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Amyloid-β accumulation starts in highly connected brain regions and is associated with functional connectivity alterations in the early 
stages of Alzheimer’s disease. This regional vulnerability is related to the high neuronal activity and strong fluctuations typical of these 
regions. Recently, dynamic functional connectivity was introduced to investigate changes in functional network organization over 
time. High dynamic functional connectivity variations indicate increased regional flexibility to participate in multiple subnetworks, 
promoting functional integration. Currently, only a limited number of studies have explored the temporal dynamics of functional con-
nectivity in the pre-dementia stages of Alzheimer’s disease. We study the associations between abnormal cerebrospinal fluid amyloid 
and both static and dynamic properties of functional hubs, using eigenvector centrality, and their relationship with cognitive perform-
ance, in 701 non-demented participants from the European Prevention of Alzheimer’s Dementia cohort. Voxel-wise eigenvector cen-
trality was computed for the whole functional magnetic resonance imaging time series (static), and within a sliding window (dynamic). 
Differences in static eigenvector centrality between amyloid positive (A+) and negative (A-) participants and amyloid-tau groups were 
found in a general linear model. Dynamic eigenvector centrality standard deviation and range were compared between groups within 
clusters of significant static eigenvector centrality differences, and within 10 canonical resting-state networks. The effect of the inter-
action between amyloid status and cognitive performance on dynamic eigenvector centrality variability was also evaluated with linear 
models. Models were corrected for age, sex, and education level. Lower static centrality was found in A+ participants in posterior 
brain areas including a parietal and an occipital cluster; higher static centrality was found in a medio-frontal cluster. Lower eigen-
vector centrality variability (standard deviation) occurred in A+ participants in the frontal cluster. The default mode network and 
the dorsal visual networks of A+ participants had lower dynamic eigenvector centrality variability. Centrality variability in the default 
mode network and dorsal visual networks were associated with cognitive performance in the A- and A+ groups, with lower variability 
being observed in A+ participants with good cognitive scores. Our results support the role and timing of eigenvector centrality altera-
tions in very early stages of Alzheimer’s disease and show that centrality variability over time adds relevant information on the dy-
namic patterns that cause static eigenvector centrality alterations. We propose that dynamic eigenvector centrality is an early 
biomarker of the interplay between early Alzheimer’s disease pathology and cognitive decline.
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Introduction
Amyloid deposition is considered to be the first pathological 
event of Alzheimer’s disease (AD), followed by neurofibrillary 
tangles and neuronal injury.1 Previous work has shown that 
early amyloid burden, in pre-symptomatic stages of AD, occurs 
within specific cortical regions of the default mode network 
(DMN),2 causing decreased posterior and increased anterior 
DMN functional connectivity (FC),3 and leading to subsequent 

cognitive impairment. Emerging evidence suggests that this se-
lective vulnerability to amyloid deposition is related to the high 
neuronal activation and, notably, to the high variability in the 
temporal pattern of neuronal fluctuations, typical of these re-
gions.4 Dynamic connectivity has recently emerged from the 
observation that FC strongly fluctuates over time, and there-
fore assuming its stationarity might not entirely capture the 
complexity of this phenomenon.5 These short-time scale varia-
tions in functional network organization have been observed to 
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be related to the alternation of intra- and inter-functional net-
works connectivity, suggesting canonical resting-state net-
works (RSNs) to be only transiently isolated from each other, 
and therefore promoting functional integration.6 However, 
the influence of amyloid deposition on FC and on its short 
time scale properties, i.e. dynamic patterns, remains unclear.

Graph analytic methods provide a framework to analyze 
topological properties of the functional connectome,7 by re-
presenting the brain as a set of nodes and edges, i.e. brain re-
gions and (functional) connections, respectively.8 Eigenvector 
centrality (EC) is a hierarchical measure of the influence of a 
node in the network, computed as the sum of the centralities 
of a node’s neighbors, which allows the reliable identification 
of ‘hub’ regions in functional brain networks.9,10 Differences 
in voxel-wise EC have been reported in Alzheimer’s patients.9

Those changes were related to cognitive impairment,9 abnor-
mal amyloid levels, and CSF phosphorylated-tau (p-tau)– 
Aβ1–42 ratios in cognitively unimpaired individuals.11,12

Dynamic investigations of functional networks have revealed 
meaningful variations of graph properties over time. Increased 
time-related variation of dynamic graph properties, such as EC, 
suggest greater participation of brain regions in different subnet-
works, thus promoting functional integration.6,13 However, rela-
tively little has been done to elucidate how amyloid deposition 
alters FC dynamics in the early stages of AD, and whether this 
is reflected in cognitive performance. We hypothesize that amyl-
oid deposition impairs both long- and short-time scales EC, here 
referred to as static and dynamic EC, and expect greater dynamic 
alterations in relationship to initial cognitive impairment.

We address the association of functional EC with cerebro-
spinal fluid (CSF) amyloid load and initial cognitive impair-
ment.. To this end, we assessed both static and dynamic EC 
relation with CSF Aβ1–42 positivity, and its interaction with 
cognitive performance, in a large sample of non-demented 
participants from the European Prevention of Alzheimer 
Dementia (EPAD) cohort study.14

Materials and methods
Study participants
We used the v1500.0 baseline data release of EPAD cohort 
study.14 EPAD study general inclusion criteria are described in 
Solomon et al.15 and include: age above 50 years and no diagnosis 
of dementia [clinical dementia rating (CDR) < 1]. Using the 
demographic, cognitive, neuroimaging, fluid biomarkers of the 
study,15 we selected individuals who had CSF, cognitive evalu-
ation, three-dimensional T1-weighted (3D T1w) and resting-state 
functional magnetic resonance imaging (rs-fMRI) data available, 
resulting in a sample size of n = 736. Institutional review boards 
of each participating center approved the EPAD study.

CSF analysis
CSF biomarkers were quantified using a harmonized pre- 
analytical protocol. Analyses were performed with the fully 

automatised Roche cobas Elecsys System at the Clinical 
Neurochemistry Laboratory, Mölndal, Sweden.15

Concentrations of amyloid-β (Aβ1–42) were determined 
using the manufacturer’s guidelines.

Amyloid status and amyloid-tau 
classification
Following previous works on the same cohort,16 CSF Aβ1– 
42 levels <1000 pg/mL were used to define amyloid positiv-
ity (A+). Further, CSF p-tau levels >27 pg/mL were used to 
define tau positivity (T+). Four amyloid-tau (AT) groups 
were derived to define A-T-, A+T-, A+T+, and A-T+ 
participants.

Cognitive testing
The EPAD Neuropsychological Examination battery covers 
relevant cognitive domains; data were collected with stan-
dardized procedures on a tablet.17,18 Performed tests 
included the mini-mental state examination (MMSE),19

the CDR scale,20 and the Repeatable Battery for the 
Assessment of Neuropsychological Status (RBANS).21 The 
RBANS test covers five cognitive domains: attention, lan-
guage, delayed memory, immediate memory, and visuo- 
constructional indices.21

MRI acquisition and pre-processing
MRI acquisition and pre-processing details are given in 
Lorenzini et al.22 3D T1w images were pre-processed using 
the structural module of ExploreASL.23 Lesion filling on 
3D T1w images using the Lesion Segmentation Toolbox 
v2.0.1524 was followed by tissue segmentation with the com-
putational anatomy toolbox (CAT) 12.25 For the rs-fMRI 
data (200 volumes, TR = 2 s, TE = 30 ms), magnetic field re-
lated inhomogeneity was estimated using a previously de-
scribed method,26 implemented in FMRIB Software 
Library (FSL) as topup,27 to correct geometric distortion. 
Functional image preprocessing included motion correction, 
spatial smoothing (FWHM = 4 mm) and high-pass temporal 
filtering (100 s). Each subject’s rs-fMRI image was then re-
gistered to the individual 3D T1w scan and resampled to 
Montreal Neurological Institute standard space to a voxel 
dimension of 4 × 4 × 4 mm. Scans with a mean framewise 
displacement of more than 2 standard deviations (SDs) mea-
sured over time were excluded from further analysis, redu-
cing the sample size to n = 701.

Functional eigenvector centrality
EC evaluates nodes in the network stating that a node is im-
portant when it is linked to other important nodes.28 We com-
puted voxel-wise EC within the gray matter (>0.2 as measured 
by the CAT12 gray matter probabilistic segmentation) for each 
rs-fMRI scan using the fast eigenvector centrality mapping 
(fastECM) toolbox (https://github.com/amwink/bias/tree/ 
master/matlab/fastECM).29 EC computation requires the 
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calculation of a voxel-wise connectivity matrix to obtain its 
eigenvector.28 The fastECM toolbox provides a fast and com-
putationally efficient EC calculation by computing matrix- 
vector products, without having to compute or store the con-
nectivity matrix. First, we computed voxel-wise EC over the 
whole time series—referred to as static EC. To assess temporal 
centrality dynamics, we computed voxel-wise EC in 100 
partially-overlapping sliding windows of 100 time points 
each—referred to as dynamic EC. A lower limit for the win-
dow length to avoid the identification of spurious fluctuations 
has been identified as the longest wavelength in functional 
magnetic resonance imaging (fMRI) time courses;30,31 previ-
ous works have shown EC fluctuation differences in relation 
to age, sex, and clinical symptoms using similar window 
lengths to ours.13,32 EC maps were computed for each time 
window and concatenated to yield a four-dimensional (4D) dy-
namic centrality time series for each participant.

Statistical analysis
All statistical analyses were performed using FSL27 and R 
(https://cran.r-project.org/), version 4.0.3. Chi-square test 
and t-test were initially used to compare demographics and 
clinical characteristics between A+ and A- participants and 
between AT groups.

Static eigenvector centrality differences between 
amyloid groups
To assess whether EC maps computed over the whole time 
series differed between amyloid groups, we compared static 
voxel-wise EC maps between amyloid positive (A+) and 
amyloid negative (A-) participants using general linear model 
(GLM) analyses with sex and age as covariates. A 
permutation-based method (implemented in FSL randomise) 
was used to compute cluster significance at P < 0.05, using 
threshold-free cluster enhancement to correct for spatial 
dependencies.33,34

Static eigenvector centrality differences between AT 
groups
Next, we investigated differences in static EC between AT 
groups. We excluded participants in the A-T+ group as con-
sidered suspected non-AD pathology. As a confirmation of 
the previous analysis, we compared A+ and A- groups again 
but on this subset of participants. Subsequently, GLM ana-
lyses were used to investigate differences between the three 
AT groups, with sex and age as covariates. A permutation- 
based method (implemented in FSL randomise) was used to 
compute cluster significance at P < 0.05, using threshold-free 
cluster enhancement to correct for spatial dependencies.33,34

Dynamic eigenvector centrality within static clusters
We assessed EC variability over time within the between- 
group differences in the static EC analysis. Three maps of sig-
nificant clusters from the previous analysis were used to cal-
culate average within-cluster dynamic EC time series from 
the 4D individuals’ dynamic EC files. From these time series, 

we assessed dynamic EC variability by computing (i) SD of 
EC values across time windows and (ii) minimum and max-
imum EC range across time windows. SD and range within 
the three clusters were compared between A+ and A- and be-
tween AT groups through linear models correcting for age 
and sex.

Dynamic eigenvector centrality in canonical 
resting-state networks
To evaluate dynamic EC characteristics independently of sta-
tic results, we computed dynamic EC time series within 10 
canonical RSNs35 using a dual regression approach.36

First, subject-specific EC time courses of RSNs were ob-
tained by spatial regression of the full set of RSN masks 
against each participant’s dynamic EC time series. The re-
sulting time courses were then regressed onto the partici-
pants’ centrality time series to obtain subject-specific 
spatial maps. Temporal SD and range were computed for 
each RSN mask. The resulting dynamic EC RSN spatial 
maps were compared between amyloid positive (A+) and 
amyloid negative (A-) participants using GLM analyses 
with sex and age as covariates. A permutation-based method 
(implemented in FSL randomise) was used to compute clus-
ter significance at P < 0.05, using threshold-free cluster en-
hancement to correct for spatial dependencies.33,34 For the 
networks showing spatial differences, we further evaluated 
whether temporal variability measures (SD and range) with-
in those networks differed based on amyloid status and AT 
groups using GLM models corrected for age and sex. The 
used pipeline is shown in Fig. 1.

Relation of eigenvector centrality with cognitive 
performance
The relation between dynamic EC temporal variability, SD 
and range, and cognitive performance was then assessed. 
For each of the dynamic RSN showing significant differences 
between amyloid groups, we used linear regression models 
investigating the effect of MMSE and the five RBANS do-
mains on temporal variability measures (SD and range). All 
models included an interaction term between the variable 
of interest and amyloid status and were corrected for age, 
sex, and years of education. Statistical significance was set 
at P < 0.05. The same analysis was repeated using the 
mean static EC within RSNs as the dependent variable.

Data availability
The data used in this manuscript are available upon request 
at https://ep-ad.org/open-access-data/access/

Results
Sample characteristics
In total, 701 participants were included in this study. 
Demographics, clinical, and neuropsychological characteris-
tics of the sample are shown in Table 1. Mean age was 64.6 
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(SD = 7.01) and 409 participants (58.3%) were female. 
Mean MMSE score was 28.7 (SD = 1.53), and 15.7% parti-
cipants had a CDR of 0.5. There were 232 (33.1%) partici-
pants who were classified as A+. Overall, worse cognitive 
performance was observed in the A+ group, with higher per-
centages of CDR = 0.5 participants, and lower score in the 
RBANS total scale, sum of index and attention index 
(Table 1). Participants characteristics based on AT status 
are reported in Supplementary Table 1.

Comparing eigenvector centrality 
between amyloid and AT groups
Static EC between Amyloid groups. Three clusters showed dif-
ferences between the A+ and A- groups (P < 0.05) in the sta-
tic EC analysis (Fig. 2). Lower centralities in A+ participants 
were observed for a parietal cluster covering the right precu-
neus and the posterior parietal lobule, and for an occipital 
cluster extending to the medial and ventral portions of the 

A

C

D

B

Figure 1 Static and dynamic fastECM pipeline. From the pre-processed rs-fMRI BOLD time series (upper row) static ECM is first 
computed at the voxel level on the whole time series voxel-by-voxel correlation matrix (A). Subsequently, ECM is performed within partially 
overlapping sliding windows used to segment the fMRI time series (B). Dynamic ECM time series are then extracted for the clusters showing 
statistical significant differences in the static EC analysis (C) and within resting-state networks (D). Abbreviations: rs-fMRI = resting-state 
functional magnetic resonance imaging; BOLD = blood oxygenation level dependent; ECM = eigenvector centrality mapping; dECM = dynamic 
ECM; ICA = independent component analysis; DMN = Default mode network; V1 = Visual network 1; V2 = Visual network 2.
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inferior and middle occipital lobe. A third cluster, covering 
mediofrontal regions and extending to left anterior-temporal 
areas, had higher EC values in A+ participants. Results from 
this same analysis when also including A-T+ did not show 
substantial changes and are reported in Supplementary 
Fig. 1. Raw mean voxel-wise eigenvector centrality mapping 
(ECM) per group is shown in Supplementary Fig. 2.

Static EC between AT groups. When comparing voxel-wise 
EC between AT groups, A+T- participants showed a pattern 
of alteration similar to the one revealed by the previous ana-
lysis. Two posterior clusters, covering the parietal and 
occipito-temporal lobe, demonstrated reduced EC in A+T- 
compared to controls (A-T-). One anterior cluster, including 
frontal and anterior-temporal regions, showed increased EC. 
In the A+T+ groups, we found that one cluster in the ventral 
temporal lobe showed decreased EC compared to A-T-, 
while no increases of connectivity were found. No difference 
was found between A+T- and A+T+ groups (Fig. 3).

Dynamic EC in Static Clusters. A reduction of dynamic EC 
SD in A+ participants was observed in the frontotemporal 
cluster (P < 0.005**, β = -0.24). When looking at AT 
groups, the same cluster showed reduced SD in A+T- (P <  
0.05*, β = -0.19) and A+T+ (P < 0.001**, β = -0.41) groups 
compared to controls (A-T-). No differences were found be-
tween A+T- and A+T+. EC temporal variability within the 
parietal and occipito-temporal clusters did not differ be-
tween amyloid groups (Fig. 4).

Dynamic EC in RSN. Lower EC dynamics were found in A+ 
participants in posterior parietal and temporal portions of the 
DMN (Fig. 5A) and in the dorsal portions of the visual 

network (Supplementary Fig. 3A). The sensory-motor and 
frontoparietal networks also showed significant differences 
between amyloid groups, however, the significant cluster 
did not exceed 10 voxels and are therefore not discussed. 
Only a trend to significance was found in the central executive 
network with A+ having higher dynamic EC (data not 
shown). A+ participants showed lower variability of EC 
over time (i.e. SD and range) compared to A- in the DMN 
(P < 0.001***, β = -0.31), and the visual network (P <  
0.0001***, β = -0.32) (Fig. 5B, Supplementary Fig. 3B). 
Both A+T- and A+T+ participants showed reduced dynamic 
ECM SD compared to the A-T- group in the DMN (A+T- =  
P < 0.01**, β = -0.27; A+T+ = P < 0.01**, β = -0.45) and in 
the visual network (A+T- = P < 0.001***, β = -0.33; A+T+  
= P < 0.05*, β = -0.30) (Fig. 5C, Supplementary Fig. 3C).

EC relationship with cognition
We found significant effects of the interaction between amyl-
oid status and cognitive tests in predicting both SD and range 
of temporal centrality dynamics in the default mode and dor-
sal visual network (Fig. 6). In the DMN, while no association 
of EC variability with cognition was observed in A-, A+ par-
ticipants showed a significant negative relationship with 
MMSE (for A+: β = -0.09; P < 0.05; for A-: β = 0.01, P =  
0.66; P interaction = P < 0.05), and RBANS visuo- 
constructional index (for A+: β = -0.01, P < 0.05; for A-: 
β = 0.001, P = 0.58; P interaction = P < 0.05); and trend to 
significant association with RBANS immediate memory 
index (for A+: β = -0.01; P < 0.01; for A-: β = -0.001; P =  
0.61 ; P interaction = P = 0.06). Similarly, in the dorsal vis-
ual network, only A+ showed negative associations of EC 
variability with RBANS immediate memory index (for A+: 
β = -0.01; P < 0.01; for A-: β = -0.001; P = 0.58 ; P inter-
action = P < 0.05); and RBANS visuo-constructional index 
(for A+: β = -0.01; P < 0.01; for A-: β = -0.001; P = 0.53 ; P 
interaction = P < 0.05). Coefficients in Fig. 6 refer to SDs 
of dynamic EC, comparable results were observed with 
range. All model coefficients can be found in the 
Supplementary Tables 2–6. No significant effect of the inter-
action of amyloid status and cognitive performance was 
found on mean static EC within RSNs. In summary, dynamic 
EC variability in default mode and visual networks were 
negatively correlated with cognitive performance in the 
amyloid positive group, but not in the amyloid negative 
group.

Discussion
In this study, we showed EC alterations in the pre-dementia 
stages of AD, using a large sample (N = 701) of non- 
demented participants from the EPAD cohort. Amyloid 
positivity was associated with static EC reductions in the 
posterior portion of the brain and EC increases in the frontal 
and middle cingulate areas. In addition, sliding-window 
EC variability analysis showed that amyloid deposition is 

Table 1 Demographic and clinical characteristics of 
amyloid positive and negative individuals

Amyloid 
negative (A-)

Amyloid positive 
(A+)

n = 469 n = 232

Males, N (%) 183 (39) 109 (47.0)
Age, Mean (SD) 64.34 (6.93) 65.23 (7.17)
CDR = 0.5, N (%) 59 (12.7) 50 (21.6)
MMSE, Mean (SD) 28.85 (1.44) 28.65 (1.69)
Hippocampal Volume in 

mm3, Mean (SD)
2926.59 (472.40) 2817.46 (490.26)

Years of Education, mean 
(SD)

14.69 (3.79) 14.57 (3.86)

RBANS
Total Scale, Mean (SD) 104.98 (12.54) 102.27 (13.65)
Sum of Index, Mean (SD) 518.50 (43.16) 508.51 (48.99)
Attention, Mean (SD) 100.03 (15.28) 97.66 (15.71)
Delayed Memory, Mean 
(SD)

103.70 (12.53) 101.49 (15.09)

Language, Mean (SD) 99.66 (9.62) 98.12 (11.00)
Visuo-Construction, 
Mean (SD)

109.22 (15.26) 107.44 (15.07)

Immediate Memory, 
Mean (SD)

105.95 (12.99) 103.80 (14.71)

Maximum CDR in the EPAD cohort is 0.5, therefore the number (and percentage) of 
CDR = 0.5 is reported. Abbreviations: SD = Standard Deviation; MMSE = Mini-mental 
state examination; CDR = clinical dementia rating scale; RBANS = The Repeatable 
Battery for the Assessment of Neuropsychological Status.
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associated with decreased EC dynamics and less variability 
over time within those areas. Importantly, we found de-
creased dynamic variability in the default mode and visual 
networks in A+ participants. Moreover, while static EC in 
RSNs was unrelated to cognition, dynamic variability mea-
sures in these networks did relate to cognitive performance. 
Our results provide new evidence on the heterogeneous pat-
terns of network changes in the early stages of AD, using cen-
trality measures. We demonstrate the added value of 
investigating the dynamic aspects of EC, to further 

characterize the underlying aberrant patterns that might ex-
plain static EC alterations in AD signature regions. We pro-
pose dynamic EC as a potential early brain biomarker 
associated with initial amyloid deposition and subtle cogni-
tive alterations.

Static EC
The observed static EC differences are in line with previous 
literature in AD.37 A reduction of static EC in posterior 

0.05

0.050

0 A+ > A-

A- > A+

Figure 2 Static eigenvector centrality differences in amyloid groups (A-T+ excluded). Surface plots of P-values in statistical significant 
clusters. Orange shows regions where ECM A+ > A- and blue shows regions where ECM A- > A+. Upper one is the lateral view, lower row is the 
medial view, for the left hemisphere (left column) and right hemisphere (right column), respectively. Abbreviations: L = Left; R = Right; A+ =  
Amyloid positive; A- = Amyloid negative.

A+  T- (N=181) A+  T+ (N=51) 

Re
f: 

A
-  

T-
  (

N
= 

42
7)

Figure 3 Static eigenvector centrality differences in AT groups. Surface plots of P-values in statistical significant clusters. Left: Regions 
showing increased (red) or decreased (blue) EC in A+T- participants compared to A-T-. Right: Regions showing increased (red) or decreased 
(blue) EC in A+T+ participants compared to A-T-. Upper one is the lateral view, middle row is the medial view, lower row is ventral view. 
Abbreviations: Ref = Reference group; A-T- = Amyloid negative Tau negative; A+T- = Amyloid positive Tau negative; A+T+ = Amyloid positive 
Tau positive.
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DMN areas has been previously found in relationship to 
early amyloid accumulation in cognitively unimpaired indi-
viduals.11,38 Those studies did not report any increase in cen-
trality in A+ individuals. A possible explanation for our 
current finding is the choice of region of interests used in 
the analysis. Focusing on large scale networks may be re-
quired to highlight connectivity reductions typical of preclin-
ical stages, while performing modular or voxel-wise analysis 
uncovers more subtle EC changes in the different network 
subsystems. Previous works investigating voxel-wise EC 
have observed similar patterns of centrality alterations, 
with increased anterior and decreased posterior EC in AD 
patients compared to controls;9 and increased EC in anterior 
and middle cingulate cortex and decreased EC in the inferior 
parietal lobule in relationship to CSF p-tau/Aβ1–42 ratio.12

Our results on the static EC are also in agreement with 
previous studies utilizing different FC analysis, such as inde-
pendent component analysis (ICA) or seed-based FC, and 
observed regional amyloid-dependent changes in FC. 
Specifically, increased functional connections in medial pre-
frontal cortices and decreases in the posteromedial cortex 
and angular gyrus have been previously observed using 
ICA approach on rs-fMRI datasets.39 Similarly, voxel-wise 
FC analyses have shown amyloid-related wide-spread hyper-
connectivity in non-demented elderly individuals.40 In line 
with those results, we found reduced static EC in posterior 
parietal and occipital areas and increased EC in frontal areas 
in relation to amyloid deposition in cognitively unimpaired 

participants. When looking at static EC across AT groups, 
we found that most of the observed EC alteration could be 
replicated in the A+T- group. By contrast, only mild tem-
poral reduction of EC was found in the A+T+ group. 
While this is in line with the hypothesis of FC being disrupted 
mainly in relationship to early amyloid deposition, greater 
impairment would be expected in more advanced stages of 
the disease. These results might be confounded by the small 
sample size of the A+T+ group compared to the other two 
groups and warrants further investigation. Another possible 
explanation of this result is the proposed existence of non-
linear trajectories of FC alterations throughout the AD spec-
trum, with early changes that would reverse in more 
advanced stages.41

Our findings conform with the recently proposed cascading 
network failure model.3 In this model, an initial 
amyloid-independent within-network connectivity decline in 
at-risk individuals in the posterior hubs of the DMN is fol-
lowed by a compensatory increase in connectivity between 
posterior and other DMN subsystems to transfer information 
processing functions. These initial functional alterations 
would further trigger downstream cellular and molecular 
events promoting Aβ plaques formation in neocortical layers.

Dynamic EC
In addition to studying the voxel-wise distribution of static 
EC in relation to amyloid, we further investigated its 

A

B

C

Figure 4 Dynamic EC variability measured within static clusters. Rendering of significant clusters from the static analysis and differences 
(linear models) in within-cluster dynamic EC standard deviation between amyloid for the frontotemporal (A), parietal (B), and occipito-temporal 
(C) clusters. Abbreviations: SD = Standard deviation; A+ = Amyloid positive; A- = Amyloid negative; A-T- = Amyloid negative Tau negative; 
A+T- = Amyloid positive Tau negative; A+T+ = Amyloid positive Tau positive. * = P < 0.05, ** = P < 0.01, *** = P < 0.001.
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dynamic properties, which enable detection of shorter time 
scale related changes in EC. Specifically, variability in EC 
would promote an optimal balance between moments of 

high modularity low efficiency, when different networks 
are disconnected, and low modularity high efficiency, when 
those networks interact.5 We here investigated variability 

A

B C

Figure 5 Dynamic functional connectivity eigenvector centrality in the default mode network. (A) Statistical significant differences 
showing lower dynamics in amyloid positive participants (in blue). Bottom-row: Differences in DMN dynamic EC standard deviation between 
amyloid groups (B) and AT groups (C) were investigated with linear models. Abbreviations: dECM = dynamic eigenvector centrality; SD =  
standard deviation; A- = Amyloid negative; A-T- = Amyloid negative Tau negative; A+T- = Amyloid positive Tau negative; A+T+ = Amyloid 
positive Tau positive. * = P < 0.05, ** = P < 0.01, *** = P < 0.001.
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Figure 6 Relation between cognitive performance and dynamic EC standard deviation in the default mode and visual networks 
in the amyloid groups. The RBANS immediate memory index and visuo-constructional index, and the MMSE score showed significant interactions 
between amyloid status and cognitive scores on networks dynamic centrality temporal variability measures (SD and range). Residuals of the linear 
models after correcting for age, sex, and education are shown. Abbreviations: dECM = dynamic eigenvector centrality mapping; Res = residuals.
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of dynamics of functional centrality using EC for the first 
time in the early stages of AD. We found that frontal areas 
showing higher static EC in A+ participants were character-
ized by a reduced variability over time of dynamic EC. When 
looking at canonical RSNs, we further observed that cogni-
tively unimpaired A+ participants had lower EC dynamics 
and less temporal variability in the visual and default-mode 
networks, with lowest variation in the absence of cognitive 
impairment. Dynamic connectivity changes and their rela-
tionship with cognition have not been extensively studied 
in the AD spectrum. In a previous study using different dy-
namic analysis of FC,42 AD patients and patients with 
Lewy Body Dementia were found to spend more time in 
more sparsely connected dynamic states of FC compared to 
controls. Similarly, more recent evidence reported differ-
ences in FC dynamic states dwell time between AD patients 
and control groups and further observed lower dynamic 
FC variability in Alzheimer patients43 and in relationship 
with transient changes in cognition typical of early stages 
of neurodegenerative disease.44 In line with our results, re-
cent work has also suggested that early amyloid deposition 
in the brain reduces variations of rs-fMRI BOLD signal45

and FC41 over time in cognitively unimpaired individuals.
Our findings of reduced EC variability may result from an 

early amyloid-driven local synaptic loss,46 promoting 
inter-RSN asynchronous activations and intra-network 
super-synchronous activations,47 thus reducing brain func-
tional integration. Indeed, high variability is often observed 
in functional hubs, possibly related to their participation in 
different subnetworks. Initial amyloid deposition could 
therefore cause lower involvement of functional hubs con-
nectivity with different networks, and provoke the preva-
lence of single dynamic state.48 On the other hand, current 
evidence also suggests patterns of synaptic activation and 
long-range synchronous activity to influence amyloid pro-
duction.49 The observed patterns might therefore be due to 
a circular mechanism involving amyloid deposition being 
both the driver and the result of neuronal activity alterations. 
Moreover, the observed decreased variability of dynamic EC 
in A+ participants with good cognitive performance suggests 
that this reduction of functional integration between RSN in 
the early stages of AD further promotes cognitive deterior-
ation. However, the lack of longitudinal data and regional 
information on amyloid burden hampers the interpretation 
of any directional and regional association between these 
two phenomena. Taken together, these results propose dy-
namic connectivity as one of the first functional mechanisms 
to be impaired by amyloid deposition and stress its promis-
ing value as an early predictive biomarker.

Strengths and limitations
Potential limitations of this study include that EPAD is a re-
search cohort of healthy participants that were specifically 
selected for their elevated risk for AD, which may not be rep-
resentative of the general early-phase sporadic AD popula-
tion. However, the large sample (N = 701) and good 

phenotyping of EPAD are a unique characteristic compared 
to previous fMRI studies. As opposed to the majority of the 
previous literature on the topic, a strength of this work is that 
FC was explored on a voxel-wise centrality base, by using 
functionalities from the fastECM toolbox.29 By mapping 
the dynamic fastECM measurements within canonical 
RSNs, we were able to map both the spatial and temporal 
characteristics of dynamic connectivity. Another limitation 
is related to the fact some brain regions, such as the ventral 
part of the cerebellum and the orbitofrontal cortex, were 
not included in the analysis as not included in the field of 
view of all centers. As mentioned in the methods, previous 
works have proposed 100 s to be a safe window-length lower 
limit for detecting non-spurious fluctuations of FC.30,31

However, other studies have shown 300–400 timepoints to 
be necessary for accurate FC estimation at a single-subject le-
vel.50 While this work only focused on group inferences, this 
evidence suggests caution in interpreting dynamic results. 
Future work will be needed to evaluate the impact of other 
pathological changes, such as global atrophy, on FC dynam-
ics. This is the first study to describe dynamic graph proper-
ties of FC in relationship with early pathological changes of 
AD.

Conclusion
We found that investigating dynamic graph properties of FC 
adds meaningful information to sole investigation of static 
frame-wise connectivity, and can help in the understanding 
of early functional pathological events. Our results suggest 
that initial amyloid deposition affects EC temporal patterns 
by reducing involvement of functional hubs in different net-
work dynamics, therefore reducing functional integration, 
and promoting cognitive deterioration.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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