustering, sorting, and predicting human behaviour and action, these 

[machine learning] systems impose order, equilibrium, and stability to the active, fluid, messy, and 

unpredictable nature of human behaviour and the social world at large.” 

  (Birhane 2020) 

 

Prognostic models can be used, to varying extents, to take both related and seemingly disparate 

information about an individual and make a risk prediction about the likelihood that they will end up 

at one health outcome as opposed to another. Such models hold incredible promise, but are 

accompanied by a range of methodological and ethical considerations which must be reflected upon 

from the earliest stages of model development. 

 

Introduction 

The previous chapters of this thesis quantified potential prognostic factors – that is, they sought to 

identify group differences between Control, RBD and PD participants in a range of novel and 

established variables, under the hypothesis that prognostic biomarkers could be uncovered.  The 

relationship between these variables and the disease state of study participants has been statistically 

tested to make inferences about the extent and impact of synuclein pathology in participants with 

RBD and PD. The results from previous chapters found scaled group differences from Control to RBD 

to PD in clinical assessment measures (olfaction, psychopathology, cognition) and electrophysiological 

measures (heart rate variability, eye movement characteristics), suggesting these changes are 

synuclein-associated and have potential to be prognostic factors, or biomarkers. The choice of 

variables studied thus far has been informed by current understanding of PD pathophysiology and the 

available literature: they are therefore limited by the imaginations and analytical capabilities of human 

researchers. Inside healthy and disease state bodies are millions of unexplored unknowns. 

 

The variables explored in the previous chapters have been mainly studied within isolated functional 

domains such as olfaction, motor function and sleep profile. Isolating variables within functional 

domains is useful to understand the pathophysiology of disease, where changes in features can be 

linked to dysfunctional biological mechanisms. However, by its very nature it can isolate related or co-

occurring mechanisms from one another. This compartmentalisation of data into functional domains 

ignores the inherent complexity of human biology and reinforces reductionist assumptions, rather 

than considering a holistic, systems-based view of the body in health and disease. 
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This chapter moves beyond group differences and explores how combining biomarkers in prognostic 

models can lead to unbiased, personalised disease course prediction. It also details pilot investigations 

to move beyond human-identified biomarkers and enlists machine learning to predict RBD disease 

course. 

 

The Journey to predicting prognosis 
The ability to predict disease course and provide an individual with a prognosis carries immense 

weight and responsibility. Ageing populations and advancements in healthcare had led to an increase 

in relevance and interest for prognostic tools. However, until recently the field of prognostic research 

had been fragmented and lacked the unified methodological and quality reporting standards of other 

fields such as epidemiology or clinical trials, limiting the progress of the field (Riley et al., 2013).  The 

PROGRESS group have produced the following recommendations (amongst others) to inform efforts 

to research and develop prognostic tools in light of current issues within the field: 

 

• Registration of prognostic research on publicly-available sites: “Publication bias is common in 

prognosis research” 

• Improved patient and public involvement: “Questions of prognosis are among the most 

important to patients, but the level of patient and public involvement in prognosis research is 

low” 

• Prospective study design allowing for controlled and well-phenotyped cohorts: “Poor quality 

of primary studies has limited the conduct, design and interpretation of systematic reviews of 

prognosis research” 

• Increased replication studies are required to add validity to published prognostic 

factors/biomarkers: “Single studies (i.e. without replication) are commonly published on a 

prognostic factor, a prognostic model or a predictor of differential treatment response. Such 

practice is not accepted in other fields, such as genome wide association studies” 

• Improved standards in statistical methods in prognosis research: “Statistical analyses are too 

often deficient in prognosis research; including multiple sources of ‘significance chasing bias’, 

lack of appreciation of type II errors arising from small sample sizes, and the arbitrary 

dichotomisation or categorisation of continuous variables” 

(Riley et al., 2013) 
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Evaluating risk for a health outcome and predicting disease course first requires an understanding of 

the natural disease course and impacts of current treatment interventions on prognosis. The 

identification of robust prognostic factors and development of prediction models follows. Initial 

prediction models must undergo internal validation (via bootstrapping or cross validation) before 

external validation and evaluation of the clinical impacts of the model (Steyerberg et al., 2013).  

 

This study investigates isolated RBD disease course and prognosis under the understanding that the 

majority of people with isolated RBD will develop an alpha-synucleinopathy (73.5% after 12 years 

(Postuma et al., 2019)), and under the assumption that current RBD healthcare (medications and 

behavioural recommendations) does not alter the disease course for patients in any way. Established 

and novel prognostic biomarkers have been identified using between-group statistical analyses. 

Prognostic models are reported in this chapter which have undergone internal validation. External 

validation and assessment of clinical impact of the prognostic models detailed herein is beyond the 

scope of this thesis and serves as future directions for this work.  

 

Methods for predicting prognosis 
Prognostic models can use regression or classification or to predict disease course (Steyerberg, 2019). 

Both regression and classification can be achieved using statistical models or machine learning models. 

Statistical models are typically optimal for inference tasks to understand or test a small number of 

relationships, whereas machine learning has higher predictive power in the face of complex 

interactions and non-linearity by integrating a large number of variables (Bzdok et al., 2018). The 

choice of either approach depends on the data available and the assumptions of the models. 

Explainability and interpretability are compromised by predictive power and so the aim and context 

of the analysis must be carefully considered. 

 

The most commonly used prognostic models in the biomedical field are statistical regression analyses 

(Steyerberg, 2019). Applying machine learning within the context of RBD has predominantly been for 

RBD detection and diagnosis as opposed to prognosis (Brink-Kjaer et al., 2022, p.; D. A. Lee et al., 2022; 

Salsone et al., 2022). This reflects several outstanding challenges within the field of RBD and 

synucleinopathy research, and the appetite to address them: the under-diagnosis of RBD (especially 

in women); the relatively time-consuming and cumbersome current diagnostic procedures for RBD; 

the uncertain but probable increased severity of PD disease progression in those individuals with 

PD+RBD which requires further investigation; limitations to current understanding of PD 

heterogeneity and subtypes. 
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Statistical models to predict RBD prognosis 
Statistical models are useful tools for prognosis as they can test and describe relationships between 

variables and have high explainability and interpretability – that is, it is easy to understand how the 

models work and where the important relationships lie. In a clinical setting, this has clear advantages 

as it can guide which prognostic markers are assessed and gives insight into underlying pathology. 

Limitations of statistical methods vary depending on the model, but their power is often constrained 

by the number of input variables. 

 

The field of RBD prognostic research is still relatively new and therefore the number of published 

studies is small. The majority of those studies have been longitudinal and have enlisted statistical 

survival analyses to predict RBD disease course. Table 8.1 details the domains investigated and specific 

predictors for phenoconversion from RBD to alpha-synucleinopathy.  

 

These studies predominantly use univariate Kaplan Meier survival curves to visualise the duration of 

event-free ‘survival’ time (e.g. duration of RBD before phenoconversion) and Cox Proportional Hazards 

analysis (univariate or multivariate) to describe the influence of specific variables upon event-free 

survival time.  

 

For prognostic modelling, linear regression models such as the Cox Proportional Hazards the 

relationship investigated is usually between time-to-event and some symptom. By testing the 

relationship between time and symptom presentation (e.g. motor score), inferences about the 

progression of diseases and risk of event-occurrence can be made. In combination with knowledge of 

disease course ‘event’s, such as date of hospitalisation, or a serious fall, regressions can also be used 

to predict ‘time to events’ based on past observations. The nature of regressions means they are best 

suited to forecasting continuous measures (such as the progression of a symptom, duration of an 

illness) and have limited capability to classify definitively, although classifications may be derived from 

regression outputs by imposing a decision rule (cut-off criteria). 

 

The studies detailed in Table 8.1 demonstrate how a combination of clinical, electrophysiological and 

neuroimaging biomarkers can have high predictive value for RBD phenoconversion. However, it is 

important to note that identified prognostic biomarkers are not always consistent between studies, 

and even sometimes directly contradict one another (Iranzo et al., 2017; J. Zhou et al., 2017). Similar 

methods have been used to predict risk of PD development in healthy populations (Noyce et al., 2014) 

and PD progression in PD subtypes (F. Chen et al., 2021; De Pablo-Fernández et al., 2019; R. Kim et al., 

2019), with similarly variable results. 
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The results from these regression analyses reinforce our understanding of the targets and symptoms 

of synucleinopathic degeneration and are useful for investigating risk of phenoconversion over time.  
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Authors Study Design Participants Analysis Explored factors Predictive factors 
(Ye et al., 
2020b) 

Longitudinal 
(mean 
follow up 5.1 
years) 

Baseline 
iRBD n=56 
Phenoconverted 
n=15; 
PD = 12 
DLB = 1 
MSA = 1 
Other dementia 
= 1 
 

Kaplan 
Meier; Cox 
proportional 
hazards; 
Stepwise 
forward 
logistic 
regression 
was used to 
evaluate the 
combination 
of variables 
that best 
predicted 
iRBD 
conversion 

Clinical Predictors 
Demographics; 
RBDSQ; UPDRS III; 
ESS; UPSIT; SCOPA-
AUT; GDS; MoCA; 
HVLT; JLO; LNS; SFT; 
SDMT 
CSF Markers 
alpha-synuclein; p-
tau; t-tau; AB; p-
tau/t-tau; t-tau/AB; 
t-tau/alpha-
synuclein; AB/alpha-
synuclein 
Genotype Markers 
TMEM175 
rs34884217 
SCN3A rs353116 
NUCKS1 rs823118 
SREBF1 rs11868035 
Neuroimaging 
markers 
GMV - IFG 

RBDSQ ≥ 8 
UPSIT 
GDS 
MoCA 
HVLT Total Recall 
TMEM175 
rs34884217 
SCN3A rs353116 
NUCKS1 rs823118 
CSF p-tau/t-tau 
GMV - IFG 

(J. Zhou 
et al., 
2017) 

Longitudinal 
(mean 
follow up 5.8 
± 4.3 years) 

Baseline 
iRBD = 179 
Phenoconverted 
n=50; 
PD = 50 
DLB = 21 
MSA = 2 

Kaplan 
Meier; Cox 
proportional 
hazards 

Clinical Predictors 
Demographics; ESS; 
depression; insomnia 
Sleep Variables 
TST; SE; SL; REM SL; 
NREM 1 %; NREM 
2%; NREM 3 %; REM 
%; WASO; AI; AHI; 
OSA; PLMI (NREM); 
PLMI (REM); PLMS 

ESS ≥ 14 

(Iranzo 
et al., 
2017) – 
rebuttal 
of (J. 
Zhou et 
al., 2017) 
 
 

Longitudinal 
(mean 
follow up 6.9 
± 4.3 years) 

Baseline 
iRBD n=214 
Phenoconverted 
n=84; 
PD= 35 
DLB = 38 
MSA = 2 

Kaplan 
Meier; Cox 
proportional 
hazards 

Clinical Predictors 
ESS 

No evidence of ESS ≥ 
14 influencing 
phenoconversion 
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(Postuma 
et al., 
2019) 

Multicentre, 
longitudinal 
(mean 
follow up 3.6 
years) 

Baseline 
iRBD n=1280 
Phenoconverted 
n=352; 
Parkinsonism = 
183 
Dementia = 153 
Probable MSA = 
16 

Kaplan 
Meier, Cox 
proportional 
Hazards 

Clinical Predictors 
Demographics; 
UPDRS III; UPDRS II; 
Olfaction; Colour 
vision; Insomnia; 
EDS; RLS; OSA; 
Constipation; 
Urinary dysfunction; 
Erectile dysfunction; 
Orthostatic 
symptoms; OH; 
MoCA; MMSE; MCI; 
Depression; Anxiety; 
MDS Prodromal 
Criteria 
Sleep Variables 
REM Atonia % 
Neuroimaging 
Markers 
Substantia Nigra 
Ultrasound; DAT 
scan (putamen) 

Quantitative motor 
testing 
UPDRS III 
Olfaction 
MCI* 
Erectile dysfunction 
Motor Symptoms 
Abnormal DAT scan 
Colour vision 
Constipation 
REM Atonia loss 
Age 
 
*only cognitive 
variables 
differentiated PD 
phenoconverters 
from DLB 

(Y. Li et 
al., 2017) 

Longitudinal 
(mean 
follow up 5 
years) 

Baseline 
iRBD n=43 
Phenoconverted 
n=18; 
PD = 9 
PD/MCI = 4 
DLB = 2 
MSA = 3 

Kaplan 
Meier, Cox 
proportional 
hazards 

Clinical Predictors 
Demographics; 
Smoking; 
Constipation; NMSQ; 
SCOPA-AUT; SS-16; 
RBDSQ; HAMD-17; 
MMSE; MoCA 
Neuroimaging 
Markers (DAT intake 
score) 
Putamen (total, left, 
right); caudate (total, 
left, right); striata 
(total, left, right) 

NMSQ 
SCOPA-AUT 
Left Striatum DAT 
intake score 
Putamen DAT intake 
score 

Table 8.1: Multivariate regression prognostic models for RBDPD phenoconversion. RBDSQ, RBD 

Screening Questionnaire; UPDRS III, Unified Parkinson’s disease Rating Scale Part III; ESS, Epworth 

Sleepiness Scale; UPSIT, University of Pennsylvania Smell Identification Test; SCOPA-AUT, Scales for 

Outcomes in Parkinson’s disease-Autonomic; GDS, Geriatric Depression Scale 15-item; MoCA, 

Montreal Cognitive Assessment; HVLT, Hopkins Verbal Learning Test; JLO, Benton Judgement of Line 

Orientation Test; LNS, Letter-Number Sequencing Test; SFT, Semantic Fluency Test; SDMT, Symbol 

Digital Modalities Test; GMV, gray matter volume; IFG, inferior frontal gyrus; TST, Total sleep time; 
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SE, sleep efficiency; SL, sleep latency; REM SL, REM sleep latency; AI, arousal index; AHI, apnoea 

hypopnoea index; OSA, obstructive sleep apnoea; PLMI, period leg movement index; PLMS, periodic 

leg movement syndrome; EDS, excessive daytime sleepiness; RLS, restless leg syndrome; OH, 

orthostatic hypotension; MMSE, mini mental state exam; MCI, mild cognitive impairment; NMSQ, 

non-motor symptom questionnaire; SS-16, Sniffin’ Sticks 16 item; HAMD-17, Hamilton Depression 

Rating Scale 17 item 

 

Machine learning models to predict RBD prognosis 
Statistical models have clear applications in a clinical prognostic context but are not without their 

limitations. Machine learning models are in their essence applied statistics, whereby a model ‘learns’ 

which associations or features are most important in a dataset without explicit instruction. Both 

regression and classifiers can be used in machine learning. Of particular relevance to prognostic 

prediction are classifiers. Classifiers can be used to predict the discrete categorical class an observation 

belongs to, such as the health outcome of an individual. The outcome class might be binary 

(phenoconverter or not) or multiclass (no phenoconversion; phenoconvert to PD; phenoconvert to 

DLB; phenoconvert to MSA). 

 

Classifiers form the basis of many supervised machine learning algorithms, whereby a model is trained 

on existing labelled data and the trained model can be used to predict the label, or class, of new data. 

In contrast, unsupervised machine learning models take in a training dataset of unlabelled data, and 

identify patterns within the data (‘data mining’) to come up with classes which can then be used to 

label test data. The aim in either supervised or unsupervised scenario is to develop an algorithm 

capable of repeatedly classifying data with a high accuracy.  

 

Machine learning classifiers have been shown to have superior predictive capabilities compared to 

statistical models, and are better-suited to large datasets with highly complex and nonlinear features. 

This makes machine learning models an attractive method in the case of living systems. However, 

machine learning model outputs are less ‘explainable’ and ‘interpretable’ than statistical models in 

many cases, especially in unsupervised models. This can make it difficult to understand what features 

are most informative for the prediction and limit the clinical applicability.  

 

Clinical machine learning classifiers have received perhaps the most recognition for their application 

to the field of cancer diagnostics and prognostics (Koh et al., 2022), but recent years have seen 

machine learning gaining ground in the disciplines of neurology and psychiatry (Burgos & Colliot, 

2020). In the field of Alzheimer’s disease (AD) research, machine learning has been used to classify 
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individuals into Control, MCI and AD classes (Samper-González et al., 2018) and, relevant to this thesis, 

predict which individuals with MCI would go on to develop AD (Moradi et al., 2015). In a similar vein, 

(H. Zhang et al., 2018) utilised T1-weighted and FLAIR MRI data and Random Forest machine learning 

models to predict prognosis for individuals with clinically isolated syndrome to either a multiple 

sclerosis outcome or no disease conversion, with 84% accuracy. 

 

While statistical methods, namely survival analysis and regression, have been commonly explored for 

RBD prognosis, there has been little application of machine learning to the issue. In fact, the only 

publication to date has explored the use of machine learning classifiers for isolated RBD prognostic 

prediction. (Ruffini, Ibañez, Castellano, et al., 2019) used complexity features of resting-state EEG to 

train a model for the binary classification task of Control vs. RBD converters (PD+DLB) achieving an 

accuracy of 73% (sensitivity 72% and specificity 75%).  

 

Other relevant research has focused on the classifying people with prodromal or early-stage PD from 

Controls. (Prashanth et al., 2016) used input manual features of RBD, hyposmia, CSF markers and 

dopaminergic striatal binding rate (SBR) to test a variety of classifiers for Control vs. PD classification. 

They found that all classifiers achieved accuracy >94% to classify cases as Control or PD, with a Support 

Vector Model (SVM) achieving the best accuracy (96.40 ± 1.08). (Cesari et al., 2021) used automatic 

feature extraction from EEG data to achieve classifier performance metrics of >80% for predicting RBD 

in PD cohorts. 

 

There is clearly potential for machine learning prognostic models in a prodromal synucleinopathy 

context, however this line of enquiry is still in its infancy. None of the above studies report using RBD 

test data and predicting the disease state of those individuals.  
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Rationale and Hypothesis 

This chapter describes preliminary strategies for advancing from prognostic biomarker identification 

to prognostic prediction. A machine learning classifier approach was selected as it allowed for the 

holistic, multivariate investigation of which measures, or features, are most informative to 

differentiate early-stage PD from Controls.  

 

I hypothesised that machine learning models would be able to classify Control and PD participants 

with a high accuracy and this trained model could be used to classify RBD participants according to 

their disease course, or prognosis. 
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Methods 

The analyses detailed in this chapter were completed by Amarpal Sahota (PhD student, UKRI Centre 

for Doctoral Training in Interactive Artificial Intelligence, University of Bristol), with input from myself. 

 

Overview of the classification task 
The aim of these analyses was to determine which features (clinical assessment measures, 

electrophysiological measures, or a combination of both) would be most informative for the binary 

classification task of predicting whether a dataset belonged to a Control or PD identity. Then, the best 

performing model would be trained on all the Control and PD data available, and the RBD group data 

would be inputted. The output would be a label for each RBD participant, in effect predicting their 

disease course.  

 

Feature Sets 
Three ‘feature sets’ were established, containing either: 

• Clinical assessment data 

• Electrophysiological data (ECG-, EOG- and EEG-derived measures) 

• Clinical assessment and electrophysiological data combined 

Variables, or features, which were deemed to be physiologically irrelevant (for example: marital 

status, past profession) or which would bias the classifier (for example, UPDRS III total score, Levodopa 

Equivalent Daily Dose) were removed from the input feature sets for fair model training. The 

electrophysiological feature set did not include any measures of sleep microarchitecture (for example, 

the regional bandpowers) as this requires data integration beyond the scope of this thesis. The feature 

sets therefore contain only measures manually extracted from the raw data. 

 

Classification Models 
Four machine learning classification methods were chosen based on their high-performance, ability 

to fit non-linear data, explainability and relatively simple implementation: 

• Decision Tree (DT) 

• AdaBoost with Decision Tree base model (AdaBoost) 

• Support Vector Classifier (SVC) 

• Random Forest (RF) 

Model hyperparameters were chosen automatically using Grid Search during the model cross-

validation (see analysis pipeline below). The parameter grids were chosen by varying the key 
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respective algorithm hyper-parameters and obtaining a trade-off between run time and an exhaustive 

search of the complete hyper-parameter space. 

 

The aim of testing four models was to determine which one had the best performance metrics for the 

task and data type. 

 

Analysis Pipeline for Binary Classification Task 
A feature selection method was used to reduce the number of input features into the models to avoid 

overfitting (and thus improve performance metrics). The ANOVA F-value for each feature was 

calculated using the f_classif function in the Python sklearn library (Pedregosa et al., 2011). The top n 

features (either 3, 5, 10, 15, 20, 30 or 50) were implemented for all classifier models to determine the 

optimum number of input features. The above n feature sets (3-30 features) were selected so that a 

range of input features could be explored without an exhaustive search of every feature combination. 

The input feature set was input into each classifier model. A five-fold cross-validation with two 

different random seeds was performed, wherein the dataset was split into 5 feature sets. The data 

was trained on 4 of the sets and tested on the 5th. Grid Search was completed on the 4th fold for 

hyperparameter tuning.  

 

Any missing feature values (for example, if the results for a test were missing for a participant) were 

imputed with the group mean of the training data as part of the pipeline. By imputing from only the 

training data, cross-contamination between the training and test dataset was avoided. Following 

imputation, the training data was standardized.  

 

Each classifier model (DT, AdaBoost, SVC, RF) therefore had 10 results (five-fold cross validation 

repeated two (two random seeds)). For each of these 10 results, the performance metrics of Accuracy, 

Precision and Recall were calculated. The overall performance of each model was determined by 

calculating the weighted mean for each of the respective metrics plus the standard deviation.  

This binary classification task provided an estimation of the certainty with which PD participants could 

be differentiated from Control participants and an insight into how relevant the results from the RBD 

classification task would be.  

 

Predicting RBD Prognosis and Determining Feature Importance 
For the prediction of RBD class (Control or PD), the entire Control and PD datasets were used to train 

the top-performing models from the Control vs. PD binary classification task (above). Models were 

fitted using Grid Search cross validation. The entire dataset for the Control and PD datasets was used 
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for training so the models are able to learn from all of the data available before classifying the RBD 

participants. 

 

The outputs for the RBD classification was a probability metric per participant, which was then 

binarised: 0<0.5 would be classified as Control, 0.5>1 would be classified as PD. 

 

The most informative features (based on the ‘feature importance’ metric) for classification were 

extracted from the models and are reported in the results section. 

  



 268 

Results 

Performance Metrics for Binary Classification of Control and PD Participants 
Clinical Assessment Feature Set 
The top performing models trained on the clinical feature set are shown in Table 8.2. The best 

performing classifier was the AdaBoost with 3 input features, achieving an accuracy of 83% ± 11.  

 

Model 
Feature 
set (n) 

Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

AdaBoost 3 83 ± 11 88 ± 16 81 ± 20 
Support 
Vector 

Classifier 
5 83 ± 11 86 ± 15 84 ± 21 

Random 
Forest 

5 82 ± 15 78 ± 29 79 ± 31 

Table 8.2: Top performing binary classifier models (Control vs. PD) for the clinical assessment feature 

set. 

The combination of three features used for classification in the top-performing AdaBoost model was:  

• Sniffin’ Sticks Score 

+ 

• BDI Total Score 

+ 

• SCOPA-AUT Gastrointestinal Subscore 

 

Electrophysiological Feature Set 
The top performing models trained on the electrophysiological feature set are shown in Table 8.3. The 

best performing classifier was the AdaBoost with 30 input features, achieving an accuracy of 79% ± 

15.  

Model 
Feature set 

(n) 
Accuracy 

(%) 
Precision 

(%) 
Recall (%) 

AdaBoost 30 79 ± 15 76 ± 29 73 ± 34 
Decision Tree 15 75 ± 15 73 ± 20 77 ± 27 

AdaBoost 50 74 ± 13 79 ± 21 71 ± 22 
Table 8.3: Top performing binary classifier models (Control vs. PD) for the electrophysiological 

feature set. 
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The following features were included in the top-performing model: 

ECG-derived measures EOG-derived measures EEG-derived measures 

Wake High Frequency power 
Wake Blink Up-Phase 

Gradient 
Sleep Stage Transition Counts 

NREM 3 Heart Rate Variability 
(Time Domain and Non-Linear 

Measures) 

REM Eye Movement % 
REMs/SEMs 

Sleep Stage Transition 
Probabilities 

NREM 2 Heart Rate Variability 
(Non-Linear Measures) 

REM REMs Duration 
Tonic REM Percentage (Total & 

First Episode) 
REM Heart Rate Variability (Non-

Linear Measures) 
REM Cluster Density Sleep and NREM 2 Latency 

Table 8.4: Electrophysiological features included in the top-performing AdaBoost model for the 

binary classification task (Control vs PD). The most informative feature (NREM2 HRV) is shown in 

bold. Features are rank-ordered to demonstrate feature importance as follows: 

  

 

 

Combined Clinical Assessment/Electrophysiological Feature Set 
The top performing models trained on the combined clinical assessment/electrophysiological feature 

set are shown in Table 8.5 The best performing classifier was the AdaBoost with 3 input features, 

achieving an accuracy of 83% ± 15. However, the 3 features used to achieve this performance were 

solely clinical assessment measures (Sniffin’ Sticks Score, BDI Total Score, SCOPA-AUT Gastrointestinal 

Subscore). The best performing model incorporating both clinical and electrophysiological data types 

was a Decision Tree with 5 input features, achieving accuracy of 83% ± 15. 

 

Model 
Feature set 

(n) 
Accuracy 

(%) 
Precision 

(%) 
Recall (%) 

AdaBoost 3 83 ± 15 87 ± 17 78 ± 25 
Decision Tree 5 81 ± 14 81 ± 22 80 ± 25 

Support 
Vector 

Classifier 
10 81 ± 12 78 ± 21 82 ± 18 

Table 8.5: Top performing binary classifier models (Control vs. PD) for the combined clinical 

assessment/electrophysiological feature set. 

 

 

 

Highest 
importance    Lowest 

importance 
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The combination of three features used for classification in the top-performing Decision Tree model 

was:  

• Sniffin’ Sticks Score 

+ 

• BDI Total Score 

+ 

• SCOPA-AUT Gastrointestinal Subscore 

+ 

• Tonic REM Percentage 

+ 

• N2 Heart Rate Variability (SD1:SD2) 

 

Summary 
For all feature sets classifier models with decision tree architecture (Decision Tree, AdaBoost) were 

best suited for the data and achieved the highest performance metrics. The performance metrics for 

the models did not necessarily improve when the number of input features was increased (Appendix 

Figures 1, 2 & 3). For the Electrophysiology feature set, performance metrics marginally increased with 

the addition of more features, whereas for the Clinical Assessment feature set and Combine feature 

set performance metrics plateaued and then declined with addition input features. 
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RBD Classification Results 
The RBD participant data was input into each of the top performing models detailed in the above 

results section: AdaBoost Clinical Assessment 3-Feature Model, AdaBoost Electrophysiological 30-

Feature Model, Decision Tree Combined 5-Feature Model. The probability outputs (i.e. probability of 

the individual having PD) and the binary classification (Control or PD) is shown in Table 8.6. 

 

 
AdaBoost Clinical 

Assessment 3-Feature 
Model 

AdaBoost 
Electrophysiological 30-

Feature Model 

Decision Tree Combined 5-
Feature Model 

Participant Probability Class Probability Class Probability Class 

RBD 1 0.53 PD 0.21 Control 0.14 Control 
RBD 2 0.53 PD 0.21 Control 0.14 Control 
RBD 3 0.03 Control 1.00 PD 0.00 Control 
RBD 4 0.06 Control 1.00 PD 0.16 Control 
RBD 5 0.98 PD 1.00 PD 0.95 PD 
RBD 6 0.98 PD 0.21 Control 0.95 PD 
RBD 7 0.07 Control 1.00 PD 0.14 Control 
RBD 8 0.03 Control 1.00 PD 0.00 Control 
RBD 9 0.87 PD 1.00 PD 0.87 PD 

RBD 10 0.87 PD 1.00 PD 0.95 PD 
RBD 11 0.99 PD 1.00 PD 0.87 PD 
RBD 12 0.94 PD 1.00 PD 0.88 PD 
RBD 13 0.87 PD 1.00 PD 0.87 PD 
RBD 14 0.87 PD 0.63 PD 0.87 PD 
RBD 15 0.98 PD 1.00 PD 0.95 PD 
RBD 16 0.15 Control 1.00 PD 0.33 Control 

Table 8.6: RBD classification results using the three best-performing models for clinical, 

electrophysiological and combined feature sets Prediction for Control class is highlighted in blue, 

prediction for PD class is highlighted in orange. 

 

Across the 3 models, the classification of RBD participants was inconsistent. The majority of 

participants were classified as ‘PD’, with half of participants consistently classed as PD, but there were 

inconsistencies in the predictions between the models. The other half of the RBD group were 

predicted Control or PD depending on whether the input feature set was Clinical Assessment data or 

Electrophysiological data. The clinical assessment and combined model predictions were most similar 

due to the high similarly in the input features.  
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Discussion 

This chapter reports proof-of-concept analyses demonstrating the utility of machine learning 

classifiers for RBD prognostic models. Such models also hold promise for providing direction to 

biomarker identification efforts (i.e. which functional domains to focus on) and for symptom-tracking 

in RBD (i.e. which measures should be assessed in-clinic).  

 

Utility of Clinical Assessment Features over Electrophysiological Features 
Of the three feature sets investigated, the highest-performing classifiers were those with input data 

from clinical assessment measures.Specifically, the Sniffin’ Sticks test, Beck Depression Inventory and 

SCOPA-AUT gastrointestinal subscore carried the highest feature importances, suggesting they are 

highly informative for classifying Control vs. PD individuals. The electrophysiological feature set 

achieved slightly lower performance metrics using a greater number of features (suggesting the 

predictive power of these features is lesser than clinical ones), with a range of EOG-, ECG- and EEG-

derived measures as input features. When clinical and electrophysiological features were combined 

into one feature set, the most informative features for classification remained those clinical features 

previously mentioned in combination with EEG- and ECG- derived measures. 

 

These results provide useful information for further work on RBD prognostic biomarkers. They show 

that for the prediction of RBD phenoconversion with early-stage PD as a comparator endpoint, a 

combination of relatively quick and inexpensive clinical assessment tests (2 questionnaires: BDI and 

SCOPA-AUT) and an olfactory function test (Sniffin’ Sticks 16-item test) can be used for relatively high 

predictive accuracy. Although symptoms such as olfactory dysfunction, depression and constipation 

are non-specific to the synucleinopathies, a combination of these measures in an RBD population may 

prove the most predictive for phenoconversion based on these classifier results. This compliments 

results from statistical models (Postuma et al., 2019; Ye et al., 2020b).  

 

Subtle, early-stage electrophysiological changes to heart rate variability, eye movement motor 

function and sleep macroarchitecture reported in Chapters 3-7 do not carry enough predictive power 

to be informative for classifier models: a large number of features (30) is required for classifiers trained 

on electrophysiological data alone to achieve similar performance metrics. The processing of 

electrophysiological data to extract the measures reported in this chapter is therefore a comparatively 

inefficient use of time. Electrophysiological measures may hold utility in a prognostic model extended 

to a multiclass classification task (Control, PD, DLB and MSA classes) to predict which synucleinopathy 
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will develop, but in a binary classification task of Control vs. PD they are less informative than clinical 

measures. 

 

Developing the Classifier Models Further 
For the binary classification task of predicting Control or PD class, the best performing models 

achieved accuracies of up to 80%, precision of up to 88% and recall of up to 84%. Using the AdaBoost 

Clinical Assessment 3-Feature Model as an example, on average the model made a correct 

classification 83% of the time, and thus an incorrect classification 17% of the time. 

 

A number of different models were run with a variety of architectures (DT, SVC, AdaBoost, RF) and 

feature inputs (feature sets of varying size e.g. 3, 5, 10, 15, 20, 30, 50). High input feature n was 

generally associated with lower model performance. One explanation is the extent of redundancy 

within the feature sets, some of which may not correlate with the rest of the features. This results in 

the models overfitting the data, decreasing performance. The large standard deviations for the 

performance metrics (often > ±20%), further attests to this overfitting by demonstrating highly 

variable performance within the same model. The total dataset for the STREEM study contains many 

similar measures (e.g. time, frequency and non-linear transformation of heart rate variability NREM 3 

sleep heart rate variability) which all provide nuanced information about disease state. However, if 

these features are largely uninformative, then they can overwhelm the smaller number of informative 

features thus skewing the model by increasing the probability that combinations of only irrelevant 

features will be selected in some nodes (Kubus, 2018). With an increasing number of low-relevance 

features which do not correlate with the classes, the model performance decreases (Kubus, 2018).  

 

Future development of these methods should include a more stringent feature selection step (such as 

recursive feature elimination to prune unimportant features from the dataset), and should explore 

dimensionality reductions of multi-collinear features (such as heart rate variability measures). In the 

analyses presented in this chapter, the ANOVA F-value was calculated to rank the features and feature 

sets of size n were generated based on these ranks. In hindsight, given that not all of the measures 

showed a normal distribution, a non-parametric ranking measure (e.g. chi-squared test) should have 

been used to select features. Conversely, dimensionality reduction methods can create new 

composite features from highly correlated features, using methods such as cluster analysis to return 

a single representative value or principal component analysis to identify representative components. 

However, these approaches can lack explainability given the data transformation, making the results 

less easy to interpret (Koutroumbas et al., 2008).  
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Another consideration with using machine learning models is their suitability for small datasets. The 

STREEM dataset contains a small number of participants and a large number of features, and thus is 

subject to the ‘curse of dimensionality’. One of the reasons to choose a machine learning method for 

a prognostic model was their ability to integrate a large number of features, many of which might be 

seemingly disparate. Thereby, the model takes a holistic approach to prognosis by ‘considering’ 

relationships between features which might be overlooked by statistical models. However, small 

sample sizes for a large number of features can lower model performance. When there are a large 

number of features for a small sample, the size of the training dataset is limited and the model 

performance is poor. Each additional feature reduces the predictive power of the models. 

Additionally, non-linear models such as those utilised in this thesis require larger datasets to achieve 

high accuracy. It can be difficult to determine the number of samples and features required for high 

model accuracy, as the relationship between feature size and sample size depends on the classifier 

chosen and the distribution of labels (Hua et al., 2005). Nonetheless, it is likely that the STREEM 

dataset contains insufficient samples (i.e. participants) to support complex classifiers with a large input 

feature n, another explanation for the degradation of model performance with increasing feature set 

n seen in the experiments within this chapter. Methods to address this include selecting fewer 

features, data augmentation to artificially increase sample size or collecting more data. Within the 

context of the STREEM study it is not possible to collect more data, and selecting fewer features did 

not massively improve the model performance. Therefore, future work should explore methods of 

data augmentation.  

 

RBD Classification using Machine Learning Models 
The best performing classifiers (3-Feature AdaBoost for Clinical Assessment features; 30-Feature 

Decision Tree for Electrophysiological Features; 5-Feature AdaBoost for Combined features) were 

trained on all available Control and PD data to achieve maximally-informed models, and then the RBD 

participant data was inputted for classification. The aim of this experiment was to test the 

methodology and to get an idea of the phenoconversion profile of the RBD participants. 

 

Half of the RBD participants were consistently classified as being in the PD class by the 3 models, while 

the remaining 8 participants were classed differently depending on whether Clinical Assessment or 

Electrophysiological feature sets were enlisted. These results may be due to heterogeneous symptom 

presentation within the RBD cohort, or the accuracy of the models. The classifiers used for the RBD 

predictions had accuracies between 79-84% and therefore it is probable that incorrect predictions 

were made.  
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Within the RBD cohort, one individual (RBD 16) has gone on to be investigated for potential PD. No 

other RBD participants have exhibited signs of phenoconversion and thus the models used in this 

thesis can be internally validated using train/test methods. The RBD 16 participant was predicted to 

be PD class by the AdaBoost 30-Feature Electrophysiological model with a high probability (1), but was 

predicted to be Control class by the two models most-informed by Clinical Assessment features. This 

isolated case might suggest that in fact, electrophysiological features should be used for prediction of 

PD phenoconversion. However, the RBD 16 participant actually failed to complete several of their 

Clinical Assessment questionnaires, including the BDI and thus their ‘missing’ answers were imputed 

with mean group scores. Therefore the clinical assessment profile of this individual in the dataset may 

not reflect their real-world symptoms. This missing data (a common occurrence in human research) 

and the statistical methods used to mitigate its effects are one example of the issues which can arise 

with small datasets, and the limitations of both statistical and machine learning models to provide 

accurate results in the face of compromised data.  

 

In a clinical setting, although a binarised output of ‘Will Phenoconvert/Won’t phenoconvert’ may be 

useful for a patient or clinician, scaling of this likelihood or scaling of the neurodegenerative process 

might be additionally beneficial. Besides the output of class prediction, the classifier models also 

output a probability score which is the probability of the unlabelled data (e.g. RBD individual) 

belonging to a particular class (in this case, the probability an individual belongs to the PD class). This 

probability score could potentially be transformed and used as a method for scaling the 

neurodegenerative process: individuals with a medium probability for PD might be in the very early 

prodromal stages, compared to someone with a high probability for PD who might be within a year of 

phenoconversion. This is an avenue well beyond the scope of this thesis, but is an interesting potential. 

The RBD class prediction experiments served as an interesting proof-of-principle and are an avenue 

requiring further exploration. Upon refinement of the models for the Control vs. PD binary 

classification task, future directions for the RBD prognosis should centre on clustering the RBD 

participants according to their predicted class (Control or PD) and exploring the phenotype of those 

two groups. This would lead to further understanding of RBD symptom presentation and disease 

course. 

 

Conclusion 

The methods described in this chapter are preliminary and exploratory. The utility of such classifier 

models has been demonstrated, but there is clearly much more work to be done to determine which 
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features are most informative and how appropriate, or ethical, prognostic machine learning models 

are in an RBD context.  
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Chapter IX: General Discussion 
When people receive a diagnosis of RBD, they face an uncertain future. There is currently no robust 

method for predicting whether phenoconversion to an alpha-synucleinopathy will occur, which alpha-

synucleinopathy will develop or when it will happen. If RBD disease course could be predicted with a 

high degree of certainty, cohorts of people with early-stage synucleinopathy could be established for 

clinical trials. Early detection would mean people with RBD could access early treatments as 

appropriate to improve their symptoms. Perhaps most importantly, people with RBD would have 

increased autonomy over their bodies and future. 

 

This thesis sought to identify novel biomarkers of RBD phenoconversion to PD for use within 

prognostic models. A broad variety of functional domains and physiological functions were 

investigated in a cross-sectional cohort of people with RBD, early-stage PD and healthy control 

participants. Several results from previous studies in similar cohorts were replicated – for example, 

olfactory dysfunction, increased depressive symptoms and minimal changes to sleep 

macroarchitecture in RBD and PD groups. Novel analyses of heart rate variability, eye movements and 

REM microstates in the three groups are reported in this thesis, with some avenues laying promising 

foundations for future research. Novel analytical techniques were used for EEG microarchitecture 

analysis, and this is one of the first studies to report the use of machine learning classifiers for 

prognostic prediction in an RBD cohort. 

 

The main findings of this thesis are as follows: 

 

• Early-stage PD is characterised by marked olfactory and affective dysfunctions and subtle 

electrophysiological changes (including decreased heart rate variability, bradykinetic wake 

and sleep eye movements, changes to wakeful and asleep brain activity) 

• The RBD group presented with scores in between the Control and PD groups for many features 

investigated, reflecting their intermediary disease state 

• The most informative biomarkers for classifying early-stage PD are olfactory function, 

depression scores and gastrointestinal measures  
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Strengths of the research 

Viability of research methods for a clinical setting 
One major strength of this project centres on the viability of the methods for a clinical setting. The 

data collection utilised standard clinical tests and neurophysiological recording techniques (e.g. 

polysomnography) which are easily-accessible in a UK and wider Global North healthcare 

environment.  

 

The diagnostic criteria for RBD requires a polysomnography study (American Academy of Sleep 

Medicine, 2014) and therefore collection of the wake and sleep electrophysiological data reported in 

this thesis is a standard procedure in people with diagnosed RBD. The scoring of the sleep data (i.e. 

identifying which parts of the data are respectively Wake, NREM 1-3 or REM) and extraction of sleep 

macroarchitecture metrics is required for the polysomnography interpretation by the clinician for 

diagnosis: therefore this most time-consuming aspect of the data processing is again standard in 

healthcare practice for people with RBD. The electrophysiological heart rate variability and eye 

movement analyses undertaken for this thesis are not standard procedure but are based on simple 

peak detection functions. There are commercial softwares which could be utilised in a clinical 

healthcare setting to complete these automated analyses if this was a suitable prognostic biomarker. 

 

The clinical assessments, which ranged from questionnaires about daytime sleepiness to fine motor 

skill assessment, were chosen for this study as they are commonly used in movement disorders or 

neurology specialties or would be easy to deploy in these settings. The analysis of these assessments 

largely consists of summing scores and therefore results are quickly available for the clinician. 

However, such assessments are not without their issues and often rely on self-report. For example, as 

evidenced in Chapter 4, participants were often unaware of any olfactory dysfunction, and should a 

clinician rely on self-reported measures for this biomarker they would miss an incredibly informative 

symptom. Another consideration for use of a battery of clinical assessments is the duration of each 

individual test and the summed time this would add to any patient appointments. Although speciality 

clinicians in the NHS are afforded longer appointments with patients than primary care physicians, 

finding additional time to formally test for prodromal symptoms may prove challenging.  

 

One of the difficulties in screening for biomarkers in people with RBD in a clinical setting is the lack of 

consensus in the literature or from Sleep Medicine professional bodies (e.g. the AASM) on which 

biomarkers (whether collected using participant-reported outcome measures or electrophysiological 

methods) are most informative for phenoconversion prediction (Roguski et al., 2020). This can lead to 
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variable symptom-tracking between clinicians and an unstandardised care path for patients. The 

preliminary results for feature importance of the many prospective biomarkers reported in this thesis 

suggest that a small number of clinical assessment measures (specifically olfactory function, 

depression and gastrointestinal function and fine motor function) are most informative to classify 

people with RBD as Control or PD. This provides a foundation for establishing a set of minimal 

biomarkers to standardise RBD patient care.  

 
Ecological validity and proof-of-principle for at-home high-density EEG polysomnography 
One of the concerns for clinicians, researchers, patients and participants alike are the impacts of the 

hospital setting during a polysomnography study. The ‘first night effect’ (sleeping poorly on the first 

night of a sleep study) and ‘reverse first night effect’ (sleeping better than usual on the first night of a 

sleep study) can both impact the validity of any results gathered and conclusions drawn from 

polysomnography (Byun et al., 2019; Ding et al., 2022). There are several ways to overcome this issue, 

such as including a ‘habituation night’ prior to the polysomnography recording night, essentially 

extending the study from a one-night to a two-night procedure.  

 

For sleep disorders with variable symptom presentation such as RBD, a one-night sleep study 

additionally risks not capturing the sleep behaviours of interest. Even the diagnostic criteria for RBD 

accounts for this – if no behaviours indicating RBD are recorded on during the polysomnography study, 

a diagnosis of probable RBD can be made based on a history of dream enactment behaviours 

(American Academy of Sleep Medicine, 2014). 

 

The STREEM study design sought to limit the above by 1) conducting the sleep studies at the 

participant’s own homes, 2) recording data on 2 consecutive nights for all participants, and 3) 

recording an additional consecutive 3rd night of data for participants with RBD (RBD or PD+RBD). The 

effectiveness of these measures was variable: non-significant, minimal reverse first night effects were 

seen in the RBD groups and non-significant, minimal first night effect was seen in the PD and Control 

groups. Nonetheless, collecting data on 2 (or 3) nights meant that the main sleep analyses could be 

conducted using data from the second night, which improves the ecological validity of the results 

reported. The third study design choice detailed above (to complete 3 nights of polysomnography in 

the RBD groups) was chosen to increase the chances of capturing RBD-specific behaviours, which I had 

proposed to analyse as a part of this body of work. However, it became clear relatively quickly that 3 

nights of sleep recording was logistically unsustainable (see Study Limitations below) and the study 

was amended to include just 2 nights of polysomnography in RBD groups. However, the inclusion of 2 
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polysomnography nights still doubled the chances of capturing RBD behaviours compared to 1 night 

of data collection, which is a positive. 

Ambulatory, at-home polysomnography studies with low-density electrode arrays have been used in 

previous studies in healthy/Control (Lecci et al., 2020; Pesonen et al., 2021; Wauquier et al., 1991) and 

PD cohorts (Pacchetti et al., 2003). This is one of the first studies to have conducted high-density EEG 

sleep recordings in a home environment (Studler et al., 2022), and to my knowledge the first to have 

done so in an RBD or PD cohort. Although this undertaking involved a steep learning curve and near-

constant adaptation to different home environments and troubleshooting, a large amount of high-

quality data was recorded for analysis. The choice to use a high-density set-up was guided by the 

potential for a wide variety of EEG analyses with high spatial resolution, most of which were 

unfortunately not possible to undertake for this thesis due to time constraints of the project. The high-

density data can be analysed in the future however, further building on the work presented in this 

thesis. Therefore, this study has shown that high-density EEG recordings are feasible in Control, RBD 

and early-stage PD populations.  

 

Besides the potential for collecting ecologically-valid electrophysiological sleep data (with high spatial 

resolution in the case of EEG), conducting the sleep studies at home also made participation in the 

research far more accessible for participants. Although participants were required to attend the 

clinical assessment appointment(s) at Southmead Hospital, Bristol (preference for weekend 

appointments was accommodated), the remainder of the study components (actigraphy, sleep study) 

were completed at their own home. No data was collected on whether this influenced people’s 

decision to participate in the research, but it is assumed this made study participation easier for 

people. In-hospital sleep studies require travel to and from the hospital and can be very disruptive to 

people’s daily schedules. 40% (n=21) of participants in the study were actively employed which would 

have strongly restricted the nights when they were able to undertake sleep studies had they been 

required to complete their sleep study in a hospital. At-home polysomnography meant they could 

complete their sleep study on a date which suited them and finish at a time in the morning which 

made it possible to adhere to any schedule restrictions in their day.  

 

Exploration of a diverse range of biomarkers in an early-disease state cohort 
This study succeeded in capturing a wide range of physiological and behavioural data in a cohort of 

aged and early disease-state individuals - thus, the aim of ‘deep phenotyping’ this population was 

achieved. There is rarely one single, neatly isolated symptom of any disease, yet diagnostic and 

prognostic research often focuses on single biomarkers. The reasons for this are often linked to 

economics: equipment costs and the cost of human time to collect, process and analyse data. But 
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there is also good reason to keep biomarkers simple and highly-specific: it minimises patient 

discomfort by reducing the number of tests or procedures they have to endure for a diagnosis; reduces 

duplication of efforts when one biomarker will provide the same predictive value as several 

biomarkers; and controls for the differential diagnoses that additional biomarkers might provide.  

In a condition such as RBD, where the prognosis could be one of several similar but distinct 

synucleinopathies, it makes sense to take an multimodal approach and identify a series of biomarkers 

which not only will be highly specific for synucleinopathy phenoconversion, but can be further 

stratified to predict the disease course to PD, DLB or MSA.  

 

The STREEM study took this multimodal approach, although the limitations of the study design by only 

including a PD comparator group should be kept in mind (see Methodological Limitations below). By 

including a variety of domains across the span of the prodromal and early-stage PD symptom profile, 

both clinical and electrophysiological features could be tested for biomarker potential. Exploring a 

wide range of functional domains also acted to acknowledge the heterogeneity of RBD and PD 

presentations within their respective populations. 

 

It was hypothesised that electrophysiological measures (brain activity, heart rate variability, motor 

function as measured with eye movements) would be able to detect subtle physiological changes in 

the RBD and PD groups that broad clinical assessments largely based on self-report (e.g. levels of 

anxiety) or subjective experimenter opinion (e.g. UPDRS III rating score) would be unable to capture. 

However, the opposite was found – the clinical tests detected far greater group differences than the 

electrophysiological measures. Any electrophysiological differences that were detected between 

groups had small-to-medium effect sizes if they were significant, or only appeared as trends in the 

data. These muted results may be due to compensatory mechanisms which mask the full extent of 

synuclein-related dysfunctions in early-stage PD (Blesa et al., 2017), or may be due to the fact that 

these functions are not markedly impacted in the earliest stages of PD. Another explanation may be 

the general health of the Control cohort, who although relatively healthy were of advancing age and 

between them had a constellation of medical histories. Although efforts were taken to control for 

covariates such as age, in a small cohort it can be difficult to account for all individual differences. 

Finally, many of the studies reporting clear group differences between PD and Control groups find that 

these differences are driven by cognitive function and impairment (Hanuška et al., 2019; Papp, 

Horváth, Virág, et al., 2022; Simon-Gozalbo et al., 2020; Zhang et al., 2020) - something which was not 

significantly different between the groups in this study.  
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The finding that clinical assessment measures were most informative for machine learning model 

performance on a binary Control vs. PD classification task (Chapter 8) provides a strong impetus to 

focus efforts on further developing prognostic models using these easily-collected measures. 

Additionally, it gives direction for the development of guidelines which could establish a minimal set 

of assessments required for symptom-tracking and prognosis of RBD individuals in the clinic.  

 

Replication of previous studies 
Prognostic RBD research is a relatively small field, but there is considerable overlap between the 

methods used. It is logical to investigate prodromal synucleinopathy symptoms in people with RBD, 

and thus it was inevitable that some of the assessment utilised in the STREEM study would have been 

previously explored in the literature. Chapters 3-8 detail the ways in which the STREEM study has 

replicated, or failed to replicate, selective findings of other studies. This is not however a limitation of 

the research, but is a considerable strength. Issues of replicability (or reproducibility) of research in 

biomedical science is deep-seated (Dirnagl et al., 2022; Munafò et al., 2022) and limits progress and 

true knowledge production. Unfortunately, small-cohort studies such as the STREEM research study 

(and much of the RBD literature, given the relative rarity of the condition) can contribute to these 

issues as the effects reported may not be due to disease state but rather experimental or 

observational conditions, specifics of the study design and characteristics of the cohort. Testing 

previous findings from the literature increases the external validity of such results and can reinforce 

the current understanding of the field. Many research studies focus on later-stage PD presentations; 

thus, the STREEM study extended our understanding of synucleinopathic degeneration to earlier 

stages of PD. 

 

Research, training, and personal development opportunities 
Research is not conducted in a vacuum, and it is important to remember that every study has 

implications beyond knowledge production for the immediate research field. 

 

The STREEM research study and this PhD provided me with the opportunity to develop skills in a wide 

variety of areas. I learnt how to design, secure approvals and manage a study co-sponsored by an 

academic institution and the NHS. I learnt to work with human participants, use a wide range of 

assessments and electrophysiological techniques and to develop my analytical knowledge with time 

series analyses.  

 

I also gained an incredibly valuable insight into how the problems which plague biomedical research 

and scientific development (unrepresentative study cohorts, small sample sizes, excessive data 
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collection and working largely independently) are reinforced as the status quo and supported by 

societal and institutional structures. My own oversights led to the STREEM research study falling into 

the same pattern and encountering the same issues as so many before (see Study Limitations section 

below). Although this could be viewed as a learning opportunity in itself, I firmly believe that more 

open and honest discussions about these issues in an academic setting and formal training would have 

been beneficial and helped to limit these issues in my own research. All research (whether it is 

theoretical, uses experimental animal models or human participants) should be planned and 

conducted with greater thought about the intended and unintended consequences that the work may 

have. In acknowledgement of this, I have done a considerable amount of personal reflection and co-

founded the Inclusive Research Collective which seeks to start these conversations and provide 

training to researchers on these topics.  

 

The dataset collected, analytical methods developed and thoughts prompted during my PhD research 

have provided training and learning opportunities for other research students. Five undergraduate 

students and one PhD student have directly benefitted from the work I have conducted for the 

STREEM research study, and in turn I have had the opportunity to work alongside other research 

students to develop my own understanding and skills. 

 

Finally, the STREEM study provided people with the opportunity to participate in research and to 

contribute to our understanding of RBD and synucleinopathies. Over the course of this research it was 

a privilege for me to work with the study participants, and I received feedback from many participants 

and their families that participating in the research had benefitted them- whether that was improving 

their confidence after a recent PD diagnosis or giving them hope for their future with RBD. 

 

Study Limitations and Challenges 

There are several limitations to the STREEM research study. 

 

Small sample size 
First, all participant groups have a small n, an issue endemic to the neurosciences (Button et al., 2013). 

Although the sample sizes obtained in the STREEM study are comparable to many other published 

research studies (Meles et al., 2017; Mondello et al., 2018; Valomon et al., 2021), they are still small 

and have the potential to impact the internal and external validity of the results. The reason for the 

small sample sizes is multifactorial.  
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To begin, an initial aim of achieving n=20 per group was considered realistic given the relatively short 

time frame of the study (and therefore, data collection period). Additionally, initially four groups were 

proposed, with two PD groups (n=20 PD with RBD, n=20 PD without RBD). The proposed sample size 

was therefore 80 participants in total, which in hindsight was optimistic for a study with many 

components (including hospital appointments, sleep studies) with only one researcher working on it. 

It became clear relatively early on that recruiting 20 people with PD+RBD with diagnosis <3 years from 

a single study site (NHS North Bristol Trust) would not be possible as there was not a large enough 

patient pool. The two PD groups were collapsed, reducing the sample size aim by a quarter. 

Nonetheless, recruiting n=20 for the RBD and PD groups was still challenging based on the patient 

pool at NHS North Bristol Trust and general burdens of study participation (indeed, 90% of trials fail 

to recruit sufficient numbers of PD participants (Vaswani et al., 2020)).  

 

The COVID-19 pandemic then required a suspension of the study activities for 7 months and had 

knock-on effects once the study restarted including reduced interest in research participation. 

Some of these limitations could have been avoided during the study design and planning stage. Some 

limitations are the result of unavoidable circumstances, including the COVID-19 pandemic and the 

time restrictions of a PhD project. 

 

The implications of a small sample size include a reduced probability of finding a true effect and 

exaggerated estimates of the magnitude of effect sizes (Button et al., 2013), and the results presented 

within this thesis should be interpreted in light of the small sample size.  

 

Lack of diversity in the study cohort 
As is common in many spheres of society, the STREEM study over-represented a minority of the 

general population (older men racialised as white) and under-served many identities in the true RBD 

and PD patient populations. As discussed in the Study Limitations of the manuscript presented in 

Chapter 4, although this is a common practice in biomedical research (certainly in the West), it has 

countless damaging impacts upon science, society and healthcare, ranging from the generalisability 

of results to reinforcing marginalisation of particular identities.  

 

The biased demographics of the STREEM study will be the result of many factors. Although Bristol is 

relatively diverse compared to other cities in the South West of England, the majority of the 

population (and therefore patient population of the NHS North Bristol Trust) identify as white British. 

Additionally, the majority of people diagnosed with RBD are men (ratio of ~9 men:1 woman (Olson et 

al., 2000)), and PD affects men slightly more than women (average ratio of ~1.5 men:1 woman, ratio 
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increases with age (Moisan et al., 2016; K. S. M. Taylor et al., 2007)). A defining characteristic of both 

RBD and PD is the development of the conditions in older age. Therefore the patient pool for potential 

participants was already skewed. Additional social impacts such as disengagement of particular 

communities from or under-representation of certain protected characteristics in healthcare and 

research environments (Kaiksow & Carter, 2022) means achieving a sample of participants with 

diverse demographics is a challenge inherent to biomedical human research. Aspects of the study 

design, such as the time and money required to travel to the hospital appointments, will have made 

participation inaccessible for some people. 

 

However, with thoughtful study design, patient and public involvement and engagement with local 

communities, research participation can be inclusive of many identities (Matsuda et al., 2016). 

Although patient & public involvement was sought at the design stage of the STREEM study, I 

acknowledge that measures to recruit participants with diverse identities were not sufficient within 

this study.  

 

On a final note, data on some protected characteristics, such as gender identity, religion or sexual 

orientation were not collected as they were not deemed directly relevant to the research objectives. 

I can therefore only comment on the demographics of participants which were collected, such as 

ethnicity, sex and indicators of socioeconomic status. 

 

Methodological limitations 
There are several methodological limitations that are worth highlighting.  

 

The first, perhaps most important methodological limitation is that this study only considers two 

disease courses for RBD participants: staying ‘healthy’, or phenoconversion to a PD diagnosis. 

However, this is not representative of the actual clinical outcomes for someone with RBD as in reality 

they could phenoconvert to PD, DLB or MSA. The comparator endpoint of PD was chosen for this study 

as it is the most common alpha-synucleinopathy developed in RBD cohorts (Postuma et al., 2019) and 

it would not have been feasible within the time frame of the PhD to examine multiple comparator 

groups. Nonetheless, the results reported in this thesis must be interpreted with the knowledge that 

some of the RBD group will go on to develop a different alpha-synucleinopathy, not PD. This may affect 

the individual presentation and RBD group scores in the study. The alpha-synucleinopathies do share 

many prodromal symptoms (Postuma et al., 2019), so it is still likely that those people with RBD in the 

study who might go on to develop DLB or MSA would exhibit symptoms more in-line with a PD 

presentation than a Control presentation. 
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As with all observational studies, there is the potential for the researcher’s presence to affect the 

behavioural and physiological measures collected from participants, whether due to test-anxiety 

(apprehension bias) or due to their own expectations of how they are expected to behave (Hawthorne 

effect) (Spencer & Mahtani, 2017). Blood pressure measures (Cobos et al., 2015), cognitive testing 

(Papantoniou et al., 2017) and sleep (Spira et al., 2009) can all be impacted by the anxiety and the 

knowledge of an observer. Although a large portion of the data collection took place in participant’s 

home environments, and the tone of the clinical assessment appointments was relatively relaxed and 

informal, it is still possible that the data collected from participant’s was biased by the overt nature of 

the study observations and data collection. 

 

Recall bias of participants is a limitation associated with the longer-term clinical assessment measures 

collected, especially from the RBD and PD groups. For example, participants were asked whether 

particular symptoms were present at the time of their diagnosis, which for some individuals was 3 

years ago. Although these reports were corroborated as best as possible with medical notes, this was 

not always possible. Thus, some measures collected may not be accurate. 

 

One comment on the feasibility of the at-home recordings needs to take into account the logistical 

limitations placed upon the researcher conducting the sleep study data collection. For example, data 

collection using specialist equipment (e.g. high-density EEG) in a participant home environment 

requires access to personal transportation as participants often will not live within easy-access of 

public transport. The number of sleep study nights initially proposed in the STREEM study was also 

unsustainable for one researcher working alone. In total, over 150 sleep study nights were conducted 

as part of the STREEM study, which is a fraction of what was initially proposed. One way to overcome 

these difficulties is to move away from equipment which requires a researcher to set it up, and instead 

use wearable devices designed for the general public to use. Examples include the DREEM headband 

(Arnal et al., 2020) and pressure sensing mats (Soreq et al., 2022), which can collect sleep-related 

metrics (from EEG to sleep staging). Of course, the data collected must be appropriate to address the 

study aims, but such technologies present an opportunity for longer-term data collection without 

over-burdening researchers.  

 

Finally, from a global perspective, not all of the methods used (especially polysomnography ones) are 

easily accessible and this limits the ability of some researchers to replicate or build upon the work 

presented in this thesis. For example, in a recent survey of 32 African countries it was found that 40% 
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of healthcare practitioners specialising in childhood epilepsy did not have access to EEG equipment 

(Kander et al., 2021), and in Bhutan EEG is almost inaccessible (McLane et al., 2015) (it is stated that 

there are 2 EEG machines in the country (Burton, 2015)). Again, comparatively inexpensive wearables 

hold promise to remove barriers to research and study replication in these instances. 

 

Limited longitudinal data  
As part of the study design, a 12-month follow-up was planned for all Control and RBD participants 

which would have allowed for testing of longitudinal, albeit short-term, symptom progression in the 

RBD group. The COVID-19 pandemic and study suspension impacted the capacity to complete this 

follow-up in all participants of the two groups and instead this data was collected in a subset of Control 

and RBD participants. This follow-up data has not yet been analysed due to time constraints of the 

PhD studentship. Any results from this data could serve as pilot data for future research but would be 

unable to provide strong insight into the progressive nature of RBD symptoms given the even more 

limited sample sizes. 

 

Given this short-term follow-up, it was also unlikely that any RBD participants would phenoconvert in 

the 12-month duration of the study which limited the ability to provide external validation of 

prognostic models reported in Chapter 8. 

 

Excessive data collection 
One final consideration of the STREEM study is perhaps not a limitation but rather a critical comment 

on the study management. In order to achieve a holistic insight into the RBD and PD disease states, a 

deep phenotyping approach was taken. However, this produced a vast amount of data which far 

exceeds the analysis capacities of one individual, especially in a training environment where much of 

the analyses enlisted were learnt from scratch. This data will hopefully be used for further analyses 

and can be utilised in student projects, but it is important to reflect on the increased burden collecting 

this data placed on participants and whether it was necessary.  

 

Future Work 

Future work can be divided into two sections: work which continues to analyse the existing dataset, 

and work which would require new data to build upon the analyses detailed within this thesis. 

 

The existing dataset from the STREEM study includes un-analysed actigraphy data (collected over 7 

days and nights), video and EMG (muscle tone) data from the at-home sleep study nights and sleep 
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and mood diary data. Additionally, the EEG data collected has been investigated largely from a 

macroarchitecture or high-level microarchitecture perspective. There are therefore many additional 

analyses which could be conducted to further investigate potential biomarkers for RBD 

phenoconversion, including circadian measures, sleep muscle tone metrics and detailed EEG analyses 

such as connectivity analyses or sleep-stage specific feature detection. 

 

Of course, the analyses detailed above would be subject to the same limitations as discussed in this 

thesis: small sample sizes, only PD disease course considered and limited longitudinal data availability. 

Having seen the potential, and limitations, of cohort studies such as this one, I think efforts should 

focus on establishing a minimal dataset of biomarkers within the RBD research field (perhaps based 

on the clinical measures which the STREEM study and others have shown are promising), which would 

enable large, multi-centre standardised data collection and would give clinicians a guideline for which 

features to look out for in their RBD patients. I think the machine learning classifiers explored 

preliminarily within this thesis hold great promise for prognostic prediction in people with RBD, but 

there needs to be a large amount of training data (including disease course endpoints) for these 

models to achieve the high performance necessary for ethical and appropriate use in a clinical setting. 

 

Conclusions 

In this thesis I have proven the feasibility of a dual clinic/at-home multimodal data collection study 

design utilising high-density EEG in three distinct study populations. I have identified several potential 

clinical and electrophysiological biomarkers for RBD phenoconversion to PD based on group-level 

analyses and have demonstrated how machine learning classifiers can be used to provide 

individualised prognostic predictions. I hypothesised that subtle electrophysiological changes caused 

by alpha-synuclein-related pathology would add predictive power to prognostic models and may be 

more informative than high-level assessments testing, for example, gross motor and cognitive 

functions. However, the most informative biomarkers for predicting RBD phenoconversion with 

internally-validated models were measures obtained through standardised clinical assessments 

including olfactory function testing and measures of depression, while individual electrophysiological 

metrics lacked predictive power. The results reported in this thesis have potential to impact clinical 

practice for predicting RBD prognosis. 
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Appendices 
Chapter III 

 
 
 Outliers Control 

◊ 
RBD 

† 
PD 
‡ 

Test 
Statistic 

p-value 
 Post-Hoc Effect Size 

BPM 
Included 

HC 18; RBD 
13; PD 13 

64.64 ± 
10.04 

66.84 ± 
10.08 

66.59 ± 
10.2 

F(2,41)=0.
226 

0.799a - 0.0109 

IBI 
Included 

HC 18; RBD 
13; PD 13 

949.61 ± 
148.99 

915.29 ± 
130.04 

921.5 ± 
146.67 

F(2,41)=0.
26 0.773a - 0.0125 

SDNN 
Included 

HC 16; RBD 
12; PD 11 

35.62 ± 
16.08 

25.89 ± 
9.83 

25.63 ± 
11.66 

F(2,36)=2.
616 0.087a - 0.127 

RMSSD 
Included 

HC 16; RBD 
12; PD 11 

22.25 ± 
13.21 

16.87 ± 
7.45 

14.91 ± 
7.16 

F(2,36)=
1.92 0.161a - 0.096 

SD1 
Included 

HC 16; RBD 
12; PD 11 

15.73 ± 
9.33 

11.93 ± 
5.27 

10.54 ± 
5.06 

F(2,36)=
1.92 0.161a - 0.096 

SD2 
Included 

HC 16; RBD 
12; PD 11 

45.96 ± 
21.48 

34.22 ± 
13.51 

33.56 ± 
16.14 

F(2,36)=
2.143 0.132a - 0.106 

S 
Included 

HC 16; RBD 
12; PD 11 

2083.94 
± 

1460.97 

1435.38 
± 

1025.56 

1205.49 
± 

896.69 

F(2,35)=
1.954 0.157a - 0.1 

SD1/SD2 
Included 

HC 15; RBD 
12; PD 11 

0.3 ± 
0.08 

0.36 ± 
0.14 

0.36 ± 
0.21 

X2(2,38)
=1.276 0.528b - 0.07 

LF 

Included 
HC 16; RBD 
12; PD 11 

425.79 ± 
456.28 

139.89 
± 

141.04 

182.16 
± 

208.03 

X2(2,39)
=5.646 0.059b - 0.05 

Removed 
HC 16; RBD 
11; PD 11 

425.79 ± 
456.28 

108.49 
± 94.17 

182.16 
± 

208.03 

X2(2,38)
=6.828 0.033b ◊ > † 

p=0.048 0.08 

HF 
Included 

HC 16; RBD 
12; PD 11 

194.68 ± 
172.42 

118.6 ± 
91.76 

65.21 ± 
58.43 

X2(2,39)
=5.736 0.057b - 0.048 

LF/HF 
Included 

HC 15; RBD 
10; PD 10 

2.66 ± 
2.06 

1.09 ± 
0.91 

2.66 ± 
2.02 

X2(2,35)
=4.49 0.106b - 0.02 

Table 1: Wake HRV measures and statistical analysis results. All values are given as mean ± standard 

deviation (SD). For p-values & statistical tests, a=One-Way ANOVA with Tukey HSD post-hoc, 

b=Kruskal Wallis one-way analysis of variance with Bonferroni post-hoc. 
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Outliers 
Control 

◊ 
RBD 

† 
PD 
‡ 

Test Statistic 
p-value 

 
Post-
Hoc 

Effect 
Size 

BPM 
Included 

HC 14; RBD 
14; PD 15 

61.26 ± 
9.66 

60.31 ± 
11.91 

58.67 ± 
9.7 

X2(2,43)=1.432 0.489 - 0.06 

IBI 
Included 

HC 14; RBD 
14; PD 15 

1009.07 
± 188.62 

1025.4633 
± 161.97 

1049.33 
± 155.75 

X2(2,43)=1.478 0.478 - 0.06 

SDNN 
Included 

HC 12; RBD 
12; PD 15 

58.36 ± 
39.77 

41.55 ± 
19.51 

38.06 ± 
16.22 

X2(2,39)=2.041 0.36 - 0.05 

RMSSD 
Included 

HC 12; RBD 
12; PD 15 

36.1 ± 
24.89 

28.49 ± 
13.96 

30.03 ± 
14.57 

X2(2,39)=0.254 0.881 - 0.1 

SD1 
Included 

HC 12; RBD 
12; PD 15 

25.52 ± 
17.59 

20.15 ± 
9.87 

21.24 ± 
10.31 

X2(2,39)=0.254 0.881 - 0.1 

SD2 
Included 

HC 12; RBD 
12; PD 15 

77.27 ± 
52.34 

53.79 ± 
26.21 

48.04 ± 
21.51 

X2(2,39)=2.582 0.275 - 0.04 

S 
Included 

HC 11; RBD 
12; PD 15 

5307.88 
± 

4747.63 

3988.58 ± 
3525.68 

3891.62 
± 

3428.23 
X2(2,38)=0.226 0.893 - 0.11 

SD1/SD2 
Included 

HC 12; RBD 
12; PD 15 

0.35 ± 
0.06 

0.42 ± 
0.16 

0.48 ± 
0.15 

X2(2,39)=4.51 0.105 - 0.01 

LF 
Included 

HC 12; RBD 
10; PD 13 

1642 ± 
1941.64 

1731.57 ± 
3107.64 

581.18 
± 

487.85 
X2(2,34)=1.084 0.582 - 0.09 

HF 
Included 

HC 12; RBD 
12; PD 14 

485.92 
± 

568.53 

842.47 ± 
1892.2 

423.31 
± 

363.75 
X2(2,34)=1.181 0.554 - 0.09 

LF/HF 
Included 

HC 12; RBD 
12; PD 15 

3.86 ± 
2.49 

3.45 ± 
2.59 

2.57 ± 
1.85 

X2(2,39)=3.12 0.21 - 0.02 

Table 2: NREM 2 HRV measures and statistical analysis results. All values are given as mean ± 

standard deviation (SD). For p-values & statistical tests, a=One-Way ANOVA with Tukey HSD post-

hoc, b=Kruskal Wallis one-way analysis of variance with Bonferroni post-hoc. 
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 Outliers Control 

◊ 
RBD 

† 
PD 
‡ Test Statistic 

p-
value 

 
Post-Hoc Effect 

Size 

BPM 
Included 

HC 12; RBD 
13; PD 13 

62.8 ± 8.29 61.46 ± 
12.79 60.7 ± 9.71 X2(2,38)=1.018 0.601 - 0.09 

IBI 
Included 

HC 12; RBD 
13; PD 13 

973.47 ± 
140.32 

1009.58 
± 171.98 

1012.03 ± 
148.55 F(2,35)=0.24 0.788 - 0.01 

SDNN 
Included 

HC 10; RBD 
11; PD 13 

39.22 ± 
26.71 

28.92 ± 
13.83 

30.32 ± 
13.86 X2(2,34)=0.183 0.913 - 0.12 

RMSSD 

Included 
HC 10; 

RBD 11; 
PD 13 

30.59 ± 
15.19 

24.91 ± 
14.04 

28.51 ± 
17.06 X2(2,34)=1.287 0.526 - 0.09 

SD1 

Included 
HC 10; 

RBD 11; 
PD 13 

21.64 ± 
10.75 

17.61 ± 
9.92 

20.16 ± 
12.06 X2(2,34)=1.287 0.526 - 0.09 

SD2 

Included 
HC 10; 

RBD 11; 
PD 13 

50.13 ± 
37.02 

35.94 ± 
17.35 

36.7 ± 
17.21 X2(2,34)=0.075 0.936 - 0.13 

S 

Included 
HC 10; 

RBD 10; 
PD 13 

4641.09 ± 
6155.5 

2107.95 
± 

1963.45 

2883.34 ± 
2737.13 X2(2,33)=1.248 0.536 - 0.09 

SD1/SD2 

Included 
HC 10; 

RBD 11; 
PD 13 

0.49 ± 
0.13 

0.5 ± 
0.19 

0.57 ± 
0.22 F(2,31)=0.588 0.561 - 0.037 

LF 
Included 

HC 9; RBD 
11; PD 11 

519.79 ± 
741.78 

270.04 ± 
261.71 

797.55 ± 
1102.23 X2(2,31)=1.856 0.395 - 0.07 

HF 

Included 
HC 10; 

RBD 11; 
PD 9 

407.81 ± 
362.43 

259.35 ± 
254.44 

538.2 ± 
602.1 X2(2,30)=1.602 0.449 - 0.09 

LF/HF 
Included 

HC 8; RBD 
10; PD 13 

1.11 ± 
0.56 

1.51 ± 
1.29 

1.81 ± 
1.69 X2(2,31)=0.356 0.837 - 0.13 

Table 3: NREM 3 HRV measures and statistical analysis results. All values are given as mean ± 

standard deviation (SD). For p-values & statistical tests, a=One-Way ANOVA with Tukey HSD post-

hoc, b=Kruskal Wallis one-way analysis of variance with Bonferroni post-hoc.  
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Outliers 
Control 

◊ 
RBD 

† 
PD 
‡ 

Test Statistic 
p-

value 
 

Post-Hoc 
Effect 
Size 

BPM 
Included 

HC 14; RBD 
13; PD 14 

63.87 ± 
8.85 

63.48 ± 
12.35 

60.77 ± 
8.99 

X2(2,41)=1.365 0.505 - 0.07 

IBI 
Included 

HC 14; RBD 
13; PD 14 

961.18 ± 
149.12 

973.34 ± 
149.74 

1009.24 
± 142.83 

X2(2,41)=1.365 0.505 - 0.07 

SDNN 
Included 

HC 14; RBD 
12; PD 14 

67.85 ± 
37.16 

53.72 ± 
21.74 

42.28 ± 
17.15 

F(2,22.75)=3.069 0.066 - 0.145 

RMSSD 

Included 
HC 12; 

RBD 11; 
PD 14 

29.22 ± 
15.38 

24.18 ± 
12.49 

27.58 ± 
14.98 

F(2,34)=0.362 0.699 - 0.021 

SD1 

Included 
HC 12; 

RBD 11; 
PD 14 

20.66 ± 
10.88 

17.09 ± 
8.83 

19.49 ± 
10.59 

F(2,34)=0.363 0.698 - 0.21 

SD2 

Included 
HC 12; 

RBD 11; 
PD 14 

77.55 ± 
37.59 

66.54 ± 
22.88 

54.62 ± 
24.1 

F(2,21.392)=1.82 0.186 - 0.107 

S 

Included 
HC 12; 

RBD 11; 
PD 14 

6498.79 
± 

5907.7 

4110.02 
± 

3471.7 

3792.67 
± 

3282.11 
X2(2,37)=1.147 0.563 - 0.08 

SD1/SD2 

Included 
HC 12; 

RBD 11; 
PD 14 

0.28 ± 
0.08 

0.26 ± 
0.11 

0.41 ± 
0.23 

F(2,21.396)=2.379 0.117 - 0.168 

Removed 
HC 12; 

RBD 10; 
PD 14 

0.28 ± 
0.08 

0.24 ± 
0.07 

0.41 ± 
0.23 

F(2,21.491)=2.379 0.046 
† > ‡ 

p=0.029 
0.203 

LF 

Included 
HC 11; 

RBD 11; 
PD 13 

743.55 
± 

683.71 

553.24 
± 

479.31 

558.81 
± 

577.11 
X2(2,35)=0.514 0.773 - 0.11 

HF 

Included 
HC 11; 

RBD 10; 
PD 13 

579.61 
± 

1140.2 

167.59 
± 

128.28 

283.22 
± 

291.04 
X2(2,34)=1.018 0.601 - 0.1 
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LF/HF 

Included 
HC 13; 

RBD 10; 
PD 12 

3.13 ± 
1.81 

3.38 ± 
1.79 

2.66 ± 
1.76 

F(2,32)=0.468 0.63 - 0.028 

Table 4: REM HRV measures and statistical analysis results. All values are given as mean ± standard 

deviation (SD). For p-values & statistical tests, a=One-Way ANOVA with Tukey HSD post-hoc, 

b=Kruskal Wallis one-way analysis of variance with Bonferroni post-hoc.  
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Chapter V  

 

 
 

BDI PAS LARS 

Test Statistic 
p-value 

 
Test Statistic 

p-value 
 

Test Statistic 
p-value 

 
Control 

n=19 
r(17)=-.07 

 
0.77 

r(17)=-.1 
 

0.67 
r(17)=.005 

 
0.98 

RBD 
n=16* 

r(13)=-.28 0.31 r(13)=-.09 0.74 r(14)=0.18 0.49 

PD 
n=17 

r(15)=-.22 0.4 r(15)=-.12 0.65 r(15)=0.19 0.48 

Table 5: Pearson Correlation Test for correlation between Age and BDI, PAS and LARS respective total 

scores. *RND n=16 for LARS, n=15 for BDI/PAS due to incomplete questionnaire completion from 1 

participant 

 

 
 

Test Statistic 
p-value 

 
MoCA Total Score r(14)=-.23 0.41 

BDI Total Score 
r(13)=.64 

 
0.014 

PAS Total Score r(13)=.33 0.26 

LARS Total Score 
r(14)=.0.16 

 
0.56 

Table 6: Pearson Correlation Test for correlation between RBD Duration and MoCA, BDI, PAS and 

LARS respective total scores 

 

 
 

Test Statistic 
p-value 

 
MoCA Total Score r(15)=.06 0.81 

BDI Total Score 
r(15)=.005 

 
0.98 

PAS Total Score r(15)=-.008 0.98 
LARS Total Score r(15)=.26 0.31 

Table 7: Pearson Correlation Test for correlation between PD Duration and MoCA, BDI, PAS and LARS 

respective total scores 
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Chapter VII 

 

 
 Outliers Control 

◊ 
RBD 

† 

PD+RB
D 
Ξ 

PD- 
˫ 

Test 
Statistic 

p-value 
 Post-Hoc Effect 

Size 

MDS-
UPDRS 
Part III 

Included 
HC 19; 

RBD 14; 
PD+RBD 6; 

PD- 11 

1.42 ± 
1.58 

3.14 ± 
2.71 

 

19.83 ± 
3.764 

25.55 ±  
7.929 

X2(3,52)=33
.146 0.000b 

◊ < Ξ p=0.001 
◊ < ˫ p=0.000 
† < ˫ p=0.001 

 

0.663 

Purdue 
Pegboard: 

Non-
Dominant 

Hand 

Included 
HC 19; 

RBD 16; 
PD+RBD 6; 

PD- 11 

11.63 ± 
1.64 

10.94 ± 
1.91 

10.5 ± 
1.517 

9.45 ±  
1.508 

X2(3,52)=10
.805 0.013b 

◊ > ˫ p=0.007 
 0.12 

Purdue 
Pegboard: 

Both 
hands 

Included 
HC 19; 

RBD 16; 
PD+RBD 6; 

PD- 11 

19.63 ± 
3.52 

18.5 ± 
4.35 

15.83 ± 
3.71 

15.91 ±  
3.807 

X2(3,52)=9.
242 0.026b ◊ > ˫ p=0.031 0.088 

Removed 
HC 19; 

RBD 16; 
PD+RBD 6; 

PD- 10 

19.63 ± 
3.52 

18.5 ± 
4.35 

15.83 ± 
3.71 

14.9 ±  
1.912 

F(3,47)=4.5
95 0.007a ◊ > ˫ p=0.009 0.227 

Table 8: Motor function results with PD group split according to coexistent RBD. All results are 

presented as mean and standard deviation (s.d.). For p-values & statistical tests, a=One-Way ANOVA 

with Tukey HSD post-hoc, b=Kruskal Wallis one-way analysis of variance with Bonferroni post-hoc. 
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Chapter VIII 

 

 
Figure 1: Electrophysiological feature set model performance metrics 
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Figure 2: Clinical assessment feature set model performance metrics 
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Figure 3: Combined feature set model performance metrics 
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