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A Unified Performance Framework for Integrated
Sensing-Communications based on KL-Divergence
Mohammad Al-Jarrah, Member, IEEE, Emad Alsusa, Senior Member, IEEE, and Christos Masouros, Senior

Member, IEEE,

Abstract—The need for integrated sensing and communica-
tion (ISAC) services has significantly increased in the last few
years. This integration imposes serious challenges such as joint
system design, resource allocation, optimization, and analysis.
Since sensing and telecommunication systems have different
approaches for performance evaluation, introducing a unified
performance measure which provides a perception about the
quality of sensing and telecommunication is very beneficial. To
this end, this paper provides performance analysis for ISAC
systems based on the information theoretical framework of the
Kullback-Leibler divergence (KLD). The considered system model
consists of a multiple-input-multiple-output (MIMO) base-station
(BS) providing ISAC services to multiple communication user
equipments (CUEs) and targets (or sensing-served users). The
KLD framework allows for a unified evaluation of the error
rate performance of CUEs, and the detection performance of
the targets. The relation between the detection capability for the
targets and error rate of CUEs on one hand, and the proposed
KLD on the other hand is illustrated analytically. Theoretical
results corroborated by simulations show that the derived KLD
is very accurate and can perfectly characterize both subsystems,
namely the communication and radar subsystems.

Index Terms—Integrated sensing and communication (ISAC),
relative information, Kullback-Leibler distance, zero forcing
(ZF) precoding, maximum ratio transmission (MRT) precoding,
MIMO radar, multiple targets.

I. INTRODUCTION
With the immensely successful deployment of fifth gener-

ation (5G) networks worldwide, many technologies, services
and applications have been created. Examples for such tech-
nologies, include massive connectivity for internet-of-things
(IoT) devices [1]–[3], autonomous or self-driving vehicles [4],
and unmanned aerial vehicles (UAVs) [5], [6], which all rely
on sensing and are subject to future developments. There-
fore, sensing services such as detection, localization, tracking,
navigation and environmental surveillance are expected to be
supplied by network operators in the future to support these
kinds of technologies. However, sensing services would add
extra challenges due to limited network resources including
spectrum, time and energy. Therefore integrating telecommuni-
cation services and sensing functionalities to optimize network
resources have become an active research area for the past few
years [7]–[13].

Generally speaking, remote sensing can be defined as the
collection of measurements and data from the surroundings
without physical contact with objects or the phenomena of
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interest [3], [14]. Sensing is used in a massive number of
daily applications such as radar, LiDAR, IoT applications,
electromagnetic sensing, underwater sensing, environmental
sensing and monitoring, medical applications, global position-
ing systems (GPS), etc [1], [15]–[18]. Two main categories
can be used to classify sensing systems, which are passive
and active sensing. Whilst passive detectors rely on signals
emitted from sources (e.g. infrared, the sunlight and smoke
detectors) or reflected by objects as the case of cameras, energy
is intentionally emitted from a source and the reflected or
backscattered signals are detected and measured by sensors
in the case of active type sensing. Examples for active sensing
applications include conventional and multiple-input-multiple-
output (MIMO) radars, LiDAR and sonar. In MIMO radars,
the one intended in this work, multiple antennas are employed
with digital receivers and waveform generators feeding the
aperture. Unlike phased array radars in which the separation
between the antenna elements is typically small, MIMO radars
employ relatively widely separated antennas (e.g. d ≥ λ/2,
where d is the antenna separation and λ is the wavelength).
Therefore, MIMO radars have the ability to integrate energy
from different waveforms to obtain diversity gain which results
in high resolution detection and localization capabilities [21]–
[23].

On the other hand, in multi-user MIMO (MU-MIMO) com-
munication systems, multiple beams can be transmitted from a
base-station (BS) to serve a number of users with adequate data
rates and quality-of-service (QoS). MIMO has become an inte-
gral element in wireless communications and has been adopted
by several global standards and specifications such as 4G,
5G, IEEE 802.11n and WiMax, etc [24], [25]. More recently,
massive MIMO BSs which are equipped with a large number
of antennas, practically up to 256, are employed to provide
connectivity to a significant number of users simultaneously.
Moreover, by using a large number of antennas, inter-user
interference can be efficiently eliminated due to the asymptotic
orthogonality of the channels. Other significant advantages of
massive MU-MIMO is achieving a huge capacity, enhancing
the spectral efficiency without network densification, improv-
ing the energy efficiency, providing the ability to generate
focused beams that feed small areas [24]–[27].

Evidently, there is a persistent evolution in wireless com-
munication networks in general where BSs equipped with a
large number of antennas play a main role in this evolution.
Moreover, promoting the functionality of BSs to be able
to provide sensing services in addition to their fundamental
communication duties is unavoidable for efficient deployment
of IoT and sensing systems. Therefore, exploiting the large
number of antennas to provide integrated sensing and com-
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munication (ISAC) services simultaneously is expected play
a significant role in the future [7]–[13]. Therefore, this paper
investigates ISAC system and studies the performance trade-off
using the relative entropy (RE) theorem, or so called Kullback-
Leibler divergence (KLD). Although KLD has been used in
the literature to evaluate the detection capability of sensing
systems [28]–[32], it is not commonly used to describe a
communication systems. However, we will show that KLD
can also capture the detection performance of a communication
system and has a direct relation to the symbol error rate (SER).
With this introduced performance measure, both subsystems,
namely, the radar and the communication subsystems, can be
characterized, and thus the capability of an ISAC system can
be evaluated holistically using a unified performance measure
rather than using a different performance measure for each
individual subsystem.

A. Related Work

1) MIMO radar: In [19], MIMO based radars have been
firstly proposed as an alternative solution to phased array
radars, where it is shown that the new concept of MIMO
radars is able to provide a spatial diversity. The performance
of MIMO and phased array radars have been compared using
analytical derivations for the detection and false alarm prob-
abilities. The principle of MIMO radar is generalized to the
case of non-orthogonal signal waveforms in [20]. In addition,
the effect of interfering signals on the detection capability is
considered in [33], and the effect of a gamma fluctuating target
and synchronization errors are taken into account in [34] and
[35], respectively.

The problem of target detection with MIMO radar for multi-
target scenarios has also been considered in the literature
[36]–[41]. In [36], for instance, the statistical angle resolution
has been investigated and the performance is evaluated using
derived detection and false alarm probabilities, and the clutter
impact on the radar resolution is considered in [37]. A multiple
hypotheses testing problem based multi-target detection is
considered in [38] for passive MIMO radar in which targets
illuminate signals rather that acting as scatterers or reflectors.
Another effort on multi-target multi-hypothesis detection sce-
nario using cognitive MIMO radars can be found in [39], where
an adaptive waveform design algorithm is proposed. Moreover,
a joint multi-target detection and localization problem is in-
vestigated in [40], where low-complex suboptimal detection
algorithms have been proposed. Furthermore, a sequential
probability ratio test (SPRT) based method is introduced in
[41] to resolve close targets in co-located MIMO radars.

2) ISAC: More recently, ISAC systems have been intro-
duced in the literature and attracted the attention of both
academic research and industrial fields. Generally speaking,
ISAC implies the use of the telecommunication network re-
sources for both sensing and telecommunication services [10].
In such scenario, a multi-antenna BS can be applied to provide
both services simultaneously by exploiting multiple beams
generated in the transmission mode. In the reception mode, a
portion of the antennas can be used for radar reception, or time
division multiple access (TDMA) can be applied to reduce the

interference. Alternatively, one can apply interference cancel-
lation algorithms to separate radar signals from communication
signals [10], [42], [43].

In [7], a robust beamforming matrix is proposed for a MU-
MIMO communication system that shares the same spectrum
with a MIMO radar system with the objective of maximize
the detection probability of the radar system. The concept
of ISAC is introduced in [8], [9] in which a single BS
is dedicated for both functionalities of communications and
sensing. Two models, referred to as separated deployment and
shared deployment are presented, where the BS antennas are
distributed among each sub-system in the separated deployment
whereas all antennas are exploited for both sub-systems in the
latter case. Several designs for the signals waveforms and
beampatterns are proposed in [8], [9] to satisfy the require-
ments of communication users’ rates and detection capability
of the radar sub-system. A comprehensive survey for the signal
processing tools that can be applied for ISAC systems can
be found in [11] for three possible scenarios, namely, radar-
centric, communication-centric and joint design.

In [12] and [13], a dual-functional communication and
radar system with massive MIMO-OFDM is considered for
downlink and uplink scenarios, respectively. The achievable
rate and detection capability for both sub-systems are derived
and discussed under perfect and imperfect channel side infor-
mation (CSI). In [44], the dual functional system is optimized
aiming at maximizing the achievable sum-rate and energy-
efficiency while satisfying a minimum required target detection
probability and the individual users’ rates. A novel approach
for ISAC system which considers IEEE 802.11ad-based long
range radar operating at 60 GHz is investigated in [45], where
the preamble of a single-carrier frame with good correlated
sequences is exploited for the radar signal.

An optimization algorithm to jointly design the transceiver of
BS and power allocation for uplink users is introduced in [46]
aiming at maximizing the radar detection probability, while
maintaining a desirable quality-of-service for the individual
communication user equipment (CUEs). In [47], the optimal
power distribution among the communication and training
symbols is derived, and the waveform design is considered to
maximize the weighted sum of mutual information for com-
munication and sensing parts. Rate-splitting multiple access
(RSMA) based ISAC system is introduced in [48] based on
optimizing the weighted sum-rate for CUEs while satisfying a
pre-defined radar beampattern under constrained average trans-
mit power. A comprehensive literature survey about resource
allocation methods is provided in [49].

Performance trade-off of ISAC system is analyzed in [50]
using the detection probability and achievable rate for radar and
communication users, respectively. The power resources of BS
is allocated for the radar waveforms and information signals
such that the probability of detection for the radar is maximized
with a minimum required information rate for CUEs. In [51]
and [52], the performance of uplink and downlink integrated
ISAC is analyzed in terms of the outage probability, ergodic
communication rate, diversity order, and sensing rate. A full-
duplex ISAC scheme that exploits the waiting time of a pulsed
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radar to transmit communication signals is proposed in [53].
Besides, the probability of detection for the radar sensing part
and the spectrum efficiency of the communication subsystem
are analyzed. In [54], an ISAC system which employs OFDM
and orthogonal time frequency space (OTFS) modulation is
considered, where a vehicle equipped with a mono-static
radar is communicating with a receiver and simultaneously
measures some parameters about that receiver by exploiting
the backscattered signal. The maximum likelihood estimator
and its corresponding Cramer-Rao bound have been derived
for a single target scenario, and the root mean square error and
data rate have been used to evaluate the performance of radar
and communication subsystems, respectively. A similar setup
is considered in [55] under a memoryless channel assumption
and the system is analyzed using capacity-distortion trade-off,
which is defined as the maximum achievable communication
rate at which the data can be reliably decoded by the receiver
while keeping the sensing distortion at a desirable value.
B. Motivation and Contribution

As can be depicted from the introduction and literature
survey above, ISAC systems are expected to play a pivotal
role in future wireless networks such as 6G and beyond.
Researches in the literature usually use different metric for
the performance evaluation of sensing and communication
subsystems. For example, sum-rate, bit/symbol error rate, and
outage probability are typically used for the communication
part, whereas estimation rate, detection probability, false alarm
probability and mean square error (MSE) are utilized to eval-
uate the performance of the radar systems. Motivated by this
fact, this paper considers an ISAC system which consists of
MIMO-BS serving a number of CUEs and aims at detecting a
number of targets with a main objective concerns in providing
a unified performance measure to evaluating the efficiency
of communication and radar subsystems at the same time.
The proposed performance measure is based on the Kullback-
Leibler divergence theorem, also referred to the relative infor-
mation theorem, which provides a measure for how different is
a certain probability density function (PDF) from another one.
Mathematically, it can be defined as the expectation of the log-
likelihood ratio (LLR), and thus it is asymptotically related to
the detection performance of radar systems. More specifically,
according to Stein’s lemma, a higher KLD measure implies a
better detection performance for a certain radar system [30],
[32].

Although KLD is well-known in the field of sensing and
target detection, it is not widely used to characterize the
performance of wireless communication systems. However, we
will show in this paper that KLD can be employed to infer
the symbol error rate of the detector at the CUEs, in addition
to being informative of the detection capability of MIMO
radars. Consequently, such a measure can be effectively used
to evaluate the performance of ISAC systems as a single entity
instead of two separated (unlinked) performance measures.
Accordingly, we consider a generalized system model with
a MIMO-BS, multiple users and multiple targets, where the
weighted sum of the relative entropy (WSRE) is proposed to
infer the efficiency of ISAC systems as one system rather

than two subsystems. The contribution of this paper can be
summarized in the following.

1) Providing a framework for the statistics of received
signals as well as a KLD based analysis for CUEs
using two well-known precoding techniques employed
by the MIMO-BS, namely, the zero forcing (ZF) and
the maximum ratio transmission (MRT) precoders. It is
worth noting that although MRT is widely used in the
literature, to the best of authors knowledge, the analysis
of the statistics of the received signals and interference
from other users and radar signal has not been well
investigated.

2) Inspired by full-duplex communications, an interference
cancellation (IC) approach, which is applicable at the
MIMO-BS before employing targets detection, is pro-
posed in order to cancel out the communication signal
reflected from the environment.

3) Providing a unique KLD analysis for the MIMO radar
sub-system. The uniqueness of this KLD comes from two
facts. The first one is that KLD analysis with noncentral
Chi-squared observations, which is the case in most of
MIMO radars, has not been derived in the literature. The
second fact is that the analysis takes into account the
imperfect cancellation for the communication waveform
portion reflected by the environment.

4) Proposing a unified performance measure for ISAC sys-
tems using WSRE for the case of multiple CUEs and
targets.

5) Introducing KLD as a measure for communication sys-
tems, and illustrating its relation to SER. Additionally,
the relation between KLD and the detection probability
in MIMO radars is investigated.

6) Evaluating the performance of the proposed WSRE using
the derived formulas, and validating the analysis by
simulations.
The obtained results show that the derived KLD is
very accurate and can be efficiently used to infer the
efficiency of both parts of the ISAC systems, namely,
the communication and radar subsystems.

C. Paper Organization
Sec. II presents the system model for the ISAC scenario

of interest and a background about KLD. Sec. III, provides
the KLD analysis for the communication subsystem, and the
relation between KLD and SER is investigated in Sec. IV. Sec.
V shows the derivation of KLD for a MIMO radar system
considering a multiple targets scenario, and relates KLD to the
detection probability of radar. Sec. VI introduces the WSRE
performance measure for ISAC while Sec. VII provides the
numerical results and Sec. VIII concludes the paper.

II. SYSTEM MODEL

As illustrated in Fig. 1, this work considers an ISAC system
which consists of MIMO-BS with a total of N antennas serving
a number of single antenna K CUEs in the downlink direction
and aims at detecting T targets which can be ground targets,
unmanned aerial vehicles (UAVs) or a mix of ground targets
and UAVs, where the radar-targets propagation medium obeys
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a line-of-sight channel model. The separated deployment, in
which the BS antennas are distributed among the communi-
cation and radar subsystems, is the scenario of this paper’s
interest. The transmitter employs linear precoding techniques
such as ZF and MRT to precode the information intended to
CUEs before the transmission process takes place through the
allocated NC ≤ N antennas. Moreover, the power budget at
BS is limited to PT which is supposed to be exploited for
data transmission and sensing, and thus PT=PC+Prad where
PC and Prad denote the amounts of power allocated for the
communication and radar subsystems, respectively. It is worth
mentioning that although there are several precoding methods
in the literature such as interference aware precoding and dirty
paper coding which could outperform ZF and MRT, the later
two precoders, ZF and MRT, are the most attractive solutions
due to their low-complexity, implementation feasibility in
practice and reasonable performance [24]–[27]. On the other
hand, the radar matrix is assumed to be designed using a
desired radar signal sl which satisfies a covariance matrix of
Rs ≜ 1

L

∑L
l=1sls

H
l with L being the number of snapshots.

The radar signal vector sl is emitted towards the targets using
the remaining NR =N−NC antennas assigned for the radar
service.
A. Communication Subsystem

For a given transmission interval l, a data symbol dk [l]
intended for the kth CUE is picked from a normalized con-
stellation with E

[
|dk [l]|2

]
= 1, and precoded using a linear

precoder with a precoding vector wk ∈ CNC×1, and thus the
precoded information symbols for all users dw ∈ CNC×1 can
be written as

dw [l] =

K∑
i=1

√
piwidi [l] , (1)

where pi is a power control factor. Consequently, the received
signal at the kth CUE considering the interference caused by
the radar signal is

yk [l] = gT
k dw [l] +

√
Prad

NR
fTk sl+nk[l], (2)

where Prad is the power allocated to the radar subsystem,
gk ∈ CNC×1 ∼ CN

(
0, 2σ2

g

)
is a flat Rayleigh channel gain

vector from the communication antennas to the kth CUE,
fTk ∈ CNR×1 ∼ CN

(
0, 2σ2

f

)
with (·)T denoting the transpose

operation is a flat Rayleigh channel vector which captures
the channel between the radar antennas and CUEs, sl is
the radar waveform, and nk ∼ CN

(
0, 2σ2

n

)
is the additive

white Gaussian noise (AWGN). In this paper, channels are
assumed independent identically distributed (i.i.d) and follow
flat Rayleigh fading.
B. Sensing Subsystem

Generally speaking, in MIMO radar, a signal vector s (t)
is transmitted from BS towards the targets, which reflect the
signals that are captured at the receiver, which is the same
BS in the case of monostatic scenario. Moreover, due to the
multipath nature of the wireless medium, the signals which
get reflected from a target might be received at BS through
multiple paths with different amplitudes and phases. In such
scenarios, virtual targets, also known as ghost targets, which

Fig. 1. An illustration diagram for separated deployment based ISAC.

are virtual copies of the actual target with different values of
the angle-of-arrival (AoA), will appear. Ray tracing techniques,
the uniform diffraction theory and the law of reflection can
be employed to separate the actual target from ghost targets
[56]–[58]. However, similar to many existing work in the
literature, this work is concerned with the scenario in which
the radar-targets channels are subject to direct path propagation
model [20], [23], [33]. It is noteworthy mentioning that since
monostatic MIMO radar with direct path channel is considered,
antennas have almost equal distance to a certain target and
thus they are subject to equal pathloss values. Therefore,
unlike wireless communication systems, it is unlikely to have
preference for one antenna over another, and thus Prad can be
evenly distributed over the radar antennas. Consequently, for
interference free environment, the baseband representation of
the radar return signals from the direct path with time delay
τd and Doppler shift ωd can be written as,

ỹrad(t)=

T∑
t=1

αt

√
Prad

NR
aR(θt)aT(θt)

T
s(t−τt,d)e

jωt,dt+nrad(t),

(3)
where αt is the channel gain for BS-Target-BS path, aT (θt)
and aR (θt) denote the transmit and receive array gain, re-
spectively, and nrad (t) is AWGN. The received signals vector
ỹrad (t) is typically processed through a bank of matched filters
which are tuned to a Doppler frequency of ωd and a time delay
of τd. In other words, the detection process is applied to a cer-
tain range-Doppler bin and could be repeated for other range-
Doppler bins separately [20], [23], [33]. Therefore, let the
desired radar waveform in signal domain sl ∈ CNR×1 ∀l ≤ L,
where L is the number of snapshots, aT (θ) and aR (θ) are
the transmit and receive array gains of a uniform linear array
(ULA), respectively, the signals vector reflected by the targets
and received at BS, which is processed through a bank of filters
tuned to τd and ωd and impinged by communication signal
interference, can be expressed as

ỹrad[l]=

T∑
t=1

αt

√
Prad

NR
aR(θt)aT(θt)

T
sl+Graddw [l]+nrad [l],

(4)
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where the term Graddw [l] represents the interference from the
communication subsystem which is caused by backscattering
the communication signal from the environment, Grad ∈
CNR×NC is the channel matrix from the NC communication
antennas to NR radar antennas, and nrad ∈ CNR×1is the
AWGN, i.e., nrad ∼ CN

(
0, 2σ2

nINR

)
where INR

is the
identity matrix. It should be observed that typical radar systems
are designed such that sl satisfies a desired covariance matrix
Rs = 1

L

∑L
l=1 sls

H
l , for example, Rs = INC

for omnidirec-
tional radars.

Interestingly, it can be observed from (4) that the interference
caused by the communication signal consists of the channel
gain of the BS (Communication transmitter)-Environment-BS
(radar receiver) link and the data vector dw [l] which has
been already transmitted from BS. Since dw [l] is previously
known at BS, interference cancellation (IC) process can be very
beneficial if the estimate of Grad is available at BS. It worth
noting that the estimation of Grad can be performed at BS
in a previous phase through pilot signals. Therefore, inspired
by full duplex communication systems, we propose such IC
process which is very useful for real life ISAC systems and
analyze the radar system considering that the IC process is not
perfect. Given the estimated channel matrix Ĝrad, the received
signals in (4) after applying IC can be rewritten as

yrad [l] =

T∑
t=1

αt

√
Prad

NR
A (θt) sl + ωrad[l] + nrad [l] , (5)

where a monostatic radar is considered with a (θt) ≜ aR (θt) =

aT (θt)≜
[
1, ej

2π∆
λ0

sin θt , · · · , ej
2π∆
λ0

(NR−1) sin θt
]T

, ∆ is the
antenna spacing, λ0 is the signal wavelength, A (θt) ∈
CNR×NR = a (θt)a (θt)

T is the equivalent array manifold, and
ωrad[l] ∈ CNR×1 = Gerrdw [l] = Gerr

∑K
k=1

√
pkwkdk [l] is

the interference from the communication subsystem to radar
subsystem after employing IC with Gerr ≜ Grad − Ĝrad

representing channel estimation errors.

C. The Relative Entropy or Kullback-Leibler Divergence
(KLD)

The relative entropy, or KLD, for a pair of random PDFs is
defined in Definition 1 below. Although the KLD measure is
originally defined for a pair of PDFs, it can be extended for
multiple PDFs by considering every pair separately and then
evaluating the average for all possible unequal pairs.

Definition 1: For a pair of continuous probability density
functions (PDFs), fm (x) and fn (x), KLDn→m is defined as
the relative entropy from fn (x) to fm (x) or a measure of
how different a PDF fn (x) is from another PDF fm (x). In
general , KLD is an asymmetric measure, and mathematically
KLDn→m for continuous random variable can be represented
as [30]

KLD(fm ∥ fn) =

∞∫
−∞

fm (x) log2

(
fm (x)

fn (x)

)
dx, (6)

where KLD(fm ∥ fn) ≜ KLDn→m∀m ̸= n. For multivariate
Gaussian distributed random variables having mean vectors of

µm and µn and covariance matrices of Σm and Σn, it can be
derived as

KLDn→m =
1

2 ln 2

(
tr
(
Σ−1

n Σm

)
− 2 + (µk,n − µk,m)

T

× Σ−1
n (µk,n − µk,m) + ln

|Σn|
|Σm|

)
, (7)

Since KLD is generally asymmetric, the average KLD can be
evaluated wherever KLDn→m ̸= KLDm→n, i.e., KLDn,m ≜
1
2 (KLDn→m + KLDm→n). It worth noting that when the
logarithm function with base 2, i.e., log2 (·), is considered,
KLD is measured in bits, whereas it is measured in nats when
the natural logarithm ln (·) is used. In this work, we consider
the first case and KLD is measured in bits.

KLD, or the relative entropy, has a wide range of appli-
cations in several science and engineering disciplines such as
comparing the information gain of different statistical models
for model selection, machine learning to measure the infor-
mation gain achieved by using the distribution fm rather than
the current distribution fn, information coding to measure the
expected number of extra bits required to encode samples taken
from the distribution fm using a code optimized for another
distribution fn, and quantum information science where the
minimum KLD(fm ∥ fn) over all possible separable states
fn is used to model the entanglement in state fm. According
to the well known Neyman-Pearson lemma, the best way to
separate or distinguish between two random variables through
an observation X taken from one of them is obtained by
using the log-likelihood ratio test, i.e., log2(

fm(x)
fn(x)

), where the
performance can be assessed using the expected value of the
log-likelihood ratio which represents the relative entropy or
KLD as defined in (6). Moreover, KLDn→m, or equivalently
KLD(fm ∥ fn), with fm and fn respectively represent the
distribution of received samples under hypotheses H1 and H0,
can be interpreted as the expected discrimination information
or information gain for discriminating hypothesis H1 against
hypothesis H0 when H1 is the true hypothesis [59]–[62].

Clearly, KLD is an informative measure that can be applied
for inferring systems to assess the discrimination process
between a set of candidates such as the data detection process
in communication systems and hypothesis testing problem in
sensing systems. Moreover, unlike traditional metrics such as
SER, detection probability and false alarm probability, KLD is
independent of the detection process and detection thresholds
applied at the receiver. By using KLD as a unified performance
measure, the performance of the two subsystems of ISAC are
put on the same scale rather than two different scales. It is
noteworthy to mention that according to [30, Ch. 2], KLD is a
generalization for the concept of mutual information which in
one role generalizes the Shannon entropy. Therefore, our core
aim in this work is to develop a unified performance framework
for both sensing and communications, departing from separate
performance metrics, which is very beneficial for the design
of integrated waveforms for ISAC systems. Additionally, it is
worth noting that the trade-off between the two subsystems
is not always clear when different metrics are employed to
evaluate the performance of ISAC.
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III. RELATIVE ENTROPY ANALYSIS FOR COMMUNICATION
SUBSYSTEM

The received signal at the kth CUE in (2) can be represented
as

yk [l] =
√
pkg

T
k wkdk [l] + gT

k

K∑
i=1
i ̸=k

√
piwidi [l] + ηk[l], (8)

where ηk[l]≜
√

Prad

NR
fTk sl+nk[l] is the radar interference plus

noise. It can be shown that the distribution of fTk sl follows
complex Gaussian with a mean of E

[
fTk sl

]
=0 and a variance

of

E
[
fHk sls

H
l fk

]
=2σ2

fE
[
tr
(
sls

H
l

)]
=2σ2

f tr(Rs)=2σ2
fNR, (9)

where the last equality is obtained given the fact that
the elements of the main diagonal of Rs are typi-
cally normalized to ones. Consequently, the distribution of
ηk[l] =

√
Prad

NR
fTk sl+nk[l] is complex Gaussian with ηk[l] ∼

CN
(
0, 2σ2

η

)
where σ2

η = Pradσ
2
f+σ2

n.
For the design of the data beamforming matrix

W = [w1,w2, · · · ,wK ], we consider the widely accepted ZF
and MRT in the following two sections. Generally speaking,
for a linear precoding matrix W, the received data vector at
CUEs can be written in a matrix form as

y [l] = GTWPd[l] + η, (10)
where G ∈ CNC×K = [g1,g2, · · · ,gK ], W ∈
CNC×K = [w1,w2, · · · ,wK ] is the precoding matrix,
P ∈ CK×K = diag

(√
p1,

√
p2, · · · ,

√
pK
)

is power con-
trol matrix, d ∈ CK×1 = [d1 [l] , d2 [l] , · · · , dK [l]]

T ,
F ∈ CNR×K =

[
fT1 , fT2 , · · · , fTK

]
is the interfering

channel matrix between the radar antennas and CUEs,
n ∈ CK×1 = [n1 [l] , n2 [l] , · · · , nK [l]]

T , and η ∈
CK×1 = [η1 [l] , η2 [l] , · · · , ηK [l]]

T , which is defined as
η ≜

√
Prad

NR
FT sl +n, is the radar interference plus noise term

with ηk ∼ CN
(
0, 2σ2

η

)
where σ2

η = Pradσ
2
f + σ2

n.

A. ZF based Data Precoding
Here, we assume ZF is employed at BS to precode the users’

data, which is able to cancel out the interference between
the users. Using such precoder, the precoding matrix W is
generally given by W = G∗ (GTG∗)−1

, where (·)∗ is the
conjugate operator. Consequently, by substituting W in (10)
and noting that GTW = IK with IK represents the identity
matrix, we obtain

y [l] = Pd[l] + η, (11)

where P depends on the normalization scheme employed as
discussed in the next two subsections.

1) ZF based on vector normalization:
With vector normalization based ZF (VNZF),
P = diag (α1,ZF, α2,ZF, · · · , αK,ZF)Pcom where
αk,ZF = 1

∥wk∥ is a normalization factor and
Pcom ≜ diag

(√
P1,com,

√
P2,com, · · · ,

√
PK,com

)
with

constraint PC =
∑

k Pk,com is used to control the average
transmission power for CUEs. It is worthy to mention that
for users with equal priorities, Pk,com can be selected such
that Pk,com = PC

K . Anyway, for the general case with unequal
Pk,com’s, the received signal at the kth CUE is

yk [l] =
√
Pk,comαk,ZFdk [l] +ηk[l]. (12)

Based on the received signal yk [l], the conditional density
function of yk| {dk [l] , αk,ZF} is complex Gaussian (or bivari-
ate Gaussian), which can be expressed as

f (yk|{dk [l] , αk,ZF})=
exp

(
− (yk−µk)

T
Σ−1(yk−µk)

)
√
(2π)

2 |Σ|
,

(13)
where yk ≜ [yk,R, yk,I]

T with yk,R ≜ Re (yk) and
yk,I = Im (yk) denote the real and imaginary com-
ponents of yk, respectively, and µk ≜ [µk,R, µk,I]

T

with µk,R =
√
Pk,comαk,ZFRe (dk [l]) and µk,I =√

Pk,comαk,ZFIm (dk [l]). The covariance matrix Σ = σ2
ηI2

with |Σ| = σ4
η and Σ−1 =

1

σ2
η

I2.

Corollary 1: For a generalized M -ary sig-
nal constellation, KLD can be evaluated for
each possible pair of unequal data symbols
{dk,n [l] , dk,m [l]} , n ̸= m. Let us consider a pair of symbols{
dk,n [l] ≜ |ak,n| ejϕk,n , dk,m [l] ≜ |ak,m| ejϕk,m

}
∀n ̸= m,

with corresponding received signals density functions
fn ∼ CN (µk,n,Σn) and fm ∼ CN (µk,m,Σm), thus the
relative entropy for the kth CUE measured in bits from fm
to fn is denoted as KLDm→n and can be derived using
Definition 1 as

KLDk,m→n =
1

2 ln 2

(
tr
(
Σ−1

m Σn

)
− 2 + (µk,m − µk,n)

H

×Σ−1
m (µk,m − µk,n) + ln

|Σm|
|Σn|

)
. (14)

By noting that Σn = Σm = σ2
ηI2, and given that

µk,m =
[√

Pk,comαk,ZF cosϕk,m,
√
Pk,comαk,ZF sinϕk,m

]
,

KLDm→n can be simplified to

KLDk,m→n =
1

2σ2
η ln 2

(µk,m − µk,n)
H
(µk,m − µk,n)

=
γVNZF

ln 2

(
|am|2+|an|2−2 |am| |an| cos(ϕk,m−ϕk,n)

)
=

γVNZF

ln 2
|dk,n [l]− dk,m [l]|2 , (15)

where γk,VNZF =
α2
k,ZFPk,com

2σ2
η

.

As stated earlier, since KLD is measured for a pair of PDFs,
the average KLD, KLDk,VNZF, is evaluated by considering all
possible pairs of dissimilar symbols, which can be represented
as

KLDk,VNZF=
γVNZF

ln 2

M∑
m=1

M∑
n=1
n ̸=m

Pr(ϕk,m,ϕk,n) |dk,n[l]−dk,m[l]|2,

(16)
and for equal likelihood symbols, it can be reduced to

KLDk,VNZF =
γVNZF

M(M−1) ln 2

M∑
m=1

M∑
n=1
n ̸=m

|dk,n[l]−dk,m[l]|2

=
λ

M (M − 1) ln 2
γVNZF, (17)
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where λ =
∑M

m=1

∑M
n=1
n ̸=m

|dk,n [l]− dk,m [l]|2 which de-

pends on the transmitted data constellation, and thus λ
is a constant for a given constellation. For MPSK sig-
nalling, as an example, with a normalized constellation,

KLDMPSK
k,VNZF,m→n =

2

ln 2
γVNZF × (1− cos (ϕk,m − ϕk,n))

and KLDMPSK
k,VNZF =

λ

M (M − 1) ln 2
γVNZF with λMPSK =

2
∑M

m=1

∑M
n=1
n ̸=m

(1− cos (ϕk,m − ϕk,n)) are obtained.

The KLD derivations have not considered the randomness
nature of the communication channel so far, which results in
a random normalization factor αk,ZF, and thus averaging over
αk,ZF must be taken into account for the sake of completeness.
Towards this goal, the distribution of α2

k,ZF ≜ 1

[(GTG∗)−1]
k,k

is found first, which under Rayleigh fading follows a Gamma
random variable with a scale factor of 1 and a shape factor of
LG = NC −K + 1 [63], i.e., x ≜ α2

k,ZF ∼ Gamma(LG, 1).

fx (x) =
1

Γ (LG)
xLG−1e−x, x ≥ 0. (18)

Therefore, αk,ZF follows the generalized Gamma distribution
with the following PDF

fαk,ZF
(αk,ZF) =

2

Γ (LG)
α2LG−1
k,ZF e−α2

k,ZF , αk,ZF ≥ 0. (19)

Consequently, by evaluating the average of (17) the relative
entropy for the kth CUE is

KLDk,IVNZF,avg =
λ

M (M − 1) ln 2
E [γVNZF] . (20)

Substituting the density function given by (19) in (20),
KLDk,IVNZF,avg can be expressed as

KLDk,IVNZF,avg =
λ

M (M − 1) ln 2

Pk,com

2σ2
η

2

Γ (LG)

×
∫ ∞

0

α2LG+1
k,ZF e−α2

k,ZFdαk,ZF. (21)

By using integration by substitution with y = α2
k,ZF, and noting

that α2LG

k,ZF =
(
α2
k,ZF

)LG

= yLG and dαk,ZF = 1
2αk,ZF

dy,
KLDk,IVNZF,avg is reduced to

KLDk,IVNZF,avg =
λ

M (M − 1) ln 2

Pk,com

2σ2
η

1

Γ (LG)

×
∫ ∞

0

yLGe−ydy. (22)

Thereafter, with the aid of the definition of the Gamma func-
tion, i.e., Γ (LG) =

∫∞
0

yLG−1e−ydy, thus
∫∞
0

yLGe−ydy =
Γ (LG + 1), and using the fact that Γ (LG + 1) = LG! since
LG is a positive integer value, KLDk,IVNZF,avg can be found
as

KLDk,IVNZF,avg =
λ

M (M − 1) ln 2

Pk,com

2σ2
η

LG. (23)

2) ZF with instantaneous matrix normalization: With in-
stantaneous channel matrix based normalization, P ≜α̃ZFPcom

with α̃ZF =
√

1

(dHWWHd)
, and the received signal at the kth

CUE can be written as

yk [l] =
√
Pk,comα̃ZFdk [l] +ηk[l]. (24)

Following the derivations in the previous case, it can be easily
shown that α̃ZF follows a generalized Gamma distribution, i.e.,
α̃ZF ∼ GG(a = 1, d = 2LG = 2 (NC −K + 1) , p = 2).
Based on the received signal yk [l], the density function of
yk| {α̃ZF, dk [l]} is complex Gaussian (or bivariate Gaussian),
and thus the instantaneous and average KLD for the kth CUE
can be respectively expressed as

KLDk,IZF|αZF
=

λ

M (M − 1) ln 2

Pk,com

2σ2
η

α̃2
ZF, (25)

with an average value of

KLDk,IZF,avg=
λ

M(M−1) ln 2

Pk,com

2σ2
η

∫ ∞

0

α̃2
ZFfα̃ZF (̃αZF)dα̃ZF.

(26)
By substituting the generalized Gamma distribution for
fα̃ZF

(α̃ZF), and then employing the integration by substitution
theorem with x = α̃2

ZF and using the definition of Gamma
function, KLDk,IZF,avg can be derived as

KLDk,IZF,avg =
λ

M (M − 1) ln 2

Pk,com

2σ2
η

(NC −K + 1) .

(27)
Interestingly, by comparing (27) with (23), it can be realized

that the KLDs for ZF with instantaneous vector normalization
and matrix normalization are equal. Therefore, we will consider
ZF with instantaneous matrix normalization in our investiga-
tions henceforth.

B. MRT based Data Precoding with Vector Normalization

To employ MRT, sometimes called the matched filter (MF),
for data precoding, the precoding vector for the kth user data,
wk, is evaluated based on the channel vector gk only, and
thus wk is independent of gi∀i ̸= k. For MRT, we consider
the instantaneous vector based normalization with wk = g∗

k

and thus the received signal at the kth user can be written as

yk [l] = gT
k

K∑
i=1

√
Pi,com

wi

∥gi∥
di [l] +

√
Prad

NR
fTk sl+nk[l]

=
√

Pk,com ∥gk∥ dk [l] + ω̃MRT, (28)

where the equivalent inter-user and radar interference plus
noise term ω̃MRT = ωMRT + ηk[l] with ωMRT =
gT
k

∑K
i=1
i ̸=k

√
Pi,comğidi [l] is the inter-user interference, where

ği = g∗
i / ∥gi∥. To find the statistical distribution of ω̃MRT,

we first evaluate the statistical properties of ωMRT. To-
wards this goal, let us define new variables as ṽk,i =√
Pi,com

tk,i
zi

, zi = ∥gi∥ ≜
√∑NC

nc=1 |gi,nc
|2, and tk,i =∑NC

nc=1di [l]g
T
k,nc

g∗
i,nc

∀i ̸=k, and thusωMRT can be written as

ωMRT=

K∑
i=1
i ̸=k

√
Pi,com

∑NC

nc=1di [l]g
T
k,nc

g∗
i,nc

∥gi∥
=

K∑
i=1
i̸=k

ṽk,i. (29)

As shown in Appendix I, with the aid of the central limit
theorem (CLT), the density of ṽk,i can be approximated as
a complex Gaussian distribution, ṽk,i ∼ CN

(
0, 2Pi,comσ

2
v

)
,

and thus ωMRT ∼ CN
(
0, 2σ2

v

∑K
i=1
i̸=k

Pi,com

)
. Therefore,

the equivalent inter-user and radar interference plus noise
ω̃MRT ∼ CN

(
0, 2σ2

ω

)
where σ2

ω = σ2
v

∑K
i=1
i ̸=k

Pi,com + σ2
η with
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σ2
η = Pradσ

2
f + σ2

n. Fig. 2 compares the density functions
obtained by approximation (Aprx) with the actual distributions
obtained by simulation (Sim) for different values of the number
of communication antennas NC , where the total number of
the BS antennas is fixed at N = 30. Binary phase shift
keying (BPSK) is considered in this figure with PT

σ2
n

= 10
dB, Prad = 0.3 units and the number of CUEs is K = 2.
It is worth noting that the legends for Fig. 2 a) and Fig.
2 b) are similar, as well as, the legend of Fig. 2 d) is the
same as Fig. 2 c). Since the variables tk,i, ṽk,i and ω̃MRT

are complex and symmetric, we plot the real components of
the random variables as the imaginary parts have distributions
identical to the real parts. As can noted from the figure,
the accuracy of CLT considered to approximate the PDF of
tk,i starts improving as NC increases. More specifically, the
approximated PDF converges to simulations for NC > 8.
It can be also observed from Fig. 2 b) that the Gaussian
approximation used in Appendix I to approximate the Chi
squared distributed random variable zi is very accurate for
NC > 4. As can be seen from Fig. 2 b), unlike the other three
subfigures, the mean value of zi increases as NC increases
which can be attributed to the fact that zi is the envelope of
the sum of the power gains of a number of NC independent
paths according to the definition of zi above (29). On the other
hand, it can be observed from Fig. 2 a) that the mean value of
tk,i is 0 since it is a sum of i.i.d random variables with zero
mean, and so are ṽk,i and ω̃MRT as seen from Fig. 2 c) and
Fig. 2 d). Interestingly, as can be depicted from Fig. 2 c) and
Fig. 2 d), the variance of ṽk,i and ω̃MRT is independent of NC

because, according to their definition, each term is normalized
by ∥gi∥ which cancels the impact of NC . Interestingly, Fig.
2 c) and Fig 2 d) show that the distributions of ṽk,i and
ω̃MRT are independent of the number of antennas NC and the
approximated densities perfectly captures the characteristics of
these random variables.

Since the distribution of ω̃MRT is accurately approximated
as a Gaussian density function, Corollary 1 can be employed
and then the expected value with respect to ∥gk∥2 is evaluated.
Consequently, the KLD for MRT with vector based normaliza-
tion can be found as

KLDk,NIMRT,avg =
Pk,com

2σ2
ωM (M − 1) ln 2

λE
[
∥gk∥2

]
=

λσ2
g

σ2
ωM (M − 1) ln 2

NCPk,com, (30)

where the fact that ∥gk∥2 ∼ Gamma
(
NC , 2σ

2
g

)
is used to

evaluate E
[
∥gk∥2

]
.

IV. RELATION BETWEEN ZF-KLD AND SER
For the sake of completeness, in this section we compare

the commonly used SER performance evaluation metric with
the KLD metric. Towards this purpose, we consider the ZF
precoding scheme with instantaneous matrix based power
normalization whose received signal is given in (24). The SER
of most standard modulation schemes, such as MPSK, MPAM,
rectangular and nonrectangular MQAM, under AWGN channel
can be generally approximated as [64, Table 6.1, pp. 180],

SERIZF|α̃ZF
= AQ

(√
BγIZF|α̃ZF

)
, (31)

where γIZF|α̃ZF
≜ Pk,com

2σ2
η

α̃2
ZF and SERIZF|α̃ZF

denote the
instantaneous SNR and SER, respectively, of an IMZF based
precoding system conditioned on α̃ZF, Q (·) is the tail dis-
tribution function of the standard normal distribution, i.e., the
Q-function, and the values of A and B are constants which are
dependent on the modulation scheme and order. Consequently,
by comparing (25) with (31), the KLD in (25) can be written
in terms of SERLTZF|α̃ZF

as

KLDIZF|α̃ZF
=

λ

M(M− 1)ln 2

1

B

(
Q−1

(
SERIZF|α̃ZF

A

))2

, (32)

where Q−1 (·) is the inverse Q-function. On the other hand,
the average SER can be evaluated by averaging SERIZF|α̃ZF

over the PDF of α̃ZF, which can be written as

SERIZF=A

∫ ∞

0

Q

(√
BPk,com

2σ2
η

α̃ZF

)
fα̃ZF (̃αZF)dα̃ZF. (33)

By substituting the PDF of α̃ZF provided in (19) and rewriting
the Q-function in terms of the complementary error function

erfc, i.e., Q (x) =
1

2
erfc

(
1√
2
x

)
, SERIZF can be expressed

as

SERIZF =
A

Γ (NC −K + 1)

∫ ∞

0

α̃
2(NC−K)+1
ZF e−α̃2

ZF

× erfc

(√
BPk,com

4σ2
η

α̃ZF

)
dα̃ZF, (34)

which can be solved using [65, 2.8.5.6, pp. 104] as

SERIZF = A

(
1

2
− Γ (NC −K + 1.5)

Γ (NC −K + 1)

√
BPk,com

4πσ2
η

× 2F1

(
[0.5, NC −K + 1.5] ; 1.5;−BPk,com

4σ2
η

))
, (35)

where 2F1 ([ · , · ]; · ; ·) is the Gaussian, or ordinary, hyperge-
ometric function. By comparing SERIZF|α̃ZF

with the average
KLD in (27), it is more convenient to rewrite SERIZF|α̃ZF

as a function of KLD. Therefore, by using (27), we obtain
Pk,com

2σ2
η

=
M (M − 1) ln 2

λ (NC −K + 1)
KLDIZF,avg, and thus SERIZF can

be rewritten as

SERIZF = A

1

2
− Γ (NC −K + 1.5)

Γ (NC −K + 1)

√
Bλ̃

2π
KLDIZF,avg

× 2F1

(
[0.5, NC −K + 1.5] ; 1.5;−B

2
λ̃KLDIZF,avg

))
,

(36)

where λ̃ =
M (M − 1) ln 2

(NC −K + 1)λ
.

V. RADAR SYSTEM WITH MULTIPLE TARGETS

For the radar subsystem, we consider the case in which
targets are spatially separated such that each target is in a
distinct radar bin [41], [66], [67]. It is worth noting that some
separation algorithms have been proposed in the literature to
separate signals associated with individual targets in the case
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Fig. 2. The density functions of the approximated random variables: a) The PDF of the real part of ti,k , b) The PDF of zi, c) The PDF of the real part of
ṽi,k , and d) The PDF of the real part of interference plus SNR ω̃MRT.

of unresolvable targets, and thus estimating the number of
targets can be achieved accordingly, [38]–[40]. We assume
that the number of possibly existing targets in the environment
is known at BS, however, a simple counting method can be
performed by employing the detection process in this paper
on all radar angular-range-Doppler bins and then counting
the number of detected targets. Additionally, we consider that
MIMO radar is able to generate multiple beams simultaneously
by considering a linear combination of multiple orthogonal
signals [21], [68]–[70]. Let Φ = [ϕ1, ϕ2, · · · , ϕT ]

T be a set
of T orthonormal baseband waveforms, κt with

∑T
t=1 κt = 1

is a power allocation factor which is used to control the
amount of power to be emitted towards a certain target, and
wrad,t [l] ∈ CNR×1, t = {1, 2, · · · , T} is a weight vector at
the lth signalling period, then the transmitted signals vector at
the output of transmitting antennas can be represented as

s̃l=

√
Pt,rad

NR

T∑
t=1

√
κtwrad,t[l]ϕt=

√
Pt,rad

NR
Wraddiag(κ̄)Φ,

(37)
where κ̄ ∈ C1×T =

[√
κ1,

√
κ2, · · · ,

√
κT

]
with ∥κ̄∥2 = 1 is

the power allocation vector that is used to control the portion of
power emitted towards each target, and Wrad [l] ∈ CNR×T =
[wrad,1 [l] ,wrad,2 [l] , · · · , w̌rad,T [l]] with wrad,t [l] ∈ CNR×1

is the precoding matrix. In general, the precoding vectors
wrad,t [l]∀t can be designed to optimize the radar subsys-
tem performance or satisfy some desired radar covariance
matrix; for example, a radar covariance matrix of Rw ≜

1
LWrad × WH

rad = INR×NR
is typically used for omnidirec-

tional radar. Using this signal waveform design for the radar
subsystem, the receiver can apply a set of matched filters to
separate the signals reflected by different targets by matched-
filtering the received signals yrad (t) to signal waveforms
ϕt∀t = {1, 2, · · · , T}. Consequently, after matched-filtering
yrad under hypothesis H1, the target existence scenario, using
the corresponding ϕt, the received signal vector in baseband
in (5) can be rewritten as

yrad,t|H1
[l] =

√
κtPrad

NR
αtaR (θt)aT (θt)

T
wrad,t[l]

+Graddw [l] + nrad [l] , (38)

where the last equality is obtained using the fact that ϕt∀t =
{1, 2, · · · , T} are orthonormal waveforms. Interestingly, as can
be observed from the received signal form, the interference
and noise free part of yrad,t [l] ∈ CNR×1 is a function of the
parameters of target t only, and thus targets can be resolved
and detected independently of each other.

By employing IC to cancel out or reduce the amount of
interference caused by the communication signals reflected
by the environment and noting that we consider imperfect
cancellation due to channel estimation errors of Gerr, then the
received signal vector under hypothesis H1 can be represented
as

y̌rad,t|H1
[l]=

√
κtPrad

NR
αtA(θ)wrad,t[l]+ωrad+nrad [l], (39)
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where ωrad ∈ CNR×1 ≜ Gerrdw [l] = Gerr

∑K
i=1

√
piwidi [l]

represents the residue of the communication signal after im-
plementing IC. By assuming that the statistics of channel
estimation errors follow a Gaussian distribution [71], [72],
i.e., each entry of Gerr is CN

(
0, 2σ2

err

)
where 2σ2

err is the
variance of the channel estimator, and noting that every element
in ωrad is a sum of independent KNC random variables,
the CLT can be applied to approximate the density of the
elements of ωrad for large KNC . Consequently, the errors
caused by imperfect IC are approximately complex Gaussian
distributed, ωrad ∼ CN

(
0, 2σ2

ωINR

)
with σ2

ω = σ2
errσ

2
wNC

×
∑K

i=1 Pi,com where σ2
w is the variance of the elements of

wi. Hence, the received signal can be expressed as

y̌rad,t|H1
[l] =

√
κiPrad

NR
αtA (θt)wrad,t[l] + ω̃rad, (40)

where ω̃rad ≜ ωrad + nrad [l] ∼ CN
(
0, 2σ2

ω̃INR

)
with σ2

ω̃ =
σ2
ω + σ2

n.

On the other hand, under null hypothesis H0, i.e., the target
absence scenario, the received signals consist of the residues
of imperfect IC and AWGN, consequently, the received signals
vector is

y̌rad|H0
[l] = ω̃rad. (41)

After collecting a number of L snapshots, the received signal
matrix can be formulated as

Y̌rad,t|H1
=

√
κiPrad

NR
αtaR (θt)a

T
T (θt)Wrad,t+Ωrad (42)

Y̌rad,t|H0
= Ωrad, (43)

where W̃t,rad ∈ CNR×L = [wt,rad[1],wt,rad[2], · · · ,wt,rad[L]]
and Ωrad∈CNR×L=[ω̃t,rad[1], ω̃t,rad[2], · · ·, ω̃t,rad[L]]. By not-
ing that y̌rad,t|H1

[l]∼CN
(√

κiPrad

NR
αtA(θt)wrad,t[l], 2σ

2
ω̃INR

)
,

the log-likelihood function of the received signal matrix
Y̌rad,t|H1

can be obtained as

ln
(
f
(
Y̌rad,t|H1

;αt, θt
))

= −NRL ln
(
πσ2

ω̃

)
− 1

2σ2
ω̃

×
L∑

l=1

∥∥∥∥∥y̌rad,t|H1
[l]−

√
κiPrad

NR
αtA (θt)wrad,t [l]

∥∥∥∥∥
2

. (44)

By evaluating the squared norm and neglecting the terms which
do not affect the estimation process, the sufficient statistic
matrix can be formulated as

Ẽt =
1

L

L∑
l=1

y̌rad,t|H1
[l]wH

rad,t [l] , (45)

which, after extracting the independent sufficient statistics, can
be simplified to [20, Eq. 15],

et = αtdw (θt) + ñ, (46)

where dw (θt) = vec
{
A (θt)UΛ1/2

}
with w̆rad,t [l] =

Λ−1/2UHwrad,t [l] denotes the equivalent array steering vec-
tor which is a function of the signal correlation matrix, and

ñ =
1

L
vec
{∑L

l=1 ω̃rad [l] w̆
H
rad,t [l]

}
∼ CN

(
0, 2σ2

ω̃INR

)
. Con-

sequently, the generalized likelihood ratio test (GLRT) can be

formulated as ξ (θt)
H1

⋚
H0

τ , where τ is a detection threshold

which, according to Neyman-Pearson test, is determined by
fixing the false alarm rate at a fixed value, and ξ (θt) is the
generalized likelihood ratio function and given by [73, Ch. 6.5]

ξ(θt)≜ ln

(
argmaxθt,αtf(et;αt,θt,H1)

argmaxθt,αt
f(et;H0)

)
=ln

f
(
et;α̂t,θ̂t,H1

)
f (et;H0)

,

(47)
where

{
α̂t, θ̂t

}
are the maximum likelihood estimates of the

target parameters, which can be evaluated as{
α̂t,θ̂t

}
=argmax

θt,αt

f(et;αt,θt,H1)=arg min
θt,αt

∥et−αtdw(θt)∥2.
(48)

The generalized likelihood ratio function ξ (θt) can be derived
as [20, Eq. 36]

ξ(θt)=
∣∣∣aHR(θ̂t)ẼtaT

(
θ̂t

)∣∣∣2/(NRa
H
R

(
θ̂t

)
RT

t aT

(
θ̂t

))
, (49)

where Rt =
1
L

∑L
l=1 wt,rad [l]w

H
t,rad [l]. After substituting for

Ẽt as given in (45), ξ (θt) can be written as

ξ (θt) =

∣∣∣aHR (θ̂t) 1
L

∑L
l=1 y̌rad,t|H1

[l]wH
rad,t [l]aT

(
θ̂t

)∣∣∣2
NRaHR

(
θ̂t

)
RT

t aT

(
θ̂t

) .

(50)
Thereafter, by using the law of large numbers, it can be
deduced that at L −→ ∞, the estimators of αt and θt
are asymptotically consistent estimators, thus θ̂t

asymp.−→ θt
and α̂t

asymp.−→ αt. Consequently, by substituting for y̌rad,t|H1

using (40) and considering orthogonal signal waveforms with
Rt = INR

, ξ (θt) can be reduced to

ξ (θt) =

∣∣∣∣∣
(√

κiPrad

NR
αtaT (θt)

T
RtaT

(
θ̂t

)
+ n̆

)∣∣∣∣∣
2

, (51)

where n̆ ∼ CN
(
0, 2σ2

ω̃

)
. Obviously, by using the fact that the

squared amplitude of a complex Gaussian distributed random
variable is Chi-squared distributed, the sufficient statistics of
ξ (θk) is [20, Eq. 37], [33, Eq. 54], [73, Ch. 6.5]

ξ (θt) ∼
{

H1 : X 2
2 (λt)

H0 : X 2
2 (0)

, (52)

where X 2
2 (λt) denotes a noncentral Chi-squared random vari-

able with 2 degrees of freedom and a noncentrality parameter
of λt= |αt|2κtPrad

∣∣aH (θt)Rta (θt)
∣∣2 /(σ2

ω̃NR), which for or-
thogonal waveforms (e.g. Rt = INR

where INR
is an NR×NR

identity matrix), can be reduced to λt = |αt|2κtNRPrad/σ
2
ω̃ .

A. KLD from ξH1
to ξH0

By using Definition 1, noting that noncentral Chi-squared
random variables are strictly positive, substituting fξ (ξ|H0) =
1
2e

−0.5ξ and fξ (ξ|H1) = 1
2e

−0.5(ξ+λt)I0
(√

λtξ
)
, and using

the logarithmic identity log2 x = lnx/ln 2, the relative infor-
mation from ξH1

to ξH0
can be derived as

KLD(ξH0 ∥ ξH1) =

∞∫
0

fξ (ξ|H0) log2

(
fξ (ξ|H0)

fξ (ξ|H1)

)
dξ

=
1

2 ln 2

∞∫
0

e−0.5ξ ln

(
1

e−0.5λtI0
(√

λtξ
)) dξ. (53)

Thereafter, using the logarithmic identities loga (x/y) =
loga x−loga y and loga (xy) = loga x+loga y, and noting that
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ln(1) = 0, ln(ex) = x and
∞∫
0

e−0.5ξ = 2, KLD(ξH0
∥ ξH1

)

can be written as (54) on page 12.

To be able to solve the integral, we make use of the infinite
series representation of the modified Bessel function I0 (x) for
0 ≤ x ≤ 1, and an asymptotic approximation for I0 (x) which
is very accurate for x > 1. It is worth noting that since I0 (x)
is sharply increasing as x increases, thus the computation of
the infinite series representation is very costly for large values
of x. Therefore, the infinite series representation of I0 (x) is
employed for small values of x, i.e., 0 ≤ x ≤ 1, while
an efficient asymptotic approximation with high accuracy is
invoked when x > 1 [74, Eq. 9.7.1, pp. 377]. Using the infinite
series representation, I0

(√
λtξ
)
for 0 ≤ ξ ≤ 1/λt(e.g. the

Bessel function argument x ∈ [0, 1]) can be written as [74,
Eq. 9.6.10, pp. 375],

I0

(√
λtξ
)
= 1 +

∞∑
l=1

λl
t

22l (l!)
2 ξ

l, 0 ≤ ξ ≤ 1

λt
. (55)

However, since this representation will be used for small values
of λtξ, the first few terms, i.e., two or three terms, provide a
tractable solution with a very accurate approximation. On the
other hand, the following approximation is used for ξ > 1/λt

[74, Eq. 9.7.1, pp. 377],

I0

(√
λtξ
)
≃

exp
(√

λtξ
)

√
2π 4

√
λtξ

(
1 +

Q∑
q=1

(
1(√
λtξ
)q

×

∏q
k=1

[
(2k − 1)

2
]

q!8q

 , ξ >
1

λt
, (56)

where the results show that using Q = 5 provide very accurate
approximation for the considered scenarios in this paper. Con-
sequently, by dividing the interval of the integral in (54) into
two subintervals as discussed above, KLD(ξH0

∥ ξH1
) can be

given by

KLD(ξH0
∥ ξH1

) =
1

2

(
1.4427λt −

1

ln 2
(I1 + I2)

)
, (57)

where

I1 =

1
λt∫
0

e−0.5ξ ln
(
I0

(√
λtξ
))

dξ, (58)

and

I2 =

∞∫
1
λt

e−0.5ξ ln
(
I0

(√
λtξ
))

dξ. (59)

By substituting the infinite series representation (55) in (58),
I1 can be written as

I1 =

1
λt∫
0

e−0.5ξ ln

(
1 +

∞∑
l=1

λl
t

22l (l!)
2 ξ

l

)
dξ. (60)

Thereafter, the Taylor series expansion for ln (1 + x) is invoked
[75, Eq. 1.511, pp. 53]. However, by noting that for the
considered range of ξ, i.e., ξ < 1

λt
,
∑∞

l=1
λl
t

22l(l!)2
ξl < 1, using

the first term of Taylor series expansion can be considered,
i.e., ln (1 + x) ≈ x for x < 1. Consequently, using the fact
that summation and integration are interchangeable, I1 can be
rewritten as

I1 =

∞∑
l=1

λl
t

22l (l!)
2

1
λt∫
0

e−0.5ξξldξ, (61)

which, after evaluating the integral and some mathematical
manipulations, can be evaluated as

I1=
∞∑
l=1

λ0.5l
t e−

0.25
λt

21.5l−1 (l + 1) (l!)
2M0.5l,0.5l+0.5

(
0.5

λt

)
, (62)

where M·,· (·) is the Whittaker-M function.
On the other hand, substituting the approximation given by

(56) in (59) yields

I2 ≈
√
λtI2a−

((
1

2
ln (2π) +

1

4
ln (λt)

)
I2b +

1

4
I2c
)
+I2d,

(63)
where the derivations of I2a, I2b, I2c and I2a are provided in
Appendix II.
B. KLD from ξH0

to ξH1

Similar to the previous subsection, the KLD from ξH0
to

ξH1
, i.e., KLD(ξH1

∥ ξH0
), can be derived with the aid of

Definition 1 as

KLD(ξH1
∥ξH0

)=

∞∫
−∞

fξ (ξ|H1)log2

(
fξ (ξ|H1)

fξ (ξ|H0)

)
dξ. (64)

By employing the logarithmic identity log (x/y) = log x −
log y, substituting the PDFs of fξ (ξ|H0) and fξ (ξ|H1), and
using some simple mathematical operations, KLD(ξH1

∥ ξH0
)

can be found as

KLD(ξH1
∥ ξH0

) =
−0.5λte

−0.5λt

2 ln 2
I3 +

e−0.5λt

2 ln 2
I4

=
−0.5λt

ln 2
+

e−0.5λt

2 ln 2
I4, (65)

where I3 =
∞∫
0

e−0.5ξI0
(√

λtξ
)
dξ which has been solved

using [65, Eq. 2.15.5.4, pp. 306], and I4 is given by

I4 =

∞∫
0

e−0.5ξI0

(√
λtξ
)
ln
(
I0

(√
λtξ
))

dξ. (66)

Similar to the procedure applied to evaluate KLD(ξH0
∥ ξH1

),
the infinite series representation for the modified Bessel func-
tion and the asymptotic approximation for 0 ≤ ξ ≤ 1/λt and
ξ > 1/λt, respectively. Thus the integral I4 can be tightly
approximated as

I4 =

1
λt∫
0

e−0.5ξI0

(√
λtξ
)
ln
(
I0

(√
λtξ
))

dξ

︸ ︷︷ ︸
I4a

+

∞∫
1
λt

e−0.5ξI0

(√
λtξ
)
ln
(
I0

(√
λtξ
))

dξ

︸ ︷︷ ︸
I4b

. (67)

The evaluation of I4a and I4a is provided with details in
Appendix III.

C. The Detection and False Alarm Probabilities
For the sake of completeness, this subsection compares the

commonly used detection probability metric with the KLD
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KLD(ξH0
∥ξH1

)=
1

2

0.5λt

ln 2

∞∫
−∞

e−0.5ξdξ− 1

ln 2

∞∫
−∞

e−0.5ξ ln
(
I0

(√
λtξ
))

dξ

=1

2

1.4427λt−
1

ln 2

∞∫
0

e−0.5ξ ln
(
I0

(√
λtξ
))dξ. (54)

———————————————————————————————————————————————————–

measure. The detection and false alarm probabilities are re-
spectively defined as

PD≜

∞∫
τ

fξ (ξ|H1)dξ=1−Fξ (τ |H1)=Q1

(√
λt,

√
τ
)
, (68)

and

PFA≜

∞∫
τ

fξ (ξ|H0)dξ=1−Fξ (τ |H0)=Q1

(
0,
√
τ
)
=Γ(1, 0.5τ) ,

(69)
where Fξ (ξ|Hi)∀i = {0, 1} is the cumulative distribu-
tion function (CDF) of ξ under hypothesis Hi, Γ (·, ·) is
the upper incomplete gamma function, Q1

(√
λt,

√
τ
)

is
the Marcum Q-function, and τ is a predefined threshold
which according to Neyman-Pearson lemma is selected to
satisfy a certain false alarm constraint, for example, τ =
2Γ−1 (1, PFA) with Γ−1 (1, ·) is the inverse incomplete Gamma
function. Consequently, the detection probability is found
as PD = Q1

(√
λt,
√
2Γ−1 (1, PFA)

)
. Therefore, by not-

ing that λt =
(
Q−1

1

(
PD,

√
2Γ−1 (1, PFA)

))2
, the statis-

tics of the test formulated in (52) can be rewritten in
terms of PD and PFA instead of λt by substituting λt =(
Q−1

1

(
PD,

√
2Γ−1 (1, PFA)

))2
in (52), and thus (53) and

(64) can be also rewritten as functions of PD and PFA.
Subsequently, all KLD equations in Sec. V.A and Sec. V.B
can be rewritten in terms of {PD, PFA}.

VI. KLD FOR MULTI-USER MULTI-TARGET ISAC SYSTEM

The KLD measures in the previous section have been
evaluated for a single user and a single target scenario. In
this section, the weighted sum method is employed to evaluate
KLD for multiple CUEs and targets scenario. Accordingly,
the weighted sum for the KLD of each of the subsystems
s ∈{ZF,MRT, rad} which consists of a number of CUEs or
targets denoted as J ∈ {K,T} can be formulated as

KLDs =

J∑
i=1

cs,iKLDi,s,avg, (70)

where
J∑

i=1

ci = 1, and for equal weights of ci =
1
J , KLDs is

reduced to
KLDs =

1

J

J∑
i=1

KLDi,s,avg. (71)

On the other hand, for an ISAC system with multiple CUEs and
multiple targets, we introduce a novel performance measure
referred to the weighted sum of the relative entropy (WSRE).
This performance measure will be very beneficial for ISAC
systems as it can be employed to assess the performance of the
system holistically as one entity rather than the conventional
ways which typically characterize the ISAC system as two
distinct subsystems. Additionally, WSRE will be very useful

for a system designer to allocate the resources of BS, for
example, power and antenna allocation. For a number of K
CUEs and a number of T targets, WSRE is defined as

WSREISAC ≜
K∑

k=1

ck,comKLDk,com,avg +

T∑
t=1

ct,radKLDt,rad,

(72)
where

∑K
k=1ck,com +

∑T
t=1ct,rad = 1. It worth noting that

ck,com and ct,rad ∀ {k, t} are design parameters which can be
chosen to give some priority for a certain subsystem, CUE or
target. In some scenarios in which CUEs and targets have the
equal priority, then ck,com = ct,rad = 1

K+T ∀ {k, t}. Therefore,
WSRE is reduced to

WSREISAC=
1

K+T

(
K∑

k=1

KLDk,com,avg+

T∑
t=1

KLDt,rad

)
(73)

VII. NUMERICAL RESULTS
This section presents the measured performance of the ISAC

system introduced in this paper, which considers a multi-
antenna BS that simultaneously transmits data symbols to K
CUEs and aims at detecting a number of T targets. Monte
Carlo simulation with 106 realizations for each run is used to
generate the simulation (Sim.) results and the derived formulas
in this paper are used to generate the theoretical performance.
Unless otherwise stated, a number of 2 CUEs and a single
target scenario, a number of L = 100 snapshots, the antenna
spacing is half the wavelength, i.e., ∆ = 0.5λ0, and the
total transmit power is normalized to unity, i.e., PT = 1, are
considered. The total transmit power PT is distributed among
both subsystems with PC = PT − Prad is the power allocated
to the communication subsystem, where Prad is the allocated
power for the radar subsystem. For Figs. 3, 4, 5, 6, a single
target located at θ = 35o is deployed in the environment, the
radar covariance matrix is Rs = INR

, and the radar channel
pathloss is normalized, i.e., αrad = 1. On the other hand, a
number of T = 3 targets with {θ1, θ2, θ3} = {35o, 100o, 160o}
and {αrad,1, αrad,2, αrad,3} = {1, 0.6, 0.3}, in addition to a
number of K = 3 CUEs are considered in Fig. 7.

Fig. 3 presents the impact of the interference caused from
radar subsystem on CUEs and the effect of estimation errors in
Grad on the detection capability of the radar receiver, where
the error in Grad is modeled using the variance of channel
estimator σ2

err. The total number of BS antennas is 20 which are
distributed evenly among the radar and communication subsys-
tems with QPSK signalling employed to modulate CUEs data
symbols. The power allocated for radar and communication
services are Prad = 0.1 and PC = 0.9 unit power, respectively.
Moreover, the achievable performance using IMZF precoding
is compared with IVMRT scheme. The simulation results
confirm the accuracy of the derived equations in this paper for
KLDIZF, KLDIVMRT, Pe and KLDrad. As can be depicted
from the figure, the interference caused from a subsystem to
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the other limits the performance. For example, Fig. 3 a) shows
that the probability of error for CUEs with IMZF precoding
suffers from an error floor at 5 × 10−6 approximately, and
KLDIZF also reaches an upper bound of about 54 bits for
PT

σ2
n

≳ 30 dB. On the other hand, the error floor for IVMRT
scheme is ∼ 3× 10−4, and the upper bound of KLDIVMRT is
almost 10 bits which is reached at PT

σ2
n
≈ 20 dB. The superiority

of IMZF over IVMRT can be attributed to the fact that MRT
generally suffers from inter-user-interference in addition to the
interference caused by radar, and thus the total amount of
interference a communication user suffers is much larger in
MRT based precoding systems. As can be observed from Fig.
3 a), the detection capability of a communication system can
be interpreted using KLD. More precisely, the relative entropy,
or the KLD measure, is inversely proportional to SER where
higher KLD values imply lower SER and thus better detection
performance. It is worth noting that there is only one curve
for each performance measure in Fig. 3 a) because a fixed
PC = 0.9 is considered in this figure and the communication
subsystem is independent of σ2

err. It can be also seen from
Fig. 3 b) and Fig. 3 c) that the channel estimation errors in
Grad have a severe effect on the performance of the radar
subsystem as the detection probability and KLD significantly
decrease as σ2

err increases. For example, asymptotic detection
probabilities of 0.2 and 0.7 are obtained when σ2

err = 0.1 and
0.05, respectively, and KLD of about 3.45 and 11.56 bits for
the same values of σ2

err. However, although further decrease in
σ2
err results in huge enhancement for KLDrad, the improvement

in PD is small, for example, a decrease in σ2
err from 0.01 to

0.004 improves KLDrad from 63 to 143 bits at PT

σ2
n
= 30 dB,

but the improvement in PD is almost negligible at the same
PT

σ2
n

. Interestingly, by comparing Fig. 3 b) with Fig. 3 c), it
can be observed that the change in the detection probability
is very slow as PT

σ2
n

goes beyond 25 dB unlike KLD that has
faster growing rate, which can be attributed to the fact that the
detection probability is upper bounded by 1 whereas KLD is
not upper bounded.

Figs. 4 and 5 show the performance of ISAC system with
IMZF data precoder for different values of Prad, where σ2

err

is fixed at 0.01. All other system parameters considered for
the simulation environment of these figures are similar to Fig.
3. It worth noting that different Prad values impose different
interference levels at CUEs, as well as, higher Prad implies
that less power is allocated to communication service since
the total power is fixed. It is clear from these figures that
the theoretical analysis agrees with the simulation results.
Additionally, it can observed from Fig. 4 that increasing the
value of Prad can significantly degrade the performance of the
communication subsystem by increasing SER and decreasing
KLDIZF. According the results in Fig. 4 a), an error floor for
SER is obtained even with small amounts of Prad, for example,
the error floor is about 5 × 10−6 and substantially increases
considerably as Prad increases, for example, the error floor is
more that 4.5× 10−3 when Prad ≥ 0.3 unit power. Similarly,
Fig. 4 b) shows that KLDIZF goes below 15 bits for Prad ≥ 0.3
regardless the increase in SNR.

On the other hand, it can be noticed from Fig. 5 that

increasing Prad can boost the detection capabilities of the
radar subsystem by enhancing KLDrad. For example, the upper
bound of KLDrad with Prad = 0.3 is about 290 bits, whereas
it is 70 and 164 for Prad = 0.1 and Prad = 0.2, respectively.

Fig. 6 shows the theoretical detection performance of
the communication subsystem against the detection capabil-
ity of the radar subsystem. Several values for PT

σ2
n

, PT

σ2
n

=

{0, 5, 10, 15, 20} dB, a number of N = 50 antennas distributed
evenly among both subsystems with 25 antennas each, QPSK
signalling for the communication part, and a channel estimator
variance of σerr = 0.01 are considered in this figure. The
amount of power allocated for the radar is varied over 0 <
Prad < 1, and then the pairs (Pe, PD) and (KLDrad,KLDIZF)
are calculated accordingly. As can be observed from Fig. 6 a),
both systems suffer from poor detection capabilities regardless
the power allocation at PT

σ2
n

= 0 dB. The best Pe can be
obtained at this SNR level is about 10−3 that is obtained at
PD = 0, whereas the highest PD is ≲ 0.8 which occurs at
Pe ≈ 1. In terms of KLD, it can be seen from Fig. 6 b) that a
KLDIZF of 16 bits is obtained at KLDrad = 0 and a KLDrad

of 13.2 bits is obtained when KLDIZF = 0 at PT

σ2
n
= 0 dB. On

the other hand, at mid-range SNR, PT

σ2
n
= 5 dB, the capability of

the ISAC system in whole starts improving, however, only one
of the two subsystems can operate efficiently at this range of
SNR. For example, Fig. 6 a) depicts that Pe > 10−3 is obtained
for PD > 0.75 when PT

σ2
n
= 5 dB, as well as Fig. 6 b) shows

that the highest KLD obtained for each subsystem is about 50
bits which occurs when the KLD of the other system is 0 bit
at the same value of PT

σ2
n

. Nonetheless, the detection capability
of both systems is superior when PT

σ2
n
≥ 10 dB as a detection

probability of PD → 1 can be obtained while maintaining low
values for Pe if the value of Prad is properly selected. On the
other side, it is clear from Fig. 6 b) that a maximum KLD
value of about 150 bits can be achieved for each subsystem
when PT

σ2
n
= 10 dB. To investigate the trade-off of the KLD of

the two subsystems at a fixed transmit SNR, let us consider the
case of PT

σ2
n
= 10 dB. As can be observed from the figure, as

one of the KLDs improves, the other one becomes worse. For
example, the maximum achievable KLD for each subsystem
is about 150 bits which occurs when the KLD of the other
subsystem deteriorates to 0.

Fig. 7 presents a three dimensional (3D) plot for Pe in (36),
KLDIZF in (71), PD in (68), KLDrad in (71) and WSREISAC

in (73) vs. Prad and the number of allocated antennas to the
radar subsystem, NR. For this figure, three CUEs denoted as
U1, U2 and U3 using BPSK, QPSK and 8PSK, respectively,
and three targets denoted as T1, T2 and T3 with {θ1, θ2, θ3} =
{35o, 100o, 160o} and {αrad,1, αrad,2, αrad,3} = {1, 0.6, 0.3},
are used. The values of PT

σ2
n

and σ2
err are fixed at 10 dB and

0.01, respectively, the total number of BS antennas is fixed at
N = 50, and NR ranges from 1 to 49 with NC = N−NR. As
can be observed from Fig. 7 a) and Fig. 7 b), SER and KLDIZF

degrade as Prad and/or NR increase as the resources allocated
for the communication subsystem are reduced. Moreover, it
can be seen from these two subplots that as the modulation
order increases the performance of CUE becomes worse as
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Fig. 3. The impact of radar-to-CUs interference and the estimation errors in Grad on the performance of CUs and radar subsystem, respectively, vs. the
transmit SNR PT /σ2

n: a) The error rate and KLD of CUs, b) The detection probability PD for the radar subsystem, and c) The KLD for the radar subsystems.

SER increases and KLD decreases. On the other hand, PD and
KLDrad improve as Prad and/or NR increase which can be
clearly seen in Fig. 7 c) and Fig. 7 d). In addition, it can be
also observed that the detection capability of BS substantially
decreases as αt decreases, which represents the radar cross
section (RCS) of the target and the pathloss, i.e., lower αt

implies lower RCS and/or farther target. Fig. 7 e) presents
a 3D plot for the weighted sum of KLD for both radar and
communication subsystems, WSREISAC in (73). As can be
clearly observed from this subplot, there is a trade-off between
the performance of the radar and the communication subsys-
tems. For example, it can be seen from Fig. 7 e) that there
are two local maximum points: (Prad, NR,KLDWSUM) →
(0, 1, 116) which represents the best scenario for the CUEs,
and (Prad, NR,WSREISAC) → (1, 49, 20) which is the best
case for the radar subsystem. Although the first scenario
provides the global maximum WSREISAC, it deteriorates the
performance of the radar subsystem. On the other hand, by
referring to Fig. 7 a) and Fig. 7 c), it can be realized that
the SER of CUEs at (Prad, NR) → (1, 49) is almost 1 and
the detection probability for the radar subsystem is PD = 1.
Fig. 7 f) shows the trade-off between KLDrad and KLDIZF

as evaluated using (71) for different values of NR, where the
total number of antennas is fixed at N = 50. It is worth noting
that the total power consumption is fixed for all the results
in this figure, i.e., PT

σ2
n

= 10 dB, where the portion of power
allocated for each subsystem is changed from 0% to 100% to
get this trade-off. As can be noticed, for low values of KLDrad,
which basically occurs when the allocated Prad is very low,
KLDIZF is significantly high and increases as NR decreases.
By considering a fixed NR value, it can be noticed that as Prad

increases, KLDIZF exponentially decays until reaching very
low values. It is worth noting that the intersection between
different curves with different NR is due to different Prad

values. For example, the intersection between the two curves
associated with NR = 20 and NR = 30 (e.g. the black-
circles line and magenta dashed line) at (KLDrad,KLDIZF) =
(10, 6.2) occurs when the portion of the power allocated to the
radar subsystem is 51% and 66% for the cases of NR = 30 and
NR = 20, respectively. In other words, an ISAC system with
NR = 30 and 51% allocated power for the radar subsystem
will provide the same KLD as NR = 20 with 66% allocated
radar power.

VIII. CONCLUSION

An ISAC system which consists of a multi-antenna BS
serving CUEs and aims at detecting multiple targets simul-
taneously was introduced in this paper, where the separated
deployment was considered. In addition, ZF and MRT were
employed to precode the communication signals. The relative
entropy or KLD was derived for both radar and communication
subsystems, and a unified performance measure using the sum
of weighted KLDs was proposed. In addition, the interference
caused by the radar subsystem on CUEs and the impact of im-
perfect IC on the radar subsystem were analyzed and studied.
Moreover, the relation between this performance measure from
one side, and SER and detection probability on the other side
was investigated. The obtained simulation results confirmed
the derived equations where a perfect match was obtained. In
addition, the results showed that there is a trade-off between the
radar and the communication subsystems where enhancing one
negatively impacts the other. Consequently, the system designer
should be aware of this trade-off and allocate the power
and antenna resources to maximize WSREISAC under some
constraints on KLDIZF and KLDrad to guarantee boosting the
performance of the whole system in an efficient way. Moreover,
it was revealed that the effect of system imperfections, i.e.,
interference and imperfect channel estimation for Grad, result
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Fig. 5. The performance of the radar system vs. the transmit SNR PT /σ2
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with σ2
err = 0.01 and several values of Prad, where N = 20 with

{NR, NC} = {10, 10}: a) The probability of detection, and b) The KLD
for radar subsystem.

in an error floor in SER and upper bound in PD, KLDIZF

and KLDrad. It was also disclosed that MRT based precoding
could experience a considerable error floor due to inter-user-
interference resulted from MRT, in addition to the interference
caused by the radar subsystem.

Future work may include using the derived KLD to allocate
the BS resources among the users and targets to maximize
WSREISAC for given constraints on individual KLDs. More-
over, the employment of KLD for the analysis, design and
optimization of ISAC systems in which the radar subsystem
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Fig. 6. The trade-off between the radar and communication subsystems
for different values of the transmit SNR PT/σ

2
n, where N = 50 with

{NR, NC} = {25, 25}: a) The tradeoff between Pe and PD, and b) The
trade-off between KLDIZF and KLDrad.

aims at estimating the targets’ parameters is also an interesting
research topic.

IX. APPENDIX

A. Appendix I

Central Limit Theorem (CLT) is applied to approximate
the distribution of tk,i =

∑NC

nc=1 di [l]g
T
k (nc)g

∗
i (nc)∀i ̸= k

for considerable values of NC . Therefore, with a normalized
signal constellation, E

[
|di [l]|2

]
= 1, tk,i ∼ CN

(
0, 2σ2

t

)
with σ2

t = 2σ4
gNC . On the other hand, the exact den-

sity function of zi = ∥gi∥2 is Chi distribution, which
can be derived as below. Let us express zi as zi =√∑NC

nc=1 |gi (nc)|2, which can be rewritten as zi = σg z̃i

where z̃i =

√∑NC

nc=1

(
gi,R(nc)

σg

)2
+
(

gi,I(nc)
σg

)2
. Thereafter,

by using the definition of a Chi distributed random variable, it
can be easily shown that z̃i ∼ Chi (2NC) with PDF given by

fz̃i (z̃i) =
1

2NC−1Γ (NC)
z̃2NC−1
i e−

1
2 z̃

2
i , (74)

and then by employing random variable transformation, it can
be found that zi ≜ σg z̃i is also Chi distributed with PDF given
by

fzi (zi) =
1

2NC−1Γ (NC)σ
2NC
g

z2NC−1
i e

− 1
2σ2

g
z2
i
. (75)

The ratio distribution of independent Gaussian and Chi
random variables is a Student-t distribution. However, the
analysis for the density of a sum of K Student-t ran-
dom variables is not tractable. Therefore, to make the anal-
ysis tractable, we use the fact that for large value of
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Fig. 7. A 3D plot for the KLD of ISAC system vs. NR and Prad where N = 50: a) The symbol error rate of CUEs, b) The KLD of CUEs, c) The detection
probability PD of the radar subsystem, d) The KLD of the radar subsystem, e) The WSREISAC of ISAC system, and f) The WSREISAC of ISAC system
viewed from different angle.

the degrees of freedom of Chi distribution, which is di-
rectly proportional to NC , the Chi density function can
be approximated as real positive Gaussian PDF, i.e., zi ∼
N
(
σg

√
2Γ(0.5(2NC+1))

Γ(NC) ,

(
2NC−2

(
Γ(0.5(2NC+1))

Γ(NC)

)2)
σ2
g

)
. It

is worthy noting that the assumption of large NC is reasonable
in multi-user MIMO systems since BS is typically equipped
with a large number of antennas. Thereafter, we check the
correlation between tk,i and zi. To begin, the correlation
between tk,i and z2i is checked because it is more traceable.

ρti,z2
i
=

E
[(
tk,i − µtk,i

) (
z2i − µz2

i

)]
√
var [tk,i] var [z2i ]

. (76)

By noting that µtk,i
= 0, and then substituting for zi and

tk,i and using the fact that the expectation operator can be
distributed over summation and over a product of independent
random variables, ρti,z2

i
can be found as

ρti,z2
i
=

∑NC

nc1=1

∑NC

nc2=1E
[
g∗
i (nc1)|gi(nc2)|2

]
E
[
gT
k (nc1)

]√
var [tk,i] var [zi]

=0,

(77)
where the last equality holds as gi and gk are i.i.d for i ̸= k
with zero mean (e.g. E

[
gT
k (nc1)

]
= 0). Consequently, tk,i

and zi are uncorrelated and approximately jointly Gaussian
variables for considerable values of NC , and thus it can be
assumed that they are independent. Next, using the definition
of ṽk,i

ṽk,i ≜
√

Pi,com
tk,i
zi

=
√
Pi,com (vk,i,R + jvk,i,R) , (78)

where the subscripts (·)R and (·)I denote the real and
imaginary components of a complex number, respectively,
vk,i,R =

tk,i,R

zi
and vk,i,I =

tk,i,I

zi
. Since tk,i is N

(
0, 2σ2

t

)
with identically distributed real and imaginary parts, then

tk,i,R and tk,i,I are N
(
0, σ2

t

)
. When Pr (zi > 0) → 1, or

µzi ≫ σzi , which is a satisfied condition since zi is a strictly
positive random variable in our case, the cumulative distribu-
tion function (CDF) of the ratio of two normally distributed
random variables, vk,i,R =

tk,i,R

zi
, having means of µt,R = 0

and µz =
√
2Γ(0.5(2NC+1))

Γ(NC) , and unequal variance values of

σ2
t = 2σ4

gNC and σ2
z ≜ 2NC − 2

(
Γ(0.5(2NC+1))

Γ(NC)

)2
, can be

approximated as [76, Eq. (5)],

Fvk,i,R
(v) = Φ

 µzv

σtσz

(
v2

σ2
t
+ 1

σ2
z

)0.5
 , (79)

where Φ (x) ≜ 1√
2π

∫ x

−∞ e−
u2

2 du is the CDF of a standard
normal distribution, i.e., N (0, 1). It is worthy to note that
vk,i,I have the same CDF as vk,i,R. Therefore, by using the
derivative of Fvk,i,R

(v), which can be solved using the chain

rule and the derivative of Φ (x) as ∂
∂vΦ (x) ≜ 1√

2π
e−

x2

2 ,
the PDF can be found as (80) on page 17. Interestingly,
for typical range of NC ≫ 1, fvk,i,R

(v) tends to take the
shape of Gaussian random variable [76, Eq. (5)], consequently,
fvk,i,R

(v) is assumed following N
(
µv, σ

2
v

)
where

µv ≜ E [vk,i,R] = E [tk,i,R]E
[
1

zi

]
= 0, (81)

and
σ2
v ≜ E

[
(vk,i,R − µv)

2
]
= E

[
(vk,i,R)

2
]

= E
[
t2k,i,R

]
E
[
1

z2i

]
= σ2

t

∫ ∞

0

1

z2i
fz (z) dz. (82)

By using the PDF fz (z) which has been derived in (75), σ2
v

can be written as
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fvk,i,R
(v) ≜

∂

∂v
Fvk,i,R

(v) =
µz

σtσz

√
2π

(
v2

σ2
t

+
1

σ2
z

)−0.5
(
1− v2

σ2
t

(
v2

σ2
t

+
1

σ2
z

)−1
)
exp

− µ2
zv

2

2σ2
z

(
v2 +

σ2
t

σ2
z

)
 . (80)

———————————————————————————————————————————————————

σ2
v =

σ2
t

2NC−1Γ (NC)σ
2NC
g

∫ ∞

0

z2NC−3
i e

− 1
2σ2

g
z2
i
dz. (83)

Thereafter, by employing integration by substitution rule with
y = 1

2σ2
g
z2i , the value of σ2

v can be found as σ2
v = σ2

g .
Therefore, ṽk,i can be approximated as a symmetric complex
Gaussian random variable, i.e., ṽk,i ∼ CN

(
0, 2Pi,comσ

2
v

)
.

Next, we check the correlation between ṽk,i∀i ̸= k. It can
be easily realized that zi = ∥gi∥ ∀i are independent, as well
as, the correlation coefficient between tk,i∀i ̸= k can be found
using similar derivations in (77) as

ρi,j=
E
[
tk,it

∗
k,j

]
√
var [tk,i] var [tk,j ]

=

∑NC

nc=1

∑NC

nc=1E[g∗
i (nc)]E

[
|gk(nc)|2

]
E
[
g∗
j (nc)

]√
var [tk,i] var [tk,j ]

=0. (84)

Consequently, since tk,i is complex Gaussian distributed ac-
cording to CLT and ρi,j = 0∀i ̸= j with approximately
jointly Gaussian, tk,i and tk,j are independent for i ̸= j.
Moreover, since zi and zj are independent ∀i ̸= j, and thus
ṽk,i =

√
Pi,com

tk,i

zi
and ṽk,j =

√
Pj,com

tk,j

zj
for i ̸= j

are also independent. Finally, ωMRT =
K∑
i=1
i ̸=k

ṽk,i is a sum

of K − 1 independent complex Gaussian random variables
each of which ṽk,i ∼ CN

(
0, 2Pi,comσ

2
v

)
, thus ωMRT ∼

CN
(
0, 2σ2

v

∑K
i=1
i ̸=k

Pi,com

)
. Therefore, the equivalent inter-

user and radar interference plus noise ω̃MRT ∼ CN
(
0, 2σ2

ω

)
where σ2

ω = σ2
v

∑K
i=1
i ̸=k

Pi,com + σ2
η with σ2

η = Pradσ
2
f + σ2

n.

B. Appendix II

Substituting the approximation given by (56) in (59) and
then performing some mathematical manipulation including
some logarithmic and exponential identities such as ln

(
x
y

)
=

lnx− ln y, ln (xy) = lnx+ ln y and ln ex = x yield

I2≈
√
λtI2a−

((
1

2
ln(2π)+

1

4
ln(λt)

)
I2b+

1

4
I2c
)
+I2d, (85)

where I2a, I2b, I2c and I2d are given in Table I.
Thereafter, by using integration by substitution with y =

√
ξ

and then using [77, Eq. 1.3.3.8, pp. 140], I2a can be found as

I2a = −
√
2πerf

(
1√
2λt

)
+
√
2π +

2
2λt
√
e
√
λt

. (86)

Moreover, using integration by parts rule with dv = e−0.5ξ

and u = ln (ξ) and then using the definition of the exponential
integral, I2c can be found as

I2c =
(
−2 lnλt

2λt
√
e

+ 2Ei1

(
1

2λt

))
. (87)

To solve I2d, let us consider the first five terms in the
summation, i.e., Q = 5 which can provide a very good ap-
proximation for ξ ≥ 1

λt
. In this case we obtain

∑Q=5
q=1 (·) < 1,

and thus Taylor series expansion can be adopted and the
first term is sufficient for providing accurate results, i.e.,
ln
(
1 +

∑Q=5
q=1 (·)

)
≈
∑Q=5

q=1 (·) for
∑Q=5

q=1 (·) < 1. There-
after, by using the fact that summation and integration are
interchangeable operations, I2d can be evaluated as [77, Eq.
1.3.2.4, pp. 137]

I2d=
Q=5∑
q=1

∏q
k=1

[
(2k − 1)

2
]

q!8qλ0.5q
t

1

0.51−0.5q
Γ

(
1−0.5q,

0.5

λt

)
, (88)

where Γ (·, ·) is the upper incomplete gamma function.

C. Appendix III

By substituting the infinite series representation provided in
(55) for the modified Bessel function in (67), I4a can be given
by

I4a=

1
λt∫
0

e−0.5ξ
∞∑

l1=0

λl1
t

22l1(l1!)
2 ξ

l1 ln

(
1+

∞∑
l2=1

λl2
t

22l2 (l2!)
2 ξ

l2

)
dξ.

(89)
After that, by noting that

∑∞
l2=1

λ
l2
t

22l2 (l2!)
2 ξl2 < 1 for 0 ≤

ξ < 1
λt

, the first term of the Taylor series is considered
to approximate the logarithmic function and then interchange
the summations and integration order, I4a can be accurately
approximated as

I4a ≈
∞∑

l1=0

λl1
t

22l1 (l1!)
2

∞∑
l2=1

λl2
t

22l2 (l2!)
2

1
λt∫
0

e−0.5ξξl1+l2dξ, (90)

which can be solved as

I4a ≈
∞∑

l1=0

λl1
t

22l1 (l1!)
2

∞∑
l2=1

λl2
t

22l2 (l2!)
2

21+0.5(l1+l2)

(1 + l1 + l2)λ
0.5(l1+l2)
t

× e−
0.25
λt M0.5(l1+l2),0.5(l1+l2)+0.5

(
0.5

λt

)
. (91)

On the other hand, by substituting the approximation in (56)
to approximate I4b given in (67) for ξ > 1

λt
and using

some algorithmic identities such as log

(
x

y

)
= log x− log y,

log (xy) = log x + log y and log (xy) = y log x, then
I4b can be simplified to (93) and (93) on page 18, where

Qsum,q =
∑Q

q=1

1

q1!8q
√

λq
t

∏q
k=1

[
(2k − 1)

2
]
∀q ∈ {q1, q2},

and I4b,i∀i ∈ {1, 2, · · · , 8} are given in Table II. Due to the
limited space, we will show the complete solutions for I4b,1
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TABLE I
THE VALUES OF I2a , I2b ,. . . ,I2d THAT ARE REQUIRED TO COMPUTE KLD(ξH0||ξH1).

I2a =
∞∫
1
λt

√
ξe−0.5ξdξ I2b =

∞∫
1
λt

e−0.5ξdξ = 2
2λt
√
e

I2c =
∞∫
1
λt

e−0.5ξ ln (ξ) dξ

I2d =
∞∫
1
λt

e−0.5ξ ln

(
1 +

∑Q
q=1

(
1

(
√
λtξ)

q

∏q
k=1[(2k−1)2]

q!8q

))
dξ

I4b≈
∞∫
1
λt

e−0.5ξ exp
(√

λtξ
)

√
2π 4

√
λtξ

1 +

Q∑
q1=1

 1(√
λtξ
)q
∏q

k=1

[
(2k − 1)

2
]

q!8q



×

√λtξ − ln
(√

2π 4
√
λt

)
− 0.25 ln (ξ) + ln

1 +

Q∑
q2=1

 1(√
λtξ
)q
∏q

k=1

[
(2k − 1)

2
]

q!8q

 dξ (92)

=
1√

2π 4
√
λt

(√
λtI4b,1 − ln

(√
2π 4
√
λt

)
I4b,2 − 0.25I4b,3 +Qsum,q2I4b,4

+Qsum,q1

(√
λtI4b,5 − ln

(√
2π 4
√
λt

)
I4b,6 − 0.25I4b,7 +Qsum,q2I4b,8

))
, (93)

——————————————————————————————————————————————————–

TABLE II
THE VALUES OF I4b,1 , I4b,2 ,. . . ,I4b,8 THAT ARE REQUIRED TO COMPUTE KLD(ξH1||ξH0).

I4b,1 =
∞∫
1
λt

ξ0.25 exp
(
−0.5ξ +

√
λtξ
)
dξ I4b,2 =

∞∫
1
λt

ξ−0.25 exp
(
−0.5ξ +

√
λtξ
)
dξ

I4b,3 =
∞∫
1
λt

ξ−0.25 ln (ξ) exp
(
−0.5ξ +

√
λtξ
)
dξ I4b,4 =

∞∫
1
λt

1

ξ
q2
2

+ 1
4
exp

(
−0.5ξ +

√
λtξ
)
dξ

I4b,5 =
∞∫
1
λt

1

ξ
q1
2

− 1
4
exp

(
−0.5ξ +

√
λtξ
)
dξ I4b,6 =

∞∫
1
λt

1

ξ
q1
2

+ 1
4
exp

(
−0.5ξ +

√
λtξ
)
dξ

I4b,7 =
∞∫
1
λt

1

ξ
q1
2

+ 1
4
ln (ξ) exp

(
−0.5ξ +

√
λtξ
)
dξ I4b,8 =

∞∫
1
λt

1

ξ
q1
2

+
q2
2

+ 1
4
exp

(
−0.5ξ +

√
λtξ
)
dξ

and I4b,3 only, anyway, the other integrals can be solved in
a similar way. By using integration by substitution rule with
y =

√
0.5ξ followed by the complete square rule to write the

exponents in a more convenient form, i.e., the integrand is
multiplied by exp(±λt/2), I4b,1 and I4b,3 can be expressed as

I4b,1=4 (2)
0.25

exp

(
λt

2

)∞∫
√

1
2λt

y1.5exp

−(y−√λt

2

)2
dy, (94)

I4b,3=4(2)
−0.25

exp

(
λt

2

) ∞∫
√

1
2λt

y0.5ln
(
2y2
)
exp

−(y−√λt

2

)2
dy.
(95)

Next, with the aid of the series representation of exp
(
−x2

)
[75, Eq. 1.211.3, pp. 26] and then interchanging the integration
and summation operations, I4b,1 and I4b,3 can be simplified to

I4b,1=4 (2)
0.25

exp

(
λt

2

)∞∑
k=0

(−1)
k

k!

∞∫
√

1
2λt

y1.5
∞∑
l=0

(
y−
√

λt

2

)2k

dy,

(96)

I4b,3 = 4 (2)
−0.25

exp

(
λt

2

) ∞∑
k=0

(−1)
k

k!

∞∫
√

1
2λt

y0.5 ln
(
2y2
)

×

(
y −

√
λt

2

)2k

dy. (97)

Thereafter, the binomial expansion theorem is invoked and
interchanging the summation and integration is applied. Addi-
tionally, to make the series converges to the answer quickly, we
limit the integration to an upper bound of yU =

√
λt/2+4/

√
2

instead of ∞ as exp

(
−
(
y −

√
λt/2

)2)
≈ 0 for y >√

λt/2 + 4/
√
2. It is worthy to notice that the exponential

term has a form similar to a normal distribution with a mean
of µ =

√
λt/2 and a standard deviation of σ = 1/

√
2, and thus

it can interpreted that more than 99.9999% of the area under
the curve is in the range µ− 4σ ≤ y ≤ µ+ 4σ. Subsequently,
I4b,1 can be evaluated as
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and I4b,3 can be further simplified to

I4b,3 = 4 (2)
−0.25

exp

(
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k=0
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×
(
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(
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dy. (99)

Using the logarithmic identities log (xy) = log x + log y and
log (yx) = x log y, I4b,3 can be written as (100) on page
20. Subsequently, with the aid of [77, Eq. 1.6.1.18, pp. 241],
the second integral is solved and the final equation can be
expressed as (101) on page 20.
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