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Abstract—In dynamic brain positron emission tomography
(PET) studies, acquiring a time series of images, typically last-
ing more than an hour, is necessary to derive pharmacokinetic
parameters. Analytically, these parameters are estimated by
establishing kinetic models such as compartment models that
consist of sets of ordinary differential equations (ODEs), and by
fitting the sparse time-activity curve (TAC) of the tracer. Yet,
these models are simplified approximations of highly complex
underlying processes, and sufficient samples of TAC are required
throughout the entire acquisition, which is not only impractical
but also hindered by patient involuntary motion and intrinsic
noise. Therefore, recovering samples in missing timeframes are
often required, which, in practice, is achieved by interpolation
or extrapolation. Here, we introduce a novel deep-learning-based
method that utilizes neural ODE (N-ODE) to predict TAC in the
extended timeframes by mimicking the analytical method in a
data-driven manner. By training N-ODE to solve and fit sets of
ODE such that the solution replicates the observed TAC, the
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N-ODE converges to the functional shapes that best describe the
underlying pharmacokinetic processes. We customized N-ODE to
predict the full-dynamic images (12 frames, 60 min), hence phar-
macokinetic parameters, given limited early-frame images (7–9
frames, 20–30 min). For proof of concept, the proposed N-ODE
was applied to simulated and clinical 18F-PI-2620 brain PET.
We demonstrated that the proposed N-ODE delivered promis-
ing performance, indicated by bias, variance, and mean absolute
error as well as pharmacokinetic parameters, such as rate con-
stants, standardized uptake value ratio (SUVr), and binding
potential (BPND).

Index Terms—Artificial intelligence, dynamic positron emission
tomography (PET), neuroimaging, positron emission tomography
PET.

I. INTRODUCTION

POSITRON emission tomography (PET) is a molecular
imaging technology that uses a radiotracer to visualize

the metabolic and physiological processes in the body in
vivo. For brain studies, the recent advances in PET tracers
made it possible to assess several histopathological targets
of neurodegenerative disorders, such as glucose metabolism,
amyloid, tau, and neuroinflammation [1], [2], [3], [4], [5], [6].
The common application of PET in the clinics yields a sim-
ple snapshot of regional tracer concentration using a single
timeframe post-injection, which is referred to as static PET.
On the other hand, dynamic PET provides comprehensive
information about the pharmacokinetics of the tracer, such as
tracer delivery (K1), volume of distribution (VT ), or binding
potential (BPND) by delineating both the spatial and tempo-
ral profiles of the tracer uptake [7], [8], [9]. Analytically,
such pharmacokinetic parameters are estimated through kinetic
models that translate hypotheses regarding the physiological
system of dynamic processes in the tissue of interest, which
is decomposed into several compartments, in a mathemati-
cal formulation [10], [11], [12], [13]. These models inevitably
accompany a set of ordinary differential equations (ODEs),
and the pharmacokinetic parameters are determined by solv-
ing the ODEs and fitting the time-activity curve (TAC) of each
voxel.

Yet, analytical models are simplified approximations of
highly complex underlying physiological and biological
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processes and are not perfectly consistent with the mea-
sured data due to intrinsic PET noise, especially at the voxel
level [14]. Additionally, sufficient numbers of samples across
the entire protocol are required to perform the modeling,
which is hindered by patient movement [15]. As such, in
routine practice, the reduced acquisition time PET has been
proposed, where kinetic modeling is performed with missing
TAC samples either being ignored or being recovered by var-
ious interpolation or extrapolation methods [16], [17], [18],
[19], [20], [21]. Scott et al. [16] combined arterial spinning
labeling (ASL)-derived cerebral blood flow (CBF) data with
18F-florbetapir amyloid PET kinetic modeling and reduced
the acquisition time from 60 to 30 min. In their work, the
missing samples in reference region TAC were extrapolated.
Heeman et al. [17] and Kolinger et al. [18] proposed the dual-
time window protocols for 18F-flutemetamol, 18F-florbetaben,
and 18F-MK-6240 which consist of two separate PET scans
with a resting period in between. The omitted data points in
the resting phase were interpolated either linearly or using
compartment models. Viswanath et al. [19] shortened 65-min
dynamic FDG protocol in long axial field-of-view (LAFOV)
PET scans to 15–20-min dual-time window protocol where
10–15 min early frame and late 5 min were used. Wu et al. [20]
demonstrated that a much-reduced scanning time can achieve
the net influx rate, Ki, imaging using the nonlinear estima-
tion method. Liu et al. [21] validated that an acquisition time
reduction to 45 min was possible in a single-time window pro-
tocol to draw kinetic parameters of 18F-FDG as done by full
dynamic protocol. In works from Varsha, Wu, and Liu, nei-
ther interpolation nor extrapolation was performed to construct
absent samples in TAC.

Here, we introduce a novel deep-learning method based
on neural ODE (N-ODE) [22], which recovers images in the
missing timeframe by mimicking the analytical modeling in a
data-driven manner. That is, by training N-ODE to solve sets
of ODE such that the solution replicates the observed TAC,
the N-ODE parameters converge to the functional shapes that
best describe the underlying pharmacokinetic processes. To
the best of our knowledge, N-ODE has been explored in vari-
ous domains to leverage the existing well-established physical
or chemical models that are explained by the ODE system in
a machine-learning manner [23], [24], [25], yet, not in PET
studies. In this article, we built an N-ODE-based model that
learns the spatiotemporal features of the dynamic PET images
and the underlying pharmacokinetic processes by embed-
ding convolutional long short-term memory (LSTM), namely,
seq2seq [26], [27] and variational autoencoder (VAE) [28]
architect into N-ODE network. We customized the model to
predict the total frames (12 frames, 60 min), hence the phar-
macokinetic parameters, given a few early frames as input
(7–9 frames, 20–30 min). For proof of concept, we applied
this model to the simulated as well as the clinical dynamic
18F-PI-2620 brain PET. With limited early frames alone, we
demonstrated that the proposed method is capable of recov-
ering the images across full dynamic protocol, indicated by
bias, variance, and mean absolute error (MAE), as well as the
pharmacokinetic parameters, such as rate constants (K1, k2,
k3, k4), BPND, and the standardized uptake value ratio (SUVr).

The proposed method has the potential to solve the challenges
largely in dynamic PET research, such as reducing the protocol
acquisition studies or rapid dual-tracer studies [29], [30].

II. MATERIALS AND METHODS

The mathematical concept of N-ODE in relation to the
compartment model is explained in Section II-A, and the
study flow is revisited in Section II-B. The simulation and the
clinical data for the preparation of this article are described
in Sections II-C and II-D. The indices to assess the model
performance are summarized in Section II-E.

A. Compartment Model and N-ODE

For simplicity, we consider N-ODE with regard to a sim-
ple compartment model. For each compartment, the change
of tracer concentration is described in terms of a linear,
first-order, constant-coefficient ODE as

dCi(t)

dt
= fi(C0(t), C1(t), C2(t), . . . , t, K1, k2, k3, k4, . . .) (1)

where Ci(t) is the concentration in compartment i in time t,
and K1, k2, k3, and k4 are rate constants.

For instance, the two-tissue compartment model using four
rate constants (2T4CM) is written as

dC1(t)

dt
= K1C0(t) − (k2 + k3)C1(t) + k4C2(t) (2)

dC2(t)

dt
= k3C1(t) − k4C2(t). (3)

The typical interpretation is that C0(t) is the tracer concen-
tration of the input function derived from arterial plasma. C1(t)
represents free and nonspecifically bound tracer concentration,
and C2(t) is specifically bound tracer concentration in tissue.

Analytic solutions for 2T4CM are derived [31] by using
Laplace transformation, as

C1(t) = K1

α2 − α1

[
(k4 − α1)e

−α1t + (α2 − k4)e
−α2t] ⊗ C0(t)

(4)

C2(t) = K1k3

α2 − α1

[
e−α1t − e−α2t] ⊗ C0(t) (5)

and the total concentration of tracer in the region of interest
(ROI) can be expressed as

CT(t) = C1(t) + C2(t) (6)

where

α1 = k2 + k3 + k4 −
√

(k2 + k3 + k4)
2 − 4k2k4

2

α2 = k2 + k3 + k4 +
√

(k2 + k3 + k4)
2 − 4k2k4

2
.

N-ODE is a deep-learning method different from the con-
ventional compartment models, as it uses trainable parameters
to fit the data. That is, the key idea of N-ODE is built
on parameterizing a continuous dynamical system that is in
the format of ODE with an initial value, using a neural
network (NN)

dh(t)

dt
= f (h(t), t, θ), h(t0) = h0. (7)
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Fig. 1. Scheme of the study design. For simplicity, the 4-D (3-D image, 1-D
time) spatiotemporal component of the study design (left) is drawn in 1-D
voxel level (right). The proposed N-ODE-based model consumes the 3-D
images across the time length of early frames (tef) as an input. The model
predicts the 3-D images across total frames (ttf), hence the pharmacokinetic
parameters.

Here, f (·) is parameterized by �, which are the weights
of the NN, instead of the rate constants described in (1)–(3).
h(t) can be defined as the function governing state evolution
over time t, such as CT(t) expressed in (6). The output state
h(ti) in time ti can be mapped using (7) and the ODE solver.
N-ODE is trained by means of the loss function, evaluating the
distance between the output h(ti) and the desired measurement
h(ti)measured

L(h(ti)) = L

(
h(t0) +

∫ ti

t0
f (h(t), t, θ)dt

)

= L(ODEsolve(h(t0), f , t0, ti, θ)) (8)

where ODEsolve is given by the established ODE solvers,
such as Runge–Kutta methods. For backward propagation, the
adjoint sensitivity method is applied to the ODE solver to
compute the gradients of loss with respect to parameters �

for memory efficiency [22].

B. Study Design

Fig. 1 illustrates the study design. In this work, we set the
timeframe for both simulation and the clinical brain PET data
as [5 × 120(s); 4 × 300 (s); 3 × 600 (s)]. Our baseline was
to predict the full dynamic 4-D images (12 frames, 60 min),
given the initial input (9 frames, 30 min) using the proposed
N-ODE model. We then analyzed the model with fewer early
input frames (8 frames, 25 min; 7 frames, 20 min).

Fig. 2(a) outlines the proposed N-ODE-based method. The
multilayered LSTM [26], namely, seq2seq architect [27], was
built as a recognition network for VAE to map the early-
frame images, xt0 , xt1 , . . . , xtef , into a local initial state, zt0 ,
through the hidden state, ht0 , ht1 , . . . , htef . Seq2seq consumed
the early-frame images sequentially backwards in time, and
the VAE encoder outputted qø(zt0 |xt0 , . . . , xtef ). A global latent
dynamics are shared across all time frames, and N-ODE pro-
duces a set of latent features for each frame, zt1, zt2 , . . . , zttf ,

by solving ODE using the Runge–Kutta of order 5 method,
given the initial value of zt0

zt1, zt2 , . . . , zttf = ODEsolve
(
zt0, f , t0, t1, . . . , ttf , θ f

)
. (9)

The latent feature derived by the ODE solver is then
translated back to image space by the VAE generator,
pθ (xt0 , . . . , xttf |zt0, . . . , zttf ).

The classic VAE loss is expressed as

L(∅, θ) = −Ez∼ q∅(z| x)(log pθ (x|z))
+ KL

(
q∅(z|x)||pθ (z)

)
(10)

where the probabilistic generator can be expressed as pθ (x|z),
given the data sample, x, projected in the latent space, z. The
posterior distribution pθ (z|x) is obtained by using the prior
distribution p(z) and the probabilistic generator pθ (x|z), such
that pθ (z|x) ∼ p(z)pθ (x|z). The encoder learns an approximation
q∅(z|x) to the posterior distribution pθ (z|x), where ∅ denotes
the parameters of the encoder, and θ stands for those of the
generator. The first term in (10) defines the reconstruction loss,
while the second term acts as a regularization term, in the form
of the Kullback–Leibler (KL) divergence between the latent
distribution learned and the prior distribution. In practice, the
generator input is resampled by the encoded latent features z

zresampled = zencoder + zsd × ε (11)

where ε represents a random noise sample.
In this work, instead of q∅(z|x), the model seeks

q∅(zt0 |xt0 , . . . , xtef ). The model then finds zt1, zt2 , . . . , zttf
as expressed in (9), hence, pθ (x|z) was replaced with
pθ (xt0 , . . . , xttf |ODEsolve(zt0, f , t0, t1, . . . , ttf , θ f )). The model
was trained end-to-end and negative Gaussian log-likelihood
loss was used as the reconstruction loss term together with KL
divergence as described in (10).

The recognition seq2seq network was built with 2 convolu-
tion layers with 32 channels of hidden states. We parameter-
ized the dynamics function f (·) with six convolutional layers
for each encoder and generator. The original image size was
(91, 109, 91, 12), each of which accounts for the dimension
across x, y, z, and the time, t, respectively. However, for com-
putational efficiency, the patches are extracted randomly that
are half of the original dimensions in the x-, y-, and z-axis
for training as depicted in Fig. 2(b). For the test set, the reg-
ular grid patch was obtained, and the outputs of each patch
are returned to the original image size, averaging the values
in overlapping areas. All images are normalized to maximum
value before feeding into the model. We trained on NVIDIA
GeForce RTX 2080 Ti graphic card.

C. Simulated Dynamic Brain PET

The input function was first simulated, and the dynamic
brain PET was created by using 2T4CM described in (4)–(6).

Feng’s model was used to generate the input function [32]

C0(t) = (A1t − A2 − A3)e
λ1t + A2eλ2t + A3eλ3t (12)

where A1, A2, and A3 are amplitude coefficients, and λ1, λ2, and
λ3 are eigenvalues of the system. For simulation, we did not
consider the metabolite correction [8]. The dynamic brain PET
image was generated using Hammers atlas to draw ROIs [33]. For
each ROI, the concentration of the tracer, CS(t), is simulated as

CS(t) = VBC0(t) + (1 − VB)CT(t) (13)
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Fig. 2. Study design. (a) Customized N-ODE, using two-layer LSTM, seq2seq architect, and VAE. (b) Illustration of random patch extraction and regular
grid extraction for each training and test.

TABLE I
PREDEFINED MINIMUM AND MAXIMUM VALUE OF PARAMETERS FOR

INPUT FUNCTION AND 2T4CM SIMULATION

where VB is the vascular volume fraction inside the ROIs,
which is fixed as 0.05 for this work. The left and right lobes
of each ROI are fixed to have the same concentration.

The parameters required for the input function and the rate
constants for 2TCM were randomly sampled from the uni-
form distribution with the predefined minimum and maximum
values as shown in Table I.

The noise was assumed to be proportional to the number of
counts per time frame. The simulated 4-D brain images were
reconstructed using an in-house ordered-subsets expectation–
maximization (OSEM) algorithm [30]. 600 and 100 samples
were created for training and test set, respectively.

D. Clinical Dynamic 18F-PI-2620 PET
18F-PI-2620 PET scans in combination with computed

tomography (CT) was performed in a full dynamic setting
(0–60 min post-injection). The injected dose was 189 66
±13.19 MBq and applied as a bolus injection. All data
were acquired in Munich on a Siemens Biograph True point
64 PET/CT (Siemens, Erlangen, Germany) or a Siemens
mCT (Siemens, Erlangen, Germany). The dynamic brain PET
data were acquired in 3-D list mode over 60 min, and
reconstructed into a 336 × 336 × 109 matrix (voxel size:
1.02×1.02×2.03 mm3) using the built-in OSEM algorithm
with 4 iterations, 21 subsets, and a 5-mm Gaussian on the
Siemens Biograph and with 5 iterations and 24 subsets on the

Siemens mCT. A low-dose CT served for attenuation correc-
tion. All images were spatially normalized to the Montreal
Neurological Institute (MNI) space using an in-house tracer-
specific PET image template (PMOD V4.1). Fifty eight sets
were collected in total, where 56 sets and 17 sets are used as
training and test, respectively. Amongst 56 training dataset, 22
were from mCT and 34 were from Biograph. Out of 17 test
data set, 6 were from mCT and 11 were from Biograph.

E. Evaluation of the Performance

We assessed the performance of the proposed method
by calculating the following properties for each ROI and
timeframe:

Bias = 1

N

N∑

i=1

|xi − x̂i|
xi

(14)

Variance = 1

N

N∑

i=1

(
xi − xN

xi

)2

(15)

MAE = 1

N

N∑

i=1

|xi − x̂i| (16)

where N is the total number of voxels in one ROI, xi and x̂i

are the ground truth and the prediction of the ith voxel, respec-
tively, and xN represents the average predicted value of voxels
in the ROI. While MAE describes the average magnitude of
error produced by the proposed model, bias characterizes how
far the model’s predictions are off from the ground truth. As
bias is normalized to the prediction itself, it represents the
error taking the magnitude of TAC into consideration.

In addition, the pharmacokinetic parameters from both the
ground truth and the predicted images are estimated and com-
pared. For simulation datasets, the rate constants K1, k2, k3 and
k4were evaluated for each ROIs. On the other hand, voxel-
wise indirect parameters, such as SUVr and binding potential
(BPND), are assessed for 18F-PI-2620 datasets, as an arte-
rial input function was not available. The average image of
late 30 min-3 frames was normalized by the mean uptake in
cerebellum gray matter to derive SUVr [34]. BPND images
were estimated using a noninvasive Logan graphical plot
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Fig. 3. Model performance. (a) Bias, variance, and the MAE of the proposed model. The model was evaluated using 7 frames (20 min), 8 frames (25 min),
and 9 frames (30 min) as an input. (b) Linear regression of rate constants (K1, k2, k3, and k4) estimated by the ground-truth dynamic image and by the
proposed model, with different numbers of input frames.

(t∗ = 20 min, k2
′ = 0.22 min−1) and cerebellar gray matter

as the reference region [34].

III. RESULTS

A. Simulated Data Result

Fig. 3(a) illustrates the average bias, variance, and MAE of
the outputs resulting from the proposed N-ODE-based model,
in each of the 12 frames. Lower bias and variance were
observed in the later frames than in the early frames regard-
less of the number of early input frames. MAE was higher
in the middle frames when the model was given more input
frames (9 frames, 30 min). However, with fewer input frames
(7 frames, 20 min; 8 frames 25 min), MAE was similar across
all frames except for the first 1 or 2 frames. The average
bias, variance, and MAE indicated the better performance with
fewer input frames (7 frames, 20 min) than with more input
frames (9 frames, 30 min). Yet, the profiles of bias, variance,
and MAE were almost identical when the model was given
with 7 input frames (20 min) and 8 input frames (25 min).

Fig. 3(b) depicts the linear fitting result between the rate
constants estimated from the ground truth and the predicted
dynamic image. The model performed worse in predicting k4,
compared to predicting K1, k2, and k3. In general, eight input
frames resulted in the best prediction of the rate constants,
except for k2 where seven input frames achieved best.

Fig. 4 illustrates the examples of the test data sets that
showed the best and the worst MAE. For all three settings
with different numbers of input frames, the same data sets

were identified as the best and worst results. Fig. 4 depicts
the examples when seven frames (20 min) were given as
an input. The worst prediction that was made in this case
presented high bias near edges, however, preserved the over-
all contrast between the ROIs across all timeframes. For both
best and worst examples, the horizontal and vertical strikes
were observed, which resulted from patch-based learning.

B. Clinical 18F-PI-2620 Data Result

Fig. 5 illustrates the voxel-level parametric images of SUVr
and BPND in two examples of 18F-PI-2620 test datasets with
different numbers of input frames. For a visual assessment
at the image level, the region with the high uptake was well
preserved in both test sets, regardless of the number of input
frames given to the model. Table II shows the average bias,
variance, and MAE resulting from the proposed model on
the 18F-PI-2620 data for each of the 12 frames. The average
bias, variance, and MAE improved with more input frames,
although the differences were small. Fig. 6 is the heat map
representing the average bias, variance, and MAE in ROIs
drawn from the Hammers template across all 12 frames. On
average, the bias, variance, and MAE decreased with more input
frames, yet, their general aspects were unchanged. For instance,
the central structures, such as caudate nucleus (CaudateNucl)
and corpus callosum (Corp_callosum) as well as ventricle such
as frontal horn (FrontalHorn) presented higher bias than other
ROIs, regardless of the number of input frames. Overall, the
central structures, including putamen, thalamus, and substantia
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Fig. 4. Best and worst test examples of the proposed N-ODE-based model with 7 early frames (20 min) as an input. The first row of each example indicates
the ground-truth image and the second row depicts the predicted images by the N-ODE-based model in axial view.

Fig. 5. Voxel-wise parametric image of SUVr and binding potential (BPND) in two examples of 18F-PI-2620 test sets. Both SUVr and BPND images are
estimated by the ground truth (first row), and the predicted images with different numbers of input frames [second-last row: 7 frames (20 min), 8 frames
(25 min), and 9 frames (30 min)].

nigra (S_nigra), showed relatively high MAE. However, low
MAE was observed in the pallidum, corpus callosum, and
frontal horn. The frontal lobe, including the middle frontal
gyrus (FL_mid_fr_G), inferior frontal gyrus (FL_inf_fr_G), and
superior frontal gyrus (FL_sup_fr_G), reported relatively high
variance. The variance was more dependent on ROI than on the
timeframes. In other words, the ROIs which showed comparably
higher variance presented higher variance throughout the entire
timeframes. However, bias and MAE were dependent not only
on the ROIs but also on the timeframes. Relatively high MAE
was observed in early 1-5 frames, compared to later frames.
Conversely, higher bias was observed in the later frames, in
comparison to the early frames.

IV. DISCUSSION

In this article, we introduced N-ODE and proposed the
N-ODE-based method that recovers the missing images in
dynamic brain PET, allowing the pharmacokinetic parameters

such as rate constants or BPND to be estimated with a few
numbers of early frames alone. The proposed N-ODE-based
method, which is established to resemble the analytical meth-
ods such as compartment modeling, exploited the intrinsic
pharmacokinetics of the tracer by solving and fitting sets of
ODEs, however, in a deep-learning manner. We demonstrated
the result of the proposed method with the simulated and
the clinical 18F-PI-2620 dynamic brain PET images. We then
assessed the performance with various numbers of early input
frames that are given to the model as an initial value decreas-
ing from 9 to 7, which is equivalent to 30–20 min. We believe
that this work will contribute to the dynamic PET studies in
general, not only in a direction to reducing the scanning time
but also to rapid multitracer studies [29], [30].

A. Time Frames Used in the Proposed N-ODE-Based Model

In this proposed study, the duration of the early frames
was extended in comparison to typical common settings. We
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Fig. 6. Heat map of (a) bias, (b) variance, and (c) MAE. ROIs are drawn
by the Hammers template [33].

observed that the initial value holds significant importance in
solving ODEs using the N-ODE-based model. Therefore, to
mitigate the impact of noisy initial values, the duration of the

early frames was increased. Additionally, implementing a post-
processing or reconstruction algorithm that reduces noise may
further enhance the performance of the proposed method.

B. N-ODE-Based Model on Simulation and 18F-PI-2620
Data

The results of the simulation data indicate that the extended
duration of early frames did not harm the prediction of K1
and k2. However, the prediction of k3 and k4 was suboptimal
(Fig. 3). As the proposed model predicts the entire 12 frames
given 7, 8, and 9 frames, it may be simpler for the model to
forecast the initial 7–9 frames than last 5–3 frames as they are
seen by the model. Due to the fact that K1 and k2 are closely
related to the perfusion, or early frames, these parameters may
be easier for models to predict than k3 or k4 Furthermore, k4
was estimated more poorly than k3, possibly because of its
relatively small value and error propagation.

The proposed method using N-ODE is demonstrated to be
sensitive to the initial value as evidenced by the heatmaps of
bias and variance from 18F-PI-2620 data presented in Fig. 6.
Poor prediction of the initial value in certain ROIs, such
as central structures, resulted in a lack of improvement in
predictions made for subsequent time frames. However, the
MAE was observed to be relatively lower in some of the cen-
tral structures. This can be attributed to the fact that MAE
is calculated as the difference between the ground truth and
prediction value, and these ROIs have lower values. On the
other hand, these ROIs resulted in a high bias and variance,
as both indices are normalized by the ground-truth value itself
[(14) and (15)]. The ROIs which are small in size and value
suffered more in prediction when the noise was presented. On
the other hand, distinctive horizontal lines were found in bias
and MAE heatmaps, indicating that both indices were affected
also by the time frame. Specifically, 18F-PI-2620 peaks before
the fifth frame, which is equivalent to 10 min [34], resulting
in higher MAE up until the fifth frame. However, the bias
was low until the last few frames. As a result, we observed
that when MAE loss was selected as the reconstruction loss,
predictions were poorly made in later frames as the model
sought to find an optimal solution by primarily focusing on
the early frames.

C. Characteristics of Kinetics and the N-ODE-Based Model

The number of early frames used as input to achieve the best
result was different between the simulation and the clinical
18F-PI-2620 data. The bias, variance, and MAE indicated that
the proposed model performed better with fewer numbers of
input frames (7 frames, 20 min; 8 frames, 30 min) for the sim-
ulated data as shown in Fig. 3(a), however, the reversed trend
was found for the clinical data as summarized in Table II. We
reflect that this is coming from the intrinsic dynamic profile
of the tracer and the model architect. For 18F-PI-2620, the
TAC peaks at around 5 min [34] and drops rapidly, while,
for the simulation data, TAC washes out slowly. As the con-
volutional LSTM model, seq2seq, is utilized as a recognition
network for embedding the early frames backwards in time,
the proposed model seemed to have a tradeoff between the
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TABLE II
BIAS, VARIANCE, AND MAE OF THE PROPOSED N-ODE-BASED MODEL ON THE 18F-PI-2620 TEST DATASETS

early-frame seq2seq encoder and the complexity of the ODE
system, which requires optimizing the numbers of early input
frame images for the best result. The embedding of the early-
frame images relies heavily on the pharmacokinetics defined
by the hidden state in the final output of the seq2seq archi-
tect [27]. Hence, it is challenging for the seq2seq network to
deal with the limited number of input frames. On the other
hand, as the seq2seq runs backwards in time in the proposed
model, the excessive number of early frames may result in
a suboptimal initial point as described in (9) through hidden
states. There was no consistent trend found in terms of the
number of input frames when it comes to predicting pharma-
cokinetic parameters such as the rate constants, SUVr, and
BPND. Particularly, 7 frames (20 min) alone achieved robust
performance in deriving a voxel-level image of SUVr and
BPND as shown in Fig. 5, and we believe this method has
the potential to lead a much-reduced scanning time protocols
in dynamic PET studies.

One common aspect of the proposed model on both data
was that it learns the pharmacokinetics more efficiently when
the average spatial variance of the initial frame is large, which
is the case for tau or amyloid PET scans in the Alzheimer’s
disease (AD) [2], [3], [4]. As shown in Fig. 4 best exam-
ple, the proposed method performed the best with the image
that appeared to have a relatively larger contrast between
different ROIs in early frames. For 18F-PI-2620 datasets, it
indicated that the proposed method worked better with the
test set 0 that has regional high uptakes in the occipital
and frontal lobe as well as the limbic area. However, we
observed that the proposed model resulted in better prediction
results when the temporal variance is small throughout the
entire timeframes. As illustrated in Fig. 4, the overall ground-
truth TAC of the best example test data increased consistently
until the 5th frame (10 min) and then decrease with time,
whereas the overall ground-truth TAC of the worst exam-
ple peaked at the 8th frame (25 min) and washed out more
slowly. Since the model imprints the early-frame information
through the seq2seq architect, the dramatic changes in TAC
within early frames seemed to be lost in the hidden state of

the seq2seq model, which resulted in poor estimation for the
data that contain the extreme gradient of TAC in the early
frames.

D. N-ODE-Based Model and the Auto-Regression-Only
Model

As a tool for regression, it has been reported that the
N-ODE-based method has a few advantages over the auto-
regression-only model, such as LSTM-based models in learn-
ing dynamic data [22], [23], [26], [27]. One of the benefits
is that the N-ODE-based method leverages less computational
burden than LSTM models [22], [23]. Furthermore, the N-
ODE-based models maintain the satisfying performance with
irregular time points [23], which is often the case in dynamic
PET cases. To our best knowledge, the investigation has not
been made to evaluate both models on dynamic PET images,
let alone each of the models. We evaluated the regression-only
models using the same architect described in Fig. 2. Instead of
utilizing the VAE-N-ODE architect, we exploited the seq2seq-
only model to directly predict the dynamic 18F-PI-2620 brain
PET. The resulting voxel-wise SUVr of the predicted dynamic
PET is illustrated in Fig. 7. The seq2seq-only model poorly
estimated the pharmacokinetics given the limited number of
input frames (7 frames, 20 min) in both test datasets. To
that end, we believe that the N-ODE-based model is prefer-
able, particularly when only very early perfusion images are
available.

Additionally, we observed the different textures of the out-
put images between the two models. The seq2seq-only model
tends to smooth the output more than the N-ODE-based model.
As a result, the prediction made from the seq2seq-only model
exhibited a clearer outline of the ROIs such as fissures, in out-
put. We speculate this occurred from the architect of models.
In the seq2seq-only model, the predictions are made from the
very first frames to the respective frames by regressing over
convolutional layers. However, for the N-ODE-based model,
the latent features that represent the predictions are first esti-
mated using ODE solvers, and the final predictions are made
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Fig. 7. SUVr using the regression-only model. Test set 0 and test set 1 are
illustrated in left and right, respectively. The first row illustrates the ground
truth, and the following row depicts the prediction made by 7 input frames
(20 min), 8 input frames (25 min), and 9 input frames (30 min).

using convolutional layers. In other words, the lump of convo-
lution layers that is used to regress the final predicted outputs
is massive in size in the seq2seq-only model, compared to the
N-ODE-based model. This contributes to the overall smooth-
ness of the output images, which was an unexpected benefit
for the seq2seq-only model. However, due to this aspect, the
images with the input presenting less contrast in the first place,
such as test set 1 showed a highly biased output, especially
with the limited number of input frames (7 frames, 20 min).

E. Limitations

Although we have conducted our study both on simulated
and clinical dynamic data, one limitation of our work is
that it is trained by the restricted amount of clinical brain
PET data. We initially adopted patch-based learning to meet
the computing resources, however, this approach served as
data augmentation, resulting in agreeable results with confined
training data. However, the model repetitively presented high
bias, variance, and MAE in central structures that are rela-
tively small in size, regardless of the numbers of the input
frames. In this regard, we believe that the model has room for
improvement when the patches that contain the central struc-
tures are visited more often during training. Another limitation
which originated from patch-based learning is that the outputs
inevitably display the horizontal and vertical strikes.

F. Clinical Implication and Future Direction

In clinical routine, the bottleneck for dynamic PET imaging
is the long acquisition time, which is not only impractical but
also hampered by patient movement. Furthermore, the intrinsic
noise of PET images hinders the performance of the kinetic
modeling, especially at the voxel level. The proposed method
can address these two main limitations in clinical dynamic
PET studies.

1) Reduced Time Protocol: The recent efforts were made
to reduce the scanning time while allowing the parametric
images to be drawn [17], [19], [20], [35], [36], [37], [38]. As

the proposed model predicts the entire frames of the dynamic
PET given a few early frames alone, it provides the solution to
reduce the scanning time while deriving the pharmacokinet-
ics of interest in brain studies such as perfusion or binding
perfusion. Compared to the previous studies, the proposed
method utilized not only the temporal information of the
dynamic PET images but also spatial information through a
mass of convolutional layers and the ODE solving mechanism,
which contributed to the promising performances. We demon-
strated reducing from 60 to 20 min is possible in 18F-PI-2620
dynamic PET scans. With the recent development of the new
scanner [39], the proposed method potentially can achieve a
very-short dynamic scanning time [21]. Yet, all tracers display
different spatiotemporal patterns and extensive studies on fine-
tuning the proposed method for other tracers will be part of
future studies.

The advantage of the proposed method in reducing the time
protocol is that it does not require the AIF, which is a chal-
lenge for the analytical method. One straightforward way to
predict the later frames in dynamic PET analytically is to
use compartment modeling to fit the images only with early
frames and use the derived rate constants to predict the late
frames [21]. However, this requires the determining AIF and
the accurate kinetic model, both of which add the uncertainty
of the prediction. Furthermore, with only a few early frames,
the model suffers from the sparse sample size for the fitting.
In particular, predicting k3 or k4 is challenging, as both rate
constants are associated with the later frames. Instead, the
proposed method avoids this issue by learning from the data
themselves.

Yet, the AIF is still required in reduced scanning time, when
the aim is on deriving micro parameters such as rate constants.
One way is to infer from predicted images using an image-
derived input function (IDIF), which will be incorporated in
the future study.

2) Dual-Tracer Studies: Contrary to the dual time window
protocol, or coffee break protocol [17], [18], [19], the proposed
method does not require the late frame images to derive the
full dynamic or parametric images, which leaves the margin
for other tracers to be administered after the cut-off frame
set for seq2seq architect as shown in Fig. 2. Thus, another
critical application of the proposed method is dual-tracer
studies.

Dual-tracer brain PET is a promising technique that mea-
sures the distribution of two tracers in the brain by a single
scan with tracer administrations staggered in time, charac-
terizing dual aspects of function without repeated sessions
of scanning separated by hours or days [29]. Integrating
complementary information of both tracers may enhance
the sensitivity and specificity for presymptomatic staging as
well as the differential diagnosis of heterogeneous pathogen-
esis with similar clinical phenotypes [6]. However, recov-
ering the separate scans of each tracer from the dual-
tracer scan is challenging, as all tracer signals for the PET
scanner are indistinguishable 511-KeV annihilation photon
pairs, and no explicit information is available that indi-
cates which tracer gave rise to the PET coincidence-pair
measurement.
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Similar to the single-tracer dynamic PET studies, the ana-
lytical explanation for deriving the pharmacokinetic parameter
from dual-tracer studies is led by establishing a compartmental
model. However, for dual-tracer studies, the parallel configu-
ration is often used [29]. On the other hand, studies were
held recently that use deep-learning models, which typically
solve the blind source separation problem. Ruan and Liu [40]
and Xu and Liu [41] proposed the deep-learning model which
seeks to single out the contribution of each tracer from the
mixture of signals using a deep NN. Particularly, Ruan et al.
utilized stacked autoencoder (SAE) and Xu et al. employed a
deep belief network (DBN).

Instead of focusing on the separation of the signal, the
proposed method offers the novel approach to recover the sig-
nal from each individual tracer by aiming to predict the full
dynamic images of the first administered tracer, given early-
frame images. In this way, the dynamic images of the second
tracer are readily estimated by subtracting the signal of the
first administered tracer from the total measurement where
both overlap. The future direction of the current work includes
the feasibility study of recovering single tracers in dual-tracer
signal using the proposed method.

V. CONCLUSION

In this work, we established the deep-learning model using
N-ODE that predicts the full dynamic frame images, hence the
pharmacokinetic parameters, such as rate constants and BPND,
given the limited number of input frame images. We demon-
strated that the proposed method showed promising results
with both simulated and clinical brain PET data, indicated by
bias, variance, MAE, and pharmacokinetic parameters. In par-
ticular, we showed that SUVr and BPND parametric images can
still be derived with 20 min 18F-PI-2620, instead of 60 min.
Additionally, we believe that this approach sheds new light on
rapid dual-tracer studies.
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