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ABSTRACT Big data is defined as a large set of data that could be structured or unstructured. In man-
ufacturing shop-floor, big data incorporates data collected at every stage of the production process. This
includes data from machines, connecting devices, and even manufacturing operators. The large size of the
data available on the manufacturing shop-floor presents a need for the establishment of tools and techniques
along with associated best practices to leverage the advantage of data-driven performance improvement
and optimization. There also exists a need for a better understanding of the approaches and techniques at
various stages of the data life cycle. In the work carried out, the data life-cycle in shop-floor is studied
with a focus on each of the components - Data sources, collection, transmission, storage, processing, and
visualization. A narrative literature review driven by two research questions is provided to study trends and
challenges in the field. The selection of papers is supported by an analysis of n-grams. Those are used to
comprehensively characterize the main technological and methodological aspects and as starting point to
discuss potential future research directions. A detailed review of the current trends in different data life
cycle stages is provided. In the end, the discussion of the existing challenges is also presented.

INDEX TERMS Big data, data life cycle, intelligent manufacturing, machine learning, literature review.

ACRONYMS
ARIMA Auto-Regressive Integrated Moving Average.
CAD Computer-Aided Design.
CAM Computer-Aided Manufacturing.
CATIA Computer-Aided Three-Dimensional

Interactive Application.
CNC Computer Numeric Control.
CNN Convolutional Neural Network.
CPS Cyber Physical System.
CSV Comma Separated Values.
CSS Cascading Style Sheets.
DCS Distributed Control System.
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DDBS Distributed DataBase System.
DevOps Development Operations.
ERP Enterprise Resource Planning.
FEA Finite Element Analysis.
HDFS Hadoop Distributed File System.
HMI Human-Machine Interface.
HTML HyperText Markup Language.
IT Information Technology.
ICT Information & Communication Technologies.
IoT Internet of Things.
JSON JavaScript Object Notation.
KPI Key Performance Indicator.
MES Manufacturing Execution System.
ML Machine Learning.
MQTT Message Queuing Telemetry Transport.
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NFC Near Field Communication.
OEE Overall Equipment Effectiveness.
OPC Open Platform Communications.
OPC-UA OPC Unified Architecture.
OS Operating System.
OWL Web Ontology Language.
PLC Programmable Logic Controller.
RDBMS Relational DataBase Management System.
RDF Resource Description Framework.
RFID Radio-Frequency IDentification.
RMS Root Mean Square.
RQ Research Question.
SCADA Supervisory Control And Data Acquisition.
SM Smart Manufacturing.
SQL Structured Query Language.
SWRL Semantic Web Rule Language.
TCP/IP Transmission Control Protocol/Internet

Protocol.
TSDB Time Series DataBase.
VPN Virtual Private Network.
WiFi wireless fidelity.
WoS Web of Science.
XML Extensible Markup Language.

I. INTRODUCTION
The evolution of data storing and analyzing has been a key
factor in the development of manufacturing processes. Dur-
ing the pre-industrial revolution, low quantities of data were
stored and were mostly transmitted verbally, which led to
low production volumes and low quality products. There-
after, during the first industrial revolution, two kinds of data
were being recorded, i.e. machine and worker data. Worker
data (attendance and performance) and machine data helped
to improve productivity and maintenance, respectively. The
mass production model introduced in the second industrial
revolution also shifted the job of data processing to educated
managers. Scientific methods and statistical models helped
in all stages of manufacturing from production planning to
inventory management [1]. With the introduction of IT in
manufacturing, computer systems, such as CAM and FEA,
and information systems, such as MES and ERP, helped in
product creation, process optimization, andmanagement. The
merge between data andmanufacturing in the information age
has helped in the shift from dedicated production to flexible
production. The extension of IT with unified communication,
i.e. ICT further enhanced the role of data in manufacturing.

The concept of SMhas emerged as a new paradigm focused
on responding in real time to constant changing demand
and conditions in factories, supply networks, and customer
needs [2]. Three key SM technologies include: (i) CPS
(physical assets integrated with computational capabilities),
(ii) IoT (highly connected devices with embedded sensors),
and big data [3]. The big data age has arisen with the massive
use of mobile and smart devices, the great availability of
IoT devices, and cloud computing, when traditional methods

were not sufficient for adequate information processing [4].
In general, big data refers to the storage and analysis of data
sets that are characterized by large volume and variety of
sources, high velocity of generation and processing, and value
generation from its analysis [5].

In the age of big data technologies, various data sources
generate manufacturing data, which are collected from con-
nected software solutions, sensors, and IoT devices. On a
high level, manufacturing data may be categorized into man-
agement, equipment, user, product, operational, and process
data [6] and [1]. On a low level, manufacturing data may be
categorized into structured, semi-structured, and unstructured
data [7]. Structured data have clear relationships between
their attributes and is the simplest data type to store and orga-
nize, usually represented as tables. Unstructured data com-
prise most manufacturing data, has no associated data model,
and cannot be organized using tables or spreadsheets. Exam-
ples of unstructured data include images, audio, text, video.
Semi-structured data do not reside in relational databases
but have an organizational structure that makes them easier
to analyze. Examples of semi-structured data include XML,
JSON, and HTML.

The collection and processing of the data in the shop-floor
is critical, as most manufacturing operations are carried out
there. The advent of IoT and new industrial protocols have
supported the acquisition of the information from manu-
facturing cells, products, transport systems, and people [8].
Thus, many data-driven SM applications have emerged
recently, e.g., smart design, smart planning and process opti-
mization, material distribution and tracking, process monitor-
ing, quality control, and smart equipment maintenance [1].
This SM applications rely on transforming primary data to
information, making manufacturing processes more intelli-
gent. Examples of shop-floor data include energy consump-
tion, quality test, equipment status, equipment parameters,
resource loading, delivery time, and material data [1]. How-
ever, despite the benefits foreseen by the usage and process-
ing of data in the shop-floor, challenges in SM need to be
considered.

The 5Vs characteristics of big data are widely acknowl-
edged as challenges of big data in manufacturing, includ-
ing: (i) volume (level of data size), (ii) velocity (ingesting
or processing big data in streams or batches, in real time
or non-real time), (iii) variety (dealing with complex big
data formats, schemas, semantic models and information),
(iv) value (analysing data to deliver added-value to some
events), (v) and veracity (validate data consistency and trust-
worthiness) [9]. In addition, cybersecurity is an important
aspect in manufacturing. Since big data platforms connect
physical spaces with cyber spaces, the danger of not consid-
ering cybersecurity might swiftly spread to physical parts of
manufacturing systems [7].

Influx of big data generated from multitude of production
systems (data sources) on the shop-floor complicates decision
making. Combined with multiple data sources, varied trans-
mission protocols and storage requirements for production
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systems on shop-floor further complicate decision making.
As such, the increasing size of data on the shop-floor requires
accurately classifying data for reliable decision making. This
study aims to develop a homogeneous approach to gathering
and utilizing data on shop-floor in manufacturing environ-
ments, based on influences and insights of a literature review.
Therefore, the complete data life cycle is reviewed.

A need for reviewing the data life cycle in the shop-floor
is identified, as research in this field has focused on other
aspects of big data, i.e. applications, manufacturing systems
and processes, decision making, economics, supply chain,
business management, and product life cycle (see Table 1).
This work focuses mainly on big data life cycle in the shop-
floor, where increasing complexities of data life cycle man-
agement requires a detailed review. The effective use of data
sources for generating big data for objective completion is
studied. Needs, requirements, andmethods for data collection
and data transmission are also reviewed. Special focus is
given to homogenising data acquired, as multiple produc-
tion systems operate on several protocols and technologies,
generating heterogeneous data. Thereafter, data storage, data
processing, and data visualisation applied to shop-floor in
manufacturing is reviewed. Finally, the review builds on the
aforementioned aspects of the data life cycle to elaborate on
data application.

This contribution leverages the data life cycle for capturing
big data in shop-floor. Specifically, the suitability and adapta-
tion of big data life cycle to shop-floor in manufacturing is the
main goal in this contribution. This study, addressing the need
for big data on shop-floor, establishes the approach for data
acquisition, processing, and utilisation for decision making.
Challenges towards real-time data-driven manufacturing are
also elaborated.

The rest of this paper is organized as follows. Section II
presents the data life cycle to have an uniform terminology for
big data in shop-floor. Section III presents the methodology
used to understand current trends and future challenges of
big data in shop-floor. Section IV presents the results of
the literature review, based on data life cycle presented in
Section II. Section V presents a discussion of the results and
existing challenges in implementing big data in shop-floor.
Finally, Section VI presents the conclusions, as well as on
outlook on future work.

II. DATA LIFE CYCLE
Big data, and data in general, requires to be structured
into specific content formats and context to be useful for
users [16]. Big data is useful for automating processes inman-
ufacturing, as it enables machines to communicate among
themselves and enables users to extract information and
knowledge. As such, research has focused on the data life
cycle and how to extract knowledge from varied, hetero-
geneous data sources, enabling informed decision making.
In this context, the data life cycle in shop floor has been
presented as consisting of seven stages. This list was devel-
oped considering similar works (Table 2) to have a simplified

uniform terminology. Furthermore, Figure 1 presents a visual
representation of the seven stages of the data life cycle.

1) Data sources: Data sources generate big quantities
of data across all the manufacturing value chain and
product life cycle, bringing the concept of big data to
the shop-floor. According to Demchenko et . [9], big
data is characterized by the 5Vsmodel, i.e. high volume
(big quantities of data), variety (data have different
formats and sources), velocity (data is rapidly gener-
ated), variety (heterogeneous data in varied formats),
and value (data has value, which needs to be extracted
and analyzed). In this regard, the 5Vs model applies
to big data sources in the shop-floor. Data sources
includesmanufacturing information systems, industrial
IoT technologies, internet sources (e.g. e-commerce
platforms and social networks), smart products, and
governmental public data [1].

2) Data collection: After data sources generate data,
data collection is performed. The collection is per-
formed mainly by IoT technologies, by means of smart
sensor nodes equipped with sensing devices, such as
accelerometers and temperature sensors, and the data
is then transmitted using standardized communication
protocols [23]. Data collection may be performed at
different frequencies, referred to as sampling frequency
or sampling rate, based on the processing power of
sensor nodes and the requirements of the variables
being measured. In addition to shop floor data sources,
other data collection sources, such as third-party appli-
cation program interfaces or web crawling of internet
sources, may be used to collect data, further enriching
and expanding the context of data collected during the
process.

3) Data transmission: Data transmission maintains the
communications between the elements involved in the
data life cycle, e.g. manufacturing systems and man-
ufacturing resources. Defining standardized means of
transmission, communication and application proto-
cols define how the elements communicate data among
each other, for example data transmission rate and
communication range, ensuring real-time, secure, and
scalable data transmission [24]. Aswith data collection,
data may be transmitted at different frequencies, based
on the requirements of the monitoring strategy, such as
real-time data transmission or batch data transmission.

4) Data storage: Data obtained during data collection
must be stored securely and integrally. Nevertheless,
data sources have different formats and may be struc-
tured, semi-structured, and unstructured [25]. As stated
in [26], the second design principle of knowledge dis-
covery in big data is that one size does not fit all,
and several different storage types must be considered.
Besides structured data storage, object-based storage
provides a flexible solution for storing semi-structured
and unstructured data, thus covering the integrity
requirement of data storage. In addition, by means of
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TABLE 1. Existing review papers about big-data on manufacturing.

TABLE 2. Relevant data life cycles proposed in literature.

cloud computing, data storage may achieve cost effec-
tiveness and high-processing power, as well as security,
scalability and heterogeneity.

5) Data processing: Data processing builds upon data
storage and refers to the operations required to extract

information, i.e. knowledge from heterogeneous data
sources. By processing raw data, hidden information
and patterns may be revealed, providing stakeholders
with valuable information for decision making. Dif-
ferent processing techniques and tools may be used
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FIGURE 1. Proposed data life cycle.

depending on analysis to be done on the data. Big
data may be processed efficiently by means of data
cleaning, data reduction, data analysis, and data mining
techniques, owing to advances in artificial intelligence,
cloud computing and IoT [1]. As such, the first design
principle of knowledge discovery in big data is that data
processing should be supported by a variety of data
processing methods and analysis environments [26].

6) Data visualization: Data visualization provides the
means to visually understand the information extracted
during data processing. Data may be visualized in
dashboards, including statements, charts, graphs and
augmented reality [27], and data may be queried in real
time or on demand, based on the users needs, enabling
decision making based on historical or real-time data.
In addition, data visualization should be accessible and
easy to understand, as stated in the third design princi-
ple of knowledge discovery in big data [26]. As such,
popular open standards and lightweight architectures
should be used for presenting results, as well as expos-
ing the results using application program interfaces for
third-party software integration.

7) Data application: Data application refers to data ana-
lytics performed during the entire product life cycle,
providing stakeholders with tools for decision mak-
ing. Data analytics may be applied during the design
phase, translating customer needs into product features
and quality requirements [28]. Thereafter, during pro-
duction, data analytics monitor the production process
and lead to informed decision making regarding the

manufacturing process, improving product quality and
reducing production costs [10]. Finally, during product
operation and maintenance, data analytics may be used
to predict possible faults and to provide preventive
maintenance, elongating the life cycle of the product
and improving relationships with costumers [10].

III. OBJECTIVE AND METHOD
The work focuses on understanding the trends and chal-
lenges in implementing big data on shop-floor applications,
emphasizing their data life cycle. For this purpose, a narrative
literature review was carried out supported by the extraction
of n-grams that allow the preliminary exploration of related
trending research. The following research questions guide
hereafter the development of this review.

• RQ1:What are the recent trends in big data life cycle in
shop-floor?

• RQ2:What are the main challenges and future research
directions in big data life cycle in shop-floor?

A. METHODOLOGY: NARRATIVE REVIEW
Narrative reviews contemplate the identification of several
key studies that describe a problem of interest to have a
general overview of a field [29]. Despite having a less
rigorous approach compared to a more systematic one,
in this paper we support the selection of references of inter-
est by extracting monograms, bigrams, trigrams, and qua-
trograms, related to the main RQs and objective of the
work.
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B. OBJECTIVES
This review’s objectives are twofold and is aligned with the
research questions presented above.

• In terms of RQ1: What are the recent trends in big data
life cycle in shop-floor? The main interest is to briefly
characterize technologies and approaches, considering
the seven stages of the data life cycle presented in sec-
tion II of this review.

• In terms of RQ2: What are the main challenges and
future research directions in big data life cycle in shop-
floor? The main interest is to discuss the general chal-
lenges mentioned in literature, establishing a baseline of
potential future research directions.

C. STUDY IDENTIFICATION, SCREENING AND INCLUSION
A set of keywords has been chosen considering relevant
terminology in the area. Core concepts reflected here are
‘‘manufactur*’’, ‘‘factory’’, ‘‘factories’’ and ‘‘shop floor’’.
Those are accompanied by the keyword ‘‘big data’’. Group 1
and Group 2 are linked with the operator AND, whereas
internally they are linked by the operator OR. This resulted
in the following string:

• (‘‘manufactur*’’ OR ‘‘factory’’ or ‘‘factories’’ or ‘‘shop
floor’’) AND (‘‘big data’’)

The research string was applied in the electronic database
Web of Science (WOS) as it is a well-known and large aca-
demic scientific repository. Fundamental consideration to
select studies were:

• Works published after 2012.
• Review papers were excluded from the search.
A set of 4912 papers was obtained from this search. From

this point, the strategy was first the extraction of monograms,
bigrams, trigrams and quatrograms to have a brief notion of
characterization of relevant terms in the field and based on
such characterization the selection of main works of interest.
The notion of data life cycle and the consideration of relevant
application in shop-floor operations were additional consid-
erations for the manual selecttion of papers of interest.

In the end, a total of 61 articles were chosen, and further
analyzed to answer each of the RQs. Fig. 2 presents the
methodology used in this review.

D. RESULTS
Fig. 3 presents the result of monograms, bigrams, trigrams,
quatrograms from the set of papers collected. In general,
we should highlight the presence of technological enablers
like internet of things, cyber-physical systems, artificial intel-
ligence (neural networks), digital twin models, cloud com-
puting and other which are supporting the implementation of
big data in the shop floor. Other representative key words
are related to specific applications e.g. predictive mainte-
nance, energy optimization, product quality, process monitor-
ing, anomaly detection and decision making process. From
another perspective, cloud computing and edge computing
are also highlighted as computation infrastructure to treat the
data. Various of these properties are used as a baseline to

characterize the data shop-floor data life cycle in the next
section of this review.

IV. RECENT TRENDS IN SHOP-FLOOR BIG DATA LIFE
CYCLE
This section explains the results of the narrative review of
publications related to big data life cycle. The section is
divided into different stages of data life cycle. The results
presented are a collective overview of studies presented in
the last decade on each of these stages related to big data in
manufacturing shop-floor.

A. DATA SOURCES
Different applications in the context of smart manufacturing
require different data sources (Figure 4). They are mostly
based on the utilization of IoT devices i.e. sensors that col-
lect data from machines, shop-floor, products, people and
environmental variables. Other important data sources are
the ones provided by heterogeneous product requirements,
specially in product driven manufacturing applications.

For decision making activities, examples of data sources
include customer requirement documents, datasets, and CAD
models. These sources are multi-modal with different forms
and, hence, require separate processing methods. Another
example is information embedded in CAD models. In this
context, Collada can be used as the data format to describe
CAD models. If CAD models are designed in CATIA V5,
then converters from CATIA V5 to Collada can be used to
obtain Collada models [30].

Devices used tomonitor energy in shop-floor include smart
meters, current and voltage clamps, and machine-integrated
devices that provide out-of-the-box instantaneous power con-
sumption [31]. Industrial robots, for example, can provide
power consumption for each joint of the robot directly from
a robot controller [32]. Experimental data regarding actua-
tion torques and servo drive voltages, used directly to derive
input power of plants, can be captured with energy sen-
sors, such as clamps [33]. Alternatively, single-phase and
3-phase smart plugs have become popular for monitoring
the energy consumption of manufacturing equipment on the
shop-floor [34].

Human data can also provide additional context informa-
tion to current shop-floor situations. This data provide a better
user experience for operators, improving productivity and
decision quality. Human data can be divided into human
attribute data and state data. Human attribute data are com-
prised by demographic and characteristic information that
does not change or changes sporadically (e.g. age, profession,
education status, and skills). This data may be used for ‘‘user
modelling’’ to deliver information or services according, for
instance, to the proficiency, skills, and interest of the user.
Human state data refers to a collection of all kinds of data that
may be used to model abstract human characteristics, such
as behaviour and comfort [35]. Traditional IoT devices may
acquire data about the state of operators (e.g. current position
and vital functions). For instance, wearable trackers measure
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FIGURE 2. Methodology used for the narrative literature review.

human performance under stressful or difficult conditions,
analyzing the data and sending warnings when needed [36].
Furthermore, operators can use portable smart devices
(e.g. smartphone, smartwatch, and tablet) with NFC readers
to check into a location and receive information about rele-
vant parts of the production system equipped with NFC or
RFID tag. [36]. The behaviour can also be inferred through
interactions that users have with machines or applications,
capturing the interactions with plugins or applications, such
as Google Analytics and Matomo. Acquired data can be
uploaded to cloud services using IoT technology, where it
is processed and analyzed to deliver personalized informa-
tion to operators and supervisors, informing about potential
issues.

Most applications for data-driven automation rely on opti-
mal decision making, considering status of machines and
conveyors (availability) [37]. Smart sensors have been used
to track equipment and people e.g. RFID tags [38], [39],
[40], [41]. Smart sensors have also been used to monitor best
conditions of machines, e.g., in terms of temperature [42].
In addition, information of images (quality control) has been
used as a decision factor for autonomous reconfiguration and
adaptation processes [43].

Data-based maintenance sensors that have been used in
literature include vibration [44], [45], acoustic emission [44],
[45], temperature [40], [44], current [44], [45], velocity [40],
pressure [40], and forces [46], implemented in various parts
of the machine. The sensor may exist in the machine [47] or
may be installed as add-on sensors dependent on the appli-
cation. PLC controllers provide process-related data, such
as cutting speed, feed, and depth of cut [44]. Application-
specific data sources also contribute in monitoring and main-
tenance activities. For example, 3D laser scanners have been
used to evaluate tool flank wear [45]. Other sources have used
device status (such as alarms and logs) [47] and historical
failure data [48] logged after quality inspection, aiding in
identifying product failure patterns. RFID tags also have
been used to identify defective products, comparing with the
failure data [40].

Accuracy and quality of data play a vital role in suc-
cessful implementation of intelligent systems, depending on
the effectiveness of data sources. However, data gaps and
incompatibility in system applicationsmay be found. To over-
come them, proper calibration of data sources is needed.
Data sources consist of automation system resources (such as
sensors, actuators, PLC, SCADA, DCS, and CNC systems),
identification systems (such as RFID, AutoID, barcodes, and
vision systems), communication standards between produc-
tion resources (such as fieldbus and wired and wireless com-
munication), with accompanying data exchange standards
(such as OPCUA, MTConnect, and MQTT).

Automation technologies allow a significant reduction of
human participation on the shop-floor during production
operation. On the one hand, there are processes that may
not be automated, mainly due to infeasibility of economic
outcome. Specific production processes may involve manual
work to be carried out in different manners. The employee
carrying out the work may enter the information to a man-
agement support system. Nevertheless, the information accu-
mulated from employees through this approach is highly
unreliable and cannot be used for machine adaptation. On the
otherhand, production systems may perform automated data
acquisition without human intervention. Data accumulated
in this manner can be used for decision making. However,
interfaces and processing of the data may be necessary.
Most common data sources in automated production systems
for machine adaptation have been identified to be control
and measurement devices, measurement instruments (such
as sensors and transducers), PLCs (and other control mecha-
nisms), and robots.

B. DATA COLLECTION
The data collection techniques for decision-making are
dependent on the data sources. In case of customer require-
ment, natural language processing techniques, such as named
entity recognition [49], relation extraction [50], and attribute
extraction [51], have been used. If data come from datasets,
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FIGURE 3. Relevant N-grams on the related publication.

deep learning techniques and sampling techniques have been
used to collect data [52].

There are mainly two types of data collection techniques,
manual data acquisition and automatic data acquisition. Man-
ual data acquisition techniques are employee dependent and
are gathered through a manufacturing support system. How-
ever, they are highly inconsistent and unreliable [53]. Auto-
mated data collection is performed by automated systems like

sensors, measuring, and control devices that correspond to
changes in physical processes [54].

Data collection in shop-floor depends on the nature of the
data, i.e. structured and unstructured [55]. Multiple frame-
works are in-place that incorporate data collection strategies
for structured and unstructured data [55]. Data collection for
machine adaptation is a six-step process involving initialisa-
tion, configuration, capturing, analysing, and focusing [56].
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FIGURE 4. Data sources in smart manufacturing applications.

FIGURE 5. Data collection in manufacturing applications.

Cui et al. [7] stated that almost half of big data collection
applicationswere distributed inmonitoring (25%) and predic-
tive applications (24%), characterized for real-time process
and non-real-time process, respectively. Real-time process
data analysis in manufacturing refers to methods where data
from production lines are acquired, processed, and delivered
to operators. Thus, it is possible to timely detect anomalies
or to quickly know the status of the shop floor, production,
machines, and personnel [57]. This is one of the basic needs
for operators on the shop-floor, who require a synthesized
and centralized view of multiple data sources, which could
be highly dispersed. Nevertheless, predictive applications do

not necessarily require a real-time data collection and focuses
on extracting patterns and trends based on historical process
data for optimization and management innovation [57].

Although real-time data collection is preferred, in practice,
it is seldom the case for maintenance-related data. Add-on
sensors, such as temperature, vibration, pressure, force, and
process data from PLC controllers (cutting speed, feed, and
depth of cut), may provide near real-time data. Device status
and logs have been periodically collected and stored [47].
Wear information has been collected after a predefined
amount of time to accurately analysis the wear (e.g. tool
wear is measured every 20min in [44]). Process parameters
and performance metrics (historic data) have been collected
after each production run/shift [40], such as maintenance
history and failure records [48]. Almost all data relevant for
monitoring or maintenance are time series, being assigned
time stamps during collection. Data collection techniques
(Figure 5) include support for RESTful/configurable appli-
cation layer protocols, OPC unified architectures, and dis-
tributed data acquisition (e.g. Flume [47]).

Automation activities rely on event-driven data
collection techniques e.g. time driven, quantity driven, oper-
ation driven [58]. Event driven approaches allow the stor-
age of manufacturing information after a specific time
interval. These techniques are also useful to query manu-
facturing services for process automation purposes. Opti-
mal decision making usually require storage of historical
data and the comparison with a real-time monitoring data
collection [40].

For time-driven data collection, energy data from man-
ufacturing equipment has been studied. Energy is usually
monitored in given time intervals, such as every 15 min-
utes, monitoring total energy consumption. However, some
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applications, such as profiling the robotic motions and
understanding the parameters affecting the energy con-
sumption, requires real-time energy data sampled in few
milliseconds [59].

C. DATA TRANSMISSION
Data transmission protocols includes sockets, OPC-UA,
MQTT, TCP/IP (such as PLC simulator), or other commu-
nication protocols (Figure 6). Data transmission protocols
depend on the application domain and may be dynamically
chosen. Data transmission is used as the communication
channel between different devices, including IoT devices,
workstations, and digital twins. When workstations in man-
ufacturing environments use different operating systems,
OPC-UA is a suggested solution. Cloud-based systems have
also been recommended, as modularity among components
of the pipeline is promoted [60].

The transmission of data for further processing depends
on the logging frequency of the data. High-frequency data
may be stored first in storage devices of monitoring solu-
tions. Thereafter, collected data are transmitted manually
in batch to processing computers via Ethernet connections.
Some monitoring solutions also offer transmitting data via
WiFi. Transmitting energy data via WiFi has the benefit of
transport flexibility and high transmission distance. However,
WiFi comes with shortcomings, such as high latency and
transmission unreliability. Hence, industrial standards such
as Modbus and Profinet have been used for mission-critical
applications [59], [61].

Process automationmay require connectingmanufacturing
resources to the Internet. Generally, the connection has been
done by Ethernet [37] and wireless communications [38].
Data transmission has also been implemented using industrial
standards with higher reliability, such as OPC-UA, Modbus,
and Profibus [62]. IoT communication has been used to per-
form data transmission using publish/subscribe messaging,
e.g. MQTT protocol [43], for event-driven process automa-
tion purposes.

Real-time data may be transmitted using WiFi, Zigbee,
and 4G through Internet and using VPNs. Non-real time data
may be transmitted through technologies or application like
Apache Sqoop and Data/X [40]. Production and sensor data
with high frequency have been transmitted through Ethernet
to a local server and then, after feature extraction, have been
sent to cloud servers in the Internet using WiFi protocol [44].

The introduction of IoT in the shop-floor has increased the
transmission of low-frequency sensor information directly
from the source through WiFi from various sources. This has
also had an impact on the latency of the system response. Data
transmission rates play a vital role that depend on the man-
ufacturing application. To incorporate multiple data formats,
standards, and needs for machine adaptation, a combination
of technologies is proposed in this study to assists in data
transmission. To this end, a data transmission framework is
necessary to improve data transmission across the production
domain.

FIGURE 6. Industrial protocols for data transmission.

D. DATA STORAGE
Common data formats to store machine information are XML
and JSON files [38]. Different data types include struc-
tured (formatted as tables), semi-structured (such as XML,
JSON, and HTML) and unstructured data (such as docu-
ments, images, audio, video, text, and emails) [58]. Table 3
oresents data storage types and technologies used in man-
ufacturing shop-floor. Unstructured data are first processed
to extract relevant information internally before being stored
in databases. For example, tool wear information has been
extracted from wear images using image processing software
and converted into flank/crater wear values along with their
time stamps [45].

Depending on the data type, data may be stored using
several techniques. Traditionally, RDBMS and DDBS have
been used for structured data. RDBMS are characterized by
well-defined schemas and relationships. For example, basic
user information may be stored in traditional database sys-
tems such as MySQL, PostgreSQL, and SQLite. RDBMS
have been used for user interaction data storage. For instance,
Matomo, an user analytics platform, captures user interaction
streams (e.g. clicks and page views) in MySQL andMariaDB
databases. However, RDBMS offer limited scalability.

NO SQL databases (e.g. MongoDB and Cassandra) have
proven to be better approaches for semi-structured (JSON,
XML) and unstructured (audio, video) data. In addition, XML
has been used to transform structured data to semi-structured
data [40]). HDFS may also be used for dealing with unstruc-
tured data. Some examples of these kind of databases include:

• Cassandra to store event data of automation controller.
• MongoDB (document NoSQL database) to store
machine data.

• TSDBS, such as OpenTSDB and InfluxDB, to store and
access sensor time-series data.
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Data models are also used to represent manufacturing
data. Data models are comprised of two parts: (i) run time
conditions (process knowledge and time-sensitive dimension)
and (ii) process model (production requirements of products).
Once data models are defined, knowledge graphs may be
used to store data. There are two main types of storage
for knowledge graphs: RDF-based storage and graph-based
storage. An important design principle of RDF-based storage
is the ease of data distribution and sharing, while graph-based
storage focuses on efficient graph queries and search. The
Neo4j system is a widely used graph database [63]. It has
an active community, and the system itself is efficient in
querying. However, it lacks of support for quasi-distribution.

Smart manufacturing applications have used distributed
file systems (for data-at-rest) and databases (for data-at-
motion) for storage [37]. Historical data are ingested from
databases to predict production planning performance, safety
critical aspects, and network designs. In addition, Hadoop and
MapReduce techniques may be used to reduce the storage
space required for big data.

Production and sensor data from the machines have
been initially stored in industrial computers connected to
machines, which are then processed internally using feature
extraction to understand the states of the machines. There-
after, the data have been sent to cloud servers for managed
and storage in a database, acting as remote server for data
storage [44].

Automation applications relying in storage of manufac-
turing information, as well as services, have increased the
responsiveness and interoperability of the shop-floor and
thus, the automation capacity. The choice of storage solu-
tions greatly affects the application. High-frequency big-data
files require special solutions such as Hadoop and Spark
that can deal with the high volume property of big data.
Data have been recorded in regular time intervals, resulting
in time-series data [64]. To this end, special database solu-
tions for storing time-series data, such as InfluxDB, may be
used. Also, relational database methods have been used for
their reliability. Futhermore, some monitoring solutions have
stored the collected energy in storage devices using CSV
files.

TABLE 3. Data storage types and technologies used in manufacturing
shop-floor.

E. DATA PROCESSING
When data are collected and transformed into usable form,
data processing takes place. Data processing must be done
appropriately to avoid having detrimental impact on the final
product, or data output. It is typically performed by data
scientists or teams of data scientists. Different techniques can
be used for data processing. Figure 7 presents the traditional
data processing process performed in the shop-floor.

FIGURE 7. Data processing for big data shop-floor.

Data processing is a computationally intensive task. First,
data should be resampled to match the recorded timestamps.
Resampling methods such as averaging, forward filling,
or backward filling have been used in literature [65]. Aver-
aging method takes an average value within a pre-defined
time interval and replaces the missing values with the average
value in the data. In forward- and backward-filling methods,
missing timestamps are filled with values before and after
the missing timestamp, respectively. Once data has been pro-
cessed, it has been fed into application-dependent algorithms
such as ARIMA, Seasonal ARIMA, Bayesian Optimization,
clustering, neural networks [66], genetic algorithms [67] and
parameter identification methods [68].

Several approaches exist for data processing in deci-
sion making. Several studies have used a method based
on multi-neural collaboration to extract knowledge and the
extracted knowledge has been classified according to labels.
An ontology model and schema layer of the knowledge
graph has been defined and the knowledge has been repre-
sentedwith fuzzy comprehensive evaluation [69]. Knowledge
has been directly described as production rules [70] and as
knowledge graph [71]. Owing to the wide range of knowl-
edge sources, the knowledge base that has been constructed
according to the two steps above has high redundancy. To this
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TABLE 4. Relevant references for big data shop-floor.

end, latent semantic analysis, similarity calculations and
attribute weighting may be used to eliminate redundancy in
the knowledge. First, the entity triples in the preliminary
knowledge base have been mapped with the Protege ontology
library, and then the semantic web rule language (SWRL) has
been used to represent the empirical rule knowledge. Finally,

the data layer has been instantiated to construct the final
knowledge base [72].

As for the data processing in HMI, in addition to using
several data mining and machine learning techniques, the
development of analytic solutions requires selecting the
right strategy according to diverse scenarios. Streaming,
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large-batch, and small-batch analytics are the three main pro-
cessing strategies for big data [81]. Streaming is a processing
technique for real-time analysis of data streams, particularly
necessary when data arrives at high velocity. Large-batch
processing is the most traditional form of processing where
big data volumes are collected, representing large periods of
time (e.g. hours, day, week) and being analysed with complex
machine learning models. For batch processing, real-time
data processing is not a priority. Small-batch processing (also
known asmicro-batch) is the process of small cumulus of data
on a small time window (e.g. seconds, minutes).

Data processing can be also used for automation.
Intelligent decision making for process automation and
self-organization requires the analysis of machine status
and energy consumption. This makes necessary the use
of machine learning techniques. Some examples for pro-
cess automation include neural networks, support vector
machines, and k-nearest neighbours [42]. Negotiation based
approaches with machine learning have been used for choos-
ing proper routing and transportation of products, e.g. for
storing or scrapping [43]. Genetic algorithms have also been
used under the scope of ML. For process automation, genetic
algorithms find optimal production resources e.g. the ones
with minimum energy consumption or the ones that require
less production time. In general, classical machine learning
techniques are enough for this type applications.

In maintenance sector, feature extraction of the time
series data from sensors like vibration/forces include both
time-domain and frequency domain feature extraction. Time
domain features include RMS, peak, mean, standard devi-
ation, skewness, kurtosis, and crest factor [44]. Frequency
domain features include main frequency, harmonics, fre-
quency band energy percentage. Before feature extraction of
high-frequency data, noise reduction should be performed
to the signal. Data and pattern mining models for mainte-
nance (e.g. Apriori [40] or FPGrowth [48]) could be used for
knowledge and rules generation. Generated knowledge along
with production data could aid in fault diagnosis and predic-
tion. Correlation analysis has provided internal relationships
between device and faults [47].

Traditional and Deep machine Learning techniques have
been used for data analytics. Clustering algorithms have been
identified to be themost commonmachine learning algorithm
for preliminary grouping of sensor data and for creating labels
according to their process state [44], [48]. Clustering algo-
rithms have been followed by classification algorithms based
on traditional machine learning (e.g. k-means in [48]) or deep
learning (e.g. CNN in [46]). Technologies that have been
used for data analysis in maintenance include STORM [40]
(distributed computing), STORM cluster [47] (resource
scheduling), Hadoop [40] (offline prediction - considering
both current status and historical information).

The collected data needs to be processed to generate
insights. Primary steps in data processing involve cleaning the
data to remove noisy and incorrect format issues. Streamlink
(Flink, Storm), micro-batching (Spark) and batching data

processing (MapReduce) provide technologies to clean and
process big data volumes. Manufacturing applications like
complex event processing by Storm, and detecting deviations
by Flink, prediction and quality control by MapReduce are
some examples where these technologies are used to process
manufacturing data. Knowledge can be generated by harvest-
ing big data technologies on the generated big data. Apache
Hive-Mind based platforms have aided knowledge generation
for predictive maintenance. Hadoop and OWL technologies
can manage knowledge of intelligent applications for smart
manufacturing applications.

F. DATA VISUALIZATION
Data visualization is an integral part of data analysis which
concentrates on the use of tables and graphs for presenting
quantitative and qualitative information, and as a way that
users can communicate with the data [83]. However, few
state-of-the-art works describe methods for data visualiza-
tion in the context of smart manufacturing automation and
big data. Data visualization is usually implemented in the
form of dashboards, a type of graphical user interface that
consolidates a grand amount of data (i.e. sensor, operational,
and maintenance data). Dashboards are used to monitor and
access production status or in some cases as a direct inter-
face between the customer and the shop floor. They are
often interactive and users can filter and query data, zoom
in/out, and scroll. Many of the visualizations contained in
dashboards show changes over time and are updated as new
data is released, thus displaying real-time data updated every
few seconds or minutes. In general, data visualization can
include [84]:

• Different types of charts and graphs, tables, time trends,
etc.

• Interactive widgets (i.e. knobs, dimers, keypads, etc.)
used to interact with CPS, IoT devices and applications,
based on current data analysis.

• Visualization of geo-referenced data (machines in dif-
ferent locations, operators location tracking, external
sensors)

From the technological perspective, in research, scholars
prefer the use of Python programming language to develop
machine learning models. Therefore, for data visualization,
Python libraries such as Seaborn or Matplotlib are chosen to
develop charts and graphs. Reference [85] used matplotlib
to visualize a heat map o to find the correlation between
the variables involved in milling tool wear. Depending on
the tools and technology used (e.g. SQL databases, graph
databases), visualisation methods integrated into the devel-
opment environment can be used [63].

However, these options are not intuitive or designed for
end-users. At the moment, multiple platforms and frame-
works can produce analytics applications and visualizations
easily with very aesthetically pleasing results. Grafana is one
of the most popular open-source platforms for interactive
data visualization. Reference [79] used Grafana to create a
dashboard for visualising energy data at the workstation level
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to show operational KPI and power consumption trends. Sim-
ilarly, [81] developed dashboards using Grafana and Ama-
zon QuickSight for its compatibility with Spark to display
the results of small-batch processing for the detection of
anomalies on CNCMachines. Other similar products include
Qlikview, Tableau, Kibana, and Splunk.

Even when these platforms are claimed for their ease of
use; the target users are data scientists and engineers, business
analysts, or DevOps engineers. For end-users (i.e customers,
operators, supervisors) customized applications accessible
through mobile devices or web interfaces using browsers [62]
is the best option. In [44], aWeb and iOS-based user interface
is used in real-time for decision-making on the assessment of
health. In [47], the manufacturing data processed is sent to
backstage supporters and the diagnosis or prognosis reports
are visualized on large screens through a web application
(Single View integrated failure map pattern monitoring and
cause [48]) or sent to mobile devices of the maintenance per-
sonnel. These kinds of applications will require some sort of
software development. Javascript is the ultimate web standard
for reactive applications, with multiple frameworks such as
React, AngularJs, NodeJs, etc. There are specific Javascript
libraries that allow the development of interactive visualiza-
tions such as CanvasJS or ChartJS. Reference [86] devel-
oped a web application for historical analysis and real-time
tracking of the assembly line performance. The web is cre-
ated with a combination of HTML5, CSS, JavaScript, the
JavaScript Data-Driven Documents (D3) library, the Three.js,
and several JavaScript framework& utility libraries including
Underscore.js, Backbone.js, and JQuery. Table 5 describes
some of the platforms, softwares and libraries found in the
literature for visualisation.

From the user perspective, it is important to consider
that manufacturing processes involve different types of users
where multiple variables intervene (i.e. expertise, role, age,
etc). Therefore, users will have different perceptions of visual
data presentation and interactive data analysis [57]. User-
centered design as a methodology can help to understand the
requirements and needs of determined roles in the industry.

V. DISCUSSION ON THE RECENT TRENDS AND
CHALLENGES
Table 4 provides a brief overview of the relevant references
for big data shop-floor reviewed in this work. Different man-
ufacturing applications require different data sources. Data
sources comprise mostly smart sensors and IoT devices that
convert physical variables into digitized measurable units.
Smart decision making in product driven manufacturing
applications rely on specifications of production require-
ments. Manufacturing automation concepts are based on
logic-based or negotiation based approaches. In particular,
it has been identified that data-driven automation has been
considered less, making this as an opportunity for future
research.

Some applications rely fundamentally in data acquisi-
tion and number of sensors placed in shop-floor machines

and resources. Two examples are maintenance and energy
optimization. One the one hand, maintenance has relied
on acoustic emissions, temperature, velocity, pressure, and
other variables to understand health status of machines.
On the other hand, energy optimization application have
relied mostly on measurement of electrical variables, e.g.
smart meters, current and voltage clamps, and single-phase
and 3-phase smart plugs. With the advent of human-centre
manufacturing applications, the acquisition of data from
operators has become a trend in current research, specially
data used to model human characteristics, such as behaviour
and comfort. Wearable trackers can measure human perfor-
mance under stressful or difficult conditions. Consideration
should be given to data sources that contain collection of data
that should not be used due to regulations i.e General Data
Protection Regulation.

Data collection may be performed with either manual or
automatic data acquisition. Main trade-offs happen in form,
consistency and reliability of the data. Data collection is
dependent on the type of data source and comes from sources,
such as IoT devices, evaluations, simulations, and predic-
tions, in structured or unstructured formats. Data collection
has been usually accompanied by an underlying framework
that leverages step-wise processes to gather desired data
for decision-making. Predictive maintenance, monitoring,
energy consumption, and event-driven automation applica-
tions require data to be collected as per specific requirements.
These requirements include real-time, time-driven, and peri-
odic data collection, as well as application-specific criterion.

Data transmission may be performed with sockets, OPC-
UA, MQTT, TCP/IP (such as PLC simulator), or other com-
munication protocols depending on the application domain
and can be dynamically chosen. Data transmission is the
middleware between digital twins and the shop-floor. More-
over, it is the communication channel between devices in
digital twins and their physical counterpart. The introduc-
tion of IoT on the shop floor has increased the transmission
of low-frequency sensor information directly from sources
through wireless communication. This has had impact on
the latency of the response of the system. Industrial wireless
communication devices include industrial switches, indus-
trial routing, and wireless access points.

As manufacturers becomes increasingly reliant on sen-
sors and various data sources, data storage has become an
increasingly important concern. In particular, the ability to
store big data has been given special attention. A trend has
been identified in manufacturers, moving from traditional
RDBMS databases to NoSQ and NewSQL databases when
considering scalabilty. Moreover, a need has been identified
to develop techniques to not only store data in a structured
manner but also filter redundant data and delete data which is
no longer relevant. This could greatly reduces storage costs
and complexity. However, it has been recognized that there
are few studies considering this aspect.

Data processing techniques have been widely used in man-
ufacturing. With the development of IoT, 5G and 6G, and
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TABLE 5. Description of platforms, softwares and libraries found in the Literature for data visualization.

cloud computing technologies, the data quantity from man-
ufacturing systems has increased rapidly. With industrial big
data, achievements beyond expectations have been made in
product design, manufacturing, and maintenance processes.
Data processing has been a core technology to empower
intelligent manufacturing systems.

Finally, visualization has been identified to usually be a
neglected aspect in research. As presented in the results,
multiple scholars prefer Python libraries for simple static
visualization. However, to provide adequate commercial
implementations of big data applications, visualization is as
essential as the other stages. The capability of applications
to further exploit data from user behaviour, improving the
visualization aspect in manufacturing, needs further research.
Furthermore, there is a lack of standardization that requires
researchers and engineers to identify generic abstractions
for industrial data and understand different users groups.
Thus, new frameworks for visualization applications may be
developed.
Challenges: Challenges found in literature have been com-

piled in this study from the results and discussion of the
review process. Although some of the challenges below
are application-specific, they were found quite often in the
reviewed literature.

• Data measurement solutions usually come with inherent
measurement errors. Although these errors are relatively
small, transferability has been affected. For instance,
the same sensor for the same equipment performing the
same application can yield different energy consump-
tion values. Noisy and non-deterministic measurement
values challenge data-processing and decision-making
algorithms.

• Frequency of collected data is identified as another
challenge in literature. Sampling at a high rate pro-
duces big data that is difficult to transmit and pro-
cess in real-time. However, some applications require
high-frequency data, such as energy parameter profiling
applications. Therefore, trade-offs should be considered
in data collection on the shop-floor.

• Data acquisition systems, incorporating all information
gathered during the production process, are needed to
collect data, discover knowledge, and share it among all
stakeholders.

• Real-time processing, analysis, production reporting,
and monitoring of data-driven sources must be imple-
mented for real-time analysis of sensor data.

• Reliable data and valuable knowledge is needed to sup-
port optimized decision-making of product life-cycle
management.

• Data heterogeneity must be processed in shop-floor
systems comprised of multi-source heterogeneous data
and complex processes, such as fault prediction using
traditional signal processing techniques considering the
5V challenges posed by industrial big data.

• Data visualization disgned should be improved for
human interaction. Visual and task complexity must be
consider for data visualization, such as complex dash-
boards and unorganized big data. In addition, a high
number of steps to realize a task may cause mistakes and
reduce the performance of operators.

• The lack of implementations of cybersecurity and data
privacy remains a challenge in shop-floor systems,
in particular for big data analytics.

• Governance of big data handles data integrity, quality,
provenance, retention, processing, and analysis in the
full data life cycle. Governance of industrial big data
should consider the issues of cybersecurity and data
privacy as well.

VI. CONCLUSION
In this work, a basis for the development of an homogeneous
approach to gather and use big data on the shop-floor in
manufacturing environments has been presented. A litera-
ture review of research regarding big data in manufactur-
ing has been performed, targeting the complete data life
cycle. In this regard, the needs, requirements and meth-
ods for the seven stages of the big-data life cycle in man-
ufacturing have been presented and discussed. Therefore,
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approaches for data acquisition, processing and utilisation
for decision making in shop-floor in manufacturing have
been established and challenges in each stage have been
elaborated.

As results of this study, approaches have been identified in
each stage of the big-data life cycle in manufacturing, focus-
ing on maintenance, automation, quality, decision making,
energy optimization, user interaction, and adaptability. Data
sources, such as sensors, documents and models, have been
identified and elaborated, detailing their usage and benefits,
as well as possible drawbacks. Thereupon, data collection
techniques have been presented, i.e. manual data acquisi-
tion and automatic data acquisition, describing the benefits
and drawbacks of each. Furthermore, a separation between
monitoring and predictive applications has been described,
highlighting the effect that the intended application has in
data collection. Having presented data collection techniques,
data transmission protocols and techniques have been stud-
ied. Techniques and protocols for data transmission have
been presented, as well as the cases in which each may be
used. Following, data storage possibilities have been pre-
sented. Since data may be structured, semi-structured and
unstructured, storage options have been discussed for each
type of data structure, as well as the methods to integrate
data in different formats and from different sources. In the
context of data processing, several approaches towards data
processing have been presented, as well as leading technolo-
gies for big data processing. In general, artificial intelligence
and statistical approaches have been identified as the main
contributors in this stage. Finally, data visualization meth-
ods, an integral part of data analysis, have been described
in the context of smart manufacturing automation and big
data. Several platforms and frameworks for data visualization
have been reviewed and programming languages suitable for
creating dashboards and visualization applications have been
described.

A discussion of the trends and challenges obtained from
the review process has been presented. It has been identi-
fied that the primary data sources include smart sensors and
IoT devices. Nevertheless, human-centered manufacturing
applications have included data acquisition from operators,
allowing modelling of behaviour and comfort. An important
consideration that has been highlighted, regardless of the
source of the data, is data privacy and restrictions that may
apply due to regulations.

Regarding data transmission, several protocols have been
identified and their usage will depend on the technologies
being used and the application. Data format, data size, trans-
mission distance and transmission rates have a determining
effect on which protocols to use and how to integrate the
data being sent. In data storage, moving from traditional
structured data storage, such as RDBMS, to unstructured and
semi-structured data storage, such as NoSQL and NewSQL,
has been identified as the leading trend. In addition, it has
been identified that there is a lack of focus on irrelevant data
filtering and deletion, which might help to reduce cost and

processing power in applications where there are economical
or storage constraints.

In general, this research has identified several challenges in
literature. Challenges involve possible errors in the collected
data, which may lead to inaccurate measurements, as well
as the challenges regarding the handling of varied sampling
frequencies and the impact on the transmission technolo-
gies used. Furthermore, challenges regarding heterogeneity
of data have been identified, where the integration of varied
data sources could represent a challenge during data storage,
processing, and visualization, deriving in incorrect analysis of
data or complexity in understanding the data obtained during
the data life cycle. Finally, cybersecurity and data privacy
have been identified as important challenges, as several
studies have lacked attention in this regard.

Future work will focus on developing a consolidated
framework and methodology for big-data life cycle. Based on
the findings of this review, it is expected that this work will
serve as basis for future frameworks for big-data life cycle on
the shop floor.
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