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Abstract We calculate divergent one-loop corrections to
the propagators of the U (1) gauge theory on the truncated
Heisenberg space, which is one of the extensions of the
Grosse–Wulkenhaar model. The model is purely geometric,
based on the Yang–Mills action; the corresponding gauge-
fixed theory is BRST invariant. We quantize perturbatively
and, along with the usual wave-function and mass renormal-
izations, we find divergent nonlocal terms of the �−1 and
�−2 type. We discuss the meaning of these terms and possi-
ble improvements of the model.

1 Introduction

Unsuccessful attempts to quantize the gravitational field by
the usual methods indicate that the structure of spacetime at
the Planck scale is very different from the classical one. Such
a conclusion is also indicated by the existence of singularities
in general relativity and divergences in perturbative quantum
field theory. There are many reasons to believe that the theory
of quantum gravity will not be local in the conventional sense
[1]; however, locality is in the core of standard field theories
and one has to solve many problems in order to formulate
a consistent framework to describe nonlocal classical and
quantum fields.

Perhaps the first idea of how to ‘delocalize’ points was
the Kaluza–Klein extension of spacetime by additional com-
pact dimensions. Alternatively, nonlocality can be introduced
through the structure of elementary constituents as in string
theory; in both cases the underlying spacetime is a Rieman-
nian manifold. Another way to introduce nonlocality is to
assume that spacetime is described by an algebra of non-
commuting operators.
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We analyze this approach, presuming that noncommuta-
tivity of the coordinates of ‘quantum spacetime’ is physical;
we further investigate properties of quantum fields defined
on it. Our motivation for this study is twofold. The first is
the expectation that the existing knowledge about operator
algebras and their representations gives enough tools to build
a compact mathematical framework. The second is the hope
that the ‘amount of nonlocality’ introduced algebraically is
restricted and that it can provide us with reasonable and inter-
esting physics.

Mathematical and physical results which concern non-
commutative geometry and noncommutative field theories
are numerous. In a brief summary one can say that geom-
etry and classical field theories are understood fairly well,
whereas quantization is still an open problem. A technical
explanation is that, though in quantization the effects of non-
locality improve the ultraviolet behavior of a theory, the mix-
ing of large and small length scales induced by noncommu-
tativity transfers divergences to the infrared sector (UV/IR
mixing). This is clearly established for theories defined on
the Moyal space. On the other hand, quantum field theories
defined on spaces with finite matrix representations are finite,
and thus they can be viewed as matrix regularizations of (the
corresponding) commutative theories. Moreover, there are
models in which the continuous limit of a matrix theory has
better quantization properties than its commutative predeces-
sor [2].

The first fully renormalizable theory formulated on a non-
commutative space is the Grosse–Wulkenhaar (GW) model
[3,4]. It describes a real scalar field on the Moyal space of
Euclidean signature confined in the oscillator potential. The
potential term induces symmetry between long and short dis-
tances, the so-called Langman–Szabo (LS) duality [5], which
is roughly of the form x ↔ p. The field propagator is given
by the Mehler kernel: it regularizes the UV behavior of the
theory keeping the IR sector finite. Renormalizability of the
GW model is established and thoroughly examined by vari-
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ous methods [6–9]; its exceptional mathematical properties
induced a lot of subsequent work. Two renormalizable spinor
field theories analogous to the GW model have been found:
in the first one [10], the representation of spinors is chosen in
such a way that the square of the propagator is the Mehler ker-
nel. The other model, due to Vignes-Tourneret (VT) [11], is
a noncommutative generalization of the Gross–Neveu model
[12]. In both theories the Lagrangian has an explicit depen-
dence on coordinates and breaks the translation invariance.
To improve the last property an interesting translationally
invariant model, which is also renormalizable, was proposed
in [13]. It contains, instead of the oscillator potential, the
�−1 term in the kinetic part of the action, thus introducing
another version of the LS duality: � ↔ �−1.

All attempts to find a renormalizable gauge model à la
Grosse–Wulkenhaar have been unsuccessful till the present.
Several strategies have been used, all mainly based on paral-
lels with standard gauge theories. As most of the results are
thoroughly reviewed in [14] we will here recall only some
guiding ideas. The first proposal was to transform the gauge
propagator into the Mehler kernel by nonlinear gauge fix-
ing [15]; however, the appearance of the tadpole divergence
made the theory nonrenormalizable. Another strategy was to
impose the LS duality [16,17]: the action for the gauge field
was defined by minimal coupling to the GW scalar and subse-
quent integration of the scalar field. Although the obtained,
induced theory has good symmetry properties (LS duality
becomes invariance under the exchange [xμ, ] ↔ {xμ, }),
it does not have the trivial vacuum solution and perturbative
quantization is not well defined. It is important to notice that
the explicit coordinate dependence of the induced gauge the-
ory can be elegantly rewritten using the covariant coordinates
which were introduced much earlier [18]. For recent results
on quantization of this theory in the matrix base we refer to
[19].

The idea which we have developed in the previous papers
is that specific forms of the GW and VT actions are due to the
underlying (noncommutative) geometry. The idea is based on
the result that the two-dimensional GW action can be viewed
as an action defined on particular curved three-dimensional
space after the Kaluza–Klein (KK) reduction [20]. The VT
action, similarly, is the spinor action on the same space [21].
In both cases matter is nonminimally coupled to the back-
ground curvature and torsion. The employed approach gives
also the U (1) Yang–Mills (YM) theory which consists, after
the KK reduction, of interacting gauge and scalar fields. Clas-
sical properties of the model are very good: there are vacuum
solutions which include the trivial vacuum, the BRST invari-
ance is established [22]. The perturbative quantization was
started in [23] with the calculation of divergences of the first
order in the gauge coupling: the obtained divergences were
IR logarithmic and included the tadpole. It was, however,
hard to systematize the computation of the prefactors. The

2-point divergences which were found can be removed by
the usual mass and wave-function renormalizations, but the
tadpole diagram remains, signaling instability of the trivial
vacuum under quantum fluctuations.

We continue here investigation of the quantization prop-
erties of the proposed gauge model. We calculate one-loop
corrections to the propagators of second order; we find a sys-
tematic way to compute divergent integrals with two or more
parameter integrations, which enables us to compare and add
various contributions. However, in addition to the local terms,
we find new ‘nonlocal’ infrared divergences of the �−1 and
the �−2 type. Such terms do not exist in the classical action,
thus rendering the theory nonrenormalizable.

The paper is organized as follows. In Sect. 2 we define and
briefly review properties of the truncated Heisenberg space
and the Yang–Mills theory on it, recollecting results from
[22]. In Sect. 3 we go through the main steps and some details
of the calculation and list additional propagator corrections,
completing the earlier result [23]. In Sect. 4 we discuss the
meaning of the obtained results and possibilities to improve
the model. Important details of calculation are given in the
appendices.

2 Fields on the truncated Heisenberg space

Truncated Heisenberg space is a noncommutative space A
generated by three hermitian coordinates x , y, z which satisfy
the commutation relations

[x, y] = iεμ−2 (1 − μz), [x, z] = iε (yz + zy),

[y, z] = −iε (xz + zx). (2.1)

The constant μ has dimension of the inverse length and ε

is a dimensionless noncommutativity parameter. For ε = 1
algebra (2.1) has finite-dimensional matrix representations;
ε = 0 defines the ‘commutative limit’. Double scaling limit
μ → 0, ε → 0, k̄ = εμ−2 = finite reduces (2.1) to the
Heisenberg algebra

[x, y] = ik̄. (2.2)

The irreducible representation of the Heisenberg algebra is
infinite-dimensional; in the geometric context it is called the
Moyal plane. Truncation of infinite matrices x , y, z given in
the Fock representation to finite n×n matrices gives algebra
(2.1). In this sense the Heisenberg algebra (2.2) is a contrac-
tion, or z = 0 subspace, of the truncated Heisenberg space
[24]. The limit n → ∞, which transforms (2.1) to (2.2), is a
weak operator limit.

The truncated Heisenberg algebra can be endowed with
a differential structure. The space of 1-forms is spanned by
frame {θα}, α = 1, 2, 3; derivations eβ dual to θα are defined
to satisfy θα(eβ) = δα

β . We assume [25]
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[ f, θα] = 0, d f = (eα f ) θα = [pα, f ] θα. (2.3)

The frame derivations eα are inner and generated by momenta
pα ∈ A; pα are, by convention, antihermitian. An important
property of the inner-derivation calculus is the existence of a
special connection

θ = −pαθα

which generates the differential, d f = −[θ, f ]. We choose

εp1 = iμ2y, εp2 = −iμ2x, εp3 = iμ

(
μz − 1

2

)
.

(2.4)

It can easily be seen that for z = 0 this differential reduces
to the standard one on the Moyal plane.

The algebra of momenta is in general quadratic [25]

2Pγ δ
αβ pγ pδ − Fγ

αβ pγ − 1

iε
Kαβ = 0, (2.5)

the Kαβ , Fγ
αβ , and Pγ δ

αβ are constants. It defines a noncom-
mutative wedge product. The Hodge dual on the other hand
cannot be defined in the general case as it depends on (the
existence of) the trace: in our case it is almost unique [21].
Finally, one specifies the connection: the metric-compatible
connection used in [20] defines a noncommutative space with
curvature and torsion.

The U (1) gauge symmetry is introduced through the
gauge potential A, which is an antihermitian 1-form, and
the field strength F:

A = igAαθα, F = dA + A2 = i

2
Fαβθαθβ. (2.6)

The g denotes the U (1) coupling constant; the U (1) group
consists of all unitary elements of A. A remarkable property
of noncommutative differential which we use is a possibility
to construct a gauge-covariant 1-form: the difference

X = Xαθα = A − θ, Xα = pα + igAα (2.7)

transforms in the adjoint representation of the gauge group.
The coefficients Xα are called covariant coordinates (a more
appropriate name would perhaps be covariant momenta).
Expressing the field strength in terms of X and the structure
constants we find

F = X2 − 1

2
Fγ

αβXγ θαθβ − 1

2iε
Kαβ θαθβ. (2.8)

The existence ofXmeans that there are covariant observables
which depend only on the potentials, and it opens a possi-
bility to define alternative actions for gauge fields, with dif-
ferent properties from the Yang–Mills or the Chern–Simons

actions. This is a new effect characteristic for noncommuta-
tive spaces. Our model is, however, built as a noncommuta-
tive generalization of the Yang–Mills theory so we shall keep
only the original YM term in the action; we discuss possible
new terms in the last section.

The YM action on the truncated Heisenberg space is given
by

SYM = 1

16g2 Tr
(
F(∗F) + (∗F)F

)
. (2.9)

Dimensional reduction to z = 0 is done by considering
only fields Aα(x, y, z = 0), by (formally) integrating over z,
and by rescaling the gauge coupling constant (g → g) and
gauge fields. This gives the Kaluza–Klein reduced action on
the Moyal plane. In order to distinguish the values of the
gauge fields Aα , Fαβ , α, β = 1, 2, 3, defined in three dimen-
sions from the gauge fields defined intrinsically on the Moyal
plane, we denote the latter by Aα, Fαβ , α, β = 1, 2. Fields
and coupling constants have different mass dimension in two
and three dimensions: dimensional reduction procedure takes
care of this automatically. For z = 0 the third component of
the momentum is constant, p3 = −iμ/2ε , e3 = 0, and A3

transforms as a scalar field in the adjoint representation. We
denote

gA3 = gφ, gA1 = gA1, gA2 = gA2. (2.10)

The field strength and covariant derivative in two dimensions
are defined as

Dαφ = eαφ + ig[Aα, φ],
g−1F12 = e1A2 − e2A1 + ig[A1, A2]. (2.11)

After the KK reduction, components of the three-dimensional
F become [22]

g−1F12 = g−1F12 − μφ = g−1
(

−i[X1,X2] + μ2

ε

)
−μφ,

g−1F13 = D1φ − iε{p2 + igA2, φ} = [X1, φ]−iε{X2, φ},
g−1F23 = D2φ + iε{p1 + igA1, φ} = [X2, φ]+iε{X1, φ}.

(2.12)

Introducing

a = 1 − ε2 (2.13)

we obtain

SYM = 1

2g2 Tr
(
a F12F12 + F13F13 + F23F23), (2.14)

that is,

SYM = 1

2
Tr

( a

g2 (F12)
2 − 2aμ

g
F12φ

+ (4 + a)μ2φ2 − 4εF12φ
2

+ (D1φ)2 + (D2φ)2 − ε2{p1 + igA1, φ}2
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− ε2{p2 + igA2, φ}2
)

= 1

2
Tr

(
− a

g2 [X1,X2]2 + aμ2φ2

− 2aμ3

gε
φ + 2iaμ

g
[X1,X2] φ

+ 4iε [X1,X2] φ2 + [X1, φ]2

+[X2, φ]2 − ε2{X1, φ}2 − ε2{X2, φ}2
)
. (2.15)

The two expressions are the same up to terms which are
constant or proportional to a commutator, that is, to surface
and cosmological constant terms.1

Let us briefly analyze the actions (2.9) and (2.15). Clearly,
they are defined only when the trace is defined, that is, in
a fixed representation of the algebra. One way to proceed
is to consider finite matrix representations, that is, ε = 1,
a = 0: it gives a non-propagating gauge field which interacts
with the scalar. Another possibility, which we choose here,
is to go to the continuous limit and represent fields on the
Moyal space. There are various advantages and drawbacks
of this choice. On the one hand, the resulting action is rela-
tively complicated as gauge and scalar fields are mixed in the
kinetic term. This fact on the other hand indicates that the har-
monic potential confines both fields, gauge and scalar. The
action is manifestly gauge invariant, but the status of the LS
duality is not clear: (2.15) is not invariant under the exchange
[X1,X2] ↔ {X1,X2}. However, one hopes that the geometric
origin of the action could induce cancelation of divergences
as in supersymmetry.

The action (2.15) has two classical vacua,

A1 = 0, A2 = 0, φ = 0, (2.16)

A1 = −μ2y

gε
, A2 = μ2x

gε
, φ = μ

gε
. (2.17)

The first is the usual trivial vacuum; the second describes a
configuration with constant value of the field strength F12 =
μ2/ε. In quantization we expand around the trivial vacuum.
After gauge fixing and inclusion of the ghost terms, we obtain
[23]

S = SYM + Sg f + Sgh = Skin + Sint, (2.18)

with

Skin = −1

2

∫
aAα�Aα + 2aμεαβ(∂a Aβ)φ + φ�φ

− (4 + a) μ2φ2 − 4μ4xαxαφ2 + 2c̄�c, (2.19)

1 The background noncommutative space is curved but gravity is not
dynamical.

Sint = −1

2

∫
4εgεαβ(∂αAβ + igAα 
 Aβ) 
 φ2

− 2ig(∂αφ)[Aα 
, φ]
+ 2iaμgεαβ A

α 
 Aβφ − 2iagεαβ∂αAβεγβ A
γ 
 Aδ

+ ag2(εαβ A
α 
 Aβ)2 + g2[Aα


, φ][Aα 
, φ]
− ε2g2{Aα


, φ}{Aα 
, φ}
+ 2μ2εgεαβ{xα 
, φ}{Aβ 
, φ} − igc̄∂α[Aα 
, c].

(2.20)

This is the action which we will analyze.

3 Propagators: the one-loop structure

Let us recall some results from [23] and introduce new nota-
tion which enables us to perform calculations more effi-
ciently. We start with the kinetic term. The scalar and gauge
fields in the kinetic term are mixed: because of noncommuta-
tivity it is not possible to diagonalize it. We therefore consider
fields as multiplet �T = (Aμ, φ) (which they were before
the KK reduction), and write the kinetic term as

Skin = −1

2

∫ (
Aμ φ

) (
a �δμν −aμεμξ ∂

ξ

aμενη∂
η K−1 − aμ2

) (
Aν

φ

)

+ 2c̄�c

= −1

2

∫
�T G−1� + 2c̄�c (3.1)

where we introduced

K−1 = � − 4μ4xαx
α − 4μ2. (3.2)

The corresponding inverse operator, the momentum-space
Mehler kernel for the massive scalar field, has in two dimen-
sions the following parametric form [26]:

K (r, s) = − π

4μ4

∞∫
1

dξ

ξ

ξ − 1

ξ + 1
e
− 1

8μ2

(
(r+s)2ξ+(r−s)2 1

ξ

)
.

(3.3)

Mass of the scalar field is 2μ; for other values of mass, factor
(ξ − 1)/(ξ + 1) has a different exponent. We denote

r̃μ = εμνrν, r ∧ s = ε

μ2 εμνr
μsν = ε

μ2 r · s̃. (3.4)

The momentum-space kernel of the kinetic operator is

G−1(r, s)

=
( −ar2δμν(2π)2δ(r + s) −iaμr̃μ(2π)2δ(r + s)

−iaμs̃ν(2π)2δ(r + s) −aμ2(2π)2δ(r + s) + K−1(r, s)

)
.

(3.5)

Inverting it, for the matrix elements of the propagator G(r, s)
we obtain
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φ(r)φ(s) = K (r, s),

Aα(r)φ(s) = −iμ
r̃α

r2 K (r, s),

Aα(r)Aβ(s) = (−iμ)2 r̃α s̃β

r2s2 K (r, s) − (2π)2

a

δαβδ(r + s)

r2 .

(3.6)

These matrix elements obey the recurrence relations

Aα(r)φ(s) = −iμ
r̃α

r2 φ(r)φ(s),

Aα(r)Aβ(s) = (−iμ)2 r̃α s̃β

r2s2 φ(r)φ(s) − (2π)2

a

δαβδ(r + s)

r2 ,

(3.7)

which we will later use.
The interaction contains three- and four-vertices. In

momentum space they are

Sint,1 = − 2iεg

(2π)4

∫
dp dq dk δ(p + q + k)

× cos
p ∧ q

2
p̃μAμ(p) φ(q) φ(k)

Sint,2 = 2ig

(2π)4

∫
dp dq dk δ(p + q + k)

× sin
p ∧ q

2
pμφ(p) φ(q) Aμ(k),

Sint,3 = −4iεμ2g

(2π)4

∫
dp dq dk δ(p + q + k)

× cos
p ∧ q

2

∂

∂ p̃μ

φ(p) φ(q) Aμ(k),

Sint,4 = − aμg

(2π)4

∫
dp dq dk δ(p + q + k)

× sin
p ∧ q

2
εμν Aμ(p) Aν(q) φ(k),

Sint,5 = iag

(2π)4

∫
dp dq dk δ(p + q + k)

× sin
p ∧ q

2
εμν k̃ρ Aμ(p) Aν(q) Aρ(k),

Sint,6 = 2ig

(2π)4

∫
dp dq dk δ(p + q + k)

× sin
p ∧ q

2
pμ c̄(p) c(q) Aμ(k),

Sint,7 = 2g2

(2π)6

∫
dp dq dp′ dq ′ δ(p + q + p′ + q ′)

× sin
p ∧ q

2
sin

p′ ∧ q ′

2
× δμν Aμ(p) φ(q) Aν(p

′) φ(q ′),

Sint,8 = 2ε2g2

(2π)6

∫
dp dq dp′ dq ′ δ(p + q + p′ + q ′)

× cos
p ∧ q

2
cos

p′ ∧ q ′

2

× δμν Aμ(p) φ(q) Aν(p
′) φ(q ′),

Sint,9 = − 2εg2

(2π)6

∫
dp dq dp′ dq ′ d(p + q + p′ + q ′)

× sin
p ∧ q

2
cos

p′ ∧ q ′

2
× εμν Aμ(p) Aν(q) φ(p′) φ(q ′),

Sint,10 = ag2

2(2π)6

∫
dp dq dp′ dq ′ d(p + q + p′ + q ′)

× sin
p ∧ q

2
sin

p′ ∧ q ′

2
εμν

× ερσ Aμ(p) Aν(q) Aρ(p′) Aσ (q ′).

We want to calculate the one-loop corrections to the prop-
agators, that is, the sum of the expectation values,

PFF ′,i j (r, s) = −〈F(r)F ′(s) Sint,i Sint, j 〉, i, j = 1, . . . , 6,

(3.8)

PFF ′,i (r, s) = −〈F(r)F ′(s) Sint,i 〉, i = 7, . . . , 10, (3.9)

where F an F ′ are fields φ or Aμ and i, j label different
interaction vertices, 1–10. Expressions of the form (3.8) cor-
respond to the 2-point functions; (3.9) are the 1-point func-
tions. We have previously calculated divergent 1-point func-
tions PF,i [23]. In fact, as we wish to obtain divergent terms
as they appear in the effective action, we can go a step further
and calculate the amputated graphs �(r, s). The removal of
the external legs of P(r, s) is nontrivial because of the Mehler
propagators and amounts to

�(p, q)= 1

(2π)4

∫
dr ds G−1(p,−r)P(r, s)G−1(−s, q).

(3.10)

In fact, it simplifies the final result as it decreases the number
of the Mehler-kernel factors, that is, the number of parameter
integrals.

Due to the recurrence relations (3.7) all field contraction
reduce to contractions of the scalar fields. Let us introduce
shorthand notation for multiple contractions. In the case of
two Mehler kernels we denote

K2(r, s, p, q) = K (r, s)K (p, q) + K (r, p)K (s, q)

+K (r, q)K (s, p). (3.11)

When there are several external momenta (in this case r and
s), we separate them from the internal ones by a vertical line
and write

K2(r, s|p, q) = K (r, p)K (s, q) + K (r, q)K (s, p). (3.12)

With m external and n internal momenta (n ≥ m), this gen-
eralizes to Km+n , defined as

2
n−m

2

(
n − m

2

)
! Km+n(r1, . . . , rm |p1, . . . , pn)
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=
∑
πp

K (r1, pπ1)K (r2, pπ2) . . . K (rm, pπm )

×K (pπm+1, pπm+2) . . . K (pπn−1 , pπn )

where πp are permutations of the internal momenta. Km+n

is symmetric under exchange of any two internal or any two
external momenta. Calculation of contractions can also be
aided by the recurrence relation

Km+n(r1, . . . , rm |p1, . . . , pn)

=
n∑

i=1

K (r1, pi )Km+n−1

×(r2, . . . , rm |p1, . . . , pi−1, pi+1, . . . , pn). (3.13)

Applying (3.7), the sum of one-loop contributions can be
simplified to

Pφφ =
∑

i≤ j≤6

(2 − δi j )Pφφ,i j +
∑

7≤k≤10

Pφφ,k (3.14)

Pα
φA =

∑
i≤ j≤6

(2 − δi j )P
α
φA,i j +

∑
7≤k≤10

Pα
φA,k

= −iμ
r̃α

r2 Pφφ + P ′α
φA, (3.15)

Pαβ
AA =

∑
i≤ j≤6

(2 − δi j )P
αβ
AA,i j +

∑
7≤k≤10

Pαβ
AA,k

= −μ2 r̃
α s̃β

r2s2 Pφφ−iμ
r̃α

r2 P ′β
φA − iμ

s̃β

s2 P ′α
φA+P ′αβ

AA ,

(3.16)

where due to the similarity of vertices 4 and 5 we have

Pφφ,i5 = −Pφφ,i4 + P ′
φφ,i5, (3.17)

Pα
φA,i5 = −Pα

φA,i4 − iμ
r̃α

r2 P ′
φφ,i5 + P ′α

φA,i5, (3.18)

Pαβ

AA,i5 = −Pαβ
AA,i4 − μ2 r̃

α s̃β

r2s2 P ′
φφ,i5 − iμ

r̃α

r2 P ′β
φA,i5

− iμ
s̃β

s2 P ′α
φA,i5, (3.19)

with i = 1, . . . , 5. This leads to a significant cancelation and
absorption of terms.

In principle we have two kinds of divergent one-loop con-
tributions to the propagators. The four-vertices give first-
order divergences which were found in [23]:

∫
φφ,

∫
AμAμ,

∫
εμνxμAν φ. (3.20)

There are also second-order contributions from the three-
vertices which we calculate here. It is clear that, having so
many types of interactions, there will be a large number of
terms. We shall therefore not attempt to present our calcu-
lation to its full extent, but we will rather explain its logic
and go through the main steps. Some parts of the calculation
are straightforward albeit long; but to extract and quantify the
final results we have to define a specific prescription adjusted
to divergent multiple parameter integrals of rational expres-
sions.

Let us first consider Pφφ , which is the most divergent of
the matrix elements. The diagram containing two vertices 1
is given by

Pφφ,11 = −4ε2μ2g2

(2π)8

∫
dp dq dk dp′dq ′dk′

× δ(p + q + k)δ(p′ + q ′ + k′) cos
p ∧ q

2
cos

p′ ∧ q ′
2

× ερσ pρεμν p′
μ

〈
φ(r) φ(s) Aσ (p) φ(q) φ(k)

× Aν(p′) φ(q ′) φ(k′)
〉
, (3.21)

where the correlation function 〈φ(r)φ(s)Aσ (p)φ(q)φ(k)
Aν(p′)φ(q ′)φ(k′)〉 is a sum of contractions of external fields
with fields in the vertices. There are 90 terms of the type

φ(r)φ(s)Aσ (p)φ(q)φ(k)Aν(p′)φ(q ′)φ(k′), which sum up
to K4(r, s|p, q, k, p′, q ′, k′) and 12 terms with the AA con-
tractions which produce K3(r, s|p, q, p′, q ′): K3 and K4 play
the role of the usual symmetry factors. We find

Pφφ,11 = −4ε2μ2g2

(2π)8

∫
dp dq dk dp′dq ′dk′

× δ(p + q + k)δ(p′+ q ′+ k′)

× cos
p ∧ q

2
cos

p′∧ q ′

2
K4(r, s|p, q, k, p′, q ′, k′)

+ 4ε2g2

(2π)6a

∫
dp dq dp′dq ′δ(p + q + p′+ q ′)

× cos
p ∧ q

2
cos

p′∧ q ′

2
K3(r, s|p, q, p′, q ′).

(3.22)

Contributions of other vertices to the Pφφ propagator are
given in Appendix 1. Representing the φφ propagator by a
straight line, the AA by a wiggly line and the φA by a mixed
line, these contributions correspond to diagrams
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The one-loop quantum correction is the sum of all enumer-
ated terms. In order to calculate it one first expresses Mehler
kernels K3, K4 etc. as parameter integrals which are Gaussian
in p, q, k; momentum integration can then be performed.2

The result is a divergent multiple parameter integral which,
except in the simplest cases, cannot be done explicitly when
there is more than one integration.

A more useful way to analyze divergences is to use the
amputated propagators, in which K3 and K4 for example
reduce to K and K2. But in order to find the amputated prop-
agators we need to find all matrix elements, that is, PφA and
PAA as well. They are of a form similar to Pφφ and somewhat
longer; the full expressions are given in [27]. Multiplication
of the amputated propagator by a multiplet of classical exter-
nal fields gives the one-loop effective action:

� = 1

2

∫
dr ds �T (−r)�(r, s)�(−s). (3.23)

Our main goal is to extract the divergent parts of the last
expression. We find

�μν(p, q) = a2 p2q2P ′μν
AA (p, q), (3.24)

�μ(p, q) = −ia2μp2q̃ρ P
′μρ
AA (p, q)

− ap2

(2π)2

∫
dk P ′μ

φA(p, k)K−1(−k, q), (3.25)

�(p, q) = −a2μ2 p̃ρ q̃σ P
′ρσ
AA (p, q)

+ iaμ p̃ρ

(2π)2

∫
dk P ′ρ

φA(p, k)K−1(−k, q)

+ iaμq̃ρ

(2π)2

∫
dk P ′ρ

φA(q, k)K−1(−k, p)

+ 1

(2π)4

∫
dp′dq ′ K−1(p,−p′)Pφφ(p′, q ′)

× K−1(−q ′, q). (3.26)

In comparison to full propagators, these expressions are con-
siderably simpler. For exact forms of P ′ρ

φA and P ′ρσ
AA we refer

to [28].

4 Divergences

4.1 The φφ-sector

Part of the effective action which gives the one-loop quantum
corrections to the propagators is given by (3.23). In the usual
case, 2-point functions have the form

2 This is true if the denominator of the rational expression which
appears as a factor in the course of integrations is of relatively
low degree: otherwise one has to introduce additional Schwinger
parametrizations.

�(r, s) = �(r) δ(r + s) (4.1)

which reflects the translational invariance. (In our convention
for the Fourier transformation, all momenta are incoming.)
However, we are dealing with a nonlocal action which is
not translationally invariant. Therefore in order to recover
the form of divergences in the effective action in position
space we introduce the so-called ‘short’ and ‘long variable’,
respectively, u and v:

u = r + s

2
, v = r − s

2
. (4.2)

Here u denotes the difference between the incoming and out-
going momenta in a vertex or along a line. In translation-
ally invariant case one integrates over u and the divergences
remain in �(v),

� =
∫

du dv �T (−u − v)�(u + v)δ(2u)�(−u + v)

= 1

2

∫
dv �T (−v)�(v)�(v).

Here the δ-function is smeared, roughly replaced by an expo-
nentially decreasing factor

δ(u) = lim
σ→0

1

2πσ 2 e− u2

2σ2 , (4.3)

which is hidden in parameter integrations. The exponential
factors regularize all momentum integrations in the UV sec-
tor: divergences occur in the IR sector, for small values of
u. Our strategy to calculate them is as follows. We expand
terms in the effective action (3.23) around u = 0, keeping
all parameter integrals which come from the Mehler ker-
nels and Schwinger parametrizations. This gives momentum
integrals of the Poisson type (which one can calculate) and
usually leaves two parameter integrations. In order to identify
the types of divergences we introduce appropriate regulators,
expand fields in powers of uα as in (4.5), and integrate term
by term: only the first few terms are infinite. As mentioned,
we consider only the lower bound in momentum integrals as
that is where divergences lie. Eventually, we find new non-
local divergences of the form

∫
φ �−1φ,

∫
φ �−2φ. (4.4)

Let us discuss details of the calculation of �
(div)
φφ . After

removal of the external legs we obtain lengthy expression
which contains several hundred terms. Most of them are
finite, which can be checked by power counting. We con-
sider divergent terms in the increasing order of powers of
the momentum, expecting to find in the lowest order only
mass and wave-function renormalizations. However, a closer
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inspection shows that divergent terms of the lowest degree
can, and do, contain nonlocal �−2 and �−1 terms which are
new. We focus therefore on them; we denote the correspond-
ing parts of �, � by a tilde. Parts of the amputated propagator
� which contain nonlocal divergent contributions are

�̃
(1)
φφ =− 32aμ8g2

(2π)2ε2

r ∧ s

r2s2(r + s)2 sin
r ∧ s

2

∫
dp dq

× δ(−r − s + p + q) sin
p ∧ q

2

p ∧ q

p2 K (p, q),

�̃
(2)
φφ =− 8aμ8g2

(2π)2ε2

1

r2s2

∫
dp dq δ(−r − s + p + q)

× sin
p ∧ r

2
sin

q ∧ s

2

(p ∧ r) (q ∧ s)

p2q2 K (p, q),

�̃
(3)
φφ = 8μ4g2

(2π)2

1

r2s2

∫
dp dq δ(−r − s + p + q)

× sin
p ∧ r

2
sin

q ∧ s

2

(p · r)(q · s)
p2q2 K (p, q),

�̃
(4)
φφ =− 8aμ8g2

(2π)2ε2

1

r2s2

∫
dp dq δ(−r − s + p + q)

× sin
p ∧ r

2
sin

q ∧ s

2

(p ∧ r) (q ∧ s)

p2(p − r)2 K (p, q)

+ (r ↔ s).

Introducing the short and long variables and expressing the
Mehler kernel in parametric form we find the following con-
tributions to the effective action:

�̃
(1)
φφ = 2ag2

π


∫
du dv

φ(−u − v)φ(−u + v)

(u + v)2(u − v)2u2

× (v · ũ)ũα e
−iu∧v

∞∫
1

dξ

ξ

ξ − 1

ξ + 1
e
−(ξ+ 1

ξ
) u2

2μ2

×
∫

dp pα
(
e
−iε p·ũ

μ2 − e
iε p·ũ

μ2
)
e
− 1

ξ
p2

2μ2 + 1
ξ

p·u
μ2 ,

�̃
(2)
φφ = ag2

2πμ2 
∫

du dv
φ(−u − v)φ(−u + v)

(u + v)2(u − v)2

× eiu∧v

∞∫
1

dξ

ξ

ξ − 1

ξ + 1

∞∫
0

dη e
−(ξ+ 1

ξ
+4η) u2

2μ2

×
∫

dp
(p · (ũ + ṽ))(p · (ũ − ṽ) + 2u · ṽ)

p2

× e
−( 1

ξ
+η)

p2

2μ2 +( 1
ξ
+2η)

p·u
μ2

(
e
−iε p·ṽ

μ2 − e
iε p·ũ

μ2
)
,

�̃
(3)
φφ = g2

2πμ2 
∫

du dv
φ(−u − v)φ(−u + v)

(u + v)2(u − v)2

× eiu∧v

∞∫
1

dξ

ξ

ξ − 1

ξ + 1

∞∫
0

dη e
−(ξ+ 1

ξ
+4η) u2

2μ2

×
∫

dp
(p · (u + v))((2u − p) · (u − v))

p2

× e
−( 1

ξ
+η)

p2

2μ2 +( 1
ξ
+2η)

p·u
μ2

(
e
iε p·ũ

μ2 − e
−iε p·ṽ

μ2
)
,

�̃
(4)
φφ = ag2

2πμ2 
∫

du dv
φ(−u − v)φ(−u + v)

(u + v)2(u − v)2

× eiu∧v

∞∫
1

dξ

ξ

ξ − 1

ξ + 1

∞∫
0

dη

× e
−(ξ+ 1

ξ
+η) u2

2μ2 −η v2+2u·v
2μ2

×
∫

dp
(p · (ũ + ṽ))(p · (ũ − ṽ) + 2u · ṽ)

p2

× e
−( 1

ξ
+η)

p2

2μ2 +( 1
ξ
+η)

p·u
μ2 +η

p·v
μ2

(
e
−iε p·ṽ

μ2 − e
iε p·ũ

μ2
)
.

In order to analyze the behavior of these integrals, we first
perform the Gaussian integration over p. For �̃

(1)
φφ , which is

the simplest, we obtain

�
(1)
φφ = −2aεg2

∫
du dv

φ(−u − v)φ(−u + v)

(u + v)2(u − v)2u2

× (u · ṽ) sin(u ∧ v)

∞∫
1

dξ
ξ − 1

ξ + 1
e
−(1+ε2)ξ u2

2μ2 .

We need to estimate this expression at the lower bound u = 0,
so we expand field φ around this point,

φ(−u + v) = φ(v) − ∂αφ(v) uα + · · · (4.5)

The leading-order term is

�̃
(1)
φφ = −2aε2g2

μ2

∫
dv

φ(−v)φ(v)

v2

×
∫

du

∞∫
1

dξ
ξ − 1

ξ + 1
e
−(1+ε2) ξ u2

2μ2 . (4.6)

One can easily see that this expression is divergent, that is,
that the result of the last two integrations at the lower u-bound
is infinite: we either put u = 0, in which case the ξ -integral,∫ ∞

1 dξ (ξ − 1)/(ξ + 1), is divergent at ξ = ∞, or we first

perform the ξ -integration and obtain
∫

du e−u2
/u2, which is

logarithmically divergent at u = 0.
Using the regularization described in Appendix 4, for the

divergent part of �̃
(1)
φφ we obtain

�̃
(1,div)
φφ = −16π3aε2g2

1 + ε2 log �

∫
φ �−1φ, (4.7)

where � is the regularization parameter. The analysis of the
remaining three terms is similar albeit more complicated,
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as the corresponding leading-order expressions, after expan-
sion in u, contain integration in two parameters ξ and η;
relevant terms are written in Appendix 3. A systematic pro-
cedure which enables one to estimate these integrals, that is,
to introduce a regulator and sum up different contributions,
is described in Appendix 4. Adding all divergent nonlocal
contributions in the φφ-sector we obtain

�̃
(div)
φφ =

(
8

ε2 − 14 + ε2
)

π3μ4g2 log �

×
∫

φ �−2φ + ε2π3μ2g2�2
∫

φ �−1φ. (4.8)

In addition, �(div)
φφ contains the

∫
φφ term found before with

a corrected infinite prefactor.

4.2 The AA-sector

The most important obstacle in constructing renormalizable
noncommutative gauge theory on the Moyal space is quadrat-
ically divergent IR term of the form �μν ∝ pμ pν/(p2)2

which comes from the non-planar part of the gauge-field self
energy [29–32] and seems to be independent on the gauge
fixing. It gives rise to a nonlocal counterterm [33,34]

∫
Fμν 


1

D2 D̃2

 Fμν. (4.9)

As we will see, there is no such term in our theory, but other
nonlocal terms exist.

Analyzing the form of �μν we find only two amputated-
propagator terms in the AA sector which can be sources of
nonlocal divergences:

�̃(1)
μν (r, s) = 4aμ2g2

(2π)2

∫
dp dq δ(−r−s+ p + q) sin

p ∧ r

2

× sin
q ∧ s

2

pμqν

p2q2 K (p, q)

× �̃(2)
μν (r, s) = −8aμ2g2

(2π)2

∫
dp dq δ(−r − s + p + q)

× sin
p ∧ r

2
sin

q ∧ s

2

p̃μq̃ν

p2q2 K (p, q).

In fact they are, up to replacement pμ → p̃μ, qν → q̃ν ,
almost the same and they have the same divergent parts: we
therefore analyze only the first. The computational details are
very similar to those which we developed and explained in
Appendix 4 for the φφ-sector. As before, we want to examine
the behavior of the integrals for small u. Introducing the short
and long variables, �̃

(1)
μν (r, s) becomes

�̃(1)
μν = aμ2g2

π2

∫
dp sin

p ∧ (u + v)

2

× sin
(2u − p) ∧ (u − v)

2

pμ(2u − p)ν
p2(2u − p)2 K (p, 2u − p).

Using the Schwinger parametrization and expressing the
Mehler kernel in the parameter form, we obtain

�̃(1)
μν (u, v) = − a

8πμ4

∫
dp

(
cos(p ∧ u + u ∧ v)

− cos(p ∧ v − u ∧ v)
) 2pμuν − pμ pν

p2

×
∞∫

0

dη e
−η

(2u−p)2

2μ2

∞∫
1

dξ

ξ

ξ − 1

ξ + 1
e
− 1

2μ2

(
ξu2+ 1

ξ
(p−u)2

)
.

(4.10)

As we wish to single out terms proportional to ṽμṽν/(v2)2

we can neglect the first cosine. After the Gaussian integration
we obtain

�̃
(1)
AA = − ag2

8μ2 
∫

du dv Aμ(−u − v)Aν (−u + v)

× eiu∧v

∞∫
1

dξ
ξ − 1

ξ + 1
e
−ξ u2

2μ2

×
∞∫

0

dη e
− η

1+ηξ
u2

2μ2 e− ξε2

1 + ηξ

v2

2μ2 + iε
1 + 2ηξ

1 + ηξ

u · ṽ

2μ2

×
(

(1 + 2ηξ)2uμuν + 2iεξ ṽμuν

(1 + 2ηξ)2u2 − ξ2ε2v2 + iεξ(1 + 2ηξ)(u · ṽ)

+ ξμ2

(1 + 2ηξ)2u2 − ξ2ε2v2 + iεξ(1 + 2ηξ)(u · ṽ)
×

×
(
δμν + 2(1+2ηξ)2uμuν −2ε2ξ2ṽμṽν +iεξ(1+2ηξ)(uμṽν +uν ṽμ)

(1+2ηξ)2u2−ξ2ε2v2+iεξ(1+2ηξ)(u · ṽ)

+ 2(1+2ηξ)2uμuν −2ε2ξ2ṽμṽν + iεξ(1 + 2ηξ)(uμṽν + uν ṽμ)

2ξ(1 + ηξ)μ2

))
.

The singular part of this long expression is in fact quite sim-
ple,

�̃
(1,div)
AA = ag2

8ε2

∫
du dv

Aμ(−v)Aν(v)

v2

∞∫
1

dξ

ξ

ξ − 1

ξ + 1
e
−ξ u2

2μ2

×
∞∫

0

dη

(
δμν + 2

ṽμṽν

v2 − ε2ξ

1 + ηξ

ṽμṽν

μ2

)
,

so in the �-leading order we obtain

�
(1,div)
AA = ag2

8ε2

∫
du dv

Aμ(−v)Aμ(v)

v2

∞∫
1

dξ

ξ
e
−ξ u2

2μ2 ,

∞∫
0

dη = aπ3μ2g2

ε2 β� log �

∫
Aμ �−1Aμ. (4.11)
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Adding �
(2,div)
AA to (4.11) we find

�
(div)
AA = −aπ3μ2g2

ε2 β� log �

∫
dx Aμ(x)�−1Aμ(x),

(4.12)

which after setting β = 1 becomes

�
(div)
AA = −aπ3μ2g2

ε2 � log �

∫
Aμ �−1Aμ. (4.13)

5 Conclusion and outlook

We calculated in this paper the one-loop corrections to the
propagators in a dimensionally reduced Yang–Mills gauge
theory defined on the truncated Heisenberg space. The clas-
sical action is given by (2.19), (2.20) and the theory is per-
turbatively quantized around its vacuum solution φ = 0,
Aμ = 0. In the previous paper [23] we found the one-loop
divergences of the effective action of the first order. They
comprise tadpoles

∫
φ,

∫
εμνxμAν, (5.1)

and mass terms

∫
φφ,

∫
AμA

μ,

∫
εμνxμAνφ. (5.2)

Here we calculated the one-loop divergent corrections of the
second order to the φφ and AA propagators and found the
following additional terms:

∫
φ �−2φ,

∫
φ �−1φ,

∫
Aμ�−1Aμ. (5.3)

We have not calculated the φA one-loop divergences, but
from symmetry we expect that there are nonvanishing non-
local corrections in this sector too.

The result is not what we expected or hoped for. Namely, in
related models with scalar and spinor matter it was possible
to attribute renormalizability to the background geometry,
that is, to an adequate inclusion of geometric quantities in
the Lagrangian [21]. It is well known on the other hand that
on commutative curved spaces scalar and spinor theories are
renormalizable only if matter is nonminimally coupled to
the background curvature and torsion [35], and this pattern
is exactly followed in the Grosse–Wulkenhaar and Vignes-
Tourneret models. We expected a similar behavior of our
noncommutative U (1) model; however, the outcome of our
calculation proves differently.

Gauge theories on noncommutative spaces have an addi-
tional freedom which comes with the existence of covariant
coordinates. This means that one can include the gauge poten-
tials via X in the action directly, for example as (XμXμ)n or
exp(αμXμ), to obtain new classes of theories. Even if one
restricts oneself to theories written geometrically, that is, by
considering only terms which are proportional to the vol-
ume form, there are new gauge-invariant quantities. In our
three-dimensional case they are,

TrX(∗X), TrX3, TrXF, TrX2(∗F). (5.4)

However, not all of these expressions are independent
because of Eq. (2.8), which on the truncated Heisenberg
space reads

X2 = F + μ(∗X) − iμ2

4ε
[θ1, θ2]. (5.5)

Calculating the first two terms of (5.4) we obtain

TrX(∗X) = Tr
(
X2

1 + X2
2 + (1 − ε2)X2

3

)

= Tr

(
(1 − ε2)μg

ε
φ + 2μ2g

ε
εμνxμAν

− (1 − ε2)g2φ2 − g2AμA
μ

)
, (5.6)

TrX3 = Tr
(
(3 − ε2)[X1,X2]X3 + 2iεX3(X2

1 + X2
2)

)
,

= Tr

(
(3 − ε2)μ2g

ε
φ + 2μ4g

ε
xμx

μφ + 2μ3g

ε
εμνxμAν

− (3 − ε2)gφF12 − 2μ2g2εμν(xμAν + Aνxμ)φ

− μg2AμA
μ + 2εg3AμA

μφ

)
, (5.7)

where we neglected the boundary and cosmological terms.
The second pair gives

TrXF = TrX3 − μ TrX(∗X) − Tr
(1 − ε2)μ2g

2ε
φ, (5.8)

TrX2(∗F) = TrF(∗F) + μ TrXF − Tr
(1 − ε2)μ3g

2ε
φ.

(5.9)

We see therefore that, were only divergences (5.1), (5.2)
present, the theory would have been renormalizable as we
could expand the initial action by adding purely geometric
terms. It is also interesting to note that addition of the new
terms can translate the classical vacuum φ = 0, Aμ = 0
arbitrarily, which is a point that needs further understanding.
But obviously, it is not possible to cancel nonlocal diver-
gences (5.3) in this way, using only polynomial expressions
of covariant coordinates. We come again, in this model,
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across an occurrence of the UV/IR mixing. We therefore con-
clude that geometric gauge theories cannot render a renor-
malizable theory.

Perhaps a correct way to find a renormalizable gauge
model is to consider nonpolynomial interactions, or to add
nonlocal terms imposing, as a version of LS duality, sym-
metry under exchange � ↔ �−1. The latter was imple-
mented for the scalar field theory in [13]. Several general-
izations were studied for the gauge fields, for example mod-
els defined in [33,34] and [36,37]; however, the complexity
of the actions prevented the complete analysis so it remains
unclear which nonlocal operators could render the gauge the-
ory renormalizable. Our present result shows that �−1 terms
appear in quantization even in a local version of gauge theory.
The other direction of research would be to analyze a matrix
model which corresponds to our gauge model. This numeri-
cal study could give important information about properties
of the gauge fields, and it would then enlarge our understand-
ing of the matrix regularizations.

Finally, a possible explanation of nonrenormalizability of
gauge theories is that on noncommutative spaces they are
intimately related to gravity. Not only is this seen in the fact
that we can combine momenta pα ∈ Awith the gauge poten-
tials into a unique covariant object. The gauge and coordinate
transformations in noncommutative case cannot be clearly
separated: indeed, infinitesimal local translations

δφ = aα[pα, φ] (5.10)

have the same form as infinitesimal U (1) transformations

δφ = εα[Aα, φ], (5.11)

that is, (5.10) is a special case of (5.11). If gauge theories
are a part of gravity or vice versa, then the correct way to
understand their renormalizability would be to understand
the noncommutative gravity first.
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Appendix 1

The rest of the contributions – and the respective diagrams
– needed for finding the second-order propagator correction
Pφφ via (3.17) are given now:

Pφφ,12 = −8μ4g2

(2π)8

∫
dp dq dk dp′dq ′dk′δ(p + q + k)

× δ(p′+ q ′+ k′) p ∧ q

2
sin

p ∧ q

2

× cos
p′∧ q ′

2

1

(p + q)2

× K4(r, s|p, q, k, p′, q ′, k′)

+ 8μ2g2

(2π)6a

∫
dp dq dp′dq ′δ(p + q + p′+ q ′)

× p ∧ q

2
sin

p ∧ q

2
cos

p′∧ q ′

2

1

(p + q)2

× K3(r, s|p, q, p′, q ′), (6.1)

Pφφ,13 = 8ε2μ4g2

(2π)8

∫
dp dq dk dp′dq ′dk′δ(p + q + k)

× δ(p′+ q ′+ k′)

× cos
p ∧ q

2
cos

p′ ∧ q ′

2

(p + q)μ

(p + q)2

∂

∂pμ

× K4(r, s|p, q, k, p′, q ′, k′)

− 8ε2μ2g2

(2π)6a

∫
dp dq dp′dq ′δ(p + q + p′+ q ′)

× cos
p ∧ q

2

× cos
p′∧ q ′

2

(p + q)μ

(p + q)2

∂

∂pμ

× K3(r, s; p, q, p′, q ′), (6.2)

P ′
φφ,15 = 4μ4g2

(2π)6

∫
dp dq dp′dq ′

× δ(p + q + p′+ q ′)

× p ∧ q

2
sin

p ∧ q

2

× cos
p′∧ q ′

2

1

p2q2 K3(r, s|p, q, p′, q ′), (6.3)

Pφφ,22 = − 16μ6g2

(2π)8ε2

∫
dp dq dk dp′dq ′dk′δ(p + q + k)

× δ(p′+ q ′+ k′)

× sin
p ∧ q

2
sin

p′∧ q ′

2

(p ∧ q) (p′∧ q ′)
4(p + q)2(p′+ q ′)2

× K4(r, s|p, q, k, p′, q ′, k′)

− 4g2

(2π)6a

∫
dp dq dp′dq ′δ(p + q + p′+ q ′)

× sin
p ∧ q

2
sin

p′ ∧ q ′

2

p · p′

(p + q)2

× K3(r, s|p, q, p′, q ′), (6.4)
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Pφφ,23 = 16μ6g2

(2π)8

∫
dp dq dk dp′dq ′dk′δ(p + q + k)

× δ(p′+ q ′+ k′)

× cos
p ∧ q

2
sin

p′∧ q ′

2

(p′∧ q ′) (p + q)μ

2(p + q)2(p′+ q ′)2

∂

∂pμ

× K4(r, s|p, q, k, p′, q ′, k′)

× −8εμ2g2

(2π)6a

∫
dp dq dp′dq ′δ(p + q + p′+ q ′)

× cos
p ∧ q

2
sin

p′∧ q ′

2

p̃′μ

(p + q)2

∂

∂pμ

× K3(r, s|p, q, p′, q ′), (6.5)

P ′
φφ,25 = 8μ6g2

(2π)6ε2

∫
dp dq dp′dq ′

× δ(p + q + p′+ q ′)

× sin
p ∧ q

2
sin

p′∧ q ′

2

(p ∧ q) (p′∧ q ′)
4(p + q)2 p′2q ′2

× K3(r, s|p, q, p′, q ′), (6.6)

Pφφ,33 = −16ε2μ6g2

(2π)8

∫
dp dq dk dp′dq ′dk′δ(p + q + k)

× δ(p′+ q ′+ k′)

× cos
p ∧ q

2
cos

p′∧ q ′

2

(p + q)μ(p′+ q ′)ν
(p + q)2(p′+ q ′)2

× ∂2

∂pμ∂p′
ν

K4(r, s|p, q, k, p′, q ′, k′)

− 16ε2μ4g2

(2π)6a

∫
dp dq dp′dq ′

× δ(p + q + p′+ q ′)

× cos
p ∧ q

2
cos

p′∧ q ′

2

1

(p + q)2

∂2

∂pμ∂p′
μ

× K3(r, s|p, q, p′, q ′), (6.7)

P ′
φφ,35 = 8μ6g2

(2π)6

∫
dp dq dp′dq ′δ(p + q + p′+ q ′)

× sin
p ∧ q

2
cos

p′∧ q ′

2

(p ∧ q) (p + q)μ

2p2q2(p + q)2

× ∂

∂p′
μ

K3(r, s|p, q, p′, q ′), (6.8)

P ′
φφ,45 = − 8aμ8g2

(2π)6ε2

∫
dp dq dp′dq ′

× δ(p + q + p′+ q ′)

× sin
p ∧ q

2
sin

p′∧ q ′

2

(p ∧ q) (p′∧ q ′)
4p2q2 p′2(p′+ q ′)2

× K3(r, s|p, q, p′, q ′)

+ 2μ2g2

(2π)4

∫
dp dq sin2 p ∧ q

2

1

p2q2

× K2(r, s|p + q,−p − q), (6.9)

P ′
φφ,55 = 8aμ8g2

(2π)6ε2

∫
dp dq dp′dq ′δ(p + q + p′+ q ′)

× sin
p ∧ q

2

× sin
p′∧ q ′

2

(p ∧ q) (p′∧ q ′)
4p2q2 p′2(p′+ q ′)2

× K3(r, s|p, q, p′, q ′)

+ 4aμ8g2

(2π)6ε2

∫
dp dq dp′dq ′

× δ(p + q + p′+ q ′)

× sin
p ∧ q

2
sin

p′∧ q ′

2

(p ∧ q) (p′∧ q ′)
4p2q2 p′2q ′2

× K3(r, s|p, q, p′, q ′)

+ 4μ2g2

(2π)4

∫
dp dq sin2 p ∧ q

2

×
(

− 1

p2q2 + p · q
p2q2(p + q)2

− 1

(p + q)4 + (p · q)2

p2q2(p + q)4

)

× K2(r, s|p + q,−p − q), (6.10)

Pφφ,66 = −4μ2g2

(2π)4

∫
dp dq

× sin2 p ∧ q

2

(
1

(p + q)4 − (p · q)2

p2q2(p + q)4

)

× K2(r, s|p + q,−p − q). (6.11)
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They correspond to the additional diagrams:

The dashed line is the ghost propagator c̄c. The one-
loop propagator corrections Pφφ,7, Pφφ,8, Pφφ,9, and Pφφ,10,
which were calculated in [23], are

Pφφ,7 = 2μ2g2

(2π)6

∫
dp dq dp′dq ′δ(p + q + p′+ q ′)

× sin
p ∧ q

2
sin

p′∧ q ′

2

p · p′

p2 p′2 K3(r, s|p, q, p′, q ′)

+ 4g2

(2π)4a

∫
dp dq

× sin2 p ∧ q

2

1

p2 K2(r, s|q,−q),

Pφφ,8 = 2ε2μ2g2

(2π)6

∫
dp dq dp′dq ′δ(p + q + p′+ q ′)

× cos
p ∧ q

2
cos

p′∧ q ′

2

p · p′

p2 p′2 K3(r, s|p, q, p′, q ′)

+ 4ε2g2

(2π)4a

∫
dp dq

× cos2 p ∧ q

2

1

p2 K2(r, s|q,−q), (6.12)

Pφφ,9 = −4μ4g2

(2π)6

∫
dp dq dp′dq ′δ(p + q + p′+ q ′)

× sin
p ∧ q

2
cos

p′∧ q ′

2

p ∧ q

2p2q2

× K3(r, s|p, q, p′, q ′), (6.13)

Pφφ,10 = − 2aμ8g2

(2π)6ε2

∫
dp dq dp′dq ′

× δ(p + q + p′+ q ′)

× sin
p ∧ q

2
sin

p′∧ q ′

2

× (p ∧ q) (p′∧ q ′)
4p2q2 p′2q ′2 K3(r, s|p, q, p′, q ′)

+ 2μ2g2

(2π)4

∫
dp dq sin2 p ∧ q

2

×
(

1

2p2q2 − p · q
p2q2(p + q)2

)

× K2(r, s|p + q,−p − q). (6.14)

The ghost contributions are zero.

Appendix 2

Some of the Gaussian integrals in two dimensions are∫
dp e−ap2+b·p = π

a
eb

2/4a

∫
dp pα pβ e−ap2+b·p = π

2a2

(
δαβ + bαbβ

2a

)
eb

2/4a,

∫
dp (p2)2 e−ap2+b·p = π

a3

(
2 + b2

a
+ (b2)2

16a2

)
eb

2/4a

∫
dp

pα pβ

p2 e−ap2+b·p = 2π

b2

(
b2δαβ − 2bαbβ

b2

+bαbβ

2a

)
eb

2/4a .

Switching from u-integration to u2-integration:∫
du f (u2)

uαuβ

u2 = π

2
δαβ

∫
d(u2) f (u2)

×
∫

du f (u2)
uαuβuγ uδ

(u2)2

= π

8
(δαβδγ δ + δαγ δβδ + δαδδβγ )

∫
d(u2) f (u2)

Some formulas used to evaluate the amputated propaga-
tors are

1

(2π)4

∫
du K2(p, q, k, u)K−1(−u, r)

123
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= δ(p + r)K (q, k) + δ(q + r)

× K (p, q) + δ(k + r)K (p, q)

× 1

(2π)8

∫
du dv K−1(r,−u)K3(u, v|p, q, p′, q ′)

× K−1(−u, r)

= δ(p + r)δ(q + s)K (p′, q ′) + δ(p + r)

× δ(p′+ s)K (q, q ′) + δ(p + r)δ(q ′+ s)K (q, p′)
+ δ(q + r)δ(p + s)K (p′, q ′) + δ(q + r)

× δ(q ′+ s)K (p, p′) + δ(q + r)δ(p′+ s)K (p, q)

+ (r ↔ s).

Appendix 3

Divergent contributions to the φφ-part of the effective action
after expansion around u = 0 are

�
(2)
φφ = −3μ2ag2

ε2

∫
du dv

φ(−v)φ(v)

(v2)2

×
∞∫

1

dξ

ξ

ξ − 1

ξ + 1
e
−ξ u2

2μ2

∞∫
0

dη e
− ξε2

1+ηξ
v2

2μ2

− ag2
∫

du dv
φ(−v)φ(v)

v2

×
∞∫

1

dξ
ξ − 1

ξ + 1
e
−ξ u2

2μ2

∞∫
0

dη

1 + ηξ
e
− ξε2

1+ηξ
v2

2μ2

+ ag2

2

∫
du dv

φ(−v)φ(v)

v2

×
∞∫

1

dξ
ξ − 1

ξ + 1
e
−ξ u2

2μ2

∞∫
0

dη

(1 + 2ηξ)2 − ε2ξ2

×
(

2 − 1 + ε2ξ2

1 + ηξ
− 2ε2ξ3

(1 + 2ηξ)2 − ε2ξ2

ε2ξ + η

1 + ηξ

)
,

(8.1)

�
(3)
φφ = μ2g2

ε2

∫
du dv

φ(−v)φ(v)

(v2)2

×
∞∫

1

dξ

ξ

ξ − 1

ξ + 1
e
−ξ u2

2μ2

∞∫
0

dη e
− ξε2

1+ηξ
v2

2μ2

+ μ2g2
∫

du dv
φ(−v)φ(v)

(v2)2

×
∞∫

1

dξ ξ
ξ − 1

ξ + 1
e
−ξ u2

2μ2

∞∫
0

dη
(1 + 2ηξ)2 + ε2ξ2

((1 + 2ηξ)2 − ε2ξ2)2

− 2ε2μ2g2
∫

du

u2 dv
φ(−v)φ(v)

v2

×
∞∫

1

dξ ξ3 ξ − 1

ξ + 1
e
−ξ u2

2μ2

∞∫
0

dη

((1 + 2ηξ)2 − ε2ξ2)2

− g2
∫

du dv
φ(−v)φ(v)

v2

×
∞∫

1

dξ
ξ − 1

ξ + 1
e
−ξ u2

2μ2

∞∫
0

dη
(1 + 2ηξ)2

(1 + 2ηξ)2 − ε2ξ2

+ g2

2

∫
du dv

φ(−v)φ(v)

v2

×
∞∫

1

dξ
ξ − 1

ξ + 1
e
−ξ u2

2μ2

∞∫
0

dη

1 + ηξ

(1 + 2ηξ)2 + ε2ξ2

(1 + 2ηξ)2 − ε2ξ2

+ ε2g2
∫

du dv
φ(−v)φ(v)

v2

×
∞∫

1

dξ ξ3 ξ − 1

ξ + 1
e
−ξ u2

2μ2

∞∫
0

dη

1 + ηξ

ε2ξ + η

((1 + 2ηξ)2 − ε2ξ2)2 ,

(8.2)

�
(4)
φφ = aμ2g2

∫
du dv

φ(−v)φ(v)

(v2)2

×
∞∫

1

dξ

ξ

ξ − 1

ξ + 1
e
−ξ u2

2μ2

∞∫
0

dη

η2 e
− η

1+ηξ
v2

2μ2

− aμ2g2
∫

du dv
φ(−v)φ(v)

(v2)2

×
∞∫

1

dξ

ξ

ξ − 1

ξ + 1
e
−ξ u2

2μ2

∞∫
0

dη
η2 + ε2

(η2 − ε2)2 e
− η+ξε2

1+ηξ
v2

2μ2

+ aε2g2
∫

du dv
φ(−v)φ(v)

v2

×
∞∫

1

dξ
ξ − 1

ξ + 1
e
−ξ u2

2μ2

∞∫
0

dη

(η2 − ε2)(1 + ηξ)
e
− η+ξε2

1+ηξ
v2

2μ2 .

(8.3)

Appendix 4

4.1 Relation between the ξ -integral and the u2-divergence

As seen in the formulas throughout the paper, the integrals
over ξ contain an exponent λ = u2/2μ2, which regularizes
them at the upper bound

∞∫
1

dξ f (ξ) e−λξ . (9.1)

This exponent is lost if we expand in small u2 by putting
u2 = 0: in that case the IR divergence in u is transferred to
divergence in ξ . For better control, we will keep the exponent.

The encountered integrals can be written as

∞∫
1

dξ f (ξ) e−λξ =
∞∫

1

dξ g(ξ) h(1/ξ) e−λξ , (9.2)
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where g(ξ) is a simpler function of ξ and h(ξ) has the form

h(ξ) = H + O(1/ξ), H = const. (9.3)

Let us analyze two integrals

I1(λ) =
∞∫

1

dξ g(ξ) e−λξ , I2(λ) =
∞∫

1

dξ
g(ξ)

ξ
e−λξ ,

dI2
dλ

= −I1. (9.4)

The last equation implies that if I2 = O(λn) when λ → 0,
then I1 = O(λn−1) and

I2
I1

→ 0, λ → 0. (9.5)

In other words if both I1 and I2 are divergent, then the I1-
divergence is of the higher order. Since we are interested
in the leading divergence in λ, we can discard the O(1/ξ)

contribution in (9.3) and simplify the initial integral:

∞∫
1

dξ f (ξ) e−λξ −→ H

∞∫
1

dξ g(ξ) e−λξ . (9.6)

The actual simplified integrals appearing in the effective
action are the following (n > 0, γ is the Euler–Mascheroni
constant):

∞∫
1

dξ ξne−λξ = n!
λn+1 − 1

n + 1
+ O(λ),

∞∫
1

dξ

ξ
e−λξ = − log λ − γ + O(λ),

∞∫
1

dξ

ξn+1 e
−λξ = 1

n
+ O(λ),

∞∫
1

dξ
log ξ

ξ
e−λξ = 1

2
log2 λ + γ log λ

+γ 2

2
+ π2

12
+ O(λ).

4.2 Detailed analysis

Expansion around u = 0 gives, besides (4.6), further terms
listed in Appendix 3 which are potentially divergent at the
lower boundary of integration in u. The selected terms con-
tain∫

dv
φ(−v)φ(v)

(v2)2 ,

∫
dv

φ(−v)φ(v)

v2 , (9.7)

which give nonlocal contributions to the one-loop effective
action,

∫
φ �−2φ,

∫
φ �−1φ. (9.8)

All expressions contain integrations over two parameters:
we wish to sum divergent contributions and see weather the
result is zero, finite or divergent. We first observe the expo-
nentials in v2 in �

(2)
φφ and �

(4)
φφ . In order to extract the �−1-

and �−2-parts of the one-loop effective action, we expand
this exponential in power series and consider only the first
two terms: the remaining ones give local contributions.

To explain the regularization procedure, we start with the
integral

I =
∫

du dv
φ(−v)φ(v)

(v2)2

∞∫
1

dξ

ξ

ξ − 1

ξ + 1
e
− ξu2

2μ2

×
∞∫

0

dη e
− ε2ξ

1+ηξ
v2

2μ2 . (9.9)

We introduce regularizations in the u- and in the η-integrals.
We choose the regulators to be defined by the same large
parameter �:

∫
du f (u2) −→ π

∫

μ2/�

d(u2) f (u2),

∫
dη −→

β�∫
β2/�

dη.

We find

I (div) = π

∫
dv

φ(−v)φ(v)

(v2)2

∫

μ2/�

d(u2)

×
∞∫

1

dξ

ξ

ξ − 1

ξ + 1
e
− ξu2

2μ2

×
β�∫

β2/�

dη

(
1 − ε2ξ

1 + ηξ

v2

2μ2

)
. (9.10)

We can set the lower boundary of the integral over η to zero
since it contains no divergence. Integration over η and Fourier
transformation give
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I (div) = 4π3
(

β�

∫
φ �−2φ

∫

μ2/�

d(u2)

×
∞∫

1

dξ

ξ

ξ − 1

ξ + 1
e
− ξu2

2μ2

− ε2

2μ2

∫
φ �−1φ

∫

μ2/�

d(u2)

×
∞∫

1

dξ

ξ

ξ − 1

ξ + 1
log(β�ξ + 1) e

− ξu2

2μ2

)
.

In accordance with the previous discussion leading to (9.6),
we keep only the leading contribution at ξ → ∞ and obtain

I (div) = 4π3
(

β�

∫
φ �−2φ

∫

μ2/�

d(u2)

×
∞∫

1

dξ

ξ
e
− ξu2

2μ2

− ε2

2μ2

∫
φ �−1φ

∫

μ2/�

d(u2)

×
∞∫

1

dξ

ξ
(log � + log ξ) e

− ξu2

2μ2

)
.

The remaining integration gives the following leading con-
tributions in �:

I (div) = 4π3μ2
(

− β log �

∫
φ �−2φ

+ 3ε2

4μ2

log2 �

�

∫
φ �−1φ

)
. (9.11)

The second term vanishes for � → ∞.
Inspecting the other terms given in Appendix 3 we see

that some of the integrals have singular points which are
inside the integration domain. In such cases the regulators are
introduced in the following manner. Let ζ = ξ, η denote the
integration parameter and ζ = ζ0 the pole of the integration
function. We regularize as before using the same regulator
�, replacing

∫
dζ →

ζ0− α
�∫

dζ +
∫

ζ0+ α
�

dζ,

where α is a positive constant. Concretely, we make the fol-
lowing substitutions:

– for ζ = η and the pole arising from η2 − ε2 = 0, we
denote α = γ ,

– for ζ = η and the pole arising from (1+2ηξ)2 − ε2ξ2 =
0, α = γ2,

– for ζ = ξ and the pole arising from log |(1 − εξ)/(1 +
εξ)| = ∞, α = δ.

We regularize all integrals given in Appendix 3. Calculat-
ing them and adding different contributions, we find that the
leading-order propagator divergences of the one-loop effec-
tive action are

−4π3μ4
(

1 − 3a

ε2 β + a

β2
− a

γ
+ 1 + a

4γ2

)

× log �

∫
φ �−2φ (9.12)

and

−ε2π3μ2

2γ2
� log2 �

∫
φ �−1φ. (9.13)

An additional divergent �−1-term comes from the gauge ver-
tices with no Mehler kernel. It is quadratic in � and equal to

ε2π3μ2

β2
2

�2
∫

φ �−1φ. (9.14)

Our results contain yet undefined parameters β, β2, γ , γ2.
They were introduced to examine the possibility to cancel
divergences by an appropriate choice of the regulators. This
method of course is a kind of fine tuning, since one really does
not wish to introduce a large number of different regulators.
We, however, find that in any case it is impossible to remove
the �−1 divergence: since β2 �= ∞, divergence in (9.14)
always remains. On the other hand, divergent�−2 term (9.12)
can be removed for some values of a by an appropriate choice
of β, β2, γ , γ2; however, in the non-propagating case a =
0, the term remains. In the light of this, we shall set the
parameters to the simplest value

β = β2 = γ = γ2 = 1,

with which the leading one-loop φφ-propagator divergences
become(

8

ε2 − 14 + ε2
)

π3μ4g2 log �

∫
φ �−2φ

and

ε2π3μ2g2�2
∫

φ �−1φ.
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