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This work has developed a hybrid framework that combines machine learning
and control approaches for legged robots to achieve new capabilities of
balancing against external perturbations. The framework embeds a kernel which
is a model-based, full parametric closed-loop and analytical controller as
the gait pattern generator. On top of that, a neural network with symmetric
partial data augmentation learns to automatically adjust the parameters for
the gait kernel, and also generate compensatory actions for all joints, thus
significantly augmenting the stability under unexpected perturbations. Seven
Neural Network policies with different configurations were optimized to validate
the effectiveness and the combined use of the modulation of the kernel
parameters and the compensation for the arms and legs using residual actions.
The results validated that modulating kernel parameters alongside the residual
actions have improved the stability significantly. Furthermore, The performance
of the proposed framework was evaluated across a set of challenging simulated
scenarios, and demonstrated considerable improvements compared to the
baseline in recovering from large external forces (up to 118%). Besides, regarding
measurement noise and model inaccuracies, the robustness of the proposed
framework has been assessed through simulations, which demonstrated the
robustness in the presence of these uncertainties. Furthermore, the trained
policies were validated across a set of unseen scenarios and showed the
generalization to dynamic walking.

KEYWORDS

learning motor skills, humanoid robot, learning residual actions, modulate gait
generator, deep reinforcement learning (DRL)

1 Introduction

Legged robots are versatile on irregular grounds and can be used in a wide
range of applications. Nevertheless, robust locomotion is a complex research that
still needs investigation. The stability of movements is an essential requirement for
a robot to act safely in a real environment. A general question is: despite the
versatility of legged robots, why aren’t they as capable as us yet? This work aims
to improve the stability of legged locomotion in order to increase its versatility.
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To achieve the versatility as intended, we investigated the
fundamental aspect of learning balance recovery strategies. Humans
combine a set of strategies (e.g., moving arms, ankles, hips, taking a
step, etc.) to regain balance after facing an external disturbance.They
rely on past experiences to improve their methods. Moreover, we
investigated existing biped robot locomotion frameworks. Despite
their stability have been improved significantly but they are not
stable and safe enough to be utilised in our daily-life environments.
Several approaches for stabilising a biped robot have been proposed
that can be categorised into three major categories. In the remainder
of this section, these categories will be introduced and some recent
works in each category will be briefly reviewed.

1.1 Model-based analytical approaches

The basic idea behind the approaches in this category is using
a dynamics model of the robot and designing a set of controllers,
e.g., force controller (Mason et al., 2016), hybrid position/force
(Faraji et al., 2019), admittance controller (Caron, 2020), based on
specific criteria tominimise the tracking error.Themost widely used
model in literature is the Linear Inverted Pendulum (LIP) which
abstracts the overall dynamics of a robot as a single mass. It restricts
the vertical movement of the mass to provide a linear model which
yields a fast solution for real-time implementations. This model has
been investigated and extended for decades to design and analyse
legged robot locomotion (Takenaka et al., 2009; Englsberger et al.,
2015).

The Divergent Component of Motion (DCM) concept has been
proposed in (Takenaka et al., 2009) that splits the LIP’s dynamics
into stable and unstable parts, such that controlling the unstable
part is enough for keeping the stability. In (Englsberger et al., 2015),
DCM has been extended to 3D and, several control approaches
including classical feedback controllers (Morisawa et al., 2014),
Linear Quadratic Regulator (LQR)-based methods (Faraji et al.,
2019; Kasaei et al., 2019) and the Model Predictive Control (MPC)
(Brasseur et al., 2015; Marcucci et al., 2017; Posa et al., 2017; Zhou
et al., 2017; Kasaei et al., 2021) have been used to formulate biped
locomotion frameworks. All of themhave been trying to compensate
the tracking error by using a combination of three strategies, which
are: manipulating the Ground Reaction Force (GRF) and modifying
the position and time of the next step. Recently, more efforts have
been made to go beyond the simplified LIP assumptions (e.g.,
COM vertical motion and angular momentum) and to deal with
more complex non-linearities of multi-body dynamics (Kajita et al.,
2018; Seyde et al., 2018; Caron, 2020; Chatzinikolaidis et al.,
2020).

Model-based approaches can provide a way to generate stable
and efficient gaits for legged robots, as they can be used to find the
optimal solution for a given set of constraints and objectives, such
as contact models of soft grounds (Chatzinikolaidis et al., 2020).
However, these methods can be computationally very expensive
and may not be able to handle the complexity of real-world
environments. Additionally, most of the model-based approaches
(specifically the optimization-based approaches) require an accurate
model of the robot dynamics, which can be difficult to obtain in
practice. Inaccuracies in the model can lead to poor performance or

instability. Moreover, model-based approaches often rely on making
assumptions or simplifications in the problem formulation, which
can lead to limitations in the quality or applicability of the solutions.
Besides, the optimization problem needs to be formulated carefully,
to take into account all the constraints that the robot needs to adhere
to.

1.2 Machine learning approaches

The approaches in this category are designed to learn a feasible
policy through interaction with the environment. Nowadays, Deep
Reinforcement Learning (DRL) has shown its capability by solving
complex locomotion and manipulation tasks, which are generally
composed of high-dimensional continuous observation and action
spaces (Gu et al., 2017; Abreu et al., 2019a).

One key benefit of DRL approaches is that they can handle
high-dimensional, non-linear, and continuous state and action
spaces, which can make them well-suited to complex problems
such as robotics and control. Additionally, DRL approaches
can learn from raw sensor data, without the need for hand-
engineered features, which can make them more robust to
changes in the environment. However, DRL approaches have some
limitations as well. One limitation is that they can require a large
amount of data and computational resources to train, especially
for problems with high-dimensional state and action spaces.
Additionally, DRL approaches can be sensitive to the choice of
hyperparameters.

Data augmentation in DRL is widely used to improve the
optimization performance but, in this work, we restrict the
scope to symmetry oriented solutions. The process of generating
symmetric data from actual samples is used to improve different
robotic tasks (Lin et al., 2020), including dynamic walking
of various humanoid models Abdolhosseini et al. (2019) and
quadruped robots Mishra et al. (2019); Yang C. et al. (2020).
Learning from scratch with DRL can achieve very efficient
behaviours, even in asymmetrical configurations (Abreu et al.,
2019b). However, if not regulated through model restrictions
(e.g., symmetry, pattern generators), it can be challenging to
produce human-like behaviours in a reasonable amount of
time.

In the case of humanoid locomotion, DRL might be more
appropriate due to the complexity of the problem, high-dimensional
states, and non-linear dynamics. On the other hand, optimization-
based approaches may be more appropriate if we have good model
of the robot and a clear mathematical objective, and if the goal
is to track a specific trajectory. It is worth noting that both
approaches could be combined to benefit from the advantages of
both methods. For example, model-based reinforcement learning,
which combines elements of optimization-based and DRL methods,
has been applied to a variety of robotic control problems, including
legged locomotion Yang Y. et al. (2020).

Reservoir computing and liquid state machines (LSM) have
been proposed as alternative approaches for motor skill learning
in multi-legged robots. These techniques utilize a fixed, randomly
generated network of neurons, known as a reservoir, to process
input data and generate output. In Franco-Robles et al. (2020), a
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FIGURE 1
Overview of the proposed framework along with a set of snapshots of tests on different terrains: the gait generation kernel produces closed-loop
locomotion, the neural network regulates the kernel’s parameters and generates compensatory actions.

method that utilizes a LSM to compute movement profiles has been
proposed and they used a set of numerical experiments to validated
the performance of their method. The results showed that the gait
of the bipedal robot is stable in terms of the zero moment point
(ZMP) when using the movement profiles generated by the LSM
approach.

1.3 Hybrid approaches: Combing analytical
and learning

The approaches in this category are focused on combining the
potential of both aforementioned categories which can allow to
take advantage of the strengths of both methods. Model-based
methods can provide a starting point for learning, which can
then be refined through learning from experience. Additionally,
learned models can be incorporated into the optimization process
to improve its performance and speed. This integration can be
useful for providing more robust, adaptive and efficient solutions
for legged robot locomotion, especially when facing uncertainty
or changing environments. In this type of frameworks, learning
algorithms are combined with model-based gait pattern generators
to predict the parameters and to learn residual dynamics or
residual actions, which can lead to impressively accurate behaviours
(Koryakovskiy et al., 2018; Ahn et al., 2020; Li et al., 2021;
Krishna et al., 2022). These frameworks are generally composed
of a set of layers that are connected together in hierarchical
structures.

In (Yang et al., 2018) a hierarchical framework has been
designed to ensure the stability of a humanoid robot by learning
motor skills. Their framework is composed of two independent
layers, the high-level layer generates a set of joint angles and the
low-level layer translates those angles to joint torques using a set
of PD controllers. Their reward function was composed of six
distinct terms that were mostly related to the traditional push
recovery strategies, and it was obtained by adding all terms together
with different weights. A reinforcement learning based controller

for robust parameterized locomotion control of bipedal robots
has been proposed in (Li et al., 2021). Indeed, they used Hybrid
Zero Dynamics (HZD) approach to generate a gait library consists
of periodic joint trajectories that encode a locomotion pattern,
then, augmented it with deep reinforcement learning to develop a
versatile locomotion. In (Krishna et al., 2022), a control pipeline has
been proposed that validates linear policies are good enough for
generating robust bipedal walking even on challenging terrains.This
pipeline is composed of a high-level trajectorymodulator and a low-
level controller. The former modulates the end-foot trajectories and
the later is responsible for regulating torso and ankle orientation.
The performance of this pipeline has been validated through a set
of simulations and real robot experiments including walking on
constant inclines, declines, varying inclines, sinusoidal terrains and
stairs.

1.4 Overview of the proposed framework
and contributions

This work focuses on bipedal locomotion and push recovery
which is the most challenging in legged robots. Particularly,
we aim to investigate the effectiveness of employing a learning
algorithm to control and modulate a model-based control policy
such as a gait pattern generator. Our contributions are as
follows.

• A hybrid locomotion framework (Section 2; Section 3). We
developed a locomotion framework for humanoid robots that
integrates both analytical control and machine learning. The
kernel is formulated as a parametric model-based kernel to let
the policy select the parameters alongside adding the residual
actions (Overview in Figure 1).
• Proposed motion symmetry to improve learning time and
human-likeness (Section 3). We proposed a learning method
where the data is only partially augmented, leveraging the
symmetry to improve learning time and human-likeness
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FIGURE 2
Overview of the proposed kernel gait generator. The online planners module generates a set of reference trajectories according to the input command
and the states of the system. The PD controllers module is responsible for tracking the generated trajectories.

without restricting asymmetric movements, thus widening the
range of possible behaviours.
• Benchmarking of the effectiveness of residual actions and
modulation of the gait kernel (Section 5). Using the proposed
framework, we optimized seven NN policies to investigate
the effectiveness of adding residual actions to the arms and
legs along with modulating the kernel parameters, and we
compared the effectiveness of each configuration. We showed
that modulating kernel parameters alongside adding residual
actions leads to the most significant improvement.

The remainder of this paper is structured as follows. In
Section 2, the architecture of our fully parametric kennel
pattern generator will be presented and each module will be
explained. Afterwards, in Section 3, our learning framework
will be introduced and we will explain how we augmented
this framework with the kernel pattern generator to regulate
kernel parameters and to learn model-free skills (generating
compensatory joint positions). In Section 4, a set of simulation
scenarios will be designed to validate the performance of the
proposed framework. Afterwards, in Section 5, a set of simulations
will be conducted to provide assessments and analysis regarding
overall performance, optimized policy behaviour, symmetry, and
robustness. Finally, conclusions and future research are presented in
Section 6.

2 Gait generation kernel

A fully parametric closed-loop gait generator serves as a
kernel of the walking pattern (Figure 2). The gait generator is
composed of two main modules: Online Planners and
PD Controllers. Online Planners is responsible for
generating the reference trajectories according to the stride’s
parameters provided by the user, the robot’s state and the controllers’
output. PD Controllers regulates the upper body orientation
and tracks the planned trajectories to generate closed-loop
locomotion. The corresponding target joint positions are generated
using Inverse Kinematics Solver, taking into account
the kinematic feasibility. The target joint positions are fed to the
Simulator for simulating the interaction of the robot with the
environment and producing sensory data, as well as the global
position and orientation of the robot.

2.1 Online planners

The Online Planners here is based on the work in
(Kasaei et al., 2019), here we describe briefly the technical essentials.
As shown in Figure 2, Online Planners is composed of a
set of sub-planners which are solved separately and connected
together hierarchically to reduce the complexity of the planning
process. The planning process starts by generating a set of footsteps
( fi = [ fix fiy]

⊤ i ∈ ℕ) according to the input stride’s parameters
and the current feet configuration. Then, the step time planner
assigns a set of timestamps to the generated footstep according to
the stride duration. Afterwards, to have a smooth trajectory during
lifting and landing of the swing foot, a cubic spline is used to generate
the swing leg trajectory based on the generated footsteps and a
predefined swing height.

Accordingly, the COM planner generates the COM trajectory
by solving LIP equation as a boundary value problem based on
the generated footsteps. Then, the DCM trajectory can be obtained
by substituting the generated COM and its time derivative into
DCM equation (ζ = c + ̇c

ω
, where ζ is DCM; c and ̇c represent the

COM and its time derivative, respectively, ω = √ g
cz

is the natural
frequency of the pendulum, where g is the gravity constant and cz
represents the height of the COM).This trajectorywill be fed intoPD
Controllers to generate closed-loop locomotion. More detail
can be found in our previous work (Kasaei et al., 2019).

In some situations, such as when the robot is being pushed
severely, the DCM tracker cannot track the reference because of the
controllers’ output saturation. In such conditions, humans adjust the
next step time and location, in addition to the COM’s height. Due to
the observability of DCM at each control cycle, the position of the
next step can be determined by solving DCM equation as an initial
value problem:

fi+1 = fi + (ζt − fi)e
ω(T−t), (1)

where fi, fi+1 are the current and next support foot positions and t,T
denote the time and stride duration, respectively.

It should be noted that adjusting the next stride time as well as
the height of the COM is not straightforward due to non-linearities.
Finding optimal or near optimal values for these parameters using
DRL is a desirable solution, not only due to its convergence
properties, but also because it allows us to find a more complete
overall strategy by combining the stride time and COM height with
residual adjustments.
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2.2 Regulating the upper body orientation

The upper body of a humanoid is generally composed of several
joints. While the robot is walking, their motions and vibrations
generate angular momentum around the COM. To cancel the effects
of this momentum, we designed a PD controller (uΦ) based on the
inertial sensor values that are mounted on the robot’s torso:

uΦ = −KΦ (Φd −Φ) , (2)

whereΦ = [Φroll Φ̇roll Φpitch Φ̇pitch]
⊤ represents the state of the

torso and Φd denotes the desired state of the torso and KΦ is the
controller gains.

2.3 DCM tracker

According to the LIP and DCM, the overall dynamics of a
humanoid robot can be can be represented by a linear state space
system as follows:

d
dt

[[[[

[

c

ζ

]]]]

]

=
[[[[

[

−ωI2 ωI2

0I2 ωI2

]]]]

]

[[[[

[

c

ζ

]]]]

]

+
[[[[

[

02×1

−Ω

]]]]

]

p, (3)

where I2 is an identity matrix of size 2, c = [cx cy]⊤ denotes the
position of the COM, ζ = [ζx ζy]⊤ is the DCM, p = [px py]

⊤

represents the position of the ZMP and Ω = [ω ω]⊤. This system
shows that the COM is always converging to the DCM, and
controlling the DCM is enough to develop stable locomotion. Thus,
the DCM tracker can be formulated as:

uζ = −K ζeζ, (4)

where K ζ represents the controller gains, eζ = [ζd − ζ, ̇ζd − ̇ζ]
⊤,

ζd, ̇ζd are the desired DCM and its time derivative, which are
generated by the DCM planner (see Figure 2).

3 Learning residual

Although the gait generator produces stable locomotion, it
does not generalise well to unforeseen circumstances. This section
presents our developed learning framework that can learn residual
actions on top of the kernel pattern generator. The objective is to
regulate control parameters such as the COM height and stride
time, and also learnmodel-free skills to generate compensatory joint
actions.

3.1 Baseline

The Proximal Policy Optimisation (PPO) algorithm
Schulman et al. (2017) is selected as the baseline RL algorithm
due to its computational efficiency and good performance in high-
dimensional environments. PPO (Schulman et al., 2017) is an actor-
critic algorithm that uses a clipping function to constrain the policy
update directly inside the objective function, thus preventing it

from being too greedy. PPO seeks to balance the trade-off between
exploration and exploitation by iteratively improving the policy
while simultaneously updating an estimate of the value function.
This learning problem can be formally described as a Markov
Decision Process (MDP)—a tuple ⟨S,A,Ψ,p, r⟩, where S is the set
of states, A is the set of actions, Ψ ⊆ S×A is the set of admissible
state-action pairs, p(s,a, s′):Ψ× S→ [0,1] is the transition function,
and r(s,a):Ψ→ I R is the reward function. The PPO algorithm is
formulated as an optimization problem, where the objective is to
maximize the expected return of the policy r(s,a).This is achieved by
iteratively updating the policy parameters using a clipped surrogate
objective function that limits the change in the policy at each update
step. The surrogate objective function involves two terms: the ratio
of the new and old policies multiplied by the advantage estimate,
and a clipped version of the ratio that restricts the magnitude of the
change in the policy.

3.2 Data augmentation with exploiting the
symmetry

We intent to extend this algorithm with symmetric data
augmentation based on static domain knowledge as most of
humanoid robots have reflection symmetry in the sagittal plane,
which can be leveraged to reduce the learning time and guide the
optimisation algorithm in creating a human-like behaviour. In order
to reduce the mathematical model by exploiting its redundancy
and symmetry, Ravindran and Barto (2001) proposed the MDP
homomorphism formalism, which describes a transformation
that simplifies equivalent states and actions. Let h be an MDP
homomorphism from M = ⟨S,A,Ψ,p, r⟩ to M′ = ⟨S′,A′,Ψ′,p′, r′⟩,
andAs be the set of admissible actions in state s.The concept ofMDP
symmetries is a special case of this framework where f:S→ S′ and
gs:As→ A′f(s) are bijective functions. An MDP isomorphism from
and to the same MDP can be considered an automorphism that
satisfies:

p( f (s) ,gs (a) , f (s
′)) = p(s,a, s′) , ∀s, s′ ∈ S,a ∈ As,

and r( f (s) ,gs (a)) = r (s,a) , ∀s ∈ S,a ∈ As.
(5)

After performing a grid search, the batch size was set
to 8192 samples and the learning rate to 3e− 4 (using a
linear scheduler). For each episode, an MDP trajectory j is
characterised by a sequence of states, actions and rewards such
that j = {S0,A0,R0,S1,A1,R1,…}. Each trajectory is used to produce
a set of samples k = {{S0,A0,Ad0,V0}, {S1,A1,Ad1,V1},…}, where Vi
is obtained from the λ-return as defined by Sutton and Barto (Sutton
and Barto, 2018), and serves as value target for the update function;
and Adi is the generalised advantage estimate (Schulman et al.,
2018).

Our proposal is to partially augment data by copying
and transforming a fraction of the acquired samples.
Different augmentation ratios are tested in Section 5. As
an example, consider the addition of symmetrical samples
with a ratio of 50%. Following 5), each batch of samples is
artificially built as {W1,W2,u(W2),W3,W4,u(W4),…} where
u(Wi) = {f(Si),gs(Ai),Adi,Vi}. The observations’ normalisation
is continuously updated by calculating the mean and standard
deviation of each observation. However, both of these metrics
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FIGURE 3
Network architecture, system space parameters and symmetry transformation groups used for data augmentation: (A) reflection symmetry
transformation and (B) no transformation or inversion.

are shared among the two symmetric groups to ensure that no
asymmetrical bias is introduced.

3.3 Network architecture

The network architecture and system space parameters are
depicted in Figure 3. The observations comprise the position of 6
joints: shoulder, hip and waist with 3 degrees of freedom (DoF),
ankle with 2DoF, knee and elbowwith 1DoF. All joints aremirrored
except the waist. Additional observations include the foot relative
centre of pressure (in x and y) and respective force magnitude, the
torso’s linear and angular velocity, height, pitch, and roll; totalling
38 state variables. This data is fed to a neural network with 2
hidden layers of 64 neurons, that produces joint residuals, which are
added to the precomputed trajectories; and high-level parameters to
regulate the kernel pattern generator: step length, COM height, and
two PD gain vectors (KΦ from (Eq. 2) and K ζ from (Eq. 4).

The system space parameters are grouped into two symmetry
transformations categories for data augmentation. Category A
includes duplicated observations that are mirrored, considering
the sagittal plane. Category B includes unique observations that
may remain unchanged (e.g., torso’s height) or suffer an inversion
transformation (e.g., roll angle).

3.4 Reward function

The reward function tries to achieve one fundamental goal of
balancing while keeping cyclic movement patterns.The balance goal
seeks to keep the robot on its feet in all situations. The subgoal of
performing cyclic movement patterns has the purpose of improving
the human-like aspect of the behaviour. Specifically, it tries to reduce
the neural network’s influence (NNI) when there is no need to
intervene. Both of these notions can be expressed through the
following reward:

R = 1−

NNI

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1
J

J

∑
i

|δi|
Si
, (6)

where δi is the residual applied to joint position i, J is the number
of joints, and Si is the residual saturation value (±0.25rad). It is
important to note that the NNI component’s goal is not to reduce
energy consumption or range of motion, since it is only applied to
the residuals and not the hybrid controller’s output. According to
this reward function, the robot aims to maximize the accumulated
rewards in each episode. The episode will be ended as soon as the
robot loses its balance and falls down. This means that the robot
receives a reward for maintaining its stability and is penalized for
any deviation from this stability (as measured by the residual; the
more residual, the less reward). Through this reward function, we
have established a clear criterion for determining when the robot’s
stability is compromised.

4 Simulation scenarios

To validate the performance of the proposed framework, a set of
two learning scenarios and one test scenario has been designed. The
goal of this structure is to prepare the physical robot to handle real-
world adverse conditions. We use the COMAN robot in PyBullet
(Coumans and Bai, 2016)—an environment based on the open
source Bullet Physics Engine which is a highly capable open-source
physics engine and simulator that is designed to facilitate research
and development in the fields of robotics, machine learning, and
computer graphics. It provides a versatile and powerful platform
for simulating complex systems with a high degree of accuracy and
speed, and supports a wide range of features, including collision
detection, contact dynamics, and rigid and soft body dynamics.
The simulated robot is 95 cm tall, weighs 31 kg, and has 23 joints
(6 per leg, 4 per arm and 3 between the hip and the torso). In
our simulations, we have developed position controllers to control
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FIGURE 4
Illustration of learning scenarios: (1) a flat surface where the robot learns how to recover from external forces (L1); (2) an uneven terrain with vertical
heights of 2 cm (L2); (3) Unseen scenarios on a tilting platform that moves erratically (T1).

the actuators whose parameters including the maximum torques
are set according to the robot specs presented in Tsagarakis et al.
(2013) (peak torque of 55 Nm for all leg joints). Also, the stiffness
for the ankle, knee and hip joints (ka, kk, kh) are different and
have been tuned using the method presented in Tsagarakis et al.
(2013). In our simulation, the stiffness set (ka, kk, kh) = (0.300,
0.241, 0.195) Nm/rad. By tuning these gains, we make sure that the
controller was able to track the desired setpoint and achieve the
desired performance.

4.1 Learning scenario: Flat terrain

The first learning scenario (L1) is composed of a flat platform
(see Figure 4, top row), where the robot is initially placed in a
neutral pose. It then starts to walk in place, while being pushed by
an external force at random intervals, between 2.5 and 3.0 s. The
force is applied for 25 ms and ranges from 500 N to 850 N (impulse
12.5–20 N s). Its point of application is fixed at the torso’s centre and
its direction is determined randomly in the horizontal plane. The
robot’s objective is to avoid falling.The episode endswhen the robot’s
height drops below 0.35 m.

4.2 Learning scenario: Uneven terrain

The second learning scenario (L2) is an extension of the first
one, where the flat surface is replaced by an uneven terrain with
perturbations that can reach 0.02 m, as depicted in Figure 4, middle
row. The external force dynamics are the same.

4.3 Testing scenario: Tilting platform

The testing scenario (T1) was designed to evaluate the
generalisation capabilities of the hybrid controller in unexpected

circumstances. It is characterised by a tilting cylindrical platform
(see Figure 4, bottom row), which is supported by two actuators
that move on the x and y-axes, and range between −15 deg and
15 deg. The position of each actuator is given by adding a random
component r ∈ [−8°,8°] to a correcting component c = 0.35× P,
where P is the position of the robot in the opposite axis to the
actuator.The goal of the latter component is to keep the robot on top
of the platform by encouraging it to move to the centre. The episode
starts in a neutral state with the robot walking in place, and it ends
when the robot falls, as in previous scenarios.

5 Simulations

This section is focused on a set of assessments and analysis of
the proposed framework regarding overall performance, optimised
policy behaviour, symmetry, robustness, and applicability to
walking.

5.1 Baseline and overall performance
analysis

As it is detailed in Section 2, the gait generation kernel is
designed based on the DCM concept, which is the state-of-the-
art method for developing a walking engine using conventional
control methods. As our baseline, we use this kernel without adding
residuals ormodulating its parameters. To assess the performance of
the baseline, we examine themaximum impulse that the baseline can
withstand while walking in place on a flat terrain. To do so, similar
to the scenario L1, while the robot is walking in place, it is subjected
to an external force at random intervals, between 2.5 and 3.0 s, with
a fixed impact duration of 25 ms and fixed point of application at
the torso’s centre and its direction is determined randomly in the
horizontal plane. The force amplitudes start at 100 N and will be
increased by 10 N after 10 successful recoveries in a row. Simulation
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TABLE 1 Maximum disturbance rejection using different combinatorial use of gait modulation and compensatory actions.

Configuration Maximum force (N) Maximum impact (N s)

Baseline 380 9.5

Adding arms residuals 400 10

Adding legs residuals 430 10.75

Adding arms and legs residuals 510 12.75

Modulating kernel parameters 540 13.5

Modulating kernel param. and

 adding arms residuals 580 14.5

Modulating kernel param. and

 adding legs residuals 790 19.75

Modulating kernel param. and adding arms and legs residuals 830 21

Bold values represents the best combination and results.

FIGURE 5
Learning curves for the policies trained in scenario L1 (top) and L2 (bottom), under different symmetry configurations.

results showed that 380 N (impulse 9.5 N s) was the maximum force
that the robot could resist.

Furthermore, seven policies were trained in scenario L1 to
evaluate the effectiveness of (Eq. 1) adding the residuals to the arms,
(Eq. 2) adding the residuals to the legs, (Eq. 3) adding the residuals
to the arms and the legs, (Eq. 4) modulating the kernel parameters
without adding residuals, (Eq. 5) modulating the kernel parameters
and adding residuals to the arms, (Eq. 6) modulating the kernel
parameters and adding residuals to the leg and (Eq. 7) modulating
the kernel parameters and adding residuals to the arms and legs. All
optimisations ran for 50 M (million iterations). Then, the baseline
test scenario has been repeated to assess the performance of the
policies. The results are summarized in Table 1. The results showed

that adding residuals to the arms and legs improves the withstanding
level of the robot up to 34.2% and it reaches 42.1% just bymodulating
the kernel parameters. Still, it goes up to 118.1% while using both
alongside each other. Bold values represent adding residuals and
modulating the kernel parameters are two important factors that can
improve the stability impressively.

5.2 Performance analysis of symmetrical
policies

Five different symmetry ratios were tested per learning scenario,
totalling ten different configurations. The symmetry ratios were 0
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(no data augmentation), 1/8 (1 symmetrical sample is generated
per 8 acquired samples), 1/4, 1/2 and 1/1 (full symmetry). For
each configuration, five policies were trained. Figure 5 depicts the
learning curves for the best policy in each configuration. The results
are grouped according to the training scenario (L1 above and L2
below). Most optimisations ran for 50 M time steps. However, the
asymmetric and 1/8 symmetry configurations needed 100 M time
steps to reach a plateau. For the configurations that included data
augmentation, the best performing ratios were 1/4 and 1/2, with
similar results. In a subjective visual evaluation, the 1/2 ratio policy
seems to be marginally better in producing a human-like behaviour.
For the remainder of this section, we will compare in greater detail
the asymmetric version with the 1/2 symmetric version. A video
including the results is attached.

It is important to note that the average episode duration reported
by these learning curves results from a stochastic policy with a
non-negligible random component. To better assess the optimised
policies, they were tested in each scenario (including T1 — the
only test scenario) for 1000 episodes using the corresponding
deterministic policy. Moreover, to be fair with every approach,
only the evolution until 50 M time steps was considered in these
tests. Although the 1/8 symmetric version on L1 presents an
atypical evolution, it was chosen because it achieved the best
performance among concurrent policies. Table 2 compares the
average performance of 4 policies against the baseline. The first four
columns indicate, in this order, the episode duration, in seconds,
in scenario L1, L2 and T1; and the neural network influence
(examined later in this section).

The baseline version (without residuals) is not able to handle the
strong external forces applied in scenario L1, falling on average after
3.47 s, which is typically after the first push. On L2, it falls almost
immediately due to the floor perturbations, an outcomewhich is also
seen in T1. All four learned policies are a great improvement over
the baseline. As expected, the last two policies that learned on L2

were able to generalise successfully when tested on L1 or T1, and,
on the opposite side, the policies that learned on L1 did not perform
well in unforeseen circumstances.

However, some interesting results were not expected. During
training, the symmetrically-enhanced policies performed better
but, while testing in distinct scenarios, the asymmetrical
policies generalised better. Another interesting result is that the
asymmetrical L1 policy performed worse in its own scenario
(104.5 s) than the asymmetrical L2 policy (321.9 s).

An initial hypothesis to explain this outcome would be to
assume that learning on uneven terrain requires additional effort to
maintain balance and, consequently, produces a better policy. In fact,
considering that the robot is already pushed periodically, gravity acts
as an additional external force when the robot is standing on a slope.
On its own, this explanation is insufficient because the robot that
learned on the flat surface could continue the optimisation process
until it found a better policy. However, this would only be true if the
reward was solely focused on raw performance.

To understand this result further, we analysed the NNI column
of Table 2, whose metric is defined in (Eq. 6). Since L2 and L2

Sym require additional effort to counteract gravity when standing
on a slope, the robot learned to sacrifice its immediate reward by
applying larger residuals in order to avoid falling. Naturally, this is a
trade-off between cyclic movement patterns and raw performance.

Moreover, learning an asymmetrical behaviour can arguably be
considered more complex, leading to a higher network influence,
which may explain why it generalises better than the symmetrical
policies.

5.3 Optimised policy behaviour analysis

To present more detail about the overall behaviour of the
optimised policies and to explain how they improve the robot’s
stability significantly, we selected the asymmetrical L2 policy to
represent all the optimised policies and tested it on the L2 scenario
for 5 seconds while recording all observations and actions (200 Hz).
In this simulation,while the robotwaswalking in place, at t = 2.54s, it
was subjected to a 850 N external push at its torso’s centre for 0.025s.
The robot was able to counteract this force and regain its stability.
A set of snapshots along with five important plots are depicted in
Figure 6, including the normalised gravity vector and feet forces,
and the NNI on different joint groups.

The first plot shows the normalised gravity vector, relative
to the robot’s torso. After applying the push, the robot leans
considerably, with an inclination of 23°, which can be characterised
as a severe perturbation. Before the push, the average NNI (NNI)
is less than 0.2. The robot applies small corrections to keep
its stability while walking in place on the uneven terrain. After
triggering the external push, the network’s influence rises 50%,
which translates into larger residuals, as a response to regain stability.
After returning to a normal state, the NNI is smoothly reduced.
These results validate the policy’s objective stated in (Eq. 6), by
adjusting the NNI according to the robot’s requirements at a given
moment.

To identify the distinct strategies at play, we broke down the
network’s influence into groups of limbs and waist, and chose feet
forces as an additional metric. The total force acting perpendicular
on each foot encodes the actual stride time and, by inspecting its plot,
we can infer that even before the push, changing the stride time is
one of the employed strategies.

The network’s influence per group was obtained by applying
the NNI formula from (Eq. 6) to the joints in a given group. The
2 bottom plots represent the groups of joints associated with both
legs, both arms, and waist, using a stacked bar chart, where each bar
represents the mean of 10 control steps (0.05 s).

During the push, the support leg had the most expressive
response in comparison with the other joint groups. This behaviour
is best understood by analysing a slow-motion video of the push
(available as Supplementary Video S1). The robot starts hopping
on the support leg, while using its upper body as a complementary
strategy to shift the COM by swinging the arms as required. This
process persists until the robot is stable enough to return to the initial
walking gait. These strategies, along with adjusting the stride time
and COM height, allow the robot to perform seamless transitions,
like humans would do unconsciously.

5.4 Symmetry analysis

Symmetry is an important property of human behaviours,
often associated with positive reactions, as opposed to asymmetry
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TABLE 2 Statistical average duration of resisting random force perturbations (500 N–850 N, impulse 12.5–20 N s) in different learning configurations.

Learning configuration Episode duration (s) N. Network influence M. Sym. Index

L1 L2 T1

Baseline 3.47 1.51 1.87 — —

L1 Asym 104.5 5.1 4.8 0.072 1.42

L1 1/2 Sym 202.2 4.6 4.8 0.055 1.19

L2 Asym 321.9 34.2 27.8 0.165 1.23

L2 1/2 Sym 193.7 43.5 21.0 0.127 0.99

Bold values represents the best combination and results.

FIGURE 6
Analysis of simulation using the asymmetrical L2 policy on the L2 scenario for 5 s, with a single external push, applied to the robot’s torso for 0.025 s
with a force of 850 N. Seven snapshots before and after the push are presented. During entire simulation period, different metrics were sampled at
200 Hz as: normalised gravity vector, relative to the robot’s torso; global NNI, as defined in (Eq. 6); normalised feet forces; and NNI per joint group.

(Evans et al., 2012).However, humans are not perfectly symmetrical,
and unbalanced gait patterns can be perceived as unimpaired or
normal, within reason (Handžić and Reed, 2015). Therefore, in
the context of human-like behaviours, the symmetry of a policy
should be leveraged, but not to the point where it becomes a
hard constraint. In these simulations, the kernel pattern generator
produces symmetrical trajectories upon which the neural network
residuals are applied. To evaluate the residuals symmetry, we

built upon the concept of Symmetry Index (SI) proposed by
Robinson et al. (1987).The original method compares the kinematic
properties of each lower limb. To address the issues caused by
abstracting the kinematic properties of each joint, we propose the
Mirrored Symmetry Index (MSI):

MSI =
‖δt − δ

′
t ‖1

0.5× (‖δt‖1 + ‖δ
′
t ‖1)
, (7)
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FIGURE 7
Maximum radially applied external force from which the robot can consistently recover as a function of the direction of application, where zero
degrees corresponds to the front of the robot. On the left is shown the policy which learned on L2 and on the right L2 Sym. The force was applied
both in the flat terrain (solid orange line) and the uneven terrain (dotted blue line). The radial y-axis range is [400,1400]N. The maximum withstood
force was 1300 N for the L2 policy in the flat terrain, at 290°.

FIGURE 8
Robustness with regarding to the measurement noise and model uncertainties. (A) Average episode duration as a function of noise applied to the state
observations for the symmetrical (orange line) and asymmetrical (blue line) policies learned and tested on the uneven terrain. (B) Average episode
duration as a function of standard deviations of mass uncertainties applied to the masses from a normal distribution N (0,σ).

where δt = [δ
t
1,…,δ

t
n] is the vector of residuals applied to each joint

during time step t, ‖ ⋅ ‖1 is the ℓ1-norm, and δ′t is the vector of
residuals applied to the symmetric set of joints if the current state
was also symmetrically transformed, i.e., δ′t ∼ π(⋅| f(St)), where π is a
stochastic policy. Instead of evaluating an average kinematic feature,
the MSI computes a symmetry index at each instant, which can
then be averaged for a full trajectory to obtain a global symmetry
assessment.

As seen in Table 2, the policies which were learned using the
data augmentation method obtained a lower MSI value, when

compared to the other two policies. The results do not show a
large reduction, which can be explained by the analytical controller’s
role in regulating the trajectory symmetry, and the relaxed data
augmentation restriction imposed to the network.

To assess the notion of symmetry on a practical scenario, the
policies trained on L2 and L2 Sym were subjected to a test where
an external force with constantly increasing norm is radially applied
to the robot in a given direction. When the robot is no longer able
to recover consistently (more than 50% of the trials), the maximum
force is registered and another direction is tested. The result can be
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FIGURE 9
Trained neural network policies tested in other gaits: walking forward and walking in place on a rotating platform.

seen in Figure 7 on the flat terrain (solid orange line) and uneven
terrain (dotted blue line). In both cases, the robot is able to better
withstand forces that are applied to the front (around 0 deg). On one
side, the symmetrically-enhanced version presents a more balanced
result, which can be visually perceived. On the other side, the
asymmetrical policy can withstand larger forces around 300 deg.
This difference consists of a trade-off between symmetry and raw
performance.

5.5 Robustness

Robustness with regarding to measurement noise and model
uncertainties are matter of significant concern on real applications
and feasibility of transferring the trained policies on real robots. To
assess the robustness with regarding tomeasurement noise, the state
variables are multiplied by a random factor that follows a uniform
distribution z ∼ U(1.0,N) where N ranges from 1.0 to 1.4, i.e.,
0%–40% of maximum noise. Figure 8A shows the average impact
of this artificial perturbation on the average episode duration, on
the uneven terrain scenario, while being pushed by an external force
(described in Section 4.1) with a fixed interval of 3.5 s. Both the
symmetrical and asymmetrical policies can withstand a maximum
noise of 20% without dropping below the 30 s mark, which attests
the policies’ robustness in considerably noisy scenarios.

Model uncertainties, which are primarily caused by mass
inaccuracies, inertia, link dimensions, communication delay,
and disturbances, prevent a straight transfer of trained policy
from simulation to reality. To evaluate the performance of the
trained policies in terms of model uncertainties, we selected the
asymmetrical L1 and asymmetrical L2 policies and tested them
on the scenario L1 while adding uncertainties of masses from a
normal distribution with different standard deviations N (0,σ). The
averaged results for 50 episodes are depicted in Figure 8B. As the
results showed, althoughmass inaccuracies affect performance, both
policies can tolerate mass inaccuracies up to 20% without dropping
below 50%.

5.6 Generalization to walking

As the presented results in Section 5.2 showed, the trained
policies capable of generalizing its knowledge in the unseen test
scenario (T1). To investigate more this capability, the policies
trained in thisworkwere applied to different gaitsmanaging to attain
a satisfactory performancewhile walking forward and being pushed,
and while walking in place on a rotating platform (see Figure 9).
Changing direction or walking sideways can cause instability with
the current configuration. However, these results, as shown in
the accompanying video, reveal a significant generalisation ability,
considering that this new task was not trained specifically during
the learning process.

6 Conclusion

In this paper, we proposed a locomotion framework based on a
tight coupling between analytical control and deep reinforcement
learning to combine the potential of both approaches. First, we
developed a closed-loop fully parametric gait generation kernel.
Then, we designed a learning framework which extends PPO
with symmetric partial data augmentation to learn residuals
actions. This hybrid approach aims at unlocking the full potential
of the robot by exploiting the consistency of the analytical
solution, the generalisation ability of neural networks, and the
policy’s symmetry, while not totally constraining the exploration
of asymmetric reactions. A set of policies were trained to
evaluate the effectiveness of adding residuals and modulating
the kernel parameters. The results validated that employing both
techniques alongside each other can improve the performance up to
118.1%.

We provided robustness analysis to different uncertainties and
disturbances includingmeasurement noise andmodel uncertainties,
which are primarily caused by mass inaccuracies, inertia, link
dimensions, communication delay, and disturbances. The results
showed that the trained policies in the simulation are robust in the
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presence of noise and model inaccuracies, and have the feasibility
of future deployment on real robots. The further cap of transferring
the algorithm to the real hardware has not yet studied in this
paper.

The symmetry enhanced policies were able to perform better in
the scenarios where they learned, andwith less samples, but were not
able to generalise as well in unforeseen circumstances. However, the
difference is partially explained that the reward function’s penalty is
less restrictive in challenging conditions. Generalisation capabilities
of the proposed framework has been evaluated through a set of
simulation scenarios. The results showed that the policies trained in
this work can generalise to other gaits, such as walking forward and
walking in place on a rotating platform. Future work can explore the
application of this hybrid approach to other types of gaits, such as
running and climbing.
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