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David Pérez-Suárez for encouraging me to seek out Google Sum-
mer of Code (GSoC) opportunities, which eventually put me in
touch with Dr Julien Peloton, someone who I cannot thank enough
for his support and belief in me. Through Julien I was able to
meet with the wider FINK team, Dr Emille Ishida and Dr Anais
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Abstract

A new golden age in astronomy is upon us, dominated by data.
Large astronomical surveys are broadcasting unprecedented rates
of information, demanding machine learning as a critical compo-
nent in modern scientific pipelines to handle the deluge of data.
The upcoming Legacy Survey of Space and Time (LSST) of the
Vera C. Rubin Observatory will raise the big-data bar for time-
domain astronomy, with an expected 10 million alerts per-night,
and generating many petabytes of data over the lifetime of the sur-
vey. Fast and efficient classification algorithms that can operate in
real-time, yet robustly and accurately, are needed for time-critical
events where additional resources can be sought for follow-up anal-
yses. In order to handle such data, state-of-the-art deep learning
architectures coupled with tools that leverage modern hardware
accelerators are essential.

The work contained in this thesis seeks to address the big-data
challenges of LSST by proposing novel efficient deep learning archi-
tectures for multivariate time-series classification that can provide
state-of-the-art classification of astronomical transients at a frac-
tion of the computational costs of other deep learning approaches.
This thesis introduces the depthwise-separable convolution and the
notion of convolutional embeddings to the task of time-series clas-
sification for gains in classification performance that are achieved
with far fewer model parameters than similar methods. It also in-
troduces the attention mechanism to time-series classification that
improves performance even further still, with significant improve-
ment in computational efficiency, as well as further reduction in
model size. Finally, this thesis pioneers the use of modern model
compression techniques to the field of photometric classification for
efficient deep learning deployment. These insights informed the fi-
nal architecture which was deployed in a live production machine
learning system, demonstrating the capability to operate efficiently
and robustly in real-time, at LSST scale and beyond, ready for the
new era of data intensive astronomy.





Impact Statement

This thesis brings together various schools of deep learning to
create fast and efficient architectures. While specifically designed
for photometric classification of astronomical transients, these ar-
chitectures are also applicable to multivariate time-series classifi-
cation more generally. By innovatively drawing on methods previ-
ously deployed outside of physics, this research introduces several
novel concepts to the field, thereby providing researchers with ad-
ditional tools to develop efficient classifiers, ready for the new era
of data intensive science.

Notably, by leveraging depthwise-separable convolutions from
the field of computer vision and applying them to the task of time-
series classification for the first time, computational efficiency is im-
proved and parameter count significantly reduced when compared
with similar methods. Furthermore, our innovative use of multi-
head self-attention for transient classification brought into play a
new methodology for efficient analysis of light curves, thereby open-
ing up the potential of interpretability of classifiers that adopt this
technique. Deployment of this mechanism was made viable through
our convolutional embedding, which is a new way of projecting
multivariate time-series into a vector-space representation. As the
classic word2vec algorithm has become part-and-parcel of natural
language processing (NLP), convolutional embedding is expected
to feature in many new deep learning architectures applied to pho-
tometric classification, as well as general time-series classification
more widely.

Primarily, we introduced the novel time-series transformer ar-
chitecture which combines multihead self-attention with the convo-
lutional embedding, and showcased the use of model compression
methods for the first time in photometric classifiers. The use of
our time-series transformer has already shown to be broadly useful
to other domains, with recent real-world application to biomedical
classification using radio signals (Brausch et al., 2022). The versa-
tility to handle general multivariate time-series classification tasks



makes the use of our methods suitable to handle a wide scope of
problems, in a variety of disciplines, ranging from medical diag-
nostics, to activity recognition, silicon wafer quality checks and
beyond.

The deployment of our novel time-series transformer into the
live production brokering system of FINK is the first real-world
application of this kind within physics. It is currently running real-
time classifications, on real streaming data. The deployment of our
model far exceeds the FINK criteria for processing alerts in real-
time at nightly terabyte scale, made possible by employing state-
of-the-art compression methods. This allows low-latency and high-
throughput processing, translating into time saved on the cluster,
freeing computational resources for other science modules that re-
quire it.

By developing computationally efficient architectures ab-
stracted from the hardware they sit on, we have created methods
allowing other future users to benefit from the freedom to deploy
these methods in a multitude of ways. This is in line with the major
advances taking place at the moment in the computer architecture
and distributed systems world. Additionally, this means that as
more energy efficient and powerful hardware accelerators become
available, paired with better networking capabilities, our models’
runtime performances are set to continue improving.

Our pioneering use of the methods described above to the task
of photometric classification, demonstrate significant time and re-
sources saving capabilities, and thereby monetary savings which
would otherwise be unnecessarily wasted. While this has appeal
to a general audience interested in cost reduction and indirectly
lowering environmental impacts through energy savings, the use of
our methods will generate particular benefits for those interested in
deploying deep learning models in-the-wild in resource constrained
settings. The low code and memory footprint of the compressed
time-series transformer suits real-time on-device inference environ-
ments where model size and ultra-low latency are key. Our mar-
rying of efficient computer vision and natural language processing



research with dark energy science will have a lasting impact, by
enabling those in the transient science community to build compu-
tationally and energy efficient systems that bring us closer to an-
swering some of the most fundamental questions in the Universe.
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There is stardust in your veins. We are

literally, ultimately children of the stars.
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Part I

Background





But the problem, you see, when you ask why

something happens, how does a person answer

why something happens?

— Richard P. Feynman





1

Motivation and the Road to First Light

“These [holding toy cows] are small... but the ones out there
[pointing to real cows outside] are far away. Small... far away...”

— Father Ted.

For thousands of years, mankind have looked to the heavens and
questioned their fundamental being and existence – where did it all
begin, and how will it all end? In more recent times, the field of
physical cosmology, a branch of astronomy that observes celestial
objects to determine the chronology of the Universe, from the Big
Bang to today and into the future, is continually shedding light on
this story.

In the early 20th century, it was postulated by Alexander Fried-
mann (1922) that solutions to Albert Einstein’s field equations
show a dynamical Universe, and also independently by Georges
Lemâıtre (1927) that an expanding universe was possible. Einstein
knew of this possibility, but dismissed it as the consensus of the
time was that the Universe was static. To achieve this, he intro-
duced a cosmological constant, that counters the inevitable implo-
sion if no such term exists in a matter only Universe. The dy-
namical nature of the Universe was confirmed observationally by
Edwin Hubble (1929) with the famous linear relation of recession
velocity of galaxies and their distance away from us. In 1998, it
was discovered by two independent teams, that the universe is not
only expanding but also accelerating (Perlmutter et al., 1999; Riess
et al., 1998). The driving force of this acceleration has since been
dubbed dark energy. As yet, there is no definitive theory that com-
pletely describes the physics behind dark energy, but it is hoped
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6 1 Motivation and the Road to First Light

that through improved cosmological observations, one can at least
constrain models of the Universe that try.

This chapter provides a brief review of the underlying physics
that motivates the search for dark energy, and the methods cur-
rently being used to probe its make-up. Section 1.1 introduces some
of the key equations and concepts that govern the field of cosmol-
ogy, where it will be shown how Einstein’s efforts for mathemati-
cally describing a completely static Universe became his “biggest
blunder”. Then, in Section 1.2 an overview is given of the methods
by which dark energy is probed, with focus on the use of Super-
novae Type-Ia (SNIa). Finally, Section 1.3 discusses a particular
upcoming observational experiment that hopes to investigate dark
energy even further, among other science goals, in order to help us
better understand our Universe.

1.1 The Expanding Universe

Modern cosmology is built upon a central assumption that the
Universe is homogeneous and isotropic, meaning there is no special
direction nor place in the Universe. This idea is known as the cos-
mological principle, and there exists strong observational evidence
that satisfies these assumptions on large spatial scales with pre-
cise measurements of the Comsic Microwave Background (CMB)
radiation (e.g. Akrami et al., 2020).

This section highlights how our Universe is mathematically de-
scribed, and how solutions to Einstein’s field equations, that relate
matter, energy and curvature, not only dictate the eventual fate of
the Universe, but gives insight into the history up to the present
day.
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1.1.1 Spacetime Geometry

In 3-dimensional space, the physical distance between two points
separated by coordinate distances dx, dy and dz is given by,

dℓ2 = dx2 + dy2 + dz2. (1.1)

The physical distance, ℓ, is invariant under choice of coordinate
system. However, as a consequence of special relativity and Lorentz
contraction, the measured distance between two points differs when
an observer is moving. The separation of two objects in homoge-
neous and isotropic space is described by the spacetime interval,
ds, that accounts for the distance in space and time in co-moving
coordinates,

ds2 = c2 dt2 − a2(t) dℓ2, (1.2)

where t refers to time, c refers to the speed of light which we shall
adopt natural units going forward by setting c = 1, and a(t) denotes
the mathematical quantity that describes the changing separation
of two points as the Universe expands as a function of time, known
as the scale factor.

In order to define a complete metric, which relates coordinate
distances to physical distances, one must also account for the in-
trinsic curvature of three-dimensional space. By adding a further
term for curvature, k, and transforming from Cartesian coordinates
to Polar coordinates, one can substitute Equation 1.1, into Equa-
tion 1.2, to obtain the Robertson-Walker (RW) metric,

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dϕ2

)
]
, (1.3)

where k = 0 corresponds to a spatially flat universe with Euclidean
geometry (E3), k > 0 relates to spherical geometry (S3) and k < 0
for hyperbolic geometry (H3). The RW metric thus describes a
homogeneous and isotropic Universe that can grow (or shrink) in
relation to the scale factor.
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For simplicity, one can define dχ ≡ dr/
√
1− kr2, and the iden-

tity dΩ ≡ dθ2 + sin2 θ dϕ2 such that Equation 1.3 becomes,

ds2 = dt2 − a2(t)
[
dχ2 + S2

k(χ) dΩ
2
]
, (1.4)

with

Sk(χ) =





sin(χ), k > 0⇒ S3

r, k = 0⇒ E3

sinh(χ), k < 0⇒ H3

(1.5)

where r, θ, and ϕ are the spherical polar co-moving coordinates,
under the scale factor.

If the coordinates are rescaled with a → λa or r → r/λ, the
metric remains unchanged. As such, we can use this to set the
scale factor evaluated today t0 to be a0 = a(t0) = 1. When dealing
with co-moving objects under the scale factor, all relative distances
remain the same, but the actual distances may have increased. Fur-
thermore, by considering the distance along a spatial geodesic the
angle (θ, ϕ) is constant, then Equation 1.4 reduces to ds = a(t)r.
The physical distance between two points with one designated as
the origin is then found by integrating over the radial co-moving
coordinate r,

dphys = a(t)

∫ r

0

1√
1− kr′2

dr = a(t)r. (1.6)

Hence, if one considers a galaxy with an initial radius at time
t0, up to a time t1 this will change from R = r → R = a(t1)r, i.e. as
the distance between galaxies increases, the radius of curvature of
the Universe R(t) = a(t)R0 increases at the same rate (Ryden,
2017). Using this analogy, if we consider the same galaxy moving
in co-moving coordinates, let its position over time be x(t), then by
applying Equation 1.6, the physical coordinates of this trajectory
becomes,

vphys(t) =
dxphys

dt
=

da

dt
x+ a

dx

dt
= Hxphys + vpec (1.7)
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where xphys is the physical position, vpec is the peculiar velocity
and H(t) is the Hubble parameter that is directly related to the
expansion of the Universe,

H(t) =
ȧ

a
. (1.8)

The time derivative of the scale factor da/ dt can be written as
ȧ where ȧ > 0 signifies an increasing distance and ȧ < 0 describes
a contracting distance. The additional term, vpec, is the peculiar
velocity, which describes the velocity of the galaxy relative to the
Galactic rest frame. By observing a large sample of objects, at
distances of z > 0.01, peculiar velocities, vpec, can be ignored1.
Then, by evaluating the Hubble parameter relative to today, H0 ≈
70km/s/Mpc, a linear relation between velocity and distance can
be established,

vphys = H0xphys. (1.9)

Equation 1.9 is known as Hubble’s law (Hubble, 1929). The
velocity can be determined from shifts in spectral lines via the
Doppler shift (assuming non-relativistic objects) from peculiar mo-
tion, rotation of galaxies and the cosmological redshift of expanding
space. At large enough distances cosmological redshift dominates
over peculiar velocities2 allowing the cosmological redshift to be
defined as,

z ≡ λobs − λem

λem

≈ v

c
. (1.10)

where λobs refers to the wavelength of light that is observed and
λem relating to the wavelength of light that was emitted from a

1Due to the random direction of the peculiar velocity, over a large sample
this is averaged out to zero.

2At distances of z < 0.01, the Doppler shift due to peculiar motions of
the galaxies relative to one another causes significant scatter when calculating
Hubble’s law.
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light source. The cosmological redshift relation above arises from
the intuitive notion that as space expands, the wavelength of pho-
tons will also be stretched. Subtly different from Doppler shift,
cosmological redshift causes a redshift in light spectra if space is
expanding, and blueshift if space is contracting. Let the wavelength
of light observed today be denoted as a0, and wavelength of light
at some time in the past as a1, then with our definition for a0 as
unity, Equation 1.10 can be reformulated as,

z =
1− a(t1)

a(t1)
=⇒ 1 + z =

1

a(t1)
. (1.11)

The beauty here is that we have a quantity that is measurable.
Using spectral absorption lines of different elements as a molecular
fingerprint, we can look to the heavens and use our understanding
of how these spectral lines would be affected under motion and
expanding space. This ultimately gives us a strong indication of
how the stars are behaving, and more fundamentally, if they are
moving away, or towards us.

The question now moves towards how can we accurately de-
termine distance, the other variable in Hubble’s law. This is by
no means a trivial task, and one must be careful how distance is
defined and thought about3.

1.1.2 Notions of Distance

With the measurable quantity of redshift, and therefore velocity,
to hand, we would be able to reveal the nature of the scale factor,
and hence the history of the Universe, if we can also accurately
measure distances in the cosmos.

Recall in Equation 1.6 we defined proper distance, dphys. The
proper distance, although includes the scale factor, is not a quantity
that we can directly measure.

Instead, we must look towards a more practical definition of

3As Father Dougal discovered when observing cows in a field, and cows on
a table, were the same “size” (Father Ted - Series 2, Episode 1).

https://www.youtube.com/watch?v=MMiKyfd6hA0
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distance that takes the expanding Universe into consideration and
uses light which we can see, allowing for the fact it takes a finite
amount of time to reach us. Ignoring parallax for nearby distances4,
the use of luminosity distance is an indirect way of using our knowl-
edge of how bright a celestial object should be and then comparing
it to the apparent brightness that we measure.

Given the intrinsic luminosity L of an object, we would like to
determine the apparent luminosity, or flux, F , given by the energy
per unit time per unit area, seen by a distant observer, to infer the
luminosity distance. Assuming isotropic emission, in a static Eu-
clidean space, the observed flux at a distance d, the energy spread
out over a sphere S2 of area 4πd2 would give,

F =
L

4πd2
. (1.12)

When working in an expanding spacetime the denominator of
Equation 1.12 is replaced by 4πa2(t0)Sk(χ)

2, where t0 is the time
the radiation has been observed.

The rate of the photons that arrives from the source is reduced
by a factor related to that shown in Equation 1.11, i.e. by 1/(1+z),
and so reduces the observed flux by the same amount. Furthermore,
with cosmological redshift, the energy of photons is also inversely
proportional to the scale factor, and thus another 1/(1 + z) is in-
cluded. As such, in an expanding universe, the observed flux from
a source with intrinsic luminosity L at a coordinate distance χ, and
redshift z, is given by

F =
L

4πSk(χ)2(1 + z)2
, (1.13)

which if we refer back to Equation 1.12 where distance is given by
d, we can yield an expression for luminosity distance dL(χ) in terms

4Parallax, the change position in the sky when observing a source from two
known points, is a highly precise procedure for measuring distances, but does
not scale to cosmological scales.
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of redshift z with,

dL(χ) = Sk(χ)(1 + z) (1.14)

If L is known, we can then use these relations to measure lumi-
nosity distance dL (Abbott et al., 2019; Tong, 2019).

To be able to use this methodology, cosmologists can then only
use certain objects, known as standard candles5, where the under-
lying physics of the light source is well understood i.e. intrinsic
luminosity, and of course, that it is bright enough to see at large
distances.

Cepheid Variable Stars

Cepheids are a type of star that pulsate with a relatively short pe-
riod, with the length of the periodicity of the pulses correlated to
the intrinsic brightness of the star. In the early 20th century Hub-
ble was able to use these objects to construct a diagram that put
forward evidence for an expanding Universe (Leavitt and Picker-
ing, 1912) (see Figure 1.1). Although Cepheids allow for reasonably
precise distance measures, their luminosity is simply not strong
enough to probe distances beyond 50Mpc (Las Cumbres Observa-
tory, 2022).

Supernovae Type-Ia

Supernovae, the explosive death of a star, are so bright that they
can even outshine the light of the galaxy they reside in, and have
been observed with the naked eye, with several particular events
noted in human history. In 1572, Tycho Brahe observed one such
“new star” in the sky in the constellation Cassiopeia (see Fig-
ure 1.2). The Dutch astronomer undertook a detailed analysis of
this event, posthumously dubbed Tycho’s Supernova, and tried to

5Perhaps the correct terminology is standardisable candles, since for the
case of SNIa, it was not until work by Phillips, 1993, that these objects were
actually useable as standard candles.
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FIGURE 1.1: Original Hubble diagram that expresses the veloc-
ity–distance relation among extra-galactic nebulae. The velocity-
distance measurements were extremely limited due to observing
only nearby galaxies, and thus showed considerable scatter due to
the significance of peculiar velocity, which led to an incorrect esti-
mation for the age of the Universe. Reproduced in full from Hubble
(1929)

convince6 the other astronomers of the day that through his sci-
entific analysis it must have originated far beyond the Earth, in
contrast to the Aristotelian doctrine that the heavens never change.

Many years later this event was determined to be a SNIa, which
is a particular type of supernova that happens when a white dwarf
accretes mass from a companion star. When this goes beyond the
Chandrasekhar limit of 1.4 M⊙, the point at which electron degen-

6Fighting the millennia long Aristotelian mindset, in the preface of Tycho
Brahe’s book, De Stella Nova in Pede Serpentarii, he called upon those who
doubted him: “Oh thick wits. Oh blind watchers of the sky”, to look at his
scientific analysis and see that the supernova could certainly not have occurred
within the terrestrial sphere.
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eracy pressure can no longer support the star against gravitational
forces, the star implodes (Chandrasekhar, 1931). Since the Chan-
drasekhar limit is well understood, these are prime candidates for
standard candles.

Kilonovae

It is hoped that in the future, standard sirens would also be able to
be used for measuring distances in the Universe in addition to stan-
dard candles. Following from the recent discovery of gravitational
waves (GW) (Abbott et al., 2017), and the associated electromag-
netic counterpart, we can measure the GW amplitude to obtain a
measurement for luminosity distance (Holz et al., 2018). Further-
more, we can use the redshift from the electromagnetic counterpart
to independently verify estimates for the Hubble constant (Bau-
mann, 2022).

1.1.3 Spacetime Dynamics

So far we have seen that we can describe an isotropic and homo-
geneous universe with the RW metric. It gives an avenue for us to
explore the dynamical nature of the Universe by way of the time
dependent scale factor.

To begin, we start with the idea of modelling the Universe as
a perfect fluid through the cosmological principle. With an expand-
ing fluid, one would expect the energy density to become diluted
in relation to conservation of energy laws, and the first law of ther-
modynamics, which states that dE+p dV = T dS, where dE is the
change in energy, dV the change in volume, T the temperature, dS
the change in entropy, and p the pressure. Considering dS = 0 for
an adiabatic process, and taking the time derivative, we have

dE

dt
= −pdV

dt
. (1.15)

Then, if we consider a region of fluid in a co-moving volume V0,
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FIGURE 1.2: Tycho Brahe and the Supernova of 1572 (Flammar-
ion, 1894)
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the physical volume is V (t) = a3(t)V0 and hence,

dV

dt
= 3a2ȧV0. (1.16)

Next, by noting the energy in such a volume being given by
E = ρa3V0 we obtain,

dE

dt
= ρ̇a3V0 + 3ρa2ȧV0. (1.17)

Combining Equation 1.16 and Equation 1.17 into Equation 1.15
we arrive at an expression for energy conservation in a cosmological
setting (Tong, 2019) known as the continuity equation,

ρ̇ = −3H(ρ+ p). (1.18)

By defining an equation of state as p = wρ, which is to say that
pressure in the system is proportional the density of the fluid in the
system. It can be integrated in order to establish how the energy
density would depend on the scale factor as a function of time. In
doing so, we obtain,

ρ̇

ρ
= −3(1 + w)

ȧ

a
⇒ log

(
ρ/ρ0

)
= −3(1 + w) log a (1.19)

⇒ ρ(t) = ρ0a
−3(1+w) (1.20)

with ρ0 = ρ(t0) and using the definition of a(t0) = 1 for today. If it
is the case that there is a set of fluids in the system described by
different equations of state, we must be sure to include all of these
together such that ρtot =

∑
w ρw. We also update the notation of

Equation 1.20 to be more strictly defined as,

ρw(t) = ρw,0a
−3(1+w), (1.21)

where ρw,0 = ρw(t0).
With an equation of state and the continuity equation, we are

missing just one more piece of the puzzle to describe the Universe
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dynamically. In order to determine the time evolution of the scale
factor, a(t), one must combine the RW metric, defined in 1.4 to-
gether with Einstein’s field equations. The result yields one of the
most significant equations of modern cosmology, the Friedmann
equation,

H2 =

(
ȧ

a

)2

=
8πG

3
ρtot −

k

a2
, (1.22)

where the curvature given by k and total density of the Universe
by ρtot.

The Friedmann equation can be understood as defining how
expansion of the Universe is driven by the components within it.
Measuring the parameters of the Friedmann equation is a principle
task in cosmology as this reveals the composition of our Universe
as well as giving insight into its fate.

If we consider a flat Universe with k = 0, the Friedmann equa-
tion simplifies to

H2 =
8πG

3
ρtot, (1.23)

which when differentiated with respect to (w.r.t) time gives the
acceleration equation,

ä

a
= −4πG

3
(ρtot + 3p) . (1.24)

The acceleration equation implies that a Universe containing
only matter will decelerate due to gravitational effects. Einstein
first introduced the cosmological constant, Λ, in an attempt to
counter this with a repulsive force and keep to a static cosmology;
an act that would come to be known as his biggest blunder (Cohen-
Tannoudji, 2018). It was shown that while achieving a static Uni-
verse, it was in unstable equilibrium. Any slight increase or decrease
of the Universe through expansion or contraction would cause a
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runaway effect (Ryden, 2017). A decade later, Edwin Hubble show-
cased empirical evidence for an expanding Universe, when he con-
structed his eponymous diagram, shown in Figure 1.1 (Hubble,
1929). Hubble built upon work and earlier measurements by Vesto
Slipher (1917), to confirm Hubble’s law, described in Equation 1.9.
However, due to the inherent challenges of only being able to mea-
sure nearby galaxies, peculiar velocity effects led to an incorrect
estimation of the linear relationship which was an order of magni-
tude off what could reasonably explain the age of the Universe7.
Consequently, the cosmological constant was not dismissed, but ac-
tually leveraged by cosmologists to help explain this discrepancy.
If Λ is sufficiently large in the acceleration equation to make ä > 0,
then ȧ would be smaller in the past compared to today and hence
the Universe would be older than what Hubble measured as H0.

If one keeps the cosmological constant, the question remains,
what physically is this repulsive entity? Georges Lamâıtre was one
of the first to realise that the cosmological constant should be iden-
tified as vacuum energy (Luminet, 2015), or zero point energy to
borrow a term from quantum field theory, with an associated en-
ergy density defined as,

ρde =
Λ

8πG
. (1.25)

In this manner, the vacuum energy, or as it is called today
— dark energy, is subsumed into the description of the total en-
ergy density ρtot, along with other components that make up the
cosmological fluid including matter, ρm, and radiation, ρr. Setting
k = 0 for a flat Universe, the total energy density, ρtot, must sum to
equal the Hubble constant squared together with the other factors

7Hubble’s measurements suggested a best-line fit to the velocity-distance
relation to be ≈ 500km/s/Mpc (Hubble, 1929) which would give an estimated
age of the Universe to be around 2 billion years. This went against evidence of
the day with geological Earth data and observations from Globular Clusters
that suggested the Universe should be far older.
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in Equation 1.23. Therefore, we can define a critical density as,

ρcrit ≡ 3H2/(8πG), (1.26)

which describes the energy density required for the Universe to
halt its expansion (in a zero curvature setting). This is helpful to
allow us to define a dimensionless density parameter for each fluid
component with,

Ωw =
ρw,0

ρcrit,0
, (1.27)

where the sum of all parameters is given by,

∑

i=m,r,de

Ωi = 1 +
kc2

R2H2
0

. (1.28)

Thus, for a flat Universe,
∑

w Ωw = 1, whereas for a positively
curved Universe with k = +1,

∑
w Ωw > 1. If it is the case that we

live in a negatively curved space with k = −1, then ∑i Ωi < 1.
Although not physically meaningful, it can be helpful to regard

curvature in a similar way to other energy densities, and define it
as,

ρk = −
3kc4

8πGR2a2
=⇒ Ωk =

ρk,0
ρcrit ,0

= − kc2

R2H2
0

. (1.29)

Using the definitions from Equation 1.21, together with the
Friedmann equation (1.22), yields an expression that describes the
relationship between the energy density of the Universe with the
scale factor.

(
H

H0

)2

=
Ωr

a4
+

Ωm

a3
+

Ωk

a2
+ Ωde (1.30)

where normal matter is expectantly diluted by 1/a3 as the volume
expands, and radiation is affected by the cosmological expansion
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further still, causing the wavelength of photons to be stretched.
Equivalently, by using our definition from Equation 1.11 this can
also be described as,

H2 = H2
0

[
Ωm(1 + z)3 + Ωr(1 + z)4 (1.31)

+ Ωde(1 + z)3(1+w) + Ωk(1 + z)2
]
,

Thus, by determining the parameters in the above equation,
we are able to gauge the dynamics of our Universe, and map its
evolution over time. This is the central mission of cosmology, and
we shall see in the following section how teams of scientists search
for signs in the night sky that help to reveal this.

1.2 In Search of Dark Energy

Theoretically we have shown that an extra component, which be-
haves like a cosmological constant is supported under Friedmann’s
equations. Moreover, having a dark energy component also allows
for an acceleration in the expansion of the Universe to help solve
the problem that a matter only Universe creates, known as the age
problem, where a matter only Universe predicts an age that is much
smaller than observations of Globular Clusters would indicate (Val-
cin et al., 2020). The inclusion of the cosmological constant, and
thus an additional form of dark energy along with matter helps
to resolve this discrepancy. The striking evidence for the existence
of such an entity came following the construction of the Hubble
diagram using SNIa when the Universe was found to not only be
expanding but to be accelerating. Two teams, the Supernova Cos-
mology Project (Perlmutter et al., 1999) and the High-Z Supernova
Search Team (Riess et al., 1998), used SNIa as standard candles to
independently discover there to be an epoch of acceleration starting
around 5 billion years ago.
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It was noted earlier how the use of standard candles are used to
determine distance in the Universe, and with SNIa playing a piv-
otal role for constraining properties of dark energy. A more detailed
breakdown of how they are used to measure luminosity distance is
given here. In Section 1.1.2, we covered the overarching equations
relating to luminosity distance. In the case of Supernovae (SNe), we
should be reminded that they are not in fact pure standard candles,
but can be standardised by way of the Phillips relation (Phillips,
1993). In this way, one can infer the distance to SNe from mea-
surements of their apparent brightness. Practically, astronomers
quantify light from a source by the apparent magnitude, given by

m ≡ −2.5 log10
(
f/fx

)
, (1.32)

where fx is a reference flux, and absolute magnitude, which is the
apparent magnitude that it would have if it were at a luminosity
distance of dL = 10 parsecs. As such, a light source with intrinsic
luminosity, L, has absolute magnitude as,

M ≡ −2.5 log10
(
L/Lx

)
, (1.33)

where again, Lx is simply a reference luminosity, which relates to
fx viewed at a distance of 10 parsecs (Ryden, 2017). Combining the
two equations above, as well as Equation 1.12, allows us to express
it as

M = m− 5 log10

(
dL
10pc

)
. (1.34)

However, it is more common among astronomers to use distance
modulus when dealing with luminosity and flux of a light source,
given by

µ = m−M = 5 log10

(
(1 + z)

∫ z

0

dz
H0

H(z)

)
, (1.35)

which can inform us of the expansion history by plotting the ob-
served µ versus z (De Putter, 2010).
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Using these equations, both the Supernova Cosmology
Project (Perlmutter et al., 1999) and the High-Z Supernova Search
Team (Riess et al., 1998), were able analyse around 50 SNe at red-
shift below 1, and construct a Hubble diagram with distant modu-
lus on the y-axis and redshift on the x-axis. The fainter the object
that is observed, the farther away it is and hence the further back
in time, allowing us to treat y-axis as a time-axis. In addition, since
photons are stretched proportionally to the expansion8, by having
redshift as our x-axis, the Hubble diagram consequently gives an
indication to the stretching of the Universe as a function of time.
Looking back in time, approximately 5 billion years ago, deviations
in the expansion rate caused by the cosmological parameters can
be seen. These teams found that for distant SNe the observed mag-
nitude was higher than expected (fainter than expected) for a given
redshift, under the assumption of a matter-dominated decelerating
Universe. The data indicated an accelerating Universe with a dark
energy equation of state of w ≈ −1 to explain the observation.

Other experiments have proceeded to confirm the observations
of the two Nobel Prize winning teams, with one such example being
the Dark Energy Survey (DES) (Abbott et al., 2019), whose efforts
to construct a similar Hubble diagram can be seen in Figure 1.3.

The subtle difference in expected brightness for events at z ≈
0.5 indicates an accelerating Universe. For SNIa with low redshift
of the order 0.1, a linear relationship between distance and redshift
(velocity) holds, as described in Equation 1.9. However, at greater
distances, due to the scale factor changing over time, the way dis-
tance relates to redshift is modified is described in Equation 1.11,
a deviation from linearity would be expected for an accelerating
or decelerating Universe. Using Equation 1.11, we can see that a
SNIa observed at z = 0.5, suggests the Universe was 2/3 the present
size when the event occurred. For the scenario of an accelerating-
expanding Universe, ä from Friedmann’s equations is greater than
zero, and hence ȧ would be larger today compared to the past. It

8Which is cosmological redshift as defined in Equation 1.11
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FIGURE 1.3: Hubble diagram depicting the linear relationship in
log-space between distance and velocity (redshift), with best fit
parameters for Equation 1.31. Reproduced in full from Abbott et
al. (2019)

would give rise to larger distances and SNIa that are fainter than
if it were the case for a constant ȧ and a Hubble parameter that
has the same value it has today. Corroborating with observations,
and as shown in Figure 1.3, the deviation away from linearity tends
towards an accelerating Universe.

While this evidence has since been supported by other experi-
ments, such as DES mentioned above, and by way of other cosmo-
logical probes such as Baryon Acoustic Oscillations (BAO; Eisen-
stein et al., 2005) etc., what is perhaps reassuring is confirmation
of an epoch of deceleration in the matter-dominated era (Riess et
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al., 2001, 2004). The current constraints on dark energy come from
a multitude of experiments, with some of the most recent results
showcased in Figure 1.4 and Figure 1.5.

FIGURE 1.4: Assuming k = 0 flat Universe, the cosmological pa-
rameter constraints for Ωm (JLA Betoule et al., 2014; blue), BAO
(BOSS DR12 Alam et al., 2017; green), and CMB (Planck 2015
Ade et al., 2016; red), with credible region contours corresponding
to 68.3%, 95.4%, and 99.7%. Reproduced in full from Huterer and
Shafer (2017)

The goal now is to further constrain the cosmological parame-
ters, and get tighter bounds for the equation of state, w and Ωm,
thereby refining our best-fit values for Ωde and our understanding
of dark energy. Note that w in particular can shed light on the form
of dark energy. If through further investigation and improved pre-
cision measurements it is shown that previous estimates are wrong
and the parameter w is not −1 then this will fundamentally change
what we think we know about the Universe and force a rethink of
the current model of cosmology. Hence, it is of utmost importance
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FIGURE 1.5: Historically improved measurements of cosmological
constraints on Ωm and the equation of state parameter w, assuming
a flat Universe with k = 0. Reproduced in full from Huterer and
Shafer (2017)

to continue with the endeavour for better measurements and to fur-
ther constrain the estimates for w. The recent precision measure-
ments from the Plank satellite (Aghanim et al., 2020) combined
with joint constraint measurements with BAO, the Universe can
be considered flat with Ωk = 0.001± 0.002. Furthermore, since Ωr

has been directly measured to be very small, it is often considered
to be negligible (Zyla et al., 2020) when determining

∑
i Ωi.

In terms of the future of SNe cosmology, the aim is to observe
a far greater sample of SNe in general to reduce statistical errors,
and to observe a large sample of SNIa at even higher redshift than
before. Future planned surveys, such as the Legacy Survey of Space
and Time (LSST) (Ivezić et al., 2019) at the Vera C. Rubin Obser-
vatory, will do just that, and it is the focus of this thesis to develop
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tools and techniques that enable improved SNe cosmology for this
survey.

1.3 The Legacy Survey of Space and Time

The Vera C. Rubin Observatory, currently under construction at
El Peñón peak of Cerro Pachón in northern Chile, will carry out
the upcoming Legacy Survey of Space and Time (LSST). Set to be
the largest ground-based optical survey, it will focus on four key
science drivers; accounting for objects in our solar system, map-
ping our galaxy, investigating transient events, and probing dark
energy and dark matter (Ivezić et al., 2019). The telescope at the
Vera C. Rubin Observatory uses a 3.2-gigapixel camera that will
pan the sky in the southern hemisphere for 10 years, observing in
6 photometric filters, u, g, r, i, z, y, in the wavelength range of
320–1050 nm. Most of its operations will be devoted to the wide-
fast-deep (WFD) mode which will observe approximately 18,000
deg2 of the sky repeatedly. The other survey mode of deep-drilling-
fields (DDF) will focus on special observations that look far back
in time through long exposures and at higher cadence, i.e. greater
sampling across each passband. The gains that LSST will bring to
the transient science community are unprecedented and it is ex-
pected that the telescope will witness 10 million transient events
per night, with the final database to contain around 32 trillion
observations of 40 billion stars and galaxies (Ivezić et al., 2019).
Of these observations, approximately 250,000 SNIa events per-year
are to be expected, a considerably larger sample than all SNIa ob-
served before by two orders of magnitude. The hope is to leverage
this large number of SNIa to strengthen SNe cosmology, and im-
prove the constraints on the dark energy equation of state, w, and
Ωm (and by that constrain Ωde to better than 5% with just even
1/10th of the expected sample size (Abell et al., 2009)). Notwith-
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standing, one needs to be able to distinguish between the millions
of transient events that will be observed, where SNIa will only be
a small fraction.

1.3.1 Transient Classification

Typically SNe, which are observed over a period of a few days to
a few weeks, are classified by the presence of particular absorp-
tion lines in their spectra. Specifically, SNIa are distinguished by
the absence of hydrogen lines and the presence of Si II λ 6150 ab-
sorption (Filippenko, 1997). However, spectroscopic classification
of transient events is a costly process. By using broad photometric
passbands, LSST will be able to “see” far more events than ever
before, or that could be possible with spectroscopic equipment. The
problem then arises: how can one accurately identify different tran-
sient photometrically using only passband information? In contrast
to spectroscopic classification, photometric classification is far more
challenging, and one is more susceptible to cross-contamination
from other events such as core-collapse SNe (SNe Ib/c and SNe II)
which share a similar profile to SNIa when observed photometri-
cally (see B for examples). Consequently, studies have been done
by similar photometric surveys to determine the acceptable level
of cross-contamination from such events that would still allow for
robust cosmological analysis of the dark energy equation of state.
This range has been reported to be between 8% (DES; Vincenzi et
al., 2021) and 5% (Pan-STARRS; Kaiser et al., 2002). It is expected
LSST will require a high SNIa purity (described in more detail in
Chapter 2) and cross-contamination rate to be at least within this
range, if not lower. It should be noted that these levels are in the
context of full phase light curves, and so one may expect a higher
level of cross-contamination in the early phase of the events, where
only partial information is available for identification.

The filter response for LSST can be seen in Figure 1.6 with
wavelength given in units of angstroms, Å.

When making observations photometrically, the flux measure-
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FIGURE 1.6: LSST filter response as a function of wave-
length. Throughput values as of tag 12 from github.com/lsst/

throughputs and produced using speclite-v.015 (Robitaille et
al., 2013)

ment corresponding to a given passband is obtained by collecting
all light that is received through that particular filter. Multi-band
photometry allows for more information to be retrieved to help de-
termine properties of the light source, such as temperature, but this
is of course not as rich as observing spectroscopically. However, if
one collects multi-band photometry over a period of time, of the
same source, a light curve can be constructed, which tells us more
about what kind of a transitive event this may be. An example light
curve of a SNe event can be seen in Figure 1.7, which shows flux
measurements across four passbands of a single object, viewed over
the course of roughly 100 days. There is significant variance in how
long-lived a light curve may be depending on the light source. Some
objects are intrinsically variable and so the light curve will peak
and trough periodically over time. These may include Cepheid vari-
ables, RR-Lyrae variables and so on. Other non-periodic objects
such as SNe will exbibit a single rise and fall of the light curve
akin to that shown in Figure 1.7. In addition to SNe, these may
also include objects such as Kilonovae, M-dwarf Flares whose light

github.com/lsst/throughputs
github.com/lsst/throughputs
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curve is expected to be on the order of days, compared to other
non-periodic objects of Pair Instability Supernovae (PISN) or Su-
perluminous Supernovae (SLSN) which are on the order of 200 to
400 days respectively (De Cia et al., 2018; Gilmer et al., 2017).

FIGURE 1.7: Example light curve of a transient event taken from
the SPCC dataset (Kessler et al., 2010a) viewed across 4 pass-
bands, g, r, i, z shown in different colours, over a period of ∼ 100
days, where time-axis is given in modified Julian date range. Het-
eroskedastic error bars are the result of varying weather and tele-
scope conditions at the time of observation.

The image processing method of difference imaging measures
differential photometry by matching the pointing and point-spread
function(s) between image frames, typically for the detection time-
varying celestial objects (Wang et al., 2017). A new image is com-
pared with an aligned reference image, where the difference between
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the two images is determined by calculating the difference between
each pixel of each image, and forming a difference image from the
result. An example of using difference imaging to detect a SNe can
be seen in Figure 1.8. A detection occurs when the difference image
is above a certain signal-to-noise threshold. When this threshold is
reached, a transient event alert is triggered, with data streamed to
brokers around the world for follow-up analysis.

NOT V 2015 November 04

N

E NOT V 2018 October 01
     Template image

Difference image

FIGURE 1.8: Difference imaging example. The image on the left
shows a region of interest with a transient event occurring in a host
galaxy. This was confirmed by comparing it to a reference image of
the same patch of sky on a different date. The difference between
the two is calculated by subtraction of one from the other to give
the difference image shown on the far-right panel, revealing just
the transient object. Reproduced in full from Singh et al. (2021).

1.3.2 Alert Brokers

It is expected that once LSST is fully operational, the 10 million
transient alerts per night will produce around 1TB of raw data, and
3PB over the lifetime of the survey (Ivezić et al., 2019). With tran-
sient alerts being issued worldwide within 60 seconds, LSST will
certainly usher in a new era of astronomy, where data-driven meth-
ods and machine learning will be critical to handle such a deluge of
data. Alert brokering systems will be the first port-of-call for the
real-time global distribution of alert stream data. A typical broker
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will ingest the full alert stream and enrich the data through cross-
matching with archival catalogues, identification and prioritisation
of objects for follow-up analysis and spectroscopic observations,
and photometric classification (Jurić et al., 2022).

With first light scheduled for the Spring of 20239, there are sev-
eral broker groups already in place that are gearing up to handle
the alert stream. Of the nine proposals for LSST brokering sys-
tems, seven teams were selected to receive the full alert stream:
The Automatic Learning for the Rapid Classification of Events
(ALerCE) (Förster et al., 2021), AMPEL (Nordin et al., 2019),
Arizona-NOAO Temporal Analysis and Response to Events Sys-
tem (ANTARES) (Matheson et al., 2021), BABAMUL (Duev and
Graham, 2022), FINK (Möller et al., 2021), Lasair (Smith, 2019)
and Pitt-Google (Wood-Vasey et al., 2022).

In an effort to prepare, many teams are using alerts com-
ing from current surveys, such as the Zwicky Transient Facility
(ZTF) (Bellm, 2014), to fine-tune their data ingestion and classi-
fication pipelines. These brokers will need to operate in real-time
and provide low-latency classification scores such that follow-up
analysis can be triggered swiftly.

The work in this thesis focuses on the development of classifi-
cation methods that are suitable for use with the photometric data
that will be collected by LSST. Our transient classification esti-
mates will help identify possible SNe candidates, as well as other
transients of interest, to the scientific community. For greatest im-
pact, we develop fast and efficient architectures that are worthy of
deployment into alert brokers that will add value by way of classi-
fication scores to the alert stream in real-time. The ultimate goal
is for this value added information to be harnessed for constrain-
ing cosmological parameters even further, and to hopefully shed
more light onto the mysterious entity driving the acceleration of
our Universe.

9Milestone updated as of April 5, 2022 (www.lsst.org/about/project-status)

https://www.lsst.org/about/project-status
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A Brief History of Time-Series
Classification

“I am rooting for the machines! I’ve always been on the machines’
side”

— Claude Shannon.

Time-series data is ubiquitous across the sciences, and has seen
a resurgence of research efforts over the last couple years as new
machine learning methods are coming to dominate the landscape.
A recent in-depth review of current state-of-the-art by Fawaz et al.
(2019) highlighted the new trend in time-series classification which
was to leverage deep learning for best results. However, previous
methods are not without their merits, and it is important to review
the traditional approaches to better understand their limitations
yet determine how they could be extended.

This chapter gives scope to the underlying task at hand by first
describing photometric classification of SNIa in terms of the gen-
eral problem of multivariate time-series classification in Section 2.1.
This is followed by a discussion of the evaluation metrics used for
this task in Section 3.5. Then, in Section 2.3 previous methods are
reviewed with discussions on their respective limitations. Further
details are given in 2.3.1 on a particular method that was applied
in earlier doctoral work for studies in telescope cadence optimisa-
tion. Next, in Section 2.4, a brief recap is presented of the recent
success story of deep learning, especially as it has been applied to
time-series classification.

The chapter closes in Section 2.5 with a summary of the doctoral

33
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research that has been completed over the course of study, and then
outlines the individual contributions that feature in this thesis in
Section 2.5.2.

2.1 Photometric Classification: A Multivariate Time-
Series Classification Problem

To better understand the problem, it will be useful to review
the kind of data one is dealing with and to make some defini-
tions (adapted from Fawaz et al., 2019) with regards to the task
of astronomical transient classification. In general, the data that
one observes can be viewed as an irregular multivariate time-series
signal:

Definition 1 A univariate time-series signal x = [x1, x2, . . . , xT ]
consists of an ordered set of T real values with x ∈ RT .

Definition 2 An M-dimensional multivariate time-series signal,
X = [x1,x2, . . . ,xM ] consists of M univariate time-series with X ∈
RT×M .

Definition 3 An irregular time-series is a ordered sequence of ob-
servation time and value pairs (tn, xn) where the space between ob-
servation times is not constant.

Definition 4 A dataset D = {(X1, Y1), (X2, Y2), . . . , (XN , YN)} is
a collection of pairs (Xi, Yi) where Xi could either be a univariate or
multivariate time-series with Yi as its corresponding one-hot label
vector. For a dataset containing C classes, the one-hot label vector
Yi is a vector of length C where each element is equal to 1 for the
index corresponding to the class of Xi and 0 otherwise.

The goal for general time-series classification consists of train-
ing a classifier on a dataset D in order to map from the space of
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possible inputs to a probability distribution over the class variable
labels. Recall from Section 1.3.1 that for photometric classification
of astronomical transients, the light that is observed is collected
through different filters over a period of time to form a light curve.
However, the light curve is irregularly sampled in time and across
passbands which further complicates the task.

2.2 Evaluating Classifiers

In order to develop and evaluate models one must consider what
metrics are most suitable for the task at hand. This section presents
the key evaluation metrics that were used to measure the perfor-
mance of our classifier, and also describes the motivation for such
metrics in relation to the photometric astronomical transient clas-
sification problem that is considered in this thesis.

2.2.1 Performance Metrics

Choice of evaluation metrics is of high importance when considering
the performance of a classifier. This is compounded when dealing
with imbalanced datasets since most metrics consider the setting
of an even distribution of samples among the classes. One must
be careful when considering which metrics to evaluate a model’s
performance since relatively robust procedures can be unreliable
and misleading when dealing with imbalanced data (Branco et al.,
2015; Malz et al., 2019b).

Typically, threshold metrics are used which consider the rate
or fraction of correct or incorrect predictions. Threshold metrics
are formulated by combinations of the four possible outcomes a
classifier could have with regards to predicting the correct class:

• True Positive (TP): prediction of a given class and indeed it being
that class.
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• False Positive (FP): prediction of a given class but it does not
belong to that class.

• True Negative (TN): prediction that an object is not a particular
class and it is indeed not that class.

• False Negative (FN): prediction that an object is not a particular
class but it is in fact that class.

From these outcomes common threshold metrics can be formulated,
with perhaps the most common threshold metric being accuracy,
which is the number of correctly classified samples over the to-
tal number of predictions. However, for imbalanced data results on
accuracy alone can be misleading as a model can achieve high accu-
racy by simply classifying the majority class. More robust metrics
for imbalanced data are precision and recall since their focus is on
a particular class:

Precision/Purity =
TP

TP + FP
, Recall =

TP

TP + FN
. (2.1)

Precision gives the fraction of samples predicted as a particular
class that indeed belong to the particular class, while recall, also
known as the true positive rate, indicates how well a particular
class was predicted. In cosmology, precision is often referred to as
purity. The purity of SNe compared to other classes is a key metric
that ultimately determines the usefulness of a classifiers results for
cosmological analyses.

Confusion Matrix

One way to visually inspect the performance of a classifier with
regards to threshold metrics is by the confusion matrix. The con-
fusion matrix provides more insight into the performance of the
model and reveals which classes are being predicted correctly or in-
correctly. Often these tables are normalised across the rows to give
probabilities in order to provide a more intuitive understanding.
A perfect classifier across all classes would therefore be equivalent
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to the identity matrix with all ones along the diagonal and zero
elsewhere.

Receiver Operating Characteristic

An important point to note is that threshold metrics alone assume
the class imbalance present in the training set is of the same dis-
tribution as that of the test set (He and Ma, 2013). On the other
hand, a set of metrics built from the same fundamental compo-
nents as threshold metrics, called rank metrics, do not make any
assumptions about class distributions and therefore are a useful
tool for evaluating classifiers based on how effective they are at
distinguishing between classes (Brownlee, 2020).

Rank metrics require that a classifier predicts a probability of
belonging to a certain class. From this, different thresholds can
be applied to test the effectiveness of classifiers. Those models that
maintain a strong probability of being a certain class across a range
of thresholds will have good class separation and thus will be ranked
higher.

The most common of this type of metric is the receiver-
operating-characteristic (ROC) curve, which plots the true positive
rate verses the false positive rate to estimate the behaviour of the
model under different thresholds. The ROC curve is then used as
a diagnostic tool to evaluate the model’s performance, with every
point on graph representing a given threshold. Interpolating be-
tween these points forms a curve, with the area under the curve
(AUC) quantifying performance. A classifier is effectively random
if the AUC is 0.5 and, conversely, is a perfect classifier if the AUC
is equal to 1.0. It is common when reporting the AUC for multi-
class classification to give the macro- and micro-averaged score. A
macro-averaged score is calculated by considering the metric inde-
pendently for each class and then taking an average. In this way, all
classes are treated equally which is troublesome if one has highly
imbalanced data. A micro-averaged score on the other hand ag-
gregates the contributions of all classes in order to calculate the
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metric. Therefore, it is advisable to consider micro-average scores
when dealing with imbalanced datasets.

Precision-Recall Trade-Off

An alternative diagnostic plot to the ROC curve is the precision-
recall (PR) trade-off curve. This is used in a similar way to the
ROC curve but instead focuses on the performance of the classi-
fier to the minority class, and hence is more useful for imbalanced
classification problems (Brownlee, 2020). Much like the ROC curve,
points on the curve represent different classification thresholds with
a random classifier resulting in an AUC equal to 0.5 and a perfect
classifier resulting in an AUC of 1.0. In addition, macro- and micro
averaged scores can also be computed for PR curves, and the pref-
erence for using micro-averaged scores in the imbalanced setting
remains.

2.3 Traditional Machine Learning Approaches

This section gives a high-level overview of machine learning and its
applications to astrophysics in the context of SNIa classification.
Machine learning is a sub-field of artificial intelligence that typi-
cally considers two distinct sections, supervised and unsupervised
learning. Supervised machine learning involves using algorithms
that have been trained with labelled data. Unsupervised, on the
contrary, aims to learn from data directly without explicitly being
shown what the true labels are. The approaches that follow are
supervised learning techniques.

As mentioned, with supervised learning one trains an algorithm
to learn from examples of true labels that distinguish between
classes, using what is called a training set. A training set is a col-
lection of data that has the associated true labels attached. After
the algorithm has been shown enough examples, and it is able to
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learn a mapping from input data to labels, it is then evaluated
using unseen data called the test set. Often a third set of data,
called the validation set, is derived from the training set and com-
pletely separate from the test set to monitor overfitting and help
with selecting tunable model parameters (hyperparameters). It is
the performance on the test set that is indicative of how the model
may perform in the real-world.

Over the last decade a plethora of photometric classification
algorithms have been developed. These stemmed from the fruit-
ful Supernova Photometric Classification Challenge (Kessler et al.,
2010b, SNPhotCC) in 2010 that focused on photometric classifica-
tion of Supernovae only; and more recently the Photometric LSST
Astronomical Time-Series Classification Challenge (Hložek et al.,
2020b, PLAsTiCC) in 2018, which included a variety of different
astronomical transient events among its classes.

Several challenges arise when observing photometrically;
SNPhotCC and PLAsTiCC tried to simulate such conditions in
terms of photometric sampling linked to the telescope cadence, as
well as the distribution of classes one expects to observe. When
creating such a simulated dataset, realistic distribution of classes
is of great importance as often the training data available to
astronomers is not of the same distribution one would observe
through a real survey. This is due to Malmquist Bias (Butkevich et
al., 2005), which is caused by the inherent bias towards observing
brighter and closer objects when observing the night sky. As a con-
sequence, training datasets are skewed to have more objects that
are closer in distance, lower in redshift, and brighter in luminosity.
In addition, the usefulness of observations of Type Ia Supernova
has induced a bias towards spectroscopic follow-up of these events,
resulting in vastly imbalanced training datasets that have a large
number of Type Ia Supernova samples compared to other objects.
The resulting training sets are therefore typically imbalanced and
non-representative of the test sets that one might observe. These
issues present a major challenge when developing classifiers. Sev-
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eral methods have been proposed to address the problems of non-
representativity and class imbalance.

Early attempts that applied machine learning methods to the
SNPhotCC dataset can be found in Karpenka et al. (2013) us-
ing neural networks (neural networks are discussed in more de-
tail in Section 2.4), in Ishida and Souza (2013) using kernel PCA
with nearest neighbours, as well as methods found in Lochner et
al. (2016) which compared a variety of techniques with impres-
sive results on representative training data. Another successful ap-
proach can be found in Boone (2019) which was able to specifi-
cally extend the boosted-decision-tree (BDT) method in Lochner
et al. (2016) by achieving good performance even in the non-
representative training set domain. This work used BDTs cou-
pled with data augmentation using Gaussian processes to achieve a
weighted logarithmic loss (Malz et al., 2019b) of 0.68 in the PLAs-
TiCC competition (Hložek et al., 2020b) and 0.649 in a revised
model following the close of the competition. This compares to a
score of 0.0 for a perfect classifier and a score of 2.71 for a classifier
that predicts all classes to be equally likely. However, one draw-
back with many of these methods is the reliance of the human-
in-the-loop, where well crafted feature engineering plays an impor-
tant role in achieving excellent scores. With few exceptions, such
as the approaches of Lochner et al. (2016) and Varughese et al.
(2015) that used wavelet features, many traditional machine learn-
ing approaches for photometric classification are model dependent,
relying on prior domain specific information about the light curves.

2.3.1 Signal Processing with Wavelets

The work by Lochner et al. (2016) (snmachine.v1) is described in
further detail here as it has been used in some earlier doctoral work
(see Section 2.5.1 for details) as well as some elements of the data
pre-processing steps being foundational to the new methods that
are described in later chapters.

With the desire to move away from hand crafted features,
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a model-independent signal processing approach was devised
by Lochner et al. (2016). Their overall procedure was to first inter-
polate light curves onto a regular grid, and then perform wavelet
decomposition. Then a dimensionality reduction is done to yield the
feature set. The wavelet method and associated pipeline in Lochner
et al. (2016) automatically acquires specialised features that can be
passed through a variety of standard classifier algorithms. In this
case, a wavelet analysis is applied to decompose the signal into a
set of wavelet coefficients. Synonymous with Fourier decomposi-
tion that break a periodic signal down into a linear combination of
sine and cosine coefficients, wavelet decomposition yields a similar
set of coefficients without the loss of time and frequency informa-
tion (Mallat, 2008).

However, to decompose a signal using wavelet analysis, the sig-
nal itself needs to be evaluated on a regular grid. As described
in 2.1, the data that is observed is irregular in both passband and
time. Thus it is necessary to interpolate the light curve such that
a standard spacing of points in time can be evaluated.

A powerful tool for regression is the use of Gaussian processes,
which one can use as an interpolation method that is able to capture
the uncertainty contained in the data points. A Gaussian process
can be fully specified by a mean function E[f(x)] = m(x) and co-
variance between two sampled observations x, x′ as Cov(f(x, x′)) =
Kf (x, x

′), where Kf (·, ·) is a kernel. Of the wide variety of kernels
one could choose, for simplicity and ease of use, the kernel used in
snmachine.v1 is the 1-dimensional squared-exponential kernel,

KSE(x, x
′) = σ2 exp

(
−|x− x′|2

2ℓ2

)
, (2.2)

where the length scale ℓ determines the length of the fluctuations
in the function, and σ2 determines the function’s average distance
from the mean (Duvenaud, 2014).

Therefore, after using Gaussian processes to interpolate the
light curve, the next step of wavelet decomposition is possible.
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As outlined in Narayan et al. (2018) and Lochner et al. (2016)
a suitable family of wavelets for transient classification are symlets,
which are a form of stationary wavelet transforms that are able to
capture the properties of the light curve and also have the benefit
of being translation invariant.

After applying the wavelet decomposition to the regularly sam-
pled light curve the resulting coefficients are features are highly
redundant. While thresholding of the wavelet coefficients can be
used to compress the data to some degree, this needs to be con-
sistently applied across all scales. An alternative that allows for
more flexibility with dimensionality reduction is principle compo-
nent analysis (PCA), which is carried out following the wavelet
decomposition step to reduce dimensionality in accordance to the
size of dataset.

2.4 Neural Networks and the Deep Learning Revolution

As mentioned in the previous Section 2.3 neural networks (NNs)
have been in use within astronomy for some time with the work
of Karpenka et al. (2013) for photometric classification, as well as
many other applications in astrophysics including work by Lahav
(1996) that used NNs for galaxy classification over 20 years ago.
A neural network, shown in Figure 2.1, consists of an input layer,
one or more hidden layers and a final output layer. Each circle in
Figure 2.1 represents a neuron, or activation a, that is simply a real
number. The input layer of neurons is built from the features one
provides to the network, whereas the following layers of neurons are
determined by a linear combination of the weights, w, i.e. the lines
between each neuron, and the previous layers activations. These are
put through an activation function fact(·) along with a bias term,
b that helps guide the activation function output. The operation
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between input and the first hidden layer can been seen in Figure 2.2,
with similar operations taking place for each layer thereafter.

Input
Layer

Hidden Layer

Output
Layer

FIGURE 2.1: Basic neural network structure. Real-valued inputs
are passed through the input layer of neurons, which are then
passed through one or more hidden layers of neurons. Each con-
nection between neurons is associated with a weight corresponding
to the strength of that connection. A non-linear function is applied
to the linear combination of the weight values and the previous
layer’s neurons. This is fed into the output layer that can yield a
single real-value or many real-values. If the task at hand is classi-
fication, it is common to pass the set of values in the final layer
through a softmax activation function to yield a probability score
for each class.

The shape of the output layer is informed by the task at hand
and the loss function and unlike all other layers, the output layer
neurons typically do not have a non-linearity activation function.
For regression tasks the output is real-valued and can be a single
neuron or a neuron per target (e.g. a real-value pixel value per-
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FIGURE 2.2: Neural network internals. Each neuron is determined
from the linear combination of the previous layers weights and bi-
ases, which is then passed through a function, called an activation
function, to induce non-linearity and aid with learning. This dia-
gram shows the input layer in green and a hidden layer in blue. For
each connection of the network there exists an associated weight, w,
that describes the strength of that connection, and for each neuron
there exists a bias term that relatively adjust the level of activation.
The weights and biases together are known as the parameters of
the network and is determined above by number of neurons from a
previous layer × number of neurons in current layer for the weights,
added with number of neurons in the current layer for the biases.

target pixel for the task of image inpainting). For classification
tasks there is usually an output neuron for each class representing
class scores that is also real-valued. A softmax function is often
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then used to normalise the output to a probability distribution
over predicted classes.

The loss function is a differentiable function that is used to
determine how well aligned the weights of the network are such
that the desired output is achieved. A simple example loss func-
tion typically used in regression tasks may be the Euclidean dis-
tance between a ground truth label and predicted outputs. For each
forward pass of the network one compares the ground truth with
the predictions and computes the loss. As the goal is to reduce
the distance between ground truth and prediction (i.e. minimise
the loss) we can frame this as an optimisation problem by taking
the derivative of the loss function with respect to the weights of
the network. Then for each batch of data1 the weights are updated
using the canonical Stochastic Gradient Decent (SGD) algorithm
shown here,

w← w − η
∂L(x,x′)

∂w
, (2.3)

where L(x,x′) is the network loss function between the input batch
of data x and the predictions for that batch of samples x′, w is
the weight vector, and η is the learning rate or step size of each
update. To help with convergence, one typically uses a learning rate
schedule that reduces the learning rate over time. There are many
options one could choose in terms of loss function, and this in itself
it a complicated task. The loss function used in this thesis that
focuses on classification is described in more detail in Chapter 3.

As signal through the network is determined by prior computa-
tions of the weights and biases, the final output of the network is
thus controlled by this set of weights and biases. Hence, these are
known as the parameters of the network. There are other factors
that ultimately determine the output of the network, such as the
depth and width of the hidden layers, as well as the learning rate

1Traditionally batch refers to all samples in the training set, but it has
become commonplace to refer to batch as a disjoint set of the training data
samples. This is also called minibatch, and can be used interchangeably
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and schedule mentioned above, but as these are set by the practi-
tioner rather than the learning algorithm itself, they are referred to
as hyperparameters. Even for shallow networks with only a couple
of hidden layers, the number of weights and biases (parameters)
one needs to account for becomes very large.

2.4.1 Convolutional Neural Networks

Of late, there has been a resurgence of using neural networks and
an explosion of deep learning methods applied to many areas in the
physical sciences. Deep learning in this context is broadly related
to that described above for neural networks, but with many hid-
den layers. Much of this is attributed to the success of Krizhevsky
et al. (2012, AlexNet) when applied to the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) (Deng et al., 2009). Their
profound improvement in the state-of-the-art spawned significant
efforts that applied similarly deep neural networks, with particular
focus on convolutional neural networks (CNNs) to problems in the
image domain and recurrent neural networks (RNNs) (discussed in
the next section) for sequence modelling. Similar to the classical
fully connected neural network architecture shown in Figure 2.1,
the general structure of a CNN can be seen in Figure 2.3. The im-
mediate difference is in the convolutional layers, shown in orange, is
that not all neurons are connected. This is due to the weight sharing
nature of the convolution operator across the receptive fields and is
at the heart of convolutional neural networks. CNNs, initially pro-
posed by LeCun et al. (1989a) for handwritten digit recognition,
had their revival following the breakthrough work of Krizhevsky
et al. (2012) mainly due to the abundance of data with which one
can train deep neural networks, and perhaps more importantly, due
to the progress made in hardware accelerators such as Graphical
Processing Units (GPUs) for machine learning tasks, which now
feature in all winning solutions to the competition.

A normal convolution operation (other variants discussed in
later chapters) seeks to find cross channel information and spatial
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Convolutional
Layers

Fully-connected
Hidden Layers

Input
Layer

Output
Layer

FIGURE 2.3: Typical convolutional neural network architecture
with an input layer shown in green, a set of convolutional layers,
followed by a fully connected neural network and a final output
layer. Note the difference in number of connections between the
convolutional layers and the fully-connected layers, due to weight
sharing within convolutional layers.

information at once. For 2-dimensional input such as an image,
channels could refer to R, G, B filters of an image and spatial re-
ferring to the height and width of an image. For 1-dimensional input
such as time-series, channels may refer to the number of features
in a multivariate time-series, M , and spatial actually referring to
the temporal axis.

The operation itself slides a filter, also called a kernel over the
input. The step size for which the filter is passed along the input
is called the stride length. At each location the Hadamard product
is computed which results in a single value in the output feature
map. A full feature map is formed from the repeated application
of the filter to the entire input. The replication of the filter across
the input results in a shared parametrisation of the weights and
biases (also referred to as weight-sharing) for each resulting feature
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map, a key attribute of convolutional layers. For the first layer, The
kernel size relative to the input is the receptive field and for images
would have size height and width, whereas if one is dealing with
time-series, we say the kernel is operating with a receptive field of
window size, w. As we go deeper, the size of the receptive field can
change and more of the signal, or output feature map is influenced
by the kernel. Note the difference in notation between weights, w
and kernel window size, w. This should also be dissociated to w
described in Chapter 1 which described the dark energy equations
of state parameter. An example of this operation for time-series of
M -channels by L-length input is shown in Figure 2.4.

The operation can be chained together and constructed into its
own type of neural network architecture.

2.4.2 Recurrent Neural Networks

With the two major milestones of improved compute power and an
abundance of data, other older deep learning methods for sequen-
tial modelling such as RNNs (Jordan, 1997), were also revitalised.
RNNs are essentially neural networks with loops that allow for in-
formation to be persisted as different inputs are passed in. This
can be better understood in Figure 2.5 that on the left-hand side
depicts a block of hidden layers, h, which takes in xi as input and
produces yt output after some number of recurrent steps. On the
right-hand side of the figure is the unrolled version that shows how
a sequence can be processed. As such, RNNs lend themselves well to
sequence modelling tasks such as machine translation, time-series
forecasting, and relevant to us, time-series classification.

Recurrent neural networks consist of repeating modules of hid-
den layers of neurons, where in the most basic form the hidden
layer may be a single neuron activation. The combination of all
neurons in the hidden layers hi . . . hL form the hidden state (the
representation of all previous inputs). Although the weights of a
RNN are shared across these hidden layers, as the sequence of in-
puts grows, propagating meaningful updates to the weights be-
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− channel 1

− channel 2

− channel 3
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− kernel (3× 3 in this case)

�
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(new one for each kernel used)

N = number of output channels

FIGURE 2.4: Normal convolutional operation. Spatial and cross-
channel correlations are obtained in one step by sliding a kernel
of width w, over the time-series signal (whilst three channels, red,
green and blue, are depicted here, the normal convolution is not
limited to the number of channels that can be operated on). The
resulting output from the normal convolution shown in this figure
can be seen as the red square below. Should another kernel or filter
be used on the same signal, a further resulting output channel is
created i.e. there is a resulting output channel for every kernel that
is applied.
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. . .

FIGURE 2.5: Basic structure of recurrent neural networks, which
is similar to that of feed-forward neural networks, with the main
difference being the looping pathway within the hidden state. This
allows for information to persist and be retrained by the network
as more inputs are ingested.

comes more challenging. Often referred to as the unstable gradi-
ents problem (Hochreiter et al., 2001), if weights are large, then
through application of the chain rule to compute dL/dw in Equa-
tion 2.3 will cause the gradient value to explode. Similarly, if the
weights are small, the gradient can vanish towards zero. A variant
of RNNs that has two separate paths for passing long-term informa-
tion and short-term information through the network called Long-
Short-Term-Memory (LSTM) networks (Hochreiter and Schmid-
huber, 1997) has shown to mitigate this problem but consequently
need to keep track of an increasing amount of information as an
input sequence grows.

Perhaps the most popular construction of RNNs for sequence-
to-sequence (Seq2Seq (Sutskever et al., 2014)) tasks are in the form
of encoder-decoder architecture, shown in Figure 2.6. The inputs
x = [x0, x1, . . . , xL] are processed in the encoder to create a hidden
state h = [h0, h1, . . . , hL]. The outputs of the encoder are discarded
but the hidden state is combined with any additional information
to form a context vector, c. This additional information could be
cell states i.e. long term memory information in the case of LSTMs,
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FIGURE 2.6: Recurrent neural network encoder-decoder construct
where the hidden state of the encoder is passed to the decoder
along with any additional information to form a context vector.
The context vector is then passed to the decoder along with a start
token as input, with the aim of learning the output sequence auto-
regressively.

or in the case of attention (discussed in more detail in Chapter 4)
the alignment scores.

The goal of the context vector is to encapsulate all the informa-
tion of the input sequence in a compressed form such that it can
then passed along to the decoder on the right of Figure 2.6 to help
make predictions.

The decoder then takes as input the context vector and a start
token (<START> shown in Figure 2.6) in place of xt

0 signifying the
start of a new sequence. For each time-step in the decoder, the pre-
dicted output is used as the input for the next time-step (i.e. auto-
regressively), ultimately building to a full target sequence predic-
tion for y = [y0, y1, . . . , yL].

2.4.3 AlexNet for Time-series Classification

CNNs, RNNs and many such variants have come to dominate
nearly all areas of supervised learning. Naturally, this also came
to bear for the task of time-series classification, and it was the area
of activity recognition that first encouraged a platform for experi-
mentation of applying deep learning methods following the release
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of the Wireless Sensor Data Mining (WISDM) project (Kwapisz et
al., 2011) and then again with an extended updated version (Weiss
et al., 2019). Similar to the SNPhotCC and PLAsTiCC challenges
mentioned earlier, these datasets were presented to the commu-
nity such that a comparison of methods could be evaluated on a
standard multivariate time-series dataset.

Work by Bagnall et al. (2018) collated a varied set of multivari-
ate time-series datasets with the intention of benchmarking the
many classification algorithms that were emerging. The dataset it-
self came to be known as the multivariate time-series benchmark
dataset (MTS). As with the astronomical challenges, early work
used traditional machine learning methods but soon moved into
the deep learning direction. Hoping to find a similar success story
of AlexNet (Krizhevsky et al., 2012) for the domain of time-series
classification, Fawaz et al. (2019) explored the latest trends in using
deep learning for this task, but also considered the quality of the
more traditional machine learning approaches. Of the best perform-
ing methods, CNNs were frequently among the top when comparing
against the many different datasets contained in the MTS. While
the other approaches such as dynamic time-warping (Shokoohi-
Yekta et al., 2017) and shaplets (Ye and Keogh, 2011) still perform
well, the appeal of minimal feature engineering with deep learn-
ing architectures is quite apparent in the new methods proposed of
late (Ruiz et al., 2021).

Likewise for photometric classification, there have been recent
attempts to apply deep learning to minimise the laborious task
of feature selection, and in some cases input raw time-series in-
formation only. Work by Brunel et al. (2019) used an Inception-
V3 (Szegedy et al., 2015b) inspired convolutional neural network
(CNN) and earlier work by Charnock and Moss (2017) used a long-
short-term-memory (LSTM) recurrent neural network (RNN) for
Supernovae classification. Möller and Boissière (2020) also achieve
good results building upon the success of RNNs. Extending to the
general transient case and utilising an alternative RNN architec-
ture, gated reticular units (GRUs), work by Muthukrishna et al.
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(2019, RAPID) showcased the impressive results one could achieve
by using the latest methods borrowed from the domain of sequence
modelling and natural language processing (NLP). While these
deep learning methods have been shown to yield excellent results,
both RNNs and CNNs have several limitations when it comes to
dealing with time-series data.

RNNs tend to struggle with maintaining context over large se-
quences due to the unstable gradients problem (Hochreiter et al.,
2001) as described in Section 2.4.2. When an input sequence be-
comes long, the probability that we will be able to maintain the
context of one input to another decreases significantly with the
distance from that input (Madsen, 2019). The shorter the paths
between any set of positions in the input and output sequence, the
easier it is to learn dependencies (Hochreiter et al., 2001). Note that
the maximum path length of an RNN is then given by the length
of the most direct path between the first encoder input and the
last decoder output (Grosse and Ba, 2019) (e.g. xi

0 to ytL as shown
in Figure 2.6). Another problem faced by the RNN family is the
inherently sequential structure, making parallelisable computation
difficult as each input point needs to be processed one after the
other, resulting in a computational cost of O(L), where L is the
sequence length (Vaswani et al., 2017).

CNNs overcome these problems, to some extent, with trivial
parallelism across layers and, with the use of the dilated convolu-
tion, distance relations can become an O(logL) operation, allowing
for processing of larger input sequences (Oord et al., 2016). How-
ever, CNNs are known to be computationally expensive with a
complexity per layer given by O(w · L · d2), where w is the kernel
window size and d the representational dimensionality (Vaswani et
al., 2017). For contrast, RNNs have complexity per layer O(L · d2).
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2.5 Research Overview

This section briefly describes the work that has been conducted
over the course of my doctoral research. Fortunately I have had the
opportunity to be involved in several collaborative projects during
this time. However, many of these projects are auxiliary to the main
work present in the thesis. Nevertheless, I first discuss the works
that I was involved in, and briefly describe my contributions to the
research. Second, I give an outline of my work that does feature
in this thesis, along with the associated chapters where they are
described.

2.5.1 Collaborative Contributions

Metric Design

The wide science goals of the Legacy Survey of Space and Time
at the Vera C. Rubin Observatory (LSST) demand improved met-
rics that consider the deluge of low-signal-to-noise data that is ex-
pected, and allow for probabilistic results. Traditional metrics that
return a single value disregard the notion of uncertainty, which
is extremely important for possible follow-up analysis that may
occur. Work by Malz et al. (2019b) developed a performance met-
ric for a citizen science challenge: the Photometric LSST Astro-
nomical Time-series Classification Challenge (PLAsTiCC), that re-
quired probabilistic classifications. A weighted modification of the
cross-entropy metric was proposed as it could be meaningfully in-
terpreted, as well as provide a level of uncertainty around the final
result.

My contributions involved assessing the potential probabilistic
metrics to investigate. Through implementation of trial metrics in
proclam2, for which I took ownership of developing the associated
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integration testing framework, we could evaluate their suitability
on typical data (Malz et al., 2019b).

Cadence Optimisation

The cadence that is eventually settled on for the Vera C. Rubin
Observatory will play an important part in our ability to do SNIa
cosmology. With the expected number of SNe being far larger than
previous surveys, it is not feasible for all to be spectroscopically
followed up. Therefore, being able to photometrically classify tran-
sients well will allow us to leverage the power of the datasets LSST
will provide and further constrain cosmological parameters. This
work used an established machine learning pipeline (Lochner et
al., 2016, snmachine.v1) to comparatively study different proposed
observing strategies of the LSST. The aim was to determine the op-
timal cadence suited for classification of SNe light curves. In order
to conduct this analysis, SNANA (Kessler et al., 2009) was used
to generate the light curves that correspond to different cadences
runs from the observing strategy simulator (Marshall et al., 2017,
OpSim) outputs.

My preliminary results featured in initial observing strategy
white papers (Lochner et al., 2018b; Scolnic et al., 2018b) and con-
ference proceedings in Allam Jr et al. (2019). An updated analysis,
led by Alves et al. (2022a), now using snmachine.v2 (Lochner et
al., 2021) compares the different cadence strategies, where I con-
tributed to the release and upgrading of snmachine.v23, as well
as integration testing, to be able to handle the new simulated light
curve data.

Real-time Science Infrastructure

To enable science with the large time-domain alert streams such
as the one from the upcoming LSST, development of a brokering
system that can easily digest the large volume of data and make

2github.com/aimalz/proclam
3github.com/LSSTDESC/snmachine

https://github.com/aimalz/proclam
https://github.com/LSSTDESC/snmachine
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it consumable to everyday scientists, is necessary. FINK (Möller et
al., 2021) is a broker infrastructure that allows for a wide range of
applications and services to connect to streams of alerts, and facil-
itates traditional astronomy broker features such as automated in-
gestion and annotation, as well as identification of promising alerts
for transient science.

As an early member of the FINK team, I contributed to the
open-source project design, initial infrastructure planning and im-
plementing integration tests for the FINK broker4. I was also in-
volved with drafting the first version of the publication (Möller et
al., 2021).

2.5.2 Thesis Outline

The driving force for the research contained in this thesis is the
need for real-time classification algorithms that can scale well for
the large surveys of tomorrow. With the need for low-latency high-
throughput systems to eventually be deployed to enable real-time
science, there is a focus towards developing model independent
classifiers5, that can input raw time-series, but with resource con-
straints in mind. As such, our novel architectures showcased herein
leverage and extend the latest developments in efficient machine
learning research to minimise computational cost, yet still provide
state-of-the-art classification performance. To demonstrate effec-
tiveness for real-world application, my later research takes a more
pragmatic approach for the development of these models for deploy-
ment into production systems working with real-world streaming
data.

The remainder of this thesis is structured as follows. Pre-
sented in Chapter 3 is a new architecture dubbed the astronomical-
transient xception (atx), developed for photometric classification,
but suitable for general time-series classification, that extends ideas
from the current state-of-the-art in multivariate time-series classifi-

4github.com/astrolabsoftware/fink-broker

https://github.com/astrolabsoftware/fink-broker
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cation by leveraging the depthwise-separable convolution for faster,
more efficient operations. Chapter 4 introduces another novel ar-
chitecture, also developed for photometric classification but appli-
cable for general time-series classification, called the time-series-
transformer (t2), that uses self-attention to achieve significant per-
formance gains over previous models, at reduced computational
cost and model size. Using real ZTF streaming data, Chapter 5
presents the engineering work involved in testing, validating and
optimising from a computational perspective for deployment of
these architectures as science modules into the production broker-
ing system of FINK mentioned in 2.5.1 for real-time photometric
classification. Finally, the conclusion is given in Chapter 6 with a
discussion of the works presented and a look towards the future,
highlighting possible avenues of further research.

5Historically, light curve features derived from model template fits such as
SALT2 (Guy et al., 2007) have been used to photometrically classify SNe.
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3

An Astronomical Xception:
Depthwise-Separable Convolutions for
Efficient Photometric Classification

“To deal with a 14-dimensional space, visualize a 3-D space and
say ‘fourteen’ to yourself very loudly. Everyone does it.”

— Geoffrey Hinton.

In this chapter we propose a new architecture applicable for
general multivariate time-series classification, that leverages the
efficient machine learning operation of depthwise-separable convo-
lutions to achieve near state-of-the-art photometric classification.
The astronomical-transient xception (atx) network moves away
from explicit feature selection and can achieve good performance
with raw time-series data alone. Nevertheless, the option to sup-
plement with additional features such as redshift is available, and
we achieve a logarithmic-loss of 0.739 on imbalanced data in a rep-
resentative setting with data from PLAsTiCC. Furthermore, atx
achieves a micro-averaged receiver operating characteristic area un-
der curve of 0.98 and micro-averaged precision-recall area under
curve of 0.87.

3.1 Introduction

In the modern era of large scale transient surveys, such as the
upcoming LSST (Ivezić et al., 2019), a deluge of time-series data,
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an order of magnitude greater than has been observed before is
expected. To handle the sheer volume of events, machine learning
is critical to be able to accurately photometrically classify events,
as well as to discern what is of particular astrophysical interest for
further spectroscopic follow-up.

The general problem of time-series classification is one that
extends to a vast number of disciplines, many of which look to
machine learning for improved performance. Traditional machine
learning approaches involved hand-crafted feature engineering to
uncover patterns that would be useful for classification. Today,
with the sheer volume of data, deep learning methods are being
investigated as a promising alternative to previous methods for
classification (Fawaz et al., 2019).

A common drawback that comes with using deep learning meth-
ods is the associated computational cost in both space and time,
i.e. memory footprint and runtime. The goal for the doctoral re-
search presented in this thesis is to develop novel deep learning
architectures that are computationally efficient and can perform
state-of-the-art photometric classification, in real-time.

This chapter is structured as follows. Section 3.2 recounts the
evolution of modern CNNs and how this led to the development of
the Xception network (Chollet, 2017), the architecture for which
motivated much of the work in this chapter. Section 3.3 reviews the
fundamental component of the Xception network, the depthwise-
separable convolution, in more detail and describes how it can im-
prove computational efficiency in 3.3.2. Section 3.4 presents our
Xception-inspired architecture, the astronomical-transient xception
network (atx), that leverages 1-dimensional depthwise-separable
convolutions for efficient photometric classification. We then de-
scribe the implementation and performance metrics used to evalu-
ate our models in Section 3.5. Subsequently, the results of apply-
ing our astronomical-transient xception architecture to PLAsTiCC
data (The PLAsTiCC team et al., 2018b) are showcased in Sec-
tion 3.6. Finally, in Section 3.7 a discussion of the work carried out
and prospects for further analyses is given.
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3.2 The Convolutional Neural Network Story

This section walks through the recent history of CNN architectural
advances over the last decade, culminating with the Xception net-
work and the use of depthwise-separable convolutions, which are
at the core of our new architecture for time-series classification.

As touched on in Section 2.4, the first landmark use of CNNs
was by LeCun et al. (1989c, LeNet-5) for handwritten digit recogni-
tion. Impressive for its day, several factors1 meant that CNNs con-
ceptually lay dormant until the seminal work by Krizhevsky et al.
(2012, AlexNet) sparked the resurgence of CNNs for practically all
areas of image analysis. Since their winning submission to the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC) (Deng
et al., 2009) in 2012, all successive winning submissions have re-
volved around some form of CNN architecture.

The AlexNet architecture introduced two new components, lo-
cal response normalization and rectified linear unit (ReLU) acti-
vation functions, with the latter becoming a staple in CNN archi-
tectures since. The architecture was an order of magnitude larger
than LeNet-5 with around 60 million parameters (i.e. weights and
biases), mostly concentrated in the final fully connected layers. It
is worth noting that the overwhelming majority of the computa-
tions were within the convolutional layers, yet these layers only
contained a small fraction of the total parameters.

The following year saw another CNN (Zeiler and Fergus, 2014,
ZFNet) take the crown by improving hyperparameter selection such
as filter size and stride length. It was later argued that further im-
provements could be achieved by making the networks deeper and
work by Liu and Deng (2015, VGG-16) showed that by increasing
depth of the network more non-linearities could be captured by the
model. However, a consequence of going deeper was an increase in

1Including a restrictive patent which barred even the creator, Yann LeCun,
from working on its development for many years (LeCun, 2021).
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parameter count and hence memory footprint, with approximately
138 million parameters.

Paying homage to the original LeNet-5, Google introduced a
network that built upon the idea that deeper networks would
improve performance, called GoogLeNet (Szegedy et al., 2015a)2.
Their focus was to not only achieve good classification results, but
to accomplish this with better efficiency than before. Removal of
the final fully connected layers allowed for total parameter counts
to be reduced to around 5 million, and much of the network’s ability
to still reach the top spot in ILSVRC-14 was due to their introduc-
tion of the Inception module.

The Inception module contains several convolutional opera-
tions all within a single “block”, or collection of components that
is repeated throughout the network (an example of the original
Inception-V1 module is shown in Figure 3.2). The key idea was
to use parallel pathways of convolutions that had different kernels
followed by a concatenation in order to capture different features
together. Another helpful component was the use 1 × 1 convolu-
tions, also referred to as a pointwise convolution, inspired by Lin et
al. (2013) to allow for dimensional reduction and extension where
necessary. A visual representation of the pointwise convolution in
action can be seen in Figure 3.1 that applies a 1 × 1 (×M chan-
nels) convolution N number of times to achieve the desired output
dimension.

Unfortunately, the charm of simply going deeper and adding
more layers for better performance hits a stumbling block beyond
a certain point. Using the standard backpropagation update algo-
rithm described in Equation 2.3, when the gradient of the weights
is less than one, it can be difficult for the resulting update to be
meaningfully propagated and learning becomes extremely slow, re-
sulting in the vanishing-gradients-problem. Similar to the unstable
gradients problem described in the previous chapter, the gradients
of the weights, w with respect to the loss L of early layers i.e. near

2Also known as the Inception-V1 architecture
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�
− 1×M kernel

(where M = 3 here)

FIGURE 3.1: Pointwise convolution introduced by Lin et al. (2013)
to help control dimensionality in CNNs. By successively applying
pointwise convolutions, also know as 1 × 1 convolutions, on an
input, one can control the number of output channels that are
produced. This allows for arbitrary scaling from M input channels
to N output channels.
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Previous Layer

1 × 1 Convolution

1 × 1 Convolution 1 × 1 Convolution 3× 3 Max Pooling

1 × 1 Convolution5 × 5 Convolution3 × 3 Convolution

Concatenation

FIGURE 3.2: The Inception block as featured in GoogLeNet a.k.a
Inception-V1 (Szegedy et al., 2015a). Inputs as they come in are
branched out with kernels of varying sizes operating on each fac-
torised input. The final output is formed from the concatenation
of the results of each convolution. Depending whether a dimension
reduction or extension is necessary a side channel 1×1 convolution
can assist in this regard.
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to the input are obtained via the chain rule from the downstream
layers near the output. As a result, if the gradients towards the end
are near zero, their effects will have vanished in the eyes of the early
layers. Another problem that also emerges with very deep networks
is the degradation problem, where training and test errors tend to
degrade as the number of layers increases, even when observed to
not be overfitting (He et al., 2016).

To overcome these problems He et al. (2016, ResNet) introduced
the concept of residual-blocks which are connected to one another
through identity mapping like that shown in Figure 3.3. They hy-
pothesised that if one considers H(X) as the underlying mapping
that is to be fit by a set of stacked layers with X referring to the
input to these layers, it is instead easier to optimise the residual,
F(X) := H(X)−X, than the underlying mapping directly. In this
way, one can reformulate the original mapping H(X) to be defined
as F(X)+X as depicted in Figure 3.3. Under the general hypothesis
that consecutive non-linear layers can asymptotically approximate
complicated functions, they suggest it should be equivalent to say
that consecutive non-linear layers can asymptotically approximate
the residual function, H(X)−X also3. As such, the residual blocks
simply learn the deviations from the input instead learning the
identity mapping directly.

The ability to skip layers and learn only the residual mapping
resulted in faster training convergence and a better top-1 error
rate, which describes the error rate of a classifier that outputs a
probability score across all classes to give the highest score to the
correct class, and ultimately won them 1st place in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) (Deng et al.,
2009) of 2015. The ResNet architecture showcased the usefulness
of simple skip connections by being able to go to greater depths
than before without badly degrading performance. It was also one

3Under the assumption that the input dimensions are the same as the out-
put. To fix the situation where the dimensions are not the same, a 1 × 1
convolution can be used for dimensionality conversion
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of the first significant uses of batch normalization proposed by Ioffe
and Szegedy (2015), and using 1 × 1 convolutions for dimensional
manipulation, it was the first network to surpass human-level ac-
curacy.

Later versions of the Inception module by Szegedy et
al. (2017, Inception-V4) also incorporated this idea of hav-
ing residual blocks, with the architecture often referred to as
the Inception-ResNet network in the literature as well. This
was added to the previous version (Szegedy et al., 2015b,
Inception-V3) which leveraged spatially separable convolutions
that breaks down a typical single kernel of size k×k into two com-
posite kernels of size k× 1 and 1× k applied one after the other to
save on computational cost and number of parameters whilst still
operating over the same receptive field (Chen et al., 2020).

3.2.1 The Inception Hypothesis

Compared to previous architectures of simple sequential layers of
convolutions such as VGG-16, the Inception module with varying
kernels and parallel towers of operations appeared to be capable
of learning superior representations with fewer parameters. Work
by Chollet (2017) sought to better understand the mechanisms of
the Inception module and asked three prime questions: How do they
work? How do they differ from regular convolutions? and What
design strategies come after Inception?

In search for answers to these questions, the Inception Hypothe-
sis was put forward by Chollet (2017) which gave the interpretation
that there is a spectrum of different types of convolution operations
one could apply. Under this interpretation, they state that Incep-
tion modules in CNNs sit in-between normal convolutions at one
end of the spectrum, and depthwise-separable convolutions (Sifre
and Mallat, 2014) at the other. As described in Chapter 2, nor-
mal convolutional kernels are tasked with simultaneously mapping
cross-channel correlations and spatial correlations. With the In-
ception module, this is made easier and more efficient by breaking
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H(X) − X

FIGURE 3.3: Example of residual blocks as presented in He et al.
(2016). In a normal block (left) the set of stacked layers that are
shown within the grey box must directly learn the mapping from
the inputs to the output of H(X). However, the same set of stacked
layers in the residual block (right) only needs to learn the residual
mappingH(X)−X. If the underlying mapping should be that of the
identity mapping H(X) = X, then learning is made considerably
easier as all that is required is to set the preceeding weight layer
to zero. For this set up to work, where the dimensionality of the
input is different from that of the outgoing weight layer, a 1 × 1
convolution can be used to bring the identity back into alignment
for the addition operator.
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down the procedure into a series of operations that independently
find cross-channel correlations and spatial correlations. In the In-
ception module, cross-channel correlations are found using 1 × 1
convolutions and the spatial correlations found via 3 × 3 or 5 × 5
convolutions.

Ultimately, the Inception hypothesis suggests it is better to de-
couple cross-channel correlations and spatial correlations instead
of attempting to map them together. A stronger hypothesis put
forward by Chollet (2017) is that these can be mapped completely
separately. Their extreme version of the Inception hypothesis advo-
cates for 1× 1 convolutions first to find cross-channel correlations
and then to separately map the spatial correlations of each out-
put channel. This extreme form of an Inception module described
by Chollet (2017) is essentially the depthwise-separable convolution
of Sifre and Mallat (2014), with the main difference being the order
of operations since depthwise-separable convolutions typically map
spatially first and then look for cross-channel correlations through
1× 1 convolutions.

The conclusions from Chollet (2017) observations was that
one could improve beyond the performance of Inception-ResNet
by simply using only stacked depthwise-separable convolutions
in place of Inception modules. An empirical study using a new
type of architecture that employed just that suggestion, called the
Xception network (Chollet, 2017), managed to achieve better top-1
error, using the same number of parameters of the Inception-V3

network. The Xception network, shown in Figure 3.4, uses the
same building blocks of the successful architectures that came be-
fore, such as stacked layers (VGG-16), skip connections, and batch
normalisation (ResNet). The architecture uses the ReLU activation
function throughout (Agarap, 2018) and makes use of MaxPooling
and Global Average Pooling to remove invariances and help control
the scale of the outputs. MaxPooling applies a maximum filter in
the same way that a typical kernel would be applied to the input,
whereas Global Average Pooling averages out the spatial informa-
tion helping with translation invariance (Lin et al., 2013).
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3.3 Efficient Learning with the Depthwise-Separable
Convolution

While the theoretical grounding for using the depthwise-separable
convolutions has been shown in Section 3.2.1, there is also a prac-
tical advantage that comes with using this operation.

This section highlights the computational efficiency gains one
can achieve when switching to use of a depthwise-separable convo-
lution in exchange of normal convolutions.

3.3.1 1D Depthwise-Separable Convolutions

The depthwise-separable convolution is in essence two operations
chained together to yield a low-rank factorisation of the normal
convolution (see Figure 2.4 for a visualisation of a normal convolu-
tion). This factorised version of the normal convolution first does
a depthwise convolution across the channels of the input (depicted
in Figure 3.5a), followed by a pointwise convolution (shown in Fig-
ure 3.5b). In the computer vision literature, a pointwise convolution
is often referred to as a 1× 1 convolution whereby the convolution
acts on a window of height and width equal to one, and where the
number of channels for which it operates is implicit. This is equiv-
alently described as 1× 1×M convolution where M is the number
of channels the pointwise convolution is operating on. Since we are
dealing with 1-dimensional signals of time-series data withM chan-
nels, the pointwise convolutions is then described here as 1 ×M ,
which indicates a window size of width 1, convolving across the M
channels. The combination of Figure 3.5a and Figure 3.5b is what
forms the depthwise-separable convolution, as shown in Figure 3.5.

To better understand the operations involved, we shall recap
some of the properties of the normal convolution and then walk
through the equations for depthwise and pointwise convolutions.
Recall a convolution is mathematically described as:
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(f ∗ g)(t) :=
∫ ∞

−∞
f(τ)g(t− τ) dτ, (3.1)

where f, g : Rd → R.
This describes a mixing of the two signals f and g, where the

function f(τ ) is weighted by the function g(−τ ) shifted by t. For
each index of t, the weighting function g(t − τ ) indicates the im-
portance of different parts of the input function, f(τ ). As we are
dealing with discrete signals sampled over time, the above equation
becomes:

(f ∗ g)[q] =
∑

p

f [p]g[q − p], (3.2)

where g has finite support in the set {1, 2, . . . , p− 1}
Building from Equation 3.2 we shall now put into context the

nature of our problem. In simpler terms, the normal 1-dimensional
convolution can be understood as a sliding dot product between
a kernel (or filter) K ∈ R1×w and input I ∈ RM×L, where w is
the width of the kernel, M is the number of input channels of our
signal and L is the length of our input sequence. This produces an
output feature map F ∈ RN×L, where N is the number of output
channels and L represents the length of the output4

Convk,n (K, I) =
∑

i,m

Ki,m,n · Ik+i−1,m (3.3)

= Fk,n, (3.4)

where n indexes the output channels andm indexes the input chan-
nels, k indexes the kernels, and i refers to the relative position in
the sequence as the kernel is moved across the input.5.

4Typically the length of the output would differ as L′ = L−w+1, but with
zero-padding and a stride of one, L′ ≡ L, and as such will remain the notation
throughout

5It should be noted the subtle distinction between Equation 3.2 and Equa-
tion 3.3. Instead of using the difference between indices, k−i, we consider k+i.
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By inspecting Equation 3.3, it can be seen that both the channel
and spatial (akin to temporal in this context) features are extracted
at the same time. However, we want to be able to learn the channel
cross-correlations separate to the spatial correlations as mentioned
in Section 3.2.1, where the depthwise-separable comes to shine.

We mentioned previously that the depthwise-separable convolu-
tion is formed from successive operation of a depthwise convolution
(DConv) and a pointwise convolution (PConv). Assuming a stride
of one and zero-padding, we can write the depthwise convolution
below:

DConvm,l (K, I) =
∑

i

Km,i ⊙ Im,l+i−1, (3.5)

where the ⊙ operator represents the element-wise multiplication
(Hadamard product), which produces the intermediate output
DConv ∈ RM×L, with M representing the number of channels,
and L representing indexing the length of our sequence.

The depthwise convolution separates the input into its individ-
ual channels m and performs a normal 1-dimensional convolution
on each one separately. In effect, this collects features from each
channel, called depthwise features. The number of kernels is equal
to the number of channels in the input M .

The pointwise convolution on the other hand is simply a normal
convolution with k kernels of window size equal to 1 that collects
features at each index l in the sequence across the channels. With
the same assumption of stride and padding as before, the output
for PConv can be written as:

PConvk,l (K, I) =
∑

i

Kk,m · Im,l+i−1. (3.6)

When operating in this way, the equation becomes the cross-correlation equa-
tion. Deep learning frameworks, such as TensorFlow (Mart́ın Abadi et al.,
2015), often implement the convolution as cross-correlation as there is little
practical difference when kernels are learnable or symmetric.
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In this instance KPW ∈ RM×1, compared to the kernel in Equa-
tion (3.5) which has size KDW ∈ R1×w, where as before m indexes
the input channels, k indexes the kernels used, and i referring to
the relative position in the sequence as the kernel is moved across
the input, and l indexes the sequence.

Combining Equation (3.5) and Equation (3.6) together for the
complete depthwise-separable convolution (SepConv) gives an op-
erations described as follows:

SepConv(KPW ,KDW , I) = PConv
(
KPW ,DConv (KDW , I)

)
. (3.7)

3.3.2 Improved Computational Complexity

In addition to the ability to decouple spatial and channel correla-
tions, one of the benefits when using depthwise-separable convo-
lutions in place of normal convolutions is the saving in space and
computational cost.

For normal convolutions, computation of a kernel with the num-
ber of channels in the input occurs at each position of the input
sequence. This is repeated for the number of channels in the output.
Therefore, the number of computations becomes:

O(w ·M ·N · L), (3.8)

where the computational cost depends on the number of input
channels M , the number of output channels N , the kernel size w
and the input, or feature map, size L.

In contrast, the first component of the depthwise-separable con-
volution, the depthwise convolution, has a computational cost of:

O(w ·M · L). (3.9)

While depthwise convolutions are clearly more efficient, their
use alone does not allow for the rich feature extractions one hopes
for when using convolutions as it only filters the input channels,
but does not combine them. Hence, the additional step of using a
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pointwise convolution, to form a linear combination of the output
of the depthwise layer, is required to generate new features. The
computation for the pointwise convolution is simply the number of
desired output channels, N , with the output sequence length, L:

O(N · L). (3.10)

The combination of depthwise convolution and pointwise con-
volution is referred to as the depthwise-separable convolution, orig-
inally proposed by Sifre and Mallat (2014), but made popular with
the work by Chollet (2017) with the Xception architecture, results
in a full computation cost of:

O(w ·M · L+M ·N · L). (3.11)

By comparing Equation 3.8 and Equation 3.11, it can be seen
there is a computational saving of the order of:

O
(

1

N
+

1

w

)
. (3.12)

Concretely, the SepConv operation can improve efficiency when
using larger number of output channels and size of kernel compared
to the normal Conv operation. This observation was empirically
shown by Chollet (2017), and emphasised in the work of Howard
et al. (2017, MobileNetV1), that significant computational cost sav-
ings can be achieved.

Further to the computational savings, is the reduction in model
size and space saving when using SepConv. Also shown in Chol-
let (2017) and highlighted in Kaiser et al. (2017) is the difference
in number of parameters each operation uses. For typical convolu-
tions, as described in Equation 3.3, the number of parameters for
each layer can be expressed as:

O
(
[w ·M ·N ] +N

)
, (3.13)

where M is the number of input channels, w refers to the kernel
window size, and N is the number of output channels.
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If we ignore the addition of N at the end in the equation above
for now6, which refers to the bias term, and consider the number of
input and output channels to be the same, which we will label as d
for the general dimensionality we are dealing with, Equation 3.13
then becomes:

O
(
w · d2

)
. (3.14)

Comparatively, the depthwise-separable convolution parame-
ters can be expressed with:

O(w · d+ d2), (3.15)

where we again ignore the bias term and consider the number of
input and output channels to be the same.

It can then also be seen that one can achieve considerable
space savings with the reduction of parameters, as well as with the
computational cost savings described earlier. Hence, by leveraging
depthwise-separable convolutions in place of normal convolutions
we can reduce model size and improve runtimes for inference and
training. In recent times, the demand for deploying neural net-
works in resource constrained settings has exploded, and as such
the desire to leverage efficient operations is one that saw pointwise
convolutions, described in Section 3.3.1, used extensively in modern
CNNs, as well as the depthwise convolution for decoupled spatial
and channel correlations to be found. These reasons are the main
motivations for using such operations for photometric classification,
working towards enabling real-time science.

3.4 atx: The Astronomical-Transient Xception

The Inception hypothesis described in Section 3.2.1 revealed a
path to improved performance by replacing the Inception module

6Discussion as to why this is ignored follows in Section 3.4.4
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with stacked depthwise-separable convolutions instead. Extending
Inception-like architectures in this way allow for improved com-
putational efficiency at a reduction in model size. The current
state-of-the-art for multivariate time-series classification by Fawaz
et al. (2020, InceptionTime) presents an Inception style archi-
tecture adapted for use on multivariate time-series. We propose a
novel architecture, called the astronomical-transient xception, or
atx, that combines the insight by Chollet (2017) to the domain of
multivariate time-series classification.

With our focus on photometric classification, we develop a vari-
ant of the Xception architecture with particular modifications to
work with astronomical data. However, by virtue of developing
the architecture for photometric data, we have also made it gener-
ally applicable to multivariate time-series data. The astronomical-
transients xception works with raw time-series data, and also allows
for additional features.

3.4.1 Architecture

The astronomical-transient xception, thereafter referred to as atx,
is shown in Figure 3.6. It has the same overall structure as that
presented in Chollet (2017) (see Figure 3.4) but with principled
modifications made to work well for time-series data, and more
specifically for photometric data.

We use a 1-dimensional depthwise-separable convolution, in-
stead of the original 2-dimensional depthwise-separable convolu-
tion (where spatial correlations now refer to the width of the kernel
used instead of height and width). To avoid overfitting, we scale
the number of filters down by a factor of 4 and do not repeat the
Middle-Flow. An additional layer for interpolating the irregularly
sampled photometric data is included in our network, as well as an
optional input layer for concatenating arbitrary additional features
to supplement classification scores.

As with the architecture described in Chollet (2017), all normal
convolution and all separable convolution layers are followed by a
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batch normalization unit (BatchNorm) (Ioffe and Szegedy, 2015).
In this context, a batch refers to a sub-set of the input data that is
being operated on at one time, where the batch size is set by the
amount of available memory on the device being used for training.
This brings an additional set of parameters to the model in the
way of two trainable parameters, namely a learned scaling factor,
γ, and a learned offset factor, β, but also two non-trainable param-
eters, the moving mean and the variance, that are persisted but not
updated via backpropagation (discussed further in Section 3.4.4).

3.4.2 Data Interpolation with Gaussian Processes

The raw time-series that is observed is irregularly sampled with
heteroskedastic errors. There exists several methods for data in-
terpolation such as linear interpolation or using cubic splines (De
Boor and De Boor, 1978) but a technique that is widely used to
overcome missing data, and that can also provide uncertainty in-
formation is Gaussian process regression (Rasmussen, 2004). This
technique is a popular method that has been applied to Supernovae
light curves for many years, e.g Lochner et al. (2016). Gaussian
processes represent distributions over functions f that when eval-
uated at a given point x is a random variable f(x), with mean
E[f(x)] = m(x) and covariance between two sampled observations
x, x′ as Cov(f(x, x′)) = Kf (x, x

′), where Kf (·, ·) is a kernel.
An important aspect of applying Gaussian process interpolation

to data is the choice of kernel which affects light curve fits and ulti-
mately classification results down-the-line (Revsbech et al., 2018).
The work by Lochner et al. (2016) (described in Chapter 2) used a
squared-exponential kernel for fitting SNe light-curves. Their choice
at the time was motivated by flexibility and ease of use, however
later studies in Revsbech et al. (2018) showed the Gibbs kernel
to be more suitable for SNe-like light-curves by avoiding overfit-
ting around the peak. Extending to the general transient case, it
was discovered in Boone (2019) that for general transients a 2-
dimensional Matern kernel that incorporates both wavelength (i.e.
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passband) information as well as time works well. It can be seen in
Boone (2019) that by use of the 2-dimensional kernel, correlations
between passbands are leveraged and predictions in passbands that
do not have any observations are still possible. Therefore we note
that while other specialised kernels may be better suited for indi-
vidual classes, we use the same Matern kernel (Rasmussen, 2004)
shown here,

Kν=3/2(x, x
′) =

(
1 +

√
3r

ℓ

)
exp

(√
3r

ℓ

)
, (3.16)

where r is the Euclidean distance between x and x′, and ℓ is a 2-
dimensional vector for the length scale of time and wavelength. It
is parametrised by ν which controls the smoothness of the resulting
function and set to ν = 3/2. Note as ν → ∞ the kernel becomes
equivalent to the kernel defined in Equation 2.2. By performing
Gaussian process regression and then sampling the resulting Gaus-
sian process at regular intervals, we transform our previously irreg-
ular multivariate time-series to a now well sampled regular multi-
variate signal. The Gaussian process mean is sampled at regular
points in time to produce X ∈ RL×M , where L is the sampled time
sequence length and M is the number of passbands. This proce-
dure is illustrated in Figure 3.7. It should be stated that by virtue
of using Gaussian processes for data interpolation the quality of
the interpolated signal is highly depended on the choice of kernel,
which has the possibility to produce unphysical results in regions
of no data. It could be helpful to study the affects of model pre-
dictions in comparison to other interpolation techniques mentioned
above such as linear interpolation and cubic splines. Furthermore,
while we do not use the Gaussian processes’ errors explicitly as
input, a study that directly includes the Gaussian process error as
input would be worth investigating.
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Entry Flow

Middle Flow ×8
Exit Flow

Inputs

Conv 32, 3×3, s = 2 × 2

ReLU

Conv 64, 3×3
ReLU

SepConv 128, 3×3

ReLU
SepConv 128, 3×3

Max Pooling, s = 2× 2

Conv 1×1
s = 2 × 2

SepConv 256, 3×3

ReLU

ReLU
SepConv 256, 3×3

Max Pooling, s = 2× 2

Conv 1×1
s = 2 × 2

SepConv 728, 3×3

ReLU

ReLU
SepConv 728, 3×3

Max Pooling, s = 2× 2

Conv 1×1
s = 2 × 2

SepConv 728, 3×3

ReLU

ReLU
SepConv 728, 3×3

ReLU
SepConv 728, 3×3

ReLU
SepConv 728, 3×3

ReLU
SepConv 1024, 3×3

Max Pooling, s = 2× 2

Conv 1×1
s = 2 × 2

SepConv 1536, 3×3

ReLU

ReLU
SepConv 2048, 3×3

Global Average
Pooling

Linear

Softmax

Output
Probabilities

FIGURE 3.4: Arrangement of the original xception architecture
presented in Chollet (2017). Where applicable, the notation for
convolutions operations is given as the number of filters, the kernel
size, followed by the stride length s. For the looped 1×1 convolution
connections, the number of filters is equal to the number of filters of
the outgoing separable-convolution it is being connected to. Note,
the Middle Flow is repeated 8 times, with the output feeding back
into itself. As referred to in Chollet (2017), all convolution layers are
followed by batch normalisation (Ioffe and Szegedy, 2015), which
is not shown in the diagram.
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spatial/temporal dimension

cross channel

�� �
− kernel (filter)

}
M output channels

(a) Depthwise convolution.

�
− 1×M kernel

(where M = 3 here)

(b) Pointwise convolution.

FIGURE 3.5: Depthwise-separable convolution. Chaining a and b
gives the depthwise-separable convolution. The number of filters
in the depthwise convolution is fixed by the number of channels
M in the input, as is the size of the pointwise convolution i.e. 1×
M . Repeatedly applying the depthwise-separable convolution to an
input simply adds new output channels, allowing for dimensionality
to scale as M → N , where N is the number of times it is applied.
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Entry Flow

Middle Flow ×1
Exit Flow

Inputs

Gaussian
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Interpolation

Conv f = 8, k = 3, s = 2

ReLU

Conv f = 16, k = 3

ReLU

SepConv f = 32, k = 3

ReLU
SepConv f = 32, k = 3

Max Pooling, s = 2

Conv
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ReLU
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ReLU
SepConv f = 182, k = 3

ReLU
SepConv f = 182, k = 3

ReLU
SepConv f = 256, k = 3

Max Pooling, s = 2

Conv
k = 1, s = 2

SepConv f = 384, k = 3

ReLU

ReLU
SepConv f = 512, k = 3

Global Average
Pooling

Concatenate

Linear

Softmax

Output
Probabilities

Additional
Features
[zerror, z]

f = Number of filters
k = Kernel size
s = Stride

FIGURE 3.6: Schematic of the astronomical-xception (atx) ar-
chitecture. Photometric time-series data is processed through the
Gaussian process interpolation layer, before being passed into the
Entry-Flow. From this point, the overall architecture is akin to
that described in Section 3.3 and depicted in Figure 3.4 with the
key difference being the use of a 1-dimensional depthwise-separable
convolution, compared to the 2-dimensional depthwise-separable
convolution used in the original work by Chollet (2017). Further-
more, to avoid overfitting, the number of filters has been scaled
down by a factor of 4, as well as reducing the number of times the
Middle Flow section is repeated. We include a new concatenation
layer in the Exit Flow block where one can include an arbitrary
number of additional features, such as redshift information. A fi-
nal linear layer with softmax is applied to output class prediction
probabilities for the objects.
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Raw Time-Series

X ∈ RT×M

Fit Gaussian
Processes (GP)

X ∈ RT×M

Sample GP Mean

X ∈ RL×M

⇒ ⇒

FIGURE 3.7: Process of transforming an irregularly sampled transient light curve to a well sampled
multivariate time-series using Gaussian process interpolation. First, we fit a 2-dimensional Gaussian
process using passband wavelength and time information. Then we evaluate the Gaussian process
mean at L time points l for each of M passbands, to give a well sampled multivariate time-series.
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3.4.3 Inputting Additional Information

The astronomical-transient xception, atx, is designed to be mal-
leable such that one can add further features if desired. We achieve
this by adding a new input layer to the Xception architecture (see.
Exit Flow in Figure 3.6) that allows for additional features to be
concatenated to the features that emerge from the network, but be-
fore the final linear layer. We chose to input additional features here
to allow for the rest of the architecture to build rich time-series only
features. It was felt best to clearly separate time-series information
from auxiliary features and allow for the 1-dimensional temporal
operations to find patterns within the multivariate signal alone.
Having said that, there is scope to include features at any point in
the network and would be of interest for further study to investi-
gate the impact on performance should they be included elsewhere.
For the purposes of the current study of photometric classification,
only redshift information has been added. In many photometric
classifiers, photometric redshift z, has consistently been a feature
of high importance (e.g. Boone, 2019). As one particular example
of the type of additional features that can be added, photometric
redshift z and the associated error zerror are included.

3.4.4 Trainable Parameters and Hyperparameters

The atx architecture that we propose consists of a set of trainable
parameters, some of which were described in Section 3.3.2, as well
as tunable hyperparameters which ultimately control the perfor-
mance of the network. Of the layers in atx, it is only the SepConv
and Conv blocks, as well as the final linear layer that contain the
trainable parameters since there are no trainable parameters in the
MaxPool, ReLU or Softmax layers.

Recall that for the original Xception architecture, following
each depthwise-separate and normal convolutions is a batch nor-
malization layer (BatchNorm). BatchNorm applies a transforma-
tion to ensure the mean of each batch is near zero and that the stan-
dard deviation centres around one. As described in Section 3.4.1,
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applying BatchNorm adds four further parameters, where only two
are trainable γ and β. The other two non-trainable parameters are
the moving average and moving variance. As described in Ioffe and
Szegedy (2015), when applying BatchNorm, the role of the bias is
subsumed by the learned offset factor, β, so it does not feature as
a parameter of the network.

Considering this, the two operations then become:

SepConv#params =
[
w × d+ d2

]
︸ ︷︷ ︸
DConv + PConv

+
[
γ + β + µ+ σ2

]
︸ ︷︷ ︸

BatchNorm

(3.17)

Conv#params =
[
w × d2

]
+
[
γ + β + µ+ σ2

]
(3.18)

Lastly, the final fully connected layer, which does contain bias
terms is given as:

Linear#params =
(
[d× C] + C

)
, (3.19)

where C refers to the number of classes.
From the above equations, there are certain parameters that

are set by way of our problem, i.e. number of classes, C. Yet
other parameters, that may not necessarily be trainable param-
eters but affect the overall performance of the network, need to
be set. One such hyperparameter is choice of kernel window size,
w, which controls the amount of temporal correlations to con-
sider at a time. Another is the pooling window size, pool size,
which dictates the window to perform max-pooling over. A hyper-
parameter we introduce specifically for our architecture is called
the scaledown factor.

Since atx is constructed from the same setup as the Xception

network, we use the same number of filters for each layer in the
network, however, as Xception was designed for the task of image
classification trained on extremely large datasets, the number of
filters used originally would cause overfitting for our problem of
photometric classification. Thus, we introduce a new hyperparam-
eter which scales the original Xception down by a certain factor,
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reducing the number of filters at each layer simultaneously, and
hence the overall number of parameters. Further still, to reduce
overfitting even more, we present another hyperparameter that con-
trols number of times the Middle-Flow is repeated. In the original
work by Chollet (2017) this was repeated 8 times but, as previously
stated, it is expected that this would be too much for our prob-
lem, and so we include a hyperparameter, N , to learn the optimal
number of repeats of this section. Lastly, a hyperparameter that
controls the learning rate, as described by η in Equation 2.3, but
referred to as learning rate hereafter, is used for training.

3.5 Implementation, Evaluation Metrics & Training

In order to develop and evaluate our architecture, modern machine
learning frameworks were used that allow for a modular implemen-
tation, permitting easy extensions or modifications in the future.
This section explains the choice of loss function that is used for
training is discussed as well as how model hyperparameters are
optimised.

3.5.1 Implementation

The atx architecture described in this chapter has been imple-
mented using the machine learning framework TensorFlow (Mart́ın
Abadi et al., 2015) and the tf.keras application programming in-
terface (API) (Chollet et al., 2015), with training and inference
carried out on a NVIDIA Tesla V100 GPU. Other essential soft-
ware used for data processing includes pandas (McKinney, 2010),
numpy (Harris et al., 2020) and george (Ambikasaran et al., 2015)
for fitting the Gaussian processes. The code is open-sourced and
available under Apache 2.0 licence7.

7github.com/tallamjr/astronet

https://github.com/tallamjr/astronet
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3.5.2 Multi-Class Logarithmic-Loss

The underlying algorithm that governs the usefulness of neural
networks is the stochastic gradient decent (SGD) optimisation al-
gorithm that updates the weights of the network according to the
backpropagation algorithm (Rumelhart et al., 1986). While perfor-
mance metrics give an indicator as to how well a model is able to
distinguish between classes, to be able to train and improve the
model one must have a differentiable loss function. Extensive in-
vestigations by Malz et al. (2019b) showed that the most suitable
differentiable loss-function for the problem of transients classifi-
cation is a probabilistic loss function. Probabilistic loss functions
are used in cases where the uncertainty of a prediction is useful
and the problem at hand is best served with quantification of the
errors rather than a binary answer of correct or incorrect. The
probabilistic loss function they suggest is the multi-class weighted
logarithmic-loss that up-weights rarer classes and defines a perfect
classifier as one that achieves a score of zero, and is given by

L = −



∑C

i=1 wi

∑Ni

j=1
yij
Ni

ln pij∑C
i=1wi


 , (3.20)

where C refers to the number of classes in the dataset and Ni the
number of objects in the i-th class. The predicted probability of
an observation i belonging to class j is given by pij with a truth
label yij equal 1 if the object j belongs to class i and 0 other-
wise. Finally the class weight wi is used to bolster performance
to specific classes. For our investigation we opt for a flat-weighted
multi-class logarithmic-loss as described in Boone (2019) that as-
signs all classes in the training set the same weight of wi = 1. To
consider the original metric put forth in Malz et al. (2019b) and use
the weighting scheme designed for the PLAsTiCC competition, one
would also need to include the additional anomaly classes (class 99)
that existed in the PLAsTiCC test set. By ignoring class 99 one
can better compare later analyses between the original PLAsTiCC
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training set and our modified dataset (described in upcoming Sec-
tion 3.6.1).

3.5.3 Training

In order to train a model with the atx architecture, we need to
establish the choice of optimisation algorithm and associated pa-
rameters that will be used to update the weights of the network.
We use a variant of the SGD optimisation algorithm mentioned in
Section 3.5.2 called ADAM (Kingma and Ba, 2014). An important
aspect to consider when training a model using any optimisation
algorithm is the learning schedule and corresponding learning rate.
The initialisation value of the learning rate can be seen as a hy-
perparameter to be optimised for separately with hyperparameter
optimisation (discussed in the next section). It is typically bene-
ficial to introduce a learning schedule to reduce the learning rate
as training progresses (Goodfellow et al., 2016). We indeed adopt
a learning schedule, reducing the learning rate by 10% if it is ob-
served that our loss value does not decrease within 5 epochs, where
a single epoch refers to one full forward pass and one full backward
pass of all the examples in the training set. To ensure the model
does not overfit, the ratio of validation loss with the training set
loss is monitored.

3.5.4 Hyperparameter Optimisation

As discussed in Section 3.4.4, atx contains a set of fixed parameters
such as M and C, and a set of tunable hyperparameters. Choosing
the best set of hyperparameters can be framed as an optimisation
problem expressed as

θ∗ = argmin
θ∈Θ

g(θ), (3.21)

where g(θ) is an objective score to be minimised and evaluated on
a validation set, with the set of hyperparameters θ being able to
take any value defined in the domain of Θ. The objective score for
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our purposes is the logarithmic-loss defined in Equation 3.20 and
the set of hyperparameters that yield the lowest objective score is
θ∗. The goal is to find the model hyperparameters that yield the
best score on the validation set metric (Koehrsen, 2018).

Traditionally hyperparameter optimisation has been performed
with either random search or a grid search over the set of param-
eters in Θ, which can be time consuming and inefficient. Instead
a Bayesian optimisation approach is used that attempts to form
a probabilistic model mapping hyperparameters to a probability
distribution for a given score.

To choose the best performing hyperparameters we use the
Tree-structured Parzen Estimator (TPE) algorithm (Bergstra et
al., 2011) that is implemented in the optuna package (Akiba et al.,
2019) with 5 fold cross-validation.

3.6 Results

We apply our astronomical-transient xception architecture to the
problem of photometric classification of astronomical transients. In
order to also gauge the network’s versatility towards general multi-
variate time-series data we apply our new architecture to the MTS
(described in Section 2.4) too. However, as the focus of this the-
sis is in relation to photometric classification we refer the reader
to Appendix A for the MTS results. As noted in Section 3.1 typ-
ical astronomical data that are available for training a photomet-
ric classifier are highly imbalanced, with a large number of spec-
troscopically confirmed SNIa compared to other classes, and non-
representative, since observations are biased towards lower redshift
objects. Consequently, the training data are non-representative
of the test data. For robust and accurate classification, training
datasets should be representative of the test data. Works by Revs-
bech et al. (2018), Boone (2019) and Alves et al. (2022a) present
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techniques that help address this problem of non-representativity,
transforming the training data to be more representative of the true
test data through data augmentation. This process is involved and
can be decoupled from the design of architecture of the classifier.
Therefore in this current work, as a first step we consider training
data that is representative in redshift but imbalanced. In future
work we will consider the combination of atx with augmentation
techniques to address the representativity problem.

3.6.1 Astronomical Transients Dataset

To be able to evaluate our architecture in a representative setting,
but also to test the model’s resilience to class imbalance, we utilise
the PLAsTiCC dataset (The PLAsTiCC team et al., 2018b). The
complete dataset contains synthetic light curves of approximately
3.5 million transient objects from a variety of classes simulated to
be observed in 6 passbands using a cadence defined in Kessler et al.
(2019).

The majority of events that exist in the dataset were simulated
to be observed with the Wide-Fast-Deep (WFD) mode, which com-
pared to the Deep-Drilling-Fields (DDF) observing mode, is more
sparsely sampled in time and has larger errors. Originally crafted
for a machine learning competition8, the entire PLAsTiCC dataset
was divided into two parts, with < 1% initially being given to par-
ticipants in the competition that was highly non-representative of
the other part. Following the close of the competition all data are
now publicly available9. For our purposes, we use the complement
to what was initially released and construct a new training and test
set from the remaining 99% of the data (without anomaly class 99),
where 70% of the data is used for training and the remaining 30%
is used for a disjoint test set. By doing so, the dataset is now rep-
resentative in terms of redshift, but remains highly imbalanced in
terms of the classes. The number of samples per class used to eval-

8kaggle.com/c/PLAsTiCC-2018

https://www.kaggle.com/c/PLAsTiCC-2018
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TABLE 3.1: Number of samples of the PLAsTiCC data used for
evaluation of the atx model. Note the largely imbalanced dataset
distribution of SNIa objects compared to other classes.

Class Number of Samples (%)
µ− Lens-Single 1,303 (0.037%)
TDE 13,552 (0.389%)
EB 96,560 (2.775%)
SNII 1,000,033 (28.741%)
SNIax 63,660 (1.830%)
Mira 1,453 (0.042%)
SNIbc 175,083 (5.032%)
KN 132 (0.004%)
M-dwarf 93,480 (2.686%)
SNIa-91bg 40,192 (1.155%)
AGN 101,412 (2.915%)
SNIa 1,659,684 (47.700%)
RRL 197,131 (5.666%)
SLSN-I 35,780 (1.028%)
Total 3,479,456 (100%)

uate our architecture can be found in Table 3.1. We present some
example light-curves (that have been pre-processed using the Gaus-
sian Process interpolation method described in Section 3.4.2) here
in Figure 3.8 for an illustrative overview of the data. For further
examples please see figures in Appendix B.

3.6.2 Classification Performance

Several hyperparameters of the astronomical-transient xception,
atx, need to be optimised as discussed in Section 3.5.4. By ap-
plying the TPE Bayesian optimisation method to the validation
data, the hyperparameters shown in Table 3.2 are found. Due to

9zenodo.org/record/2539456#.YIiVA5NKjlz

https://zenodo.org/record/2539456#.YIiVA5NKjlz


94 3 atx: The Astronomical-Transient Xception

60275 60280 60285 60290 60295 60300

Time (days)

−2000

0

2000

4000

6000

8000

10000
F

lu
x

u
n

it
s

g
i
r

u
y
z

(a) SNIa

60275.0 60277.5 60280.0 60282.5 60285.0 60287.5 60290.0 60292.5 60295.0

Time (days)

−2000

−1000

0

1000

2000

3000

F
lu

x
u

n
it

s

g
i
r

u
y
z

(b) SNIbc

60275 60280 60285 60290 60295 60300

Time (days)

−1000

0

1000

2000

3000

F
lu

x
u

n
it

s

g
i
r

u
y
z

(c) SNII

60350 60360 60370 60380 60390 60400 60410

Time (days)

−2000

0

2000

4000

6000

F
lu

x
u

n
it

s

g
i
r

u
y
z

(d) SNIax

60530 60540 60550 60560 60570 60580

Time (days)

0

10000

20000

30000

F
lu

x
u

n
it

s

g
i
r

u
y
z

(e) SNIa-91bg

FIGURE 3.8: Example Supernovae light curves of varying types
compared to SNIa shown in a showing similarities at the rise and
overall light curve profile.
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TABLE 3.2: The astronomical-transient xception, atx, contains
5 hyperparameters to be optimised. Using the technique of TPE
Bayesian optimisation, the set of parameters and learning rate ini-
tialisation that yield the lowest score with 5-fold cross validation
on 10% of the training data are shown here. Note, learning rate

shown to 3 decimal places for brevity. See code for exact details.

Parameter Value
w 3
N 1
pool size 3
learning rate 0.018
scaledown factor 4

computational constraints, 5-fold cross-validation was done using
what equates to only 10% of the full training set.

Using the hyperparameters defined in Table 3.2 the atx ar-
chitecture is able to achieve a score of 0.739 on the logarithmic-
loss metric on the test set (derived from the PLAsTiCC dataset
discussed in Section 3.6.1). This is in comparison to the state-of-
the-art results of Boone (2019) which achieved a flat weighted-
logarithmic loss of 0.468. It can be seen from the confusion matrix
of Figure 3.10 that the performance over all classes is good even
with highly imbalanced data. This is also seen in the ROC curve
of Figure 3.11, which yields a micro-averaged and macro-averaged
AUC of 0.98. With regards to the precision-recall trade-off, shown
in Figure 3.12, atx is able to achieve micro-averaged AUC of 0.81.
Though, understandably, the model struggles to obtain high pre-
cision for Kilonovae events due to the extremely low number of
samples in the training set (see Table 3.1). Performance on SNIax
is also relatively low; this may be due to miss-classification with
Supernova Type Ia, which are known to be very similar near max-
imum light (Jha, 2017) and can seen in Figure 3.8. The SN types
of SNIbc, SNII, SNIax and SNIa-91bg, shown in 3.8b, 3.8c, 3.8d
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and 3.8e respectively can be seen to share similarities around the
rise and peak and is a major cause of cross contamination when
classifying SNIa. Our SNIa purity is 0.92 with a core-collapse SNe
(SNe Ib/c and SNe II) cross contamination of ∼ 6.68%. With stud-
ies from DES (Vincenzi et al., 2021) and Pan-STARRS (Jones et
al., 2018) reporting an acceptable range for cross-contamination to
be ∼ 8% and ∼ 5% respectively, our results are also within the
bounds for cosmological analyses of dark energy equation of state.
We also repeated the analysis without the additional features of
redshift and the associated redshift error. Unsurprisingly, the level
of performance achieve reduced, resulting in a logarithmic-loss of
0.929.

The astronomical-transient xception, atx, achieves good classi-
fication performance, close to other leading methods such as those
laid out in Boone (2019), and does so with the ability of inputting
raw time-series data alone. Its shortcomings, in terms of purity of
low sample classes such as Kilonovae with a precision of 0.04, would
surely be alleviated with proper augmentation, yet under the cir-
cumstances, atx is still able to separate classes well. As such, an
investigation into using augmentation presents a possible avenue
for further research, should other architectures not bear improved
results.
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FIGURE 3.9: Raw count confusion matrix resulting from application of the astronomical-xception
network, atx, to the PLAsTiCC dataset in a representative setting with imbalanced classes, achiev-
ing a logarithmic-loss of 0.739 and a SNIa purity of 0.92 at 6.7% core-collapse SNe cross contami-
nation
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3.7 Conclusions

This chapter has presented a novel architecture that is designed
for photometric classification of astronomical transients, but that
is also suitable for general multivariate time-series classification
tasks. The astronomical-transient xception, also known as atx is
able to not only input raw light curve data for good classification
performance, but also can be supplemented with arbitrary addi-
tional information. When combined with redshift and redshift er-
ror, atx, is able to achieve scores close to the state-of-the-art in
photometric classification.

The efficient nature of the depthwise-separable operation that
astronomical-transient xception is built upon allow reduced param-
eter count when compared to other CNN approaches for photomet-
ric classification. Consequently, atx should reveal faster training
and inference times as well which should appeal for potential de-
ployment within alert brokering systems currently under construc-
tion such as FINK (Möller et al., 2021), ANTARES (Matheson et
al., 2021) etc.

Through extensions of the Inception hypothesis to the world of
time-series, the astronomical-transient xception’s ability to work
with time-series data alone and considerably fewer parameters than
other networks in its class, it is hoped that atx can influence further
use of the depthwise-separable convolutions for light curve analysis
as well as move one step closer to enabling real-time science for the
next generation of surveys.
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FIGURE 3.10: Normalised confusion matrix resulting from applica-
tion of the astronomical-xception network, atx, to the PLAsTiCC
dataset in a representative setting with imbalanced classes, achiev-
ing a logarithmic-loss of 0.739.
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FIGURE 3.11: Receiver operating characteristic (ROC) curve, un-
der the same setting as those described in Figure 3.10. Micro- and
macro-averaged AUC scores of 0.98 and 0.97 are achieved across
the classes respectively.
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FIGURE 3.12: Precision-recall trade-off curve, under the same set-
ting as those described in Figure 3.10. A micro-averaged AUC score
of 0.81 is achieved across the classes. With only 0.004% of the
training sample constituting to the Kilonovae class, our model ex-
pectedly finds it difficult to classify this extreme minority class
correctly.
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Paying Attention to Astronomical
Transients: Photometric Classification with
the Time-Series Transformer

In this chapter we develop a new transformer architecture, which
uses multi-head self attention at its core, for general multivari-
ate time-series data. Furthermore, the proposed time-series trans-
former architecture supports the inclusion of an arbitrary number
of additional features, while also offering interpretability. We apply
the time-series transformer to the task of photometric classifica-
tion, minimising the reliance of expert domain knowledge for fea-
ture selection, while achieving results comparable to state-of-the-
art photometric classification methods. We achieve a logarithmic-
loss of 0.507 on imbalanced data in a representative setting using
data from the Photometric LSST Astronomical Time-Series Clas-
sification Challenge (PLAsTiCC). Moreover, we achieve a micro-
averaged receiver operating characteristic area under curve of 0.98
and micro-averaged precision-recall area under curve of 0.87.

4.1 Introduction

Self-attention mechanisms and the related transformer architec-
ture, proposed by the NLP community, have been introduced to
overcome the computational woes of CNNs and RNNs described in
Section 2.4 (Vaswani et al., 2017). Complexity per layer is described
by the sequence length L and the dimensionality d as O(L2 · d).
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With a maximum path length of O(1) and embarrassingly paral-
lelisable operations, the mechanism has revolutionised the field of
sequence modelling and is at the heart of the work presented here.
We develop a new transformer architecture for the classification of
general multivariate time-series data, which uses a variant of the
self-attention mechanism, and that we apply to the photometric
classification of astronomical transients.

This chapter is structured as follows: Section 4.2 reviews the re-
cent breakthroughs in the domain of sequence modelling and NLP
that have inspired this work, and presents a pedagogical overview
of transformers and the attention mechanism that overcome some
of the challenges faced by RNNs and CNNs. Section 4.3 outlines
the attention-based architecture of the time-series transformer de-
veloped in this work, with the goal of photometric classification
of astronomical transients in mind. Section 4.4 describes the im-
plementation and performance metrics used to evaluate models.
Section 4.5 presents the results obtained from applying the trans-
former architecture developed to PLAsTiCC data (The PLAsTiCC
team et al., 2018b). Finally, in Section 4.6 a summary of the work
carried out and the key results is discussed.

4.2 Attention Is All You Need?

This section gives a pedagogical review of the attention mechanism,
and specifically self-attention, which is the foundational element of
our proposed architecture. We step through the original architec-
ture that uses self-attention at its core and inspired this work, the
transformer (Vaswani et al., 2017), and how it is generally used in
the context of sequence modelling.
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4.2.1 Attention Mechanisms

As humans, we tend to focus our attention when carrying out par-
ticular tasks or solving problems. The incorporation of this concept
to problems in NLP has proven extremely successful, and in partic-
ular the development of the attention mechanism has been shown
to have a major impact, not only in the world of sequence mod-
elling, but also in computer vision and other areas of deep learning.

The attention mechanism originates from research into neural
machine translation, a sub-field of sequence modelling often re-
ferred to as Seq2Seq modelling (Sutskever et al., 2014). Seq2Seq
modelling, as shown in Figure 2.6 in Chapter 2, attempts to build
models that take inputs represented as a sequence of embedding
vectors x = [x0, x1, . . . , xL] of dimensionality d and tries to find a
mapping to the target sequence y = [y0, y1, . . . , yL]. In the domain
of NLP, these inputs are word embeddings that are transformations
of a word at a given position into a numerical vector representa-
tion for that word such as provided by the word2vec algorithm
(Mikolov et al., 2013). In the field of photometric classification, the
inputs may be a vector representation of the flux and flux error
values for each passband at each time-step (discussed further in
Section 4.3.2). Seq2Seq has traditionally been done by way of two
RNNs that form an encoder-decoder architecture (see. Figure 2.6),
with the encoder taking the input sequence x and transforming it
into a fixed length context vector c, and the decoder taking the
context through transformations that lead to the final output se-
quence y. The hope is that the context vector is a compressed
representation of the entire input sequence that is able to contain
all the information of the inputs such that it can passed along to the
decode to help make predictions. However, trouble arises with use
of RNNs due to the inherent Markov modelling property of these
sequential networks, where the state is assumed to be only depen-
dent on the previously observed state. As a consequence RNNs need
to maintain memory of each input in the sequence, albeit a com-
pressed representation, up to the desired context length. Therefore,
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RNNs suffer greatly with computationally maintaining memory for
large sequences (Madsen, 2019).

Attention mechanisms (Bahdanau et al., 2014) were introduced
to mitigate these issues and to allow for the full encoder state to
be accessible to the decoder via the context vector. This context
vector is built from hidden states h of the encoder and decoder as
well as an alignment score αti, between the target t and input i.
This assigns a score αti to the pair (yt, xi), e.g. in neural machine
translation, the word at position i in the input and the word at
position t in the output, according to how well they align in vec-
tor space. It is the set of weights {αti} that define how much of
each input hidden state should be considered for each output. The
context vector ct is then defined as the weighted sum of the input
sequence hidden states hi, and the alignment scores αti. This can
be expressed as

ct =
∑

i

αtihi. (4.1)

A common global attention mechanism used to compute the align-
ments is to compare the current target hidden state ht to each
input hidden state hi, as follows (e.g. Luong et al., 2015):

αti = align(ht,hi) =
exp

(
score(ht,hi)

)
∑

t′i′ exp
(
score(ht′ ,hi′)

) , (4.2)

where score can be any similarity function. For computational con-
venience this is often chosen to be the dot product of the two hidden
state vectors, i.e.

score(ht,hi)= hth
⊤
i . (4.3)

See Weng (2018) for a summary table of several other popular at-
tention mechanisms and corresponding alignment score functions.

4.2.2 Self-Attention

Self-attention is an attention mechanism that compares different
positions of a single input sequence to itself in order to compute a
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The FBI is chasing a criminal on the run .

TheThe FBI is chasing a criminal on the run .

TheThe FBIFBI is chasing a criminal on the run .

TheThe FBIFBI isis chasing a criminal on the run .

TheThe FBIFBI isis chasingchasing a criminal on the run .

TheThe FBIFBI isis chasingchasing aa criminal on the run .

TheThe FBIFBI isis chasingchasing aa criminalcriminal on the run .

TheThe FBIFBI isis chasingchasing aa criminalcriminal onon the run .

TheThe FBIFBI isis chasingchasing aa criminalcriminal onon thethe run .

TheThe FBIFBI isis chasingchasing aa criminalcriminal onon thethe runrun .

FIGURE 4.1: A model using the attention mechanism, reading the
sentence: The FBI is chasing a criminal on the run. Blue represents
the attention for the input sequence up to the end word in red. The
level of shading dipicts the attention weighting for each word in the
input sequence. Reproduced in full from Cheng et al. (2016).

representation of that sequence. It can make use of any similarity
function, as long as the target sequence is the same as the input se-
quence. Prominent use of self-attention came from work in machine
reading tasks where the mechanism is able to learn correlations be-
tween current words in a sentence and the words that come before
(see Figure 4.1). This type of attention can thus be useful in deter-
mining the correlations of data at individual positions with data at
other positions in a single input sequence.

Drawing from database and information retrieval literature, a
common analogy of query q, key k, and value v, is used when
referring to the hidden states of encoder and decoder subcompo-
nents. The query, q, can been seen as the decoder’s hidden state,
ht, and the key k, can be seen as the encoder’s hidden state, hi.
The similarity between the query and key can then be used to ac-
cess the encoder value v. In the case of dot-product self-attention,
learnable-weights, W, are attached to the input X ∈ RL×d for se-
quence length L and embedding dimension d for each of q, k and
v, which can be visualised in Figure 4.2. This results in a set of
queries Q = XWQ ∈ RL×dq , keys K = XWK ∈ RL×dk and values
V = XWV ∈ RL×dv that can be calculated in parallel, where dq,
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X ∈ RL×d

×
WQ ∈ Rd×dq

×
WK ∈ Rd×dk

×
WV ∈ Rd×dv

=

=

=

Q = XWQ ∈ RL×dq

K = XWK ∈ RL×dk

V = XWV ∈ RL×dv

FIGURE 4.2: Diagrammatic representation of the computation of
the attention matrix A. An input sequence of length L and em-
bedding dimension d is combined with learned weights to produce
query, key and value matrices Q,K and V respectively.

dk, and dv are the respective dimensions. A self-attention matrix
A ∈ RL×dv can then be computed by

Attention(Q,K,V) = A = softmax
(
QK⊤

)
V. (4.4)

4.2.3 The Rise of the Transformer

Seminal work by Vaswani et al. (2017) introduced an architecture
dubbed the transformer, which is constructed entirely around self-
attention. They showed that state-of-the-art performance in neural
machine translation can be achieved without the need for any CNN
or RNN components; as they put simply “attention is all you need”.
Such was the impact of this work that there has since been an
explosion of transformer variants as researchers strive to develop
more efficient implementations and new applications (Tay et al.,
2020). It is the original architecture by Vaswani et al. (2017) that
inspired the architecture proposed in this chapter, and as such the
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remainder of this section focuses on describing the inner workings
of this model.

As can be seen in Figure 4.3, the transformer consists of two sec-
tions: an encoder and a decoder. Within each encoder and decoder
there exists a transformer-block, which contains the multi-head at-
tention mechanism. In the context of neural machine translation,
one could think of this set up as the encoder encoding a sentence in
English, transforming the input into a certain representation, and
the decoder taking this representation and performing the transla-
tion to French. To ensure the model only attends to words it has
seen up to a certain point when decoding, an additional causal mask
is applied to the input sentence. As an example, this may be the
equivalent of only providing inputs xi

0 . . . x
i
2 of an input sequence

of say L = 5 but requiring the decoder to output predictions up to
ytL=5.

We focus our discussion on the transformer block without this
causal mask since it is this block that is most relevant when we
come to classification tasks later in this chapter. Notwithstand-
ing, there is scope for further study to investigate the usefulness
of applying a causal mask to the input sequence for early light
curve classification. This would present an architecture that does
not require full phase light curve information for predictions. By
applying a causal mask, one can build a classifier that can ingest
partial light curves and still provide predictions. Then by varying
the amount of masking (i.e. increasing or decreasing the amount
of the light curve that is visible to the network) we can investigate
the feasibility of early light curve classification.

Multi-Headed Scaled Dot Product Self-Attention

Whilst the main building block used by Vaswani et al. (2017) is
indeed the self-attention mechanism, they modified the typical dot-
product attention by introducing a scaled element. This resulted
in a new mechanism called the scaled dot-product attention which
is similar to Equation 4.4 but with the input to the softmax scaled
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down by a factor of dk. The motivation for introducing a scaling
factor is to control possible vanishing gradients that may arise from
large dot-products between embeddings. The new formulation for
this mechanism can be expressed as

Attention(Q,K,V) = A = softmax

(
QK⊤
√
dk

)
V. (4.5)

This now scaled version of the self-attention module was extended
further to also have multiple heads h, which allows for the model
to be able to learn from many representation subspaces at different
positions simultaneously (Vaswani et al., 2017). Similar to nor-
mal self-attention calculations show in Section 4.2.2, this can be
pictorially understood with Figure 4.4 and by concatenating the
attentions for each head:

MultiHead (Q,K,V) = A = Concat[A1, . . . ,Ah]W
O, (4.6)

where Ai = Attention (Qi,Ki,Vi). With each Ai ∈ RL×dv , the
result of a final linear transformation of all concatenated heads,
Concat[Ai, . . . ,Ah] ∈ RL×hdv with learned output weights WO ∈
Rhdv×d, produces the multi-headed attention matrix A ∈ RL×d.
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FIGURE 4.3: Layout of the original transformer architecture defined in Vaswani et al. (2017). The
multi-head attention unit has been zoomed-in to reveal the inner workings and key component of
the scaled dot-product attention mechanism. Note the two grey boxes on the left and right of the
architecture. These are both transformer blocks, with N indicating how many times each block is
stacked upon itself.
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FIGURE 4.4: Diagrammatic representation of the computation of the multi-head attention. Instead
of computing attention once, the multi-head mechanism divides the input with sequence length L
and embedding dimension d by number of heads h to compute the scaled dot-product attention
over each subspace simultaneously. These independent attention matrices are then concatenated
together and linearly transformed into an attention matrix A ∈ RL×d. The above diagrammatic
representation assumes the dimensionality of keys dk is the same as the dimensionality of the values
dv.
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Additional Transformer-Block Components

As can be seen Figure 4.3 inside the transformer-block, there is
also a pathway that skips the multi-head attention unit and feeds
directly into an Add & Norm layer. This skip-connection, often re-
ferred to a residual connection, allows for a flow of information to
bypass potentially gradient-diminishing components. The informa-
tion that flows around the multi-head attention block is combined
with the output of the block and then normalised using layer nor-
malisation (Ba et al., 2016) by

X← LayerNorm(MultiHeadSelfAttention(X)) +X. (4.7)

A feed-forward network follows, comprised of two dense layers
with the first using ReLU activation (Nair and Hinton, 2010) and
the second without any activation function. A similar skip connec-
tion occurs, but instead bypasses the feed-forward network, before
being combined again and layer-normalised. It should be noted that
all operations inside the transformer-block are time-distributed,
which is to say that each word or vector representational embed-
ding, is applied independently at all positions. When combining
these elements together, this results in a single transformer-block:

X← LayerNorm(MultiHeadSelfAttention(X)) +X

X← LayerNorm(FeedForward(X)) +X, (4.8)

where X is the input embedding to the transformer-block.

Input Embedding and Positional Encoding

The inputs to the transformer are word embeddings created from
typical vector representation algorithms such as word2vec. Apply-
ing this transformation projects each word token into a vector rep-
resentation on which computations are made. Additionally, recall
that attention is computed on sets of inputs, and thus the compu-
tation itself is permutation invariant. While this gives strengths to
this model in terms of parallelism, a drawback of this is the loss of
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temporal information that would usually be retained with RNNs.
A consequence of this is the need for positional encodings to be
applied to the input embeddings. In Vaswani et al. (2017) the po-
sitional encoding P ∈ RL×d, which is used to provide information
about a specific position in a sentence (Weng, 2018), is computed
by a combination of sine and cosine evaluations at varying fre-
quencies. Assume l to be a particular position location in an input
sequence, with l = 1, . . . , L, and embedding index k = 1, . . . , d,
then

Plk =

{
sin(ωk.l), if k even

cos(ωk.l), otherwise
(4.9)

where ωk =
1

100002k/d
.

Provided the dimension of the word embedding is equal to the
dimension of the positional encoding, the positional vector pl ∈ Rd

corresponding to a row of the matrix P is added to the correspond-
ing word embedding xl of the input sequence [x1, ...,xn] (Kazem-
nejad, 2019):

xl ← xl ⊕ pl. (4.10)

For a visual representation of the position encoding see Fig-
ure 4.5, which depicts the positional encoding for a 128-dimensional
by 100 sequence length input embedding. Using positional encod-
ing in this way allows for the model to have access to a unique
encoding for every position in the input sequence. The motivation
for using sine and cosine functions are such that the model is also
able to learn relative position information since any offset, pl+offset

can be represented as a linear function of pl (Vaswani et al., 2017).
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FIGURE 4.5: A 128-dimensional positional encoding for a sequence
of length of 100. This can be understood as each row representing
the encoding vector for that position in the sequence.

4.3 t2: The Time-series Transformer

In this section we present our transformer architecture for time-
series data, which is based on the self attention mechanism and
the transformer-block. Our work is motivated by photometric clas-
sification of astronomical transients but generally applicable for
classification of general time-series. The time-series transformer ar-
chitecture that we propose supports the inclusion of additional fea-
tures, while also offering interpretability. Furthermore, we include
layers to support the irregularly sampled multivariate time-series
data typical of astronomical transients.

4.3.1 Architecture

Our architecture, referred to from herein as t2, shown in Fig-
ure 4.6, has several key differences compared to the original trans-
former shown in Figure 4.3. The first of these differences is the
removal of the decoder. As the task at hand is classification, a
single transformer-block is sufficient (Tay et al., 2020). Another
difference can be seen with the additional two layers prior to posi-
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tional encoding unit, which are Gaussian Process Interpolation and
Convolutional Embedding. In conjunction with these two layers is
a Concatenation layer that is able to add an arbitrary number of
additional features to the network. These layers process the astro-
nomical input sequence data and pass it to a typical transformer-
block. The output of the transformer-block is then passed through
a new Global Average Pooling layer, before finally being passed
through a softmax function that provides output probabilities over
the classes considered.

4.3.2 Convolutional Embedding

With neural machine translation applications the inputs to the
original transformer architecture take in word embeddings that
had been derived from a typical vector representation algorithm
such as word2vec. In a similar manner, embeddings for the now
interpolated time-series data are required. We adopt a simple
1-dimensional convolutional embedding, with a kernel size of 1
and apply a ReLU non-linearity. Inspired by Lin et al. (2013),
a 1-dimensional convolution allows for a transformation from k-
dimensional space to a k′-dimensional space whilst operating over
a single time window of size of 1. For our purposes, using this
convolution allows for dimensionality to be scaled from M to d
dimensions without affecting the spatio-temporal input. Therefore,
this operation transforms the original input ofM -dimensional time-
series data points, i.e. time-series data points across M passbands,
into a d-dimensional vector representation ready for input into the
transformer-block. We present the full input processing pipeline in-
cluding the Gaussian process interpolation stage described in Sec-
tion 3.4.2 in Figure 4.7. Our convolutional embedding operation is
akin to a time-distributed, position-wise feed-forward neural net-
work operating on each input position.
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FIGURE 4.6: Schematic of the time-series transformer (t2) archi-
tecture. Raw time-series data is processed through the Gaussian
process interpolation layer, followed by a concatenation layer to
include any additional features. A convolutional embedding layer
follows to transform the input into a vector representation, with a
positional encoding applied to the embedding vector. This is passed
as input into the transformer-block, where the multi-head attention
block is the same as that shown in Figure 4.3. The output of which
is then passed through a global average pooling layer and finally
a linear layer with softmax to output class prediction probabilities
for the objects.
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transformer. First, Gaussian process regression is carried out to regularly sample the light curve.
The Gaussian process mean is evaluated at L time points l for each of M passbands, and projected
to dimension d via a 1-dimensional convolutional embedding (Lin et al., 2013) at each point l such
that final input sequence X ∈ RL×d. The resulting embedding matrix is then shown in blue, where
for example a d-length vector for a single input position highlighted in green.
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4.3.3 Global Average Pooling

We also introduce a layer that performs global average pooling
(GAP) on the output of the transformer-block. The motivation for
adding a GAP layer following the transformer-block was inspired
by work in Zhou et al. (2015). The GAP layer, originally proposed
by Lin et al. (2013), has become a staple in modern CNN archi-
tectures due to its usefulness in interpretable machine learning,
and also featured in our Xception-derived network in Chapter 3.
In previous works on 2-dimensional images, GAP layers are used
as a replacement to common fully connected layers to avoid over-
fitting since there are no parameters to optimise. Another useful
advantage over the fully connected layer is that the averaging in
a GAP layer averages out the spatial information leaving it more
robust to translations of the inputs (Lin et al., 2013). Similar to
2-dimensional inputs, using a GAP layer on the 1-dimensional time-
series, proves robustness to translations in the input.

By adapting the description found in Zhou et al. (2015), one
can apply a GAP layer to a time-series. Let fk(l) represent the
activation of a particular embedded dimension k at a location l,
where k = 1, . . . , d and l = 1, . . . , L. Then a GAP layer can be
computed by taking the average over time for each feature map
Fk =

∑
l fk(l).

4.3.4 Class Activation Maps (CAM)

A nice feature of using a GAP layer is that one can determine
the influence of fk(l) on predictions for a given class c ∈ C by
considering the associated score Sc that is passed into the softmax
layer (Zhou et al., 2015). This is calculated from the final fully
connected weights wc

k and the feature maps Fk as Sc =
∑

k w
c
k ·Fk =∑

l

∑
k w

c
k · fk(l).

The class activation map (CAM) for a given class c is then given
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by

Mc(l) =
∑

k

wc
kfk(l). (4.11)

Since Sc =
∑

l Mc(l), it is possible to use Mc(l) to directly gauge
the importance of the activation at input location l in leading to
the classification of class c.

4.3.5 Inputting Additional Information

Additional features could in principle be incorporated in the time-
series transformer in a variety of different manners. To leverage the
power of neural networks to model complex non-linear mappings,
such additional features should feed through non-linear components
of the architecture. On the other hand, recall from Section 4.3.4
that in order to compute a CAM (class activation map), the out-
put of the GAP layer must pass directly into the linear softmax
layer. Hence, incorporating additional features at this stage of the
architecture will not be effective unless a non-linear activation is
introduced, which would destroy the interpretability of the model.

To preserve our ability to compute CAMs, there are several
other possible locations in the architecture where one could con-
sider including additional features. The most natural point is imme-
diately prior to the convolutional embedding layer (see Figure 4.6).
Adding features at this location allows for all information to be
passed throughout the entire network. Nevertheless, there are al-
ternative ways in which additional features can be incorporated at
this point.

The most obvious way to incorporate additional features is to
essentially consider them as a additional channels and concate-
nate in the dimension of the M passbands to redefine the input as
X ∈ RL×M → X ∈ RL×M ′

, where M ′ = M +R, and R is the num-
ber of features to add. This essentially broadcasts the additional
information to each input position in l.

The alternative is to concatenate in the dimension of the L time



4.3 t2: The Time-series Transformer 121

sequence samples, which transforms the input as X ∈ RL×M →
X ∈ RL′×M , where L′ = L + R. There are several advantages for
choosing the approach of concatenating to L rather thanM . Firstly,
this approach allows one to pay attention to the additional features
explicitly. Secondly, it gives activation weights for the additional
features, which in our case is redshift and redshift error, so the
impact of the additional features can be interpreted. So, while in
principle one could consider concatenating to either L or M , we
advocate concatenating to L.

4.3.6 Trainable Parameters and Hyperparameters

The time-series transformer, t2, model contains a set of train-
able parameters that stem from the weights contained in the
transformer-block as well as learned weights at the embedding layer
and final fully connected layer. The first layer with trainable pa-
rameters is the convolutional embedding layer. The numbers of
parameters for a general convolutional layer is given by

[M × w × d] + d,

where M denotes the number of input channels or passbands, w
refers to the kernel window size, which in this case is 1, and d is the
dimensionality of the embedding. Continuing through the model,
the number of trainable parameters for the multi-head attention
unit has 4 linear connections, including Q, K, V and one after the
concatenation layer, i.e. WQ, WK , WV and WO. Recall that for
multi-head attention we set hdv = d (see Figure 4.4), hence the
number of parameters for WQ, WK , WV and WO across all of the
h heads is identical. The number of layer normalisation parameters
is simply the sum of weights and biases together with the feed for-
ward neural network weights of the input, multiplied by the weights
of the output plus the output biases (Chai, 2020). Combining all
units inside the transformer block together yield

N ×
(
4×

[
(d× d) + d

] )
︸ ︷︷ ︸

Multi-Head Attention

+
(
2× 2d

)
︸ ︷︷ ︸
Layer Norm

+
(
d× dff + dff

)
+
(
dff × d+ d

)
︸ ︷︷ ︸

Feed Forward
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where N refers to how many times one stacks the transformer-block
upon itself, and dff refers to the number of neurons in the feed
forward network inside the transformer-block. Since there are no
trainable parameters with the GAP layer, the final fully connected
linear layer with softmax results in a remaining number of trainable
parameters of

(
[d× C] + C

)
,

where C refers to the number of classes.
Of the parameters discussed above, there are some that are

fixed due to the problem at hand, such as M number of pass-
bands and C classes to classify. But there are also other parame-
ters that are not necessarily trainable that are considered hyper-
parameters. These include: the dimensionality of the input embed-
ding d, the dimensionality of the feed forward network inside the
transformer-block dff, the number of heads to use in conjunction
with the multi-head attention unit h, the percentage of neurons
to drop when in training using the dropout method (Srivastava et
al., 2014) droprate, the number of transformer-blocks N , and the
learning rate learning rate (discussed further in Section 4.4.2).

4.4 Implementation and Training

We leverage modern machine learning frameworks to develop the
time-series transformer implementation, t2, in a modular manner
for ease of use and future extension. We use the same evaluation
metrics of those described in Section 3.5 to measure the perfor-
mance of the classifier. Later in Section 4.4.3 we recap the loss
function used for training and how hyperparameters are optimised.
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4.4.1 Implementation

We use the machine learning framework of TensorFlow (Mart́ın
Abadi et al., 2015) with the tf.keras API for the implementa-
tion of our t2 architecture. Our code is available under Apache
2.0 licence and open-sourced1. Key data processing software of
pandas (McKinney, 2010) and numpy (Harris et al., 2020) has been
used heavily for manipulation of input data, with george (Am-
bikasaran et al., 2015) used for fitting the Gaussian processes.
Training and inference of our model has been carried out on a
NVIDIA Tesla V100 GPU.

4.4.2 Training

Using the typical stochastic gradient decent (SGD) method men-
tioned in Section 3.5.2, we train our t2 model with the same opti-
misation algorithm described in Section 3.5.3, namely the ADAM
optimiser (Kingma and Ba, 2014), along with the same learning
schedule with a reduction of the learning rate of 10% if the loss
does not decrease within 5 epochs. We also keep track of the vali-
dation loss as to not overfit to the training data.

4.4.3 Hyperparameter Optimisation

Much like our astronomical transient xception network (Chapter 3),
the time-series transformer has fixed parameters that are set by
the problem itself i.e. number of passband filters M and number of
classes C, as well as a set of hyperparameters that can be tuned for
optimal performance. To search for the best set of hyperparameters
we formulate the problem in the same way as that described in
Section 3.5.4 by considering the optimisation problem of

θ∗ = argmin
θ∈Θ

g(θ), (4.12)

1github.com/tallamjr/astronet

https://github.com/tallamjr/astronet
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with g(θ) the objective score to be minimised and evaluated on
the validation set and θ being the set of hyperparameters, that
take values defined in the domain of Θ. Using the logarithmic-loss
function defined in Equation 3.20 as our objective score, we look
for the set of hyperparameters that give the lowest objective score,
θ∗.

To avoid a costly grid search for the best hyperparameters, we
again use a Bayesian optimisation technique of Tree-structured
Parzen Estimator (TPE) (Bergstra et al., 2011), that is imple-
mented in the optuna package (Akiba et al., 2019), with 5 fold
cross-validation.

4.5 Results

Much like with our previous network described in Chapter 3, we
first tested our architecture on MTS to gauge general multivariate
time-series classification performance. These results are presented
in Appendix A. Although found to be widely applicable to all forms
of multivariate time-series data, we present the results here for
the application of our time-series transformer architecture to the
task of photometric classification of astronomical transients. For
this we use the representative but imbalanced in redshift dataset
constructed from PLAsTiCC (outlined in 3.6.1) to showcase the
suitability of our model for photometric classification, with a view
to extend our methods to include augmentation techniques that
can address the representativity problem (e.g. Alves et al. 2022a;
Boone 2019; Revsbech et al. 2018) in the future.

4.5.1 Classification Performance

Of the model parameters in the time-series transformer, t2, there
are a subset of hyperparameters that are tunable and can be op-
timised for (see Section 4.4.3). Through application of the TPE
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TABLE 4.1: The time-series transformer, t2, contains 6 hyperpa-
rameters to be optimised. The set of parameters and learning rate
that scored the lowest objective score using 5-fold cross-validation
and the TPE Bayesian optimisation method is shown here. To be
concise we only show learning rate to 3 decimal places and ad-
vise the reader to refer to the code for full details.

Parameter Value
d 32
h 16
dff 128
N 1
droprate 0.1
learning rate 0.017

Bayesian optimisation method on a validation set constructed from
10% of the training set, using 5-fold cross-validation we obtained
the parameters which gave the lowest objective score. The results
of which can be found in Table 4.1.

When we build our time-series transformer with the hyperpa-
rameters shown in Table 4.1, and train a model using the training
data set described in 3.6.1 we are able to achieve a logarithmic-loss
of 0.507. This is comparable to the best performing model of Boone
(2019) that achieves 0.468. The confusion matrix depicted in Fig-
ure 4.9 shows good performance across all classes, and betters our
previous efficient architecture performance presented in Chapter 3.
Both receiver operating characteristic (ROC) and precision-recall
(PR) plots, Figure 4.10 and Figure 4.11 respectively, show reason-
able multi-class classification accuracy, with the exception being
towards the Kilonovae and SNIax classes. We suspect this is purely
down to the scarcity of sample for Kilonovae and light curve simi-
larity to SNIa in the case of SNIax as mentioned in 3.6. We achieve
a SNIa purity of 0.94 with a core-collapse SNe (SNe Ib/c and SNe
II) cross contamination of ∼ 4.81%. This compares to the reported
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by DES (Vincenzi et al., 2021) and Pan-STARRS (Jones et al.,
2018) of acceptable range for cross-contamination of ∼ 8% and
∼ 5% respectively, allowing for our results to useable for cosmolog-
ical analyses of dark energy equation of state. The performance of
our model expectedly degrades when auxiliary information of red-
shift and redshift error is not included. However, we find it promis-
ing that our model with raw time-series information only can still
achieve a logarithmic-loss of 0.873, beating atx in this regard also.

It is expected that if a full hyperparameter search can be per-
formed on the full training set by leveraging greater computational
resources, it is likely better parameters could be discovered leading
to improved performance. While a direct comparison with other
methods presented in Hložek et al. (2020b) cannot be made since
they have been trained with non-representative datasets, the time-
series transformer is able to achieve excellent classification perfor-
mance with minimal feature selection and few trainable parameters
by deep learning standards.

It is often the case with machine learning models that, as re-
marked upon in Hložek et al. (2020b) and Lochner et al. (2016), in
order to overcome a classification bias towards particular classes,
an equal distribution of samples among the classes is often nec-
essary for accurate classification. However, the t2 architecture is
able to handle class imbalance very well, and as such our model
did not require any data augmentation in order to achieve a good
score, unlike other methods. It is uncertain at this time whether
this is an inherent property of transformers or the attention mech-
anism, or perhaps the architecture is simply able to find sufficient
discriminative features with far fewer training samples than was
previously thought is required for deep learning approaches such
as CNNs and RNNs. As discussed already, we are yet to consider
the case of data that is not representative in redshift, where aug-
mentation techniques will certainly be necessary, which will be the
focus of future work.
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FIGURE 4.8: Raw count confusion matrix resulting from application of the time-series transformer,
t2, to the PLAsTiCC dataset in a representative setting with imbalanced classes, achieving a
logarithmic-loss of 0.507 and SNIa purity of 0.94 with a core-collapse SNe cross contamination rate
of 4.8%
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4.5.2 Interpretable Machine Learning

Work by Zhou et al. (2015) lead the way forward with major im-
provements for model interpretability. Their use of the GAP (global
average pooling) layer for the localisation of feature importance
helped researchers discover methods of visually inspecting a clas-
sifier’s performance. In a similar regard, a GAP layer is included
in the t2 architecture to allow for model interpretability through
the visualisation of the various feature maps as a function of se-
quence length, l. As discussed in Section 4.3.4, one can compute
a CAM (class activation map) which can help determine how the
features at each input position have influenced the final prediction.
Also recall from Section 4.3.5 that t2 allows for concatenation of
arbitrary additional features; in this work we consider the addition
of redshift information.

Of the two options for concatenation, either in time or pass-
band, we adopt the approach of concatenating to L in time to give
L′ = L + R, where R = 2 with redshift and redshift error added
as additional features. This has the advantage that we explicitly
pay attention to redshift information and also get interpretability
with respect to redshift information (see Section 4.3.5). For com-
pleteness, we also re-run the photometric classification analysis dis-
cussed previously by concatenation to M , but we do not observe as
good a performance as concatenating to L. As we suspected, this
may well be because we are explicitly paying attention to redshift
in the multi-head attention mechanism, whereas by concatenating
to M we do not get this benefit.

The CAM can then be computed by Equation 4.11, whereMc(l
′)

indicates the influence each position of the input sequence has on
classification, which also includes redshift information, i.e. l′ =
1 . . . , L+R. We apply a min-max scaling and normalise the CAM
such that

∑L+R
1 Mc(l

′) = 1, so that the relative activation weights
can be interpreted as a percentage.

We show in Figure 4.12 illustrative CAMs for two Supernova
classes, over-plotted with the light curves themselves. In each panel
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FIGURE 4.9: Normalised confusion matrix resulting from applica-
tion of the time-series transformer, t2, to the PLAsTiCC dataset
in a representative setting with imbalanced classes, achieving a
logarithmic-loss of 0.507.
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FIGURE 4.10: Receiver operating characteristic (ROC) curve, un-
der the same setting as those described in Figure 4.9. Micro- and
macro-averaged AUC scores of 0.98 are achieved across the classes.
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FIGURE 4.11: Precision-recall trade-off curve, under the same set-
ting as those described in Figure 4.9. A micro-averaged AUC score
of 0.87 is achieved across the classes. The model understandably
struggles with precision for Kilonovae (KN), which only constitutes
0.004% of the training sample.
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(a) Class activation map for a Supernova Type Ia drawn from the test set.
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Predicted Class: SNII with Probability = 0.995

(b) Class activation map for a Supernova Type II drawn from the test set.

FIGURE 4.12: Class activation maps (CAM) for two types of Su-
pernova drawn from the test set, with light curves for bands giruyz
over-plotted. For visualisation purposes, a min-max scaling is ap-
plied to the class activations as well as a normalisation to each CAM
such that

∑
l′ Mc(l

′) = 1, such that the relative activation weights
can be interpreted as a percentage. The left hand side depicts the
percentage of activation weight attributed to each position in the
sequence, while on the right hand side we show the percentage ac-
tivation weights associated with any additional features that have
been added; in our case redshift and redshift error. Notice that
for both examples the activation weight is generally low before the
initial rise of the light curve, larger at the rise, with the strongest
weight around the peak. Moderate weights are observed in the tail,
presumably to detect any secondary peak, with the weights be-
coming insignificant once the light curve falls back to zero. The
influence of redshift and information can be seen on the right hand
side, with ∼ 0.6% and ∼ 1.4% of the total activation weight being
attributed these additional features for each object, respectively.
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CAM probabilities for each light curve time point are shown, in
addition to the CAM probabilities for the additional features of
redshift and redshift error. Notice that for both examples the ac-
tivation weight is generally low before the initial rise of the light
curve, larger at the rise, with the strongest weight around the peak.
Moderate weights are observed in the tail, presumably to detect any
secondary peak, with the weights becoming insignificant once the
light curve falls back to zero.

As our architecture is able to include additional features, these
can also be inspected and visualised to gain further understand-
ing as to how much importance the model is paying towards them.
In our case, with the addition of redshift and redshift error infor-
mation, we also include bar plots in Figure 4.12 that depict the
activation weight for redshift and redshift error. We inspect the
distribution of the activation weights for redshift and redshift error
for all classes combined, which can be seen in Figure 4.13. The ma-
jority of activation weighting relating to redshift and redshift error
falls around 1%. We also explored this distribution on an individual
class by class basis but did not find a significant difference across
classes. Therefore, there does not seem to be a particular class that
benefits from redshift information over another. The distributions
indicate that for most objects redshift information accounts for a
relatively small proportion of the total activation weights, with a
mean of ∼ 1.92%. However, it should be noted that this is related
to the L = 100 regularly sampled points on the light curve, many of
which are highly informative. Furthermore, we recall that redshift
on the whole is indeed important for accurate classification where
we achieve a close to state-of-the-art logarithmic-loss (set by Boone
(2019) with 0.468) of 0.507 when including redshift information and
0.873 when it is not included (Section 4.5.1).

While we have shown CAMs to be useful for a first attempt
to bring interpretability to light curve classification, we acknowl-
edge more recent saliency mapping techniques that address some of
the shortcomings of CAMs. We commented earlier that in order to
compute CAMs we require the GAP layer. Although we have pro-



134 4 t2: The Time-Series Transformer

vided separate motivation for using a GAP layer (see Section 4.3.3)
it may be the case that in the pursuit of better interpretability, re-
quiring a GAP layer unnecessarily restricts the flexibility of our
model for possible model extensions. Therefore it would be prefer-
able to have an explainable methodology that does not impose cer-
tain characteristics on the architecture itself, and that can ideally
probe a model in a black-box fashion. Follow-up work by Selvaraju
et al. (2017) presented Grad-CAM that did away with the need
for a GAP layer to feed directly into the softmax and was agnostic
to the downstream task, but still required access to the internals
of the model with gradients. An interpretability method proposed
by Petsiuk et al. (2018) introduced randomised input sampling for
explanation of black-box models (RISE) to better estimate how
salient aspects of the input are for a model’s prediction, without
the need for access to model internals nor re-implementation of ex-
isting models. A further useful interpretability tool that was not
used here but would assist with identifying which features were
most helpful with correct prediction is SHAP (SHapley Additive
exPlanations) values (Lundberg and Lee, 2017). SHAP assigns each
feature an importance value for a particular prediction and can
build intuition of a models performance (Lundberg and Lee, 2017).

While in this work we explore only CAMs as an initial inves-
tigation into the feasibility of using interpretability methods for
photometric classifiers, we could have equally used other methods
described above such as Grad-CAM, and this would be an inter-
esting area to investigate further. Having said that, it is expected
that future studies for interpretability of photometric classification
architectures will look to methods such as SHAP for feature impor-
tance or using techniques similar to RISE that can treat the model
as a black-box and yet provide more refined saliency maps.
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FIGURE 4.13: Distribution of activation weights for redshift and
redshift error for all classes combined. This plot is constructed
for all classes combined (minimal variability was observed across
classes when plotted separately). The mean redshift and redshift
error activation weights are both 0.96. In the centre of the plotted
distribution we plot letter-value plots (Hofmann et al., 2011) that
are better suited to large datasets such as this. The middle box
contains 50% of the data, with the median indicated by a line at
the midpoint. The next smaller boxes combined contain 25% of the
data, with each successive level outward continuing in this fashion
containing half of the remaining data.
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4.6 Conclusions

We have constructed a new deep learning architecture designed for
photometic classification of astronomical transients that we call
the time-series transformer or t2. The architecture is designed in
such a way to pay attention not only to light curves but also to
any additional features considered (e.g. redshift information) and
to also provide interpretability, again not only to light curves but
also to additional features. While we are motivated by the problem
of astronomical transient classification, the architecture is suitable
for general multivariate time-series data.

The time-series transformer, t2, is able to achieve results com-
parable to the state-of-the-art in photometric classification and
does so on extremely imbalanced datasets. Our architecture is able
to achieve a logarithmic-loss of 0.507 on the PLAsTiCC dataset de-
fined in Section 3.6.1 and Table 3.1. A direct comparison to other
latest methods laid out in Hložek et al. (2020b) and Gabruseva
et al. (2020) is understandably not possible since each classifier
has been evaluated on different data under different conditions,
nonetheless, t2 is able to achieve the lowest logarithmic-loss on such
imbalanced data, without the need for augmentation compared to
the leading method of Boone (2019) that rebalanced classes using
Gaussian processes. Having such an imbalanced dataset, one would
expect that there would be bias towards the most common classes,
but t2 is robust enough to handle this. As noted in Lochner et al.
(2016), accurate photometric classification requires a representa-
tive training dataset, but as discussed in Section 4.1 the data that
will be observed with upcoming surveys will be non-representative
of the training datasets that are currently available. While this
work focuses on the representative setting, the architecture lends
itself well to be able to be used in conjunction with latest aug-
mentation techniques, particularly Boone (2019) and Alves et al.
(2022a) with use of Gaussian processes, that should help to allevi-
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ate non-representative training dataset issues, and as such this will
be considered in detail in future work.

The relatively few parameters involved, and hence faster train-
ing times, compared to other deep learning methods makes t2

an attractive architecture for potentially combining with active
learning methods or even off-line retraining should new data be-
come available. With the small model size, t2 should also ap-
peal to upcoming brokering systems such as FINK (Möller et al.,
2021), ANTARES (Matheson et al., 2021) etc. that benefit from
low latency and fast inference times when put into production. As
we touched on in Section 4.2.3, the current architecture forgoes
the additional decoder found in the original transformer architec-
ture (Vaswani et al., 2017) that applies a causal mask to the in-
put. However, the inclusion of such a mask would provide a natural
mechanism within the time-series transformer architecture for early
light curve classification, which provides another avenue of future
work.

The time-series transformer, t2, minimises the reliance of ex-
pert feature selection. Moving away from feature engineering al-
lows the model the freedom to discover patterns that are missed
by humans but yet provide powerful discriminative information for
classification. The architecture, by virtue of CAMs (class activation
maps), offers up a helpful tool for interpretability by inspecting the
importance of both light curves and any additional features that are
included2. It is hoped that with the introduction of the attention
mechanism to the field of astronomical photometric classification,
further studies will build on this work to improve our ability to
attend to the night sky.

2The reader is reminded of alternative interpretability techniques that may
provide better explainability such as RISE (Petsiuk et al., 2018).
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Deep Learning Deployment: Scaling
Inference for Real-time Classification using
Deep Model Compression

“Premature optimization is the root of all evil.”
— Donald Knuth.

In this chapter we present the model compression and model op-
timisation techniques applied to our deep learning model, the time-
series transformer (Allam, Jr. and McEwen, 2021), for deployment
as a science module within the alert brokering system FINK (Möller
et al., 2021) for real-time classification. In order to perform real-
time inference on the deluge of data that will be streamed from the
Legacy Survey of Space and Time (LSST) of the Vera C. Rubin
Observatory, the model that is to be deployed into production will
need to be computationally lightweight, and yet be able to pro-
vide robust classification scores. The large volume of data calls for
models that not only have ultra-low latency inference times, but
can also scale out computations across many machines for high-
throughput processing of the alerts. We showcase how the use of
modern deep compression methods can achieve a 18× reduction in
model size, whilst preserving classification performance. We also
show that in addition to the deep compression techniques, careful
choice of file formats can improve inference latency, and thereby
throughput of alerts, on the order of 8× for local processing, and
5× in a live production setting. To test this in a live setting, we
deploy this optimised version of the time-series transformer, t2,
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into FINK (Möller et al., 2021) on real Zwicky Transient Facility
(ZTF) (Bellm, 2014) alert data, and compare throughput perfor-
mance with other science modules that exist in FINK. The results
shown herein emphasise the time-series transformer’s suitability
for real-time classification at LSST scale, and beyond, and intro-
duce deep model compression as a fundamental tool for improving
deploy-ability and scalable inference of deep learning models for
transient classification.

5.1 Inference in the Age of Large Synoptic Surveys

The turn of the century has seen a move towards ever larger astro-
nomical surveys, collecting large volumes of synoptic data across
the night-sky, as opposed to previous instruments that focus data
collection for a single science case. Being able to conduct a large
swath of science from a single data source is one of the main drivers
for development and construction of such surveys, and allows for
many science communities to benefit from a single instrument. Re-
cent surveys such the Sloan Digital Sky Survey (SDSS; York et al.,
2000), the Dark Energy Survey (DES; Abbott et al., 2016), the
Panoramic Survey Telescope and Rapid Response System (Pan-
STARRS; Kaiser et al., 2002) to name a few, are examples of as-
tronomical surveys that map the sky without a particular astro-
nomical target in mind. They are often limited in scope in terms of
electromagnetic spectrum, but can serve as the precursor to more
specialised instruments for follow-up observations. Typically, sur-
veys are used to generate catalogues of astronomical objects, as
well as logging astronomical transient events on the sky.

The detection of transient events is of particular importance for
reasons described in Chapter 1. With difference imaging processing
now done entirely in software, the need to automate pipelines for
detection and classification of transient events comes from the sheer
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volume of data these surveys generate, as well as the number of
events they witness. Developments in instrumentation have allowed
these surveys to scan larger areas of the sky and more detailed than
ever before, with the consequence being that machine learning has
now become a critical component in order to process the data.

When the Legacy Survey of Space and Time (LSST) at the Vera
C. Rubin Observatory comes online, it is expected to observe 10
million transient events per night, generating on the order of 1TB
of data per night1. The tsunami of transient alerts (see Figure 5.1)
that is to be distributed globally, calls for machine learning sys-
tems that can scale to such data rates, and yet still provide robust
identification of events. A classifier that can process an alert and
provide classification scores in real-time will not only enable effi-
cient allocation of resources for follow-up observations, but assist
with labelling of the millions of events which is certainly beyond
humans at this point. At this scale, storage space and computa-
tional costs becomes a real concern, and so for real-time processing
and machine learning enriched catalogues to be feasible, classifica-
tion modules need to be lightweight in terms of storage space and
runtime memory footprint. Furthermore, computations should be
done as efficiently as possible to not only save on time, but also
money by minimising energy usage.

We structure this chapter in the following way. Section 5.2 dis-
cusses the challenges involved when dealing with a large influx of
data from space surveys, and stresses the need for alert brokering
systems. We touch on the policies in place for developing such bro-
kers and describe what motivates the use of the Zwicky Transient
Facility (ZTF) (Bellm, 2014) alert stream in preparation for the
upcoming LSST data distribution in Section 5.2.2. Following that,
our focus turns to one broking system in particular, FINK (Möller
et al., 2021), which served as the platform for the research discussed

1Raw data volume for image and calibration data will not be distributed
with the alerts to save space and reduce the data sent over the network, which
would otherwise amount to 60PB over the course of 10 years of operation.
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FIGURE 5.1: The transient alert tsunami expected from full LSST
operations will equate to approximately 10 million alerts per night,
amassing 3PB over the lifetime of the survey. Figure reproduced
with permission from FINK Workshop 2020 (Peloton et al., 2020)

later in this chapter. Section 5.3 explains the ideas behind the engi-
neering efforts that ultimately allowed for our deep learning model
to successfully operate in a production system. Our preliminary
results on local tests are showcased in Section 5.4, followed by the
results of applying our methods in real-world conditions in Sec-
tion 5.5. We then conclude in Section 5.6 with a discussion of these
results, and how use of the methods described facilitate efficient
deep learning and real-time inference, at LSST scale.

5.2 Calling All Brokers!

Due to computational constraints, and limits on bandwidth, the
full distribution of alerts from LSST Data Facility2 will only be
sent out to a select few community brokering systems, whose pri-
mary purpose is to provide catalogue cross-match functionality
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and photometric classification of objects, thereby enriching the raw
alert packets with value-added information for downstream scien-
tific investigations. A worldwide call for brokering systems was
announced in 2019 to entice teams interested in potentially build-
ing such systems (Bellm et al., 2019b), which was soon followed by
a call for concrete proposals the following year (Bellm et al., 2020).

5.2.1 Community Alert Brokers

Since the full alert stream can not be accessed directly by scientists,
community brokering systems are essential software systems that
will enable time-domain science (Bellm et al., 2019a). Further to the
requirements of cross-matching and photometric classification, bro-
kers are also expected to provide additional services to enable sci-
ence such as a simplified user interface for easy querying of archival
data, a triggering follow-up observing service, additional alert fil-
tering3, among others. The call for brokers was not limited to any
institutions in particular, and the open call encouraged a variety of
system designs. As long as there is capacity for petabytes (PB) of
storage space, a large inbound bandwidth network, real-time ma-
chine learning classification modules, and of course sufficient fund-
ing, brokering teams were free to set out their plans in The Call
for Proposals for Community Alert Brokers (Bellm et al., 2020).
Naturally, brokers that offer a suite of services along with the nec-
essary infrastructure capabilities, were seen more favourably by the
selection committee, and in particular brokers that take advantage
of the unique real-time aspects of the LSST alert stream (Bellm
et al., 2020). Moreover, brokers that already exhibit integrations
with follow-up resources and other surveys through existing agree-
ments, as well as scope for community building, was also viewed
positively.

Of the many teams that put forward proposals, seven teams

2lsst.org/about/dm/facilities
3The LSST Data Facility applies its own filtering of alert packets such as a

criterion of SNR > 5 and before distribution

https://www.lsst.org/about/dm/facilities
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were ultimately chosen that showcased their ability to match the
criteria laid out above, or at least showed the potential to realise
the requirements come time of first light. The successful broker bids
were from teams; The Automatic Learning for the Rapid Classifi-
cation of Events (ALerCE) (Förster et al., 2021), AMPEL (Nordin
et al., 2019), Arizona-NOAO Temporal Analysis and Response
to Events System (ANTARES) (Matheson et al., 2021), BABA-
MUL (Duev and Graham, 2022), Pitt-Google (Wood-Vasey et al.,
2022), Lasair (Smith, 2019) and FINK (Möller et al., 2021).

5.2.2 The ZTF Alert Stream: A Proxy for Success

In order to support development of the broking systems, LSST pro-
vided example alert streams to get broking teams familiar with the
expected data formats and protocols. Much of these were inspired
by the Zwicky Transient Facility (ZTF) already-in-action alert dis-
tribution system (Patterson et al., 2019). The Zwicky Transient
Facility (ZTF) is an astronomical survey that observes in visible
and infrared, primarily focusing on the detection of transient ob-
jects that change rapidly (Bellm, 2014). Its high cadence allows it
to observe the entire northern sky in three nights over two pass-
bands. Although generating only a tenth of the data expected from
the LSST, the data pipelines and alert distribution systems in place
with ZTF have been shown to be suitable to act as a precursor to
the much larger data rates of fully operational LSST (Patterson
et al., 2018).

The ZTF alert packets are in Apache Avro4 format, a binary se-
rialisation format, that contains difference imaging information of
the detection, yet is still compact and lightweight enough for real-
time worldwide publishing. Deserialisation is done in conjunction
with a corresponding alert schema that defines the contents of the
alert packet, and hence the information that can be used for pro-
cessing. LSST is set to follow the same data format as well as the

4github.com/apache/avro

https://github.com/apache/avro
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same pub-sub framework using Apache Kafka5 for the distribution
of the streaming data, where it collects data streams at source,
from producers (e.g. the telescope itself) and arranges them into
sets of topics that can be subscribed to by consumers downstream
(e.g. community alerts brokers).

The ZTF alert production system has shown to successfully
support streams of 1.2 million nightly alerts, which equates to ap-
proximately 70 GB per night, where each alert packet has been
made available within 10 seconds of event detection (Patterson et
al., 2018). On the order of 80,000 alerts per minute, the stability
of the production system when dealing with such data rates gives
support to the case for using the same technologies and protocols
described in Patterson et al. (2018) for developing brokers that are
to be suitable for the 10× larger upcoming Large Survey of Space
and Time.

5.2.3 FINK: A Next Generation Broker

Of the seven brokers mentioned in Section 1.3.2 and Section 5.2.1
that were successful in securing a spot as one of the brokering sys-
tems, we discuss FINK in more detail here. FINK is the system that
our deep learning model was deployed to, and was the ultimate test
bed for investigating the real-time capabilities of the time-series
transformer. FINK goes beyond typical brokering systems by pro-
viding real-time transient classification through fast state-of-the-
art deep learning algorithms that can be re-trained at low cost in a
short space of time, and by using active learning techniques, specif-
ically online learning, that allow for continuous self-improvement
of classification scores. Specifically designed to address the chal-
lenges outlined in Section 5.1, it uses industry standard tools for
efficient big data processing. In order to carry out nightly process-
ing of the terabyte data stream, FINK uses fault-tolerant Apache
Spark (Zaharia et al., 2016) for scaling out computations across

5github.com/apache/kafka

https://github.com/apache/kafka
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many computers, and Spark Structured Streaming (Armbrust et
al., 2018) to easily interact with Apache Kafka for consuming the
data stream.

FINK currently has a memorandum-of-understanding (MoU)
with the Zwicky Transient Facility (ZTF), allowing it to receive real
alert packet data, in the form described in Section 5.2.2, each night.
This makes FINK well suited for not only testing how well our deep
learning model can perform under stress with real-time constraints,
but also to test how well our model handles classification of real
data. The FINK system diagram can be seen in Figure 5.2. Along
with mapping the flow of data through the broker, Figure 5.2 also
shows at which stage the redistribution of enriched alerts will take
place. The interplay of the photometric classification modules in
the Processing cluster, additional third-party survey data via the
Communication cluster and aggregation of value-added information
in the Storage cluster, form the foundations of the Science Portal,
which can be used to enable scientific analysis and offline querying
of the archival data for those in the community.



5
.2

C
a
llin

g
A
ll
B
ro
kers!

147

FIGURE 5.2: FINK pipeline and system architecture, where the main alert streams are processed in
a distributed manner using Apache Spark (Zaharia et al., 2016) on a Processing cluster. Following
the initial processing, a set of sub-streams are produced which users can subscribe to by way of
the Communication cluster using Apache Kafka. Further survey data streams, such as those from
LIGO, Fermi, etc. are ingested into the Processing cluster through the Communication cluster, to
enrich alert packets with added information. This is used in conjunction with science modules within
the Processing cluster that provide classification scores for alerts and added-value information. After
a night of operation, the processed and enhanced data is written to the Hadoop Distributed File
System (HDFS) in the Storage cluster which connects to a Science Portal backed by the distributed
database of Apache HBase6 to allow for interactive querying of archived alerts. Figure reproduced
in full from Möller et al. (2021)
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5.3 Performance Engineering for Deployment in FINK

Since photometric classifiers are to be housed in the Processing
cluster (see Figure 5.2), low-latency, high-throughput algorithms
are essential to handle the deluge of data that is to be processed.
This section describes the research and development of a multi-
stage compression process in order to ensure best classification
performance, while optimising for low-latency inference and high-
throughput processing of alerts.

5.3.1 Line Profile Analysis

In order to better understand the bottlenecks in our deep learn-
ing pipeline from alert packet processing to inference, as well as
to investigate the overall systems performance, it is necessary to
conduct a form of dynamic program analysis. In contrast to static
program analysis, which evaluates a program without execution,
dynamic program analysis focuses on the program’s memory us-
age, time complexity, duration of function calls etc. . Such analyses
are typically done through unit and integration tests, which them-
selves may include, or can exist separate to the main codebase and
line profiling tests that scrutinise a program line-by-line. By ob-
serving time spent at each function call, one can see where in the
pipeline optimisations can be made, and as such apply performance
engineering techniques that reduce runtime and memory footprint
of the program.

To run such a test, we simulate locally the full pipeline from
ingestion of a real ZTF alert packet, to interpolated time-series,
to model predictions, and gauge where optimisations should be
applied by using the line profiling tool kernprof7. The line profiling
software reports the time spent on each function and the number

6github.com/apache/hbase

https://github.com/apache/hbase
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of times that function has been called, for each line of code in a
program.

Although initial expectations were that the main bottleneck
would be the time-series interpolation through Gaussian processes,
the major bottleneck in the pipeline was found to be loading our
model into memory and applying the model to the input data for
predictions (see Listing 5.1). To combat this, we looked into ways
of reducing model size for faster model loading and operational
changes to improve runtime latency.

Listing 5.1: Line profile report for initial run of alert packet pipeline.
Superfluous lines that recored less than 0.1% time are removed
for better readability. Note the function to generate the Gaus-
sian process only takes 9.5% of the total time, with the majority
of time taken up with model predictions. For the full report, see
github.com/tallamjr/astronet/astronet/tests/reg

Total time: 5.85664 s

File: get_models.py

Function: get_model at line 29

Total time: 1.47076 s

File: ztf-load-run-lpa.py

Function: t2_probs at line 55

Line # Hits Time Per Hit \% Time Line Contents

==============================================================

...

206 16 139.6 8.7 9.5 df_gp_mean = generate_gp_all_objects()

...

...

...

...

...

212 8 180.8 22.6 12.3 X = df_gp_mean[cols]

213 8 12.3 1.5 0.8 X = rs(X)

...

...

...

217 8 1101.7 137.7 74.9 y_preds = model.predict(X)

7github.com/pyutils/line profiler

https://github.com/tallamjr/astronet/blob/master/astronet/tests/reg/ztf-load-run-lpa.py.stdout.txt
https://github.com/pyutils/line_profiler
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5.3.2 Deep Compression

With the major bottleneck for fast inference identified to be at
the model load and then prediction stage, we focus our attention
to model optimisations that can be applied to alleviate this. Since
our desire is to run the complex model in real-time, we look to ex-
ploit redundancies in the model, thereby reducing the storage size,
lowering inference latency, and improving energy efficiency process-
ing alerts. A relatively recent area of research that looks to reduce
model size and memory footprint of deep learning models it that
of deep compression (Han et al., 2015a). Originally proposed as a
three-step process to reduce the computational cost and memory
usage of deep networks on embedded devices, it is mostly driven to-
day by the interests of industry for deploying deep learning models
in-the-wild on resource constrained devices. This influential work
saw a new field flourish that combines bit saving best-practises with
deep learning architecture design to reduce storage size, whilst at
the same time preserving model accuracy.

For our research, we restrict our investigation to the techniques
broadly laid out in Han et al. (2015a), namely weight-pruning and
weight-clustering with Huffman encoding, and weight-quantization.
All of which can be applied in isolation or together, with the caveat
being that if these techniques are chained together, the possibility
for severe degradation in performance is high.

Pruning

Pruning is a technique that removes unimportant weights to yield
improvements such as better generalisation and improved speed
of learning and classification (LeCun et al., 1989b). It has been
shown in recent times that deep neural network can be pruned to
a significant degree with little reduction in model accuracy (Han
et al., 2015a,b).

While there are many forms of network pruning such as
layer-pruning (Lazarevich et al., 2021), channel-pruning (He et
al., 2017), filter-pruning (Enderich et al., 2021) and connection-
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pruning (Nguyen et al., 2021), we consider magnitude-based weight
pruning here (Han et al., 2015a), where the weights are updated
network-wide through a small number of fine-tuning epochs to zero
out model weights that have a low impact on the final score, cre-
ating a sparse representation of the model. Sparse models8 can
then leverage standard lossless compression algorithms for large
reduction in model size, as well as faster inference through fewer
parameters and hence fewer computations.

Clustering

Another method that promotes sparsity in the network is through
weight-clustering. Also commonly referred to as weight-sharing,
clustering works by grouping the weights of each layer in a model
into a predefined number of clusters. The centroid values for the
clusters are then shared among the weights in the given cluster.
By dividing the m original number of weights in the network,
W = {w1, . . . , wm} into k clusters C = {c1, . . . , ck}, where m≫ k
there is a great reduction in the number of unique weight values in
a model, which in turn allows for greater storage efficiency and high
data compression potential. If we consider there to be n possible
connections in the network, where each connection is represented
by b bits, then a fully connected network would be represented with
n · b bits. A clustered network on the other hand, with k clusters,
requires only a cluster encoding index of log2(k) together with the
number of clusters with shared weights. This yields a compression
rate, r, of

r =
n · b

n · log2(k) + k · b. (5.1)

An example using a single fully connected four-by-four neural net-
work can be see in Figure 5.3. If we use Equation 5.1, we can see

8Stored in compressed sparse row (CSR) or Compressed Sparse Column
(CSC) format gives 2a + n + 1 numbers, where a is the number of non-zero
elements, and n is the number or rows or columns, which is normally≪ L×M
size of a complete matrix of all elements
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that by setting k = 4 (using 4 distinct colours to signify separate
clusters), one is able to reduce required number of bits for the orig-
inal 16 weights at 32 bit precision, down by a notable factor with
a compression rate of 3.2.

The canonical k-means clustering algorithm is used to find the
clusters, but of great importance in terms of the eventual model ac-
curacy is how the centroids are initialised. Of the three methods for
centroid initialisation in Han et al. (2015a), random, density-based
and linear, the authors report that random and density-based cen-
troid initialisation achieve poor performance due to few centroids
having large absolute values. Linear initialisation on the other hand
does not suffer from this problem, and is shown by Han et al.
(2015a) to work best under various conditions. A comparison of
the different centroid initialisation schemes is shown in Figure 5.4.
For training, a weight lookup table is necessary to maintain in-
formation about the shared weights and their connections among
the clusters. The gradient for each shared weight is then calculated
and used to update the actual shared weight, as can be seen in
Figure 5.3. The gradient of the centroids is given by,

∂L
∂Ck

=
∑

i,j

∂L
∂Wij

∂Wij

∂Ck

=
∑

i,j

∂L
∂Wij

1
(
Iij = k

)
(5.2)

where L is the loss, Ck as the k-th centroid, and the centroid index
of the weight matrix Wij is Iij.

At the stage for which the model is to be deployed, i.e. for infer-
ence operations only, the intermediate weight table can be stripped
from the model to leave just the clustered weights, suitable for stan-
dard data compression algorithms to reduce model size on disk.

Quantization

Quantization is the simple procedure of reducing the number of bits
used for representing numbers. Weight-quantization helps reduce
the storage and computational requirement of the model, and in
the case of our discussion here, applied after training is completed9.
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FIGURE 5.3: Weight clustering compression scheme, showing the
weights of a single layer neural network that has four input and
four output units. In total there are 16 weights, which are reduced
to a set of 4 shared weights. The top row depicts the full weight
matrix for the 4 by 4 input-output connections, whereas the bottom
row shows the related gradient matrix. As an example, using 4
colours to denote the 4 clusters, the set of weights are put into
one of 4 clusters, where all values in the same cluster share the
same value. As such, an index mapping the weight to a particular
cluster is stored. In the training phase, the gradients are grouped
by colour (cluster), summed, multiplied by the learning rate, and
finally subtracted from the shared centroids of the last iteration.
Reproduced in full from Han et al. (2015a)
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FIGURE 5.4: Centroid initialisation schemes, using the bimodal
distribution of weights in CONV3 layer of AlexNet (Krizhevsky et
al., 2012) as an example. Shown at the bottom are the 13 cluster
centroids for this example layer using 3 different types of centroid
initialisation schemes. Random: randomly selects k points from
the data set and uses these as the initial centroids, shown in yellow.
Density: uses the cumulative distribution of the weights to create
a linear spacing on the y-axis, and then finds the corresponding
x-axis value that intersects with the distribution, shown in blue.
Linear: evenly spaces the x-axis of weights from min to max value
and then places a centroid, shown in red. Random initialization
tends to concentrate around the peaks of the distribution, as does
density-based initialization, albeit more scattered. Linear is even
more scattered, but to note the initialization scheme is invariant to
the weight distribution. Reproduced in full from Han et al. (2015a)
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Post-training quantization refers to the application of quantization
by statically mapping the weight values to lower precision integers,
where in this lower precision representation, the weights save sig-
nificant amount of space on disk, and can even see improvements
to latency by leveraging efficient integer kernel operators found in
modern hardware accelerators.

5.3.3 Lossless Data Compression

As touched on in our brief overview of deep compression, many
of the techniques lend themselves well to exploitation by standard
lossless data compression algorithms. Both pruning and cluster-
ing induce redundancies in the model through repeated values.
The canonical compression scheme to handle repeated values is
Huffman encoding (Huffman, 1952), which assigns fewer bits to
repeated values. As such, it is recommended to combine sparsity
inducing methods of deep compression with lossless data compres-
sion algorithms. We use the DEFLATE algorithm (Deutsch, 1996)
within zlib10 which combines Huffman encoding with the LZ77
compression algorithm (Ziv and Lempel, 1977) to realise the full
benefits of sparsifiying our network. Though, we are mindful of the
potential trade-off between storage space savings when using loss-
less compression tools and the inevitable higher latency caused by
the decompression overheads when loading models into memory.

5.3.4 Efficient File Formats and Frameworks

While application of deep compression techniques are likely to sig-
nificantly reduce the size of our deep learning model on disk, the
possible increase in latency times in relation to decompression over-
heads spurred an off-shoot evaluation which looked at alternative

9Quantization aware training on the other hand is a quantization procedure
that is applied during training by way of integer arithmetic for computations.

10github.com/madler/zlib

https://github.com/madler/zlib
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file formats and lighter frameworks that could help improve run-
time of model predictions.

Both atx (see Chapter 3) and t2 (see Chapter 4) use
ProtocolBuffers11 as the serialisation format for saving models
developed using the full TensorFlow framework (Mart́ın Abadi et
al., 2015). Inspired by the TinyML movement (David et al., 2021),
that seeks to run deep learning on extremely resource constrained
devices, we look at the possibility of using only a subset of the
full TensorFlow framework, called TensorFlow Lite (TFLite) (Li,
2020). Compared to the some 1400 operations in the full frame-
work, TFLite only has around 130 operations supported (David
et al., 2021). A model developed using the lighter TFLite frame-
work is represented in a different file format than that of the
full TensorFlow model, called FlatBuffers12. This portable, ef-
ficient, binary file format offers a couple of advantages over using
the ProtocolBuffers model file format, such as smaller file size
through the reduced operations and code footprint, as well as much
faster inference by way of zero-copy deserialisation for direct mem-
ory access without having to copy it into a separate part of memory
first for an additional parsing or unpacking step.

For the most part, deep learning architectures are still designed
and built using the full TensorFlow framework, and only when the
practitioner is satisfied, is the model then converted to a TFLite
model, using the helpful TFLite converter tool. The process of con-
verting the original model to a TFLite version is where many opti-
misations actually take place, with the principle optimisation being
operator fusion.

TensorFlow operations are themselves simple primitive opera-
tions which can be combined together to form more complex op-
erations. The primitive operations appear as a single node in the
computational graph that is constructed by TensorFlow at runtime.
Composite operations that are built from multiple primitives, ap-

11github.com/protocolbuffers/protobuf
12github.com/google/flatbuffers

https://github.com/protocolbuffers/protobuf
https://github.com/google/flatbuffers
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pear as separate nodes for each primitive operation. Fused opera-
tions, on the other hand, act as a single operation that comprises of
all the computations that each primitive operation would normally
have, as a single node in the graph. By taking advantage of the
underlying kernel implementations, fused operations can maximize
performance and reduce the code and memory footprint, perfect for
the resource constrained devices that it was designed for, as well as
for situations that demand low-latency inference, as in our case. A
useful by-product of fused operators is a high level interface that
helps define complex transformations such as quantization, that
would otherwise be cumbersome to map network wide.

Under the TFLite framework, in conjunction with fused opera-
tions, quantization is far easier to achieve, and actually appears as
a simple flag at conversion time when going from the original model
to the TFLite version. As described in Section 5.3.2, quantization
is the procedure of mapping floating point values to a reduced in-
teger representation (see Figure 5.5), and in this TFLite setting,
falls under post-training quantization umbrella. Perhaps unique to
TFLite, is that at runtime, the model weights that are saved as in-
tegers, are scaled back to an approximation of the original floating
point values, to allow for computations using floating point kernels
to give better consistency with how inferences would have resulted
had the model had not been quantized in the first place. The formu-
lae for approximating floating point values from the saved integer
weights can seen here,

R = (Q− Z)× S, (5.3)

where the real value R is approximated by a scale factor, S, that
multiples the difference between the Q-bits representation (which
is commonly taken to be 8 for 8-bit integer precision) and the zero-
point value Z.

This section has described the compression schemes and opti-
misations applied to our deep learning model to improve latency
and reduce model size, yet with the aim to preserve accuracy. Fig-
ure 5.6 shows where each of these techniques have been used in
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FIGURE 5.5: Quantization mapping of float representation to in-
tegers representation. With the full range for 32-bit floating points
extending from 3e-38 to 3e38, there is often a remarkable amount
of bits reserved for the precision, when in fact the majority of the
numbers exists within a much narrow range on the number line.
Integer numbers represented with 8-bits extend from -127 to 128
for signed values, and 0 to 255 for unsigned integers. With the ap-
propriate mapping and scale factor, 32-bit numbers can be easily
be approximated as 8-bit integers, though 8-bit precision only has
255 information channels, this is a lossy conversion. Reproduced in
full from Bhuwalka et al. (2020)

the time-series transformer architecture. Notably, weight-clustering
has not been used architecture-wide as it is not advisable to clus-
ter weights in critical layers early in the network13. However, as
weight-pruning and weight-quantization are done post-training, we
are able to apply these techniques to the model as a whole.

5.3.5 Hardware-Accelerated Distributed-Training

So far we have discussed optimisations that can be applied to the
model in order to save on disk space and improve runtime latency
such that classification scores can be given in real-time on the high-
volume of incoming alerts. However, of significant importance is
the ability to quickly retrain and update the model as new data
becomes available. It is expected that there will be a window of
8 hours where new models will have the opportunity to be re-
trained before a new round of data ingestion and processing takes

13tensorflow.org/model optimization/guide/clustering

https://www.tensorflow.org/model_optimization/guide/clustering/clustering_comprehensive_guide
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FIGURE 5.6: Locations within the time-series transformer (t2) ar-
chitecture, where deep model compression techniques have been
applied. We investigate three forms of model compression, weight-
pruning, weight-quantization and weight-clustering. Both weight-
pruning and weight-quantization techniques are applied post-
training, and are applied on all weights in the network. Weight-
clustering on the other hand, is applied during training, and only
on the final dense layer to exploit parameter redundancy and to
avoid the critical layers such as those in the attention block.
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place (Möller et al., 2021). Therefore, to have a model that can be
retrained, and hence improved with more refined data, within this
window is highly desirable.

As with the case in FINK, which scales out computation across
many CPU-only machines in the Processing cluster to be able to
churn through the large amount of data quickly, we can take ad-
vantage of the same data parallelism principles to also scale out
computations for retraining models. By simply splitting the dataset
across multiple compute nodes, one can achieve a near linear-time
speed up. However, beyond scaling out to more CPU cores, we
re-implement the time-series transformer’s training loop to scale
out computations with multiple hardware accelerators, in this case
graphical processing units (GPUs), for maximum speed up14. Com-
pared to CPUs, GPUs do computations far more efficiently, saving
time, energy and costs in the long-term, but to ensure one takes
full advantage of the hardware accelerators capabilities, maximising
the memory use at all times is essential. If a GPU is underutilised,
depending on the model and data input size, severe training time
degradation can be observed due to communication overheads from
host device (CPU) to the GPU accelerator15.

The main, and perhaps most straightforward, way one can en-
sure maximum utilisation is to increase data input batch size. It is
worth clarifying here that in this setting batch size does not refer
to the full dataset containing all training samples, rather it is a
subset of training samples, equivalently called a minibatch (Good-

14We note that the codebase can easily be extended to run on even faster
tensor processing units (TPUs), but this was not taken further due to lack of
available resources.

15It is worth emphasising that the FINK system does not have GPU accel-
erators itself and all inference is done on CPU-only machines. Therefore at
runtime in FINK our model needs to be loaded each time by the CPU. If on
the other hand FINK used GPUs in the Processing cluster, one could leave
the model in memory disregarding the problems of model size in relation to
frequent loads from disk.
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fellow et al., 2016). We shall use the terms interchangeably going
forward.

Batch size in itself can have a major impact on model con-
vergence, but it plays a significant role when striving for optimal
performance and computational efficiency. Since TensorFlow uses
32-bit precision for floating point operations on the GPU, model
parameters take up 4 bytes each. Using this information, it is pos-
sible to determine the largest practical batch size that can deliver
maximum GPU utilisation.

In addition to greater computational efficiency, larger batch
sizes on the GPU are also expected to yield slight classification
performance gains. If we consider that the standard error of the
mean is estimated from n samples as σ/

√
n, with σ as the stan-

dard deviation of the samples, we can see that with larger n, one
can obtain a more reasonable estimate for gradients (Goodfellow
et al., 2016, p. 271). While it would normally be the case that the
non-linear scaling of gradient estimates would invoke a trade-off be-
tween how many samples to use and compute resources, such is the
computational efficiency of GPUs that the limiting factor becomes
the amount of memory that can be used instead. Therefore, by in-
creasing the batch size to be as large as possible for a single GPU,
and then scaling this by the number of GPUs available, through
an all-reduce operation when running our stochastic gradient opti-
misation, we can realise the improved classification performance in
addition to computational improvements as well.

5.4 Preliminary Results

This section presents the preliminary results of applying the model
optimisations outlined in this chapter to the original time-series
transformer model. We first run local processing tests on real ZTF
alert packets to gauge the potential performance when deployed
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into the production system of FINK (which is discussed in the
next section).

5.4.1 Model Retraining

The original time-series transformer was trained using a single
NVIDIA V100 GPU, with 32GB of memory. Section 5.3.5 explained
how computational efficiency gains could be made by increasing
batch size. As a first test, we extend the t2 codebase to allow for
multiple GPU training while ensuring the largest batch size possi-
ble is dispatched to each GPU. Through the model profiling tool of
model-profiler16 we determine the best minibatch size to be 4096
using the same GPU as before. Now on the order of 100 times larger
batch size compared to the original model described in Chapter 4,
we see far greater utilisation of the GPU.

Scaling out computations across many machines and increasing
the global batch size gave remarkable speed up, bringing training
time down from approximately 8 minutes per epoch to 2 minutes
per epoch, where epoch refers to one full forward pass and one
full backward pass of all the examples in the training set. With
an average convergence rate of 130 epochs, we bring overall model
training down from 17 hours to nearly 5 hours, now well within
FINK’s window of opportunity for retraining new models nightly.
Note that this is a full model retrain, and simple fine-tuning can be
done at a fraction of the time should this be the preferred method of
model updating. By leveraging data parallelism in this way, where
the data is distributed across multiple devices for training, should
even more hardware accelerators become available, we can bring
this down further still with a near -linear reduction in training time.

5.4.2 Local Processing Tests

With the knowledge that we can retrain models quickly within the
specified window suitable for FINK nightly updates, we now move

16pypi.org/project/model-profiler

https://pypi.org/project/model-profiler/
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to our first application of deep model compression. We discussed in
Section 5.3.2 that of the three methods: weight-clustering, weight-
pruning, and weight-quantization, only clustering is applied during
training. To enable this, we modify our original model to allow for
clustering of weights in the network.

Clustering, otherwise known as weight-sharing, can indeed be
done throughout the network. However it is advisable to avoid
highly specialised layers such as attention blocks, and only focus
clustering on the layers that are likely to have high redundancies.
For this reason, we only apply clustering to the final dense layer,
as shown in Figure 5.3.

Firstly, we inspect the impact weight-clustering alone has on
the model performance compared to the original t2 architecture.
Along with application of model optimisations and compression,
comes the expectation that model performance could be adversely
affected. While it may be the case that the goal is to remove re-
dundancies, by using these methods, there is inherent information
loss compared to the original model, which must be considered.
Under the same parameter settings and conditions as the original
time-series transformer model (see Allam, Jr. and McEwen (2021),
Table 2), which used the six passbands of u, g, r, i, z, y plus two
additional features photometric redshift and photometric redshift
error, we can see in Figure 5.7 that by using clustering, we not
only preserve model accuracy, but this is improved slightly to a
logarithmic-loss of 0.450 compared to 0.507 previously. This ac-
tually takes the performance beyond the previous state-of-the-art
by Boone (2019) of 0.468, whilst maintaining good purity of 0.95 for
SNIa and a core-collapse SNe (SNe Ib/c and SNe II) cross contam-
ination of ∼ 4.65%, comparable to results calculated for DES (Vin-
cenzi et al., 2021) and Pan-STARRS (Jones et al., 2018) with ∼ 8%
and ∼ 5% respectively. However, at this point, we should note that
we are potentially seeing the benefits from batch size enhancements
and so slight improvements in logarithmic-loss could perhaps be at-
tributed to this, in addition to weight clustering.
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FIGURE 5.7: Raw count confusion matrix resulting from application of a clustered version of the
time-series transformer (Allam, Jr. and McEwen, 2021), to the PLAsTiCC dataset in a represen-
tative setting with imbalanced classes, achieving a logarithmic-loss of 0.450, using all 6 passbands
and additional information of redshift and redshift error. This results in a purity of 0.95 for SNIa
and a core-collapse SNe (SNe Ib/c and SNe II) cross contamination of ∼ 4.5%
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Nevertheless, redundancies have been exploited, allowing this
model to achieve good classification scores at a fraction of model
size on disk. With preservation of model performance confirmed,
we continue to explore the impact of applying other compression
methods to t2 and inspect compression rate, inference latency and
model performance trade-offs.

To continue our preliminary analysis gearing for deployment, we
simulate the ingestion pipeline and use real ZTF alert packet data,
such that it is akin to what the model would be expected to handle
in the production system of FINK. To synthetically create ZTF-
like dataset to retrain our model, we use the PLAsTiCC dataset
as before, using only the time-series information i.e. no additional
redshift features, and drop all passbands except for g and r. We
then retrain to create a new model that can handle ZTF alert
packets, and use this as our baseline, which achieves a logarithmic-
loss of 0.968.

In a comparative study, we look at four main aspects when judg-
ing machine learning models for production performance: model
size, model load time, model inference time, and finally model per-
formance in terms of logarithmic-loss score. It is important to mon-
itor any degradation in performance which would indicate whether
a particular technique, or combination of techniques are still worth
using. This is all shown in Table 5.1, which compares the baseline
architecture of the original time-series transformer described above
with various compression methods and optimisation techniques ap-
plied.

The first thing to note from Table 5.1 is the immediate space
savings one can achieve through standard lossless compression al-
gorithms. The original model is able to be reduced down by 4.5×,
which is significant for space savings, but it is also clear that load
and inference latency are not affected. For the gains we are hoping
for, deep compression methods are required, and this will be the
focus of the remainder of this discussion.

The first method we apply is that of weight-clustering. We de-
scribed in Figure 5.4 the typical ways to initialise the centroids of
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the clusters. We opt for using linear initialisation and set the num-
ber of clusters to be 16 for the reasons laid out in Han et al. (2015a),
which puts poor performance of the other initialisation procedures
down to fewer clusters containing large weight values. The imme-
diate effects of clustering show improvements in logarithmic-loss
from 0.968 to 0.836. We suspect this may be due to the reduction
in the number of parameters, helping to generalise the model as
alluded to in LeCun et al. (1989b). We also see a slight reduction
in model size, but considering we now have shared weights, the real
model reductions are realised when we combine this with Huffman
encoding, which uses fewer bits for repeated values. Hence, we see
a better reduction in model size using clustering and Huffman en-
coding compared to just using Huffman encoding on the baseline
model alone. We would expect far greater compression rates should
the technique be applied to more layers than just the final dense
layer which goes from 448 unique values to 16 values. Models which
have many thousands of unique values would greatly benefit from
this procedure. In addition to space saving, we also see a small
reduction in load latency as well as inference latency.

We now move to the application of weight-pruning. Recall prun-
ing removes “unimportant” weights by setting them to zero, and
specifically those weights with low magnitudes. We apply this tech-
nique network wide so all layers’ weights are evaluated and trimmed
down accordingly. Through fine-tuning of the clustered network, we
soon discovered that any additional sparsity that was introduced
negatively affected the classification scores. The results can be seen
in Table 5.1, where even pruning to a level of 1.1% sparsity de-
graded performance. Further empirical studies are necessary to de-
termine what level of sparsity would actually benefit this network.
Notwithstanding, we complete our analysis by including Huffman
encoding to this pruned network to witness any improvements in
load time and inference latency. Indeed there is an improvement on
both of these metrics, but at the cost of classification performance,
we disregard using pruning any further.

We move towards a different approach for model optimisation
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with a change in file format and framework as described in Sec-
tion 5.3.4, as well as application of weight-quantization. These re-
sults are denoted by the dagger (†) symbol in Table 5.1. These are
models that have originally been trained using the full TensorFlow
framework but converted to a more optimised, efficient file format
of FlatBuffers. The conversion also involves operator fusion, to
combine primitive computations that appear as a single operation
in the computational graph. With reduced code footprint through
operator fusion, and efficient binary representation of data, we nat-
urally see a large reduction in model size on disk. Around 10× space
savings can be achieved by simply converting the original model
into a TFLite model. In addition to the impressive space saving
gains that are made, with the model in this format we can take ad-
vantage of directly mapping the model into memory for a reduction
in load latency of more than 13, 000× speed up compared to the
exact same clustered model and almost 15, 000× that of the origi-
nal baseline. As the model is loaded for each batch of data FINK
processes, this should lead to a fair increase in potential through-
put of alerts. While this would certainly help with throughput of
alerts in the production system, the other key metric for success is
inference latency. That is, the time go from alert packet ingestion to
classification. It can be seen in Table 5.1 using the clustered model
in the FlatBuffer format gives a speed up of around 5× that of
the same clustered model, and around 7× speed up compared to
the original baseline. Considering our model is expected to process
millions of alerts per night, having inference latency gains of this
magnitude is undoubtedly positive.

Finally, we apply the third technique described in Section 5.3.2
of quantization. To use this method, we leverage the functional-
ity that comes with TFLite’s model conversion tool, that allows
for static quantization to 8-bit integers by examining the dynamic
range of the weights when saving model to disk, and then upscal-
ing to floating point approximation at inference time. By quantiz-
ing the weights of the clustered model, and saving in FlatBuffer

format, we are able to shrink the model even further to now 60 kilo-
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bytes, an 18× reduction when compared with the original baseline
model, and an incredible load time improvement of 24, 000× speed
up. Moreover, inference latency is reduced slightly compared to the
clustered model saved in FlatBuffer format, for an overall gain of
nearly 8× against the baseline. An important point is to mention
the preservation of model score with a logarithmic-loss of 0.834.
Note the slight improvement in performance here compared to the
clustered model without quantization. We suspect this discrepancy
between the other clustered models to be due to the scaling approx-
imation in Equation 5.3 and not due to the application of quanti-
zation itself.

The confusion matrix in Figure 5.8 shows the performance of
this quantized-clustered model trained on only 2 passbands. We
calculate a purity of 0.89 for class SNIa, with a core-collapse SNe
cross-contamination of 8.15%, which is just outside the expected
range of 8% described for DES (Vincenzi et al., 2021) and ∼ 5%
described in Jones et al. (2018) for Pan-STARRS.
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FIGURE 5.8: Raw count confusion matrix resulting from application of a clustered version of the
time-series transformer (Allam, Jr. and McEwen, 2021), to the PLAsTiCC dataset in a representa-
tive setting using full light curves, with imbalanced classes, and only time-series information from g
and r passband filters. This model achieves a logarithmic-loss of 0.836, using only the 2 passbands
and no additional information. This yields a purity of 0.89 for SNIa and a cross contamination from
core-collapse SNe of approximately 8%.
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We have shown that application of compression techniques and
use of appropriate file formats, substantial space and memory sav-
ings, alert processing throughput, and inference latency can be
achieved. However, we acknowledge local tests of the pipeline, while
on real data, may not be indicative of how well a model would
perform in a real production systems, under real-time constrains.
Therefore, in the next section we put forward our best performing
model that uses a combination of clustering and quantization to
be deployed in a live setting on the production system of FINK for
tests of real-time classification.
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TABLE 5.1

Comparative performance between the original time-series transformer model, referred as the baseline, and the

respective compressed versions using a combination of weight quantization, weight clustering, weight pruning and

Huffman encoding17 . We present two sets of results in terms of models saved to disk in ProtocolBuffer format

and those saved in FlatBuffer format, where the latter is denoted by a † symbol. Load latency refers to the time

(in milliseconds) to simply read the model into memory, whereas inference latency (in seconds) tests the time to run

predictions on a single ZTF alert packet. All tests were run on an Apple M1 Pro 32GB laptop.

Compression Method Model Size (kb) Load Latency (s−3) Inference Latency (s) Loss

Baseline 1100 6324.145 0.333 0.968
Baseline + Huffman 244 6015.565 0.224 0.968

Clustering 892 5559.868 0.227 0.836
Clustering + Pruning 688 5721.021 0.230 1.017
Clustering + Huffman 240 4991.857 0.223 0.836
Clustering + Pruning + Huffman 128 5251.288 0.228 1.017
†Clustering 92 0.426 0.046 0.836
†Clustering + Quantization 60 0.271 0.043 0.834
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5.5 Production Results

In the previous section we spoke of creating a new model that can
classify ZTF alert packets and hence be usable as a science mod-
ule within FINK. Comparing that to the original time-series trans-
former of Allam, Jr. and McEwen (2021) which worked with 6 pho-
tometric passband of PLAsTiCC: u, g, r, i, z, y, as well as imputing
additional features of photometric redshift, we train a model de-
rived from the time-series transformer architecture that only takes
in raw time-series from g and r bands, with no additional features.
This is done to fit with the data that comes from ZTF alerts packets
into FINK, which do not contain photometric redshift information
but only time-series measurements for the two passbands of g and
r filters. To give an easier visual comparison of the relative per-
formance between the model described above, trained on only 2
passbands, with the model trained on 6 passbands plus additional
information, we present the two confusion matrices of Figure 5.7
and Figure 5.8 in a normalised form in Figure 5.9. It was then
this gr-only model that was used as the baseline, shown in Ta-
ble 5.1. While the model is still able to make good classification
scores across the board, removing the other passbands of u, i, z
does cause an increase in cross-contamination by ∼ 4%. This is
interesting in its own right, where an avenue of research could lead
to investigate why training on only g and r passbands affect super-
novae classification in this way compared to when we can use all
6 passbands. This may well be down to the lack of i-band specif-
ically as this band along with r-band is typically given preference
in times of good seeing and at low airmass (Abell et al., 2009), but
for our purposes, we just note these results to keep in mind when
assessing model validation.

17As described in Section 5.3.2, we actually use the DEFLATE algo-
rithm (Deutsch, 1996) within zlib18 which combines Huffman encoding with
the LZ77 compression algorithm (Ziv and Lempel, 1977).
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Then, when using a combination of weight-clustering along
with weight-quantization saved in the more efficient format of
FlatBuffers, we created the best performing model in terms of
latency and space saving metrics when tested locally on ZTF alert
packet data. It should be mentioned that we only train a model
of this form to suit deployment into FINK (that at the time of
writing, can only ingest ZTF data), for testing of our model as a
real-time classifier. It is expected for LSST that a model more akin
to that showcased in Figure 5.7 that uses all 6 passbands as well
as redshift information but trained on discretised alerts would be
deployed.

This section presents the results for deploying our quantized-
clustered version of the time-series transformer model into the pro-
duction system of FINK tested on the real ZTF alert stream. We
compare the baseline model described in the previous section, that
achieves 0.968 logarithmic-loss on ZTF-like data packets, with the
compressed version, that achieves better logarithmic-loss of 0.834,
in a now live production setting, and observe alert throughput and
latency improvements that have been achieved when using the deep
model compression techniques.

5.5.1 Model Validation

The first test for our deep learning model as a science module within
FINK is to validate the classification scores that we achieve. Not
only is it important for our model to operate in real-time under
heavy work-load conditions, but it must clearly continue to report
correct classification results when deployed. FINK validates models
using the Transient Named Server (TNS) (Gal-Yam, 2021), which
is a transient alert system that has spectroscopically confirmed
objects in its database. By comparing predictions to that of what
TNS lists for a given object, we can get an indication of how well
a transient classifier is performing.

Figure 5.10 shows our models predictive performance on one
full year of real ZTF alerts against the spectroscopically confirmed
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FIGURE 5.9: Normalised confusion matrices for Figure 5.7 above
and Figure 5.8 below.
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FIGURE 5.10: Comparison of spectroscopically confirmed labels
in the Transient Named Server (TNS) database against the top-1
predictions for the compressed time-series transformer. The data
used for this test comprised of one full year (2022) of real ZTF
data with specific quality applied to the light curve history data
requiring a minimum of 2 points and maximum of 90 points on the
light curve since the first alert emission date. The set of alerts are
also reduced to filter out objects known to be a Solar System object
from the MPC database or Galactic object when cross-matched
against the SIMBAD database.
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objects in the TNS database (extra-galactic objects). In addition to
the quality cuts common for all modules, we apply further criterion
of at least 2 points and at most 90 points on the light curve since
the first alert emission date, as well as the object to not be a Solar
System object from the Minor Planet Center (MPC) database or
Galactic object according to the SIMBAD database (Wenger et al.,
2000). Recall in 5.4.2 our baseline model has been trained using full
light curves. Since real ZTF alert packets contain only 30 days his-
tory, only partial light curves are observable most of the time. This
results in a model being trained in non-representitive setting where
it expects full light curves but is tested on discretised light curves.
Yet, our model is able to correctly identify the majority of SNIa
objects, as well as other classes. Though it should be noted there is
greater misclassification of SNIa and core-collapse SNe beyond the
predicted cross-contamination of ∼ 8% described in the previous
section, and this is likely due to the non-representative nature of
the alert data. As such, we would not consider our model in this
form to be suitable for a fine-grain transient classifier, and ideally
would need to be trained on the discretised data of alert packets
to be more representitive, which is planned for future work. Con-
sidering these results, we can instead frame our model as to be a
general transient classifier that is able to identify SNe more broadly.
Indeed, when we evaluate the model against the ensemble of pre-
dictions from all other classifiers in FINK we can see our model is
able to correctly identify SN candidates, shown in Figure 5.11.

Therefore, while there are some misclassification within SNe
classes, the compressed time-series transformer is able to success-
fully classify supernova objects in general, and when compared to
existing science modules in FINK, correctly identifies supernova
candidates. It is also able to go further, where FINK science mod-
ules labels certain objects as “Unknown”, our model is able to ac-
curately suggest these as supernovae candidates (see Figure 5.11).
A clear value-add for the brokering system which can be used to
update and enrich the database.
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FIGURE 5.11: Comparison of aggregated FINK classifiers’ predic-
tions against the top-1 predictions from the compressed time-series
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disregard alerts that correspond to be a Solar System object from
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SIMBAD database.
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5.5.2 Alert Throughput/Latency Performance

With confirmation that the compressed model is operating cor-
rectly, we now come to test the throughput and latency of the clas-
sifier, ultimately deciding the usefulness of our model for real-time
classifications.

We first look at how the original time-series transformer, which
we refer to as the baseline model in Table 5.1, fairs up against
other existing science modules in FINK. For this, we take one
full nights worth of ZTF alerts, amounting to approximately
200, 000 alert packets, and compare the throughput and latency
performances of all the science modules currently implemented in
fink-science 19as of v2.0.0. For an overall comparison, we show
the “on-sky” throughput performance that passes all alerts through
all science modules, ignoring any pre-processing filters that would
normally be applied.

Over an average of 20 processing runs, the mean alerts per sec-
ond per core for each science module is calculated. These results are
most succinctly presented in Figure 5.12, where our model is the
only deep learning model of such complexity offering up a vector
of probabilities for the classification scores. Other science modules
such as Solar-System Object (SSO) and The Centre de Donnés
astronomiques de Strasbourg (CDS) cross matching service are ex-
amples of table lookups whose performance is determined by the
execution of a query plan, and the only other deep learning model
of SuperNNova (SNN) (Möller and Boissière, 2020) offers only a
binary classification for SNIa.

The baseline model, with no compression or optimisations
made, is actually able to sit amongst the other science modules and
deliver real-time classifications. While this seems to have already
achieved our desired goal of deploying a science module capable of
real-time classification, it is important to consider that the model
that is deployed in FINK is not done so in isolation, but rather
all science modules within FINK will be operating in tandem. Cor-

19github.com/astrolabsoftware/fink-science

https://github.com/astrolabsoftware/fink-science
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FIGURE 5.12: Alert throughput of FINK science modules, as of
version fink-science-v2.0.0, tested on one full nights worth of
ZTF alerts (approximately 200, 000). Our time-series transformer
model, referred to as the baseline model in Table 5.1, and labelled
here as “T2” is able to achieve a throughput of ∼ 500 alerts per
second per core. As described in Möller et al. (2021), we trace a
horizontal line to indicate the threshold for a single science mod-
ule within FINK to be considered real-time ready, assuming 100
CPU cores. Under the data rates estimated for LSST, FINK will
receive 10, 000 alerts every 37 seconds, and such a threshold would
allow for approximately a dozen science modules to provide clas-
sification scores serially. For full details of the inner workings of
the other science modules shown here, the reader is advised to
explore the fink-science package. It should be noted that the
results presented here are to be considered “on-sky” performance,
where all alerts are processed blindly by all modules. This would
not be the case typically, for example only a small fraction of
alerts would be processed by the ML (microlensing) (Godines et
al., 2019) module since various inbuilt physics filters would deter-
mine if an alert is suitable for processing beforehand. Highlighted
in bold are the two deep learning models, with one being our own
time-series transformer listed as (T2) and the other being that of
(SuperNNova) (Möller and Boissière, 2020) listed as SNN. With a
key difference being that SNN is a binary classifier whereas T2 pro-
vides a set of probabilities scores across many classes.
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respondingly, since the outgoing enriched alert packet is only sent
after all science modules have finished processing the data packet,
each individual science module can have a large impact on the
real-time science capability of FINK as a whole. To not delay other
modules that may be time-critical such as for Gamma Ray Burst
(GRB) detections, science modules need to optimise throughput
wherever possible, ultimately benefiting the entire system.

Therefore, by going further and looking at how our best per-
forming compressed model manages to deal with the alert through-
put in a live setting, we can see in Figure 5.13 a sizeable improve-
ment. While our local processing tests gave up to 8× speed up
compared to the baseline model for inference latency, in a real pro-
duction environment, we achieve an impressive 5× in a live setting.
It is suspected that a decline in speed up compared to what was
achieved in a local processing context can be attributed to com-
munication overheads in the cluster, where networking bandwidth
becomes the bottleneck in place of computations.

This substantial throughput performance, thanks to low-
latency inference via deep compression techniques, greatly benefits
the overall FINK system. As science modules are run serially in
FINK, our models ability to quickly complete processing not only
ensures there is no delay to other time-critical science modules,
but also permits more science modules to co-exist within the total
computational time budget afforded to FINK. Finally, by improv-
ing latency in this way, we lay out a guide for other existing deep
learning models, and those under current development, for how to
use model optimisations for improved performance.

5.6 Conclusions

We have shown through deep model compression, complex models
such as the time-series transformer can be made super-lightweight
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FIGURE 5.13: Our time-series transformer model (T2), is originally
able to achieve a throughput of ∼ 500 alerts per second per core,
but following application of deep compression techniques achieves
an increased throughput of approximately 5× of the number of
alerts to now ∼ 2600 alerts per second per core. In this same plot
we have shown the baseline performance, and the new compressed
version of the time-series transformer architecture using an arrow to
indicate the increase in throughput. This version of the time-series
transformer that uses weight-clustering and weight-quantization
along with TFLite fused operations achieves performance far be-
yond the requirements for real-time classification of alerts at LSST
scale. This has knock-on benefits for all other science modules
within FINK, and encourages use of these methods for other sci-
ence modules going forward. We highlight in bold along with T2 the
only other deep learning model of SNN (SuperNNova) (Möller and
Boissière, 2020). The increase in throughput performance brings it
within the same order-of-magnitude of alerts able to be processed,
yet we are able to provide probability scores across all classes as
opposed to a single binary classification.
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for real-time inference. The already efficient architecture benefits
even further from weight-clustering and weight-quantization to pro-
vide low-latency, high-throughput classification scores, all the while
preserving the accuracy of the results. Our study of weight-pruning
showed good reduction in model size but proved to be detrimen-
tal to performance. Clearly even the low magnitude weights of the
network carry information critical for good classification.

We have shown through careful choice of file formats, major
speed ups can be achieved, which in turn dramatically improves
a deep learning model’s ability to process inputs and operate in
real-time, in a live production setting. Our compressed version of
the time-series transformer now resides in FINK, providing nightly
classifications for the incoming ZTF alert stream. We have show-
cased our models suitability for providing robust classifications at
a fraction of the original model size and runtime. By scaling out
computations, we have brought retraining down to within the time
frame required for nightly updating on new alert data.

As described in Section 5.2.2, the ZTF alerts stream, although
1/10th of the expected LSST data rates, is a good precursor for
modelling the suitability of models and infrastructure to how well
they will handle future data streams. Consequently, we used FINK
to emphasise our model’s ability to handle such large volumes of
data and have presented results that showcase its ability to cope
with LSST scale, and beyond.

It is hoped that the work here, which introduces deep compres-
sion to the field of real-time transient classifiers, will be harnessed
to enable existing architectures to be deployed as real-time classi-
fiers easily into other brokering systems, as well as to inspire those
currently being developed that real-time capability is within reach
if techniques like those described here are applied.
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Conclusions

“We can only see a short distance ahead, but we can see plenty
there that needs to be done.”

— Alan Turing.

6.1 Research Summary

This thesis has introduced two novel deep learning architectures for
photometric classification of astronomical transients, that are also
applicable to the task of general multivariate time-series classifica-
tion. Specifically designed to be fast and efficient, with computa-
tional cost and algorithmic complexity in mind from the outset, we
presented architectures that go beyond the current state-of-the-art
for photometric classification in terms of classification performance
and greatly improves computational efficiency.

Our first architecture, the astronomical-transient xception net-
work, atx, (Chapter 3), introduced the depthwise-separable con-
volution to the field of transient classification for a low-rank fac-
torisation of the normal convolution operator. This brought com-
putational costs down compared to other CNN architectures by
O(1/N + 1/w), where N is the number of output channels and
w is the width of the kernel in a convolution, as well as reducing
number of parameters per layer from O(w · d2) to O(w · d + d2),
with d representing the dimensionality of the output. The idea for
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such a network was built upon from the investigations by Fawaz
et al. (2019) which showed how state-of-the-art architectures typi-
cally applied to computer vision tasks on 5-dimensional images (2
spatial dimensions with 3 channel dimensions), can be naturally
applied to time-series data which is simply 1-dimensional “spatio”
data with number of channels equal to the number of features.

As put forward by Chollet (2017), taking an Inception module
to the extreme, one can achieve significant computational savings
using the depthwise-separable convolution in place of normal con-
volution. For that reason, we took the InceptionTime architecture
developed in Fawaz et al. (2019) as inspiration to form an “Xcep-
tionTime” architecture centred around depthwise-separable con-
volutions for efficient multivariate time-series classification. When
specifically adapted for the task of photometric classification this
architecture became the network described in Chapter 3 as atx. Us-
ing this architecture we achieved a logarithmic-loss of 0.739, where
the leading result in the field under the same metric is 0.468 (Boone,
2019).

To go even further and improve our achievements with atx,
we changed our focus of inspiration from one deep learning sub-
domain of computer vision, to another of natural language pro-
cessing (NLP). By making the connection between sequence mod-
elling of NLP to that of photometric light curve data, we were able
to leverage major advancements in architectural design from the
NLP world to help bring computational cost and parameter count
down even further than before, all the while improving classification
performance. The time-series transformer, t2, described in Chap-
ter 4 is a fast and efficient architecture, that reduced model size
by 45× along with 3× reduction in per epoch training time, when
compared to our already computationally efficient astronomical-
transient xception network.

Our work of Allam, Jr. and McEwen (2021), that drew inspira-
tion from the breakthrough paper of Vaswani et al. (2017), intro-
duced transformers and the multi-head self-attention mechanism
to the field of photometric classification. We also pioneered the use
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of a new convolutional embedding that can project a photomet-
ric light curve, or more generally a multivariate time-series, into a
vector-space representation suitable for modern machine learning
architectures. The smaller and more lightweight model was able to
achieve even better performance on the PLAsTiCC dataset with
near state-of-the art logarithmic-loss of 0.507.

Our final contribution to the field laid out in this thesis has been
the introduction of deep compression techniques for the deployment
of deep learning models for real-time transient classification. With
an implementation of these methods on top of our best perform-
ing architecture of the time-series transformer, we demonstrate our
deep learning models’ ability to not only handle live streaming data
from the Zwicky Transient Facility (ZTF) under stress, but to ac-
curately make predictions in real-time.

Through performance engineering and model optimisation
methods, we were able to bring our already performant deep learn-
ing model of t2 into the realm of high-throughput low-latency in-
ference necessary for LSST scale. Now with a model size of a mere
60 kilobytes on disk, we are able to achieve a throughput capacity
of around 2600 alerts per second per CPU core, ultimately improv-
ing the throughput capacity of the entire brokering system as well.
Moreover, by leveraging data parallelism and modern hardware ac-
celerators, we bring retraining of our deep learning model to within
the critical window for nightly updates on new data, fitting with
one of the unique selling points of FINK.

Our tests show that our compressed version of the time-series
transformer is already capable of handling the influx of data that
is expected from LSST when it comes online. We also show that by
using all six passbands that will eventually be available, along with
photometric redshift and redshift error, a quantized and clustered
model can achieve beyond state-of-the art multi-class classification
of astronomical transients with a logarithmic loss of 0.450 compared
to 0.468 of the previously leading model (Boone, 2019).
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6.2 Future Work

As is the nature of research: we see there is always plenty to be
done, but in this section we identify avenues of particular research
that would either naturally follow from the work presented here
in this thesis, or offer an alternative approach to achieving good
classification performance at a reduced computational cost, as well
as improved downstream efficiency of resource allocation.

6.2.1 ELAsTiCC

Such was the success of the Photometric LSST Astronomical Time-
Series Classification Challenge (PLAsTiCC), the dataset for which
all our classification results are based, a renewed effort with im-
proved data is coming in the form of the Extended LSST Astro-
nomical Time-series Classification Challenge (ELAsTiCC) (Naryan
et al., 2022). However, changing focus slightly, the purpose of ELAs-
TiCC is not only to attract novel machine learning classifiers from
the community at large, but to formulate a dataset suitable for test-
ing end-to-end real-time pipelines of brokering systems in prepara-
tion for LSST. To do so, the ELAsTiCC team has begun to simulate
5 million detected events that are discretised into 50 million alerts,
which will be streamed from LSST to the brokers listed in 5.2.1.
They will use this stream of alerts to stress-test infrastructure and
provide their packet enrichment services along with a classification
of each alert back to LSST

Participation in ELAsTiCC by way of our integration with the
FINK brokering system would be an obvious next step for our re-
search. What is more, depending on how the ELAsTiCC dataset
is constructed, i.e. whether the training set will be representative
or not, this may be an opportunity to explore use and integra-
tion of data augmentation techniques within our models. We have
already shown that by using data that is in a similar format to
LSST with Zwicky Transient Facility (ZTF) alerts, our deep learn-
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ing models can be adapted to handle real-world data arriving at
high velocity in a streaming fashion. We empirically showed that
using all six passbands available from LSST along with photomet-
ric redshift and the associated error, our lightweight version of the
time-series transformer can achieve beyond state-of-the-art classi-
fication scores, and at a throughput level above the critical line for
LSST data scale.

As the goal of this challenge is not to rank brokers on their clas-
sification performance, nor to showcase any classifiers in particular,
we do not expect the results of this challenge to praise a particu-
lar architecture. Having said that, a classifier that can prove to be
reliable under the same conditions as will be in place when LSST
would further strengthen our research presented in Chapter 5, and
hopefully highlight the benefits our methods have to offer to the
transient classification community.

6.2.2 Probabilistic Machine Learning

In this thesis, we have stressed the importance for reliable clas-
sification, especially when it comes to further resource allocation
of follow up observations and estimation of cosmological parame-
ters. While we currently output a vector of probabilities normalised
across the classes, with the classification label being assigned to the
arguments of the vector maxima, one would ideally want a distri-
bution over the classes that contains an intrinsic measure of uncer-
tainty for better cosmological parameter estimation and decision
making. As these photometric classifications are used for cosmol-
ogy directly, a measure of uncertainty of each prediction can help
to better constrain competing models of dark energy. Furthermore,
probabilistic predictions can also effectively determine whether a
particular object is worth following up or not, irrespective of it
simply being the maximum class among the other classes. Con-
sequently, we could reduce expensive false-positive follow-ups by
enforcing a threshold of classification confidence before any further
resources are sought.
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So far, with all architectures we have described, we have used
point estimates for the weights in the networks. To achieve the un-
certainty measures we would like, a probabilistic extension to the
deep learning architecture would be necessary. By moving away
from the point estimates of our weights to instead drawing the
weight values from a distribution we can better quantify the un-
certainty of our predictions.

However, the motivation of this thesis has been to develop novel,
efficient deep learning architectures that can provide reliable clas-
sification in real-time. At conflict with this premise is the notorious
computational cost of running probabilistic networks. But, there is
light on the horizon. In this golden age of computer architecture
and hardware accelerators, coupled with the major advancements
in fast optimisation algorithms, there is a resurgence of efforts that
leverage Probabilistic Programming Languages (PPLs), that help
one define a probabilistic model, on top of computationally efficient
hardware. Development of probabilistic architectures with PPLs
that use fast algorithms on specialised hardware for the approxima-
tion of integrals through optimisation are giving hope for possible
real-time use cases in the future. It is certainly felt worth exploring
this space to gain better uncertainty estimates on the predictions
that are made.

6.2.3 Probabilistic Data Structures

Another alternative avenue of research that could be explored,
which also gives a notion of uncertainty, is use of a probabilistic
data structure (PDS). PDSs are data structures that typically use
a hashing function to provide an approximated answer to a query,
but with provable bounds on the errors. The rise of PDS research
came in the recent big-data era when fast approximated answers
became more appealing than slow deterministic ones when dealing
with large data streams (Gakhov, 2019).

The big-data stream that will flow from LSST warrants data
structures and algorithms that can run on a single pass of the data
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i.e. online, and that can provide a summary (or sketch) of the data
stream that can be used for data monitoring, general data statistics
or even stream filtering of alerts.

We see a potential use case for a PDS that uses locality-
sensitive-hashing (LSH) (Indyk and Motwani, 1998) for fast sim-
ilarity search of embeddings created by our deep learning archi-
tectures. Work by Yoon et al. (2015) showed how a time-series
fingerprint can be generated using a pipeline of transforms (see
Figure 5. of Yoon et al. (2015)) and then similar time-series are
grouped together into the same hash bucket with high probability
using LSH. We see our fast time-series transformer as a drop in
replacement for the pipeline of transforms with LSH used to prob-
abilistically group similar light curves. We see this as a fast and
scalable way for efficient detection of possible transient events that
could sit early in a broker’s processing pipeline. For instance, this
could act as an early stage supernova candidate finder that is able
to flag an alert for more specialised downstream supernova clas-
sifiers. Another example may be for anomaly detection, where we
would be able to test whether the embedding we create is similar
to anything we have ever detected before. If the similarity score is
below a threshold we define, we can also flag for the alert to be
considered a potential anomaly.

The enticing aspect of using a PDS is the extremely fast query
lookups to the data that run in constant time, O(1) (assuming
well constructed hash-maps) and provide an estimated error of the
result. We can then use this to inform further time-critical down-
stream tasks which need a notion of uncertainty when making deci-
sions. Their ability to scale to ever increasing data, yet in sub-linear
space make for an exciting prospect for further research, and per-
haps a desirable feature for brokering systems to have early in their
processing pipelines.
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6.3 Closing Remarks

With the Vera C. Rubin Observatory’s first-light approaching,
preparations for the next generation survey of LSST are ramping
up. The work contained in this thesis is part of that effort, putting
forward fast and efficient architectures for photometric classifica-
tion that can operate in real-time. The computational cost savings
achieved by our methods, while conserving state-of-the-art classi-
fication performance are already benefiting real-world astronomi-
cal systems such as FINK (Möller et al., 2021), and it is hoped
upon first-light, our compressed time-series transformer will be a
standout science module capable of providing accurate classifica-
tion scores in an efficient and cost effective way.

The machine learning methods described, while specifically de-
signed for the task of photometric classification, can be more gen-
erally applied to other domains that have multivariate time-series
data. It is therefore expected that the techniques that are set out
here will be leveraged by those who wish to not only classify as-
tronomical transients events, but to perform generic time-series
classification at low computational costs. Furthermore, we hope to
inspire other practitioners developing time-series classification ar-
chitectures, that real-time deployment of those models are possible
through a compression blueprint explained in the previous chapter.

Use of these methods will positively impact the scientific com-
munity by improving the automated labelling of transient alerts,
where deep learning methods are now critical, and by that virtue
help constrain theories of the Universe. Hopefully shedding light
onto the age old questions of where did it all begin, and how will it
all end?.
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MTS Benchmark Results

The MTS is a set of 12 multivariate time-series datasets released
by Baydogan (2015) to encourage efforts towards the development
of better time-series classification methods. A review of the state-
of-the-art circa 2016 is given in Bagnall et al. (2017), with a more
recent overview outlining modern deep learning approaches pre-
sented in Fawaz et al. (2019). Shown in Table A.1, A.2 and A.3
are the comparative results for atx and t2 against other leading
architectures described in Fawaz et al. (2019) with regards to ac-
curacy, precision and recall metrics respectively. With the task of
photometic classification in mind, we compare our architectures to
MTS to gauge suitability of such architectures applied to general
multivariate time-series data found in the wild.
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TABLE A.1

Classification accuracy for 12 multivariate time-series datasets (see Bagnall et al., 2017; Bagnall et al., 2018; Baydo-

gan, 2015, for details) against architectures discussed in Fawaz et al. (2019)

t2 atx cnn encoder fcn mcdcnn mcnn mlp resnet tlenet twiesn

ArabicDigits 97.32 98.50 95.77 98.07 99.42 95.88 10.00 96.91 99.55 10.00 85.28
AUSLAN 92.91 87.09 72.55 93.84 97.54 85.38 1.05 93.26 97.40 1.05 72.41
CharacterTrajectories 94.57 97.97 96.00 97.06 98.98 93.82 5.36 96.90 99.04 6.68 92.04
CMUsubject16 100.00 93.10 97.59 98.28 100.00 51.38 53.10 60.00 99.66 51.03 89.31
ECG 84.00 76.00 84.10 87.20 87.20 50.00 67.00 74.80 86.70 67.00 73.70
JapaneseVowels 97.30 97.03 95.65 97.57 99.30 94.43 9.24 97.57 99.16 23.78 96.54
KickvsPunch 90.00 70.00 62.00 61.00 54.00 56.00 54.00 61.00 51.00 50.00 67.00
Libras 82.78 74.44 63.72 78.33 96.39 65.06 6.67 78.00 95.44 6.67 79.44
NetFlow 86.14 77.90 88.95 77.70 89.06 62.96 77.90 55.04 62.72 72.32 94.49
UWave 84.53 90.95 85.88 90.76 93.43 84.50 12.50 90.06 92.59 12.51 75.44
Wafer 89.40 89.40 94.81 98.56 98.24 65.76 89.40 89.40 98.85 89.40 94.90
WalkvsRun 100.00 75.00 100.00 100.00 100.00 45.00 75.00 70.00 100.00 60.00 94.38
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TABLE A.2

Classification precision for 12 multivariate time-series datasets (see Bagnall et al., 2017; Bagnall et al., 2018; Bay-

dogan, 2015, for details) against architectures discussed in Fawaz et al. (2019), where negative results indicate an

numerical instability in the calculation.

t2 atx cnn encoder fcn mcdcnn mcnn mlp resnet tlenet twiesn

ArabicDigits 96.79 98.51 95.84 98.10 99.43 95.95 1.00 96.97 99.56 1.00 86.16
AUSLAN 86.19 88.46 76.12 94.72 97.92 87.87 0.01 94.41 97.79 0.01 75.00
CharacterTrajectories 87.14 97.84 96.18 97.11 98.86 93.86 0.27 96.98 98.91 0.33 92.94
CMUsubject16 27.59 93.03 97.50 98.23 100.00 30.60 26.55 39.46 99.71 25.52 89.59
ECG 77.39 41.33 81.87 85.55 85.31 25.00 33.50 65.05 84.91 33.50 70.96
JapaneseVowels 96.09 96.84 95.56 97.33 99.14 94.22 1.03 97.33 99.00 2.64 96.75
KickvsPunch 79.17 69.05 68.19 62.39 52.12 28.00 27.00 58.21 55.19 25.00 67.98
Libras 84.32 74.77 64.15 79.12 96.69 67.17 0.44 79.66 95.84 0.44 81.62
NetFlow 80.58 38.95 84.61 42.78 85.77 45.80 38.95 34.93 69.33 36.16 94.19
UWave -999900.00 90.46 86.19 90.99 93.42 85.05 1.56 90.70 92.59 1.56 77.38
Wafer -999900.00 -999900.00 87.89 98.27 96.09 32.88 44.70 44.70 97.95 44.70 97.20
WalkvsRun 37.50 37.50 100.00 100.00 100.00 22.50 37.50 35.00 100.00 30.00 93.05
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TABLE A.3

Classification recall for 12 multivariate time-series datasets (see Bagnall et al., 2017; Bagnall et al., 2018; Baydogan,

2015, for details) against architectures discussed in Fawaz et al. (2019), where negative results indicate an numerical

instability in the calculation.

t2 atx cnn encoder fcn mcdcnn mcnn mlp resnet tlenet twiesn

ArabicDigits 96.77 98.50 95.77 98.07 99.42 95.88 10.00 96.91 99.55 10.00 85.28
AUSLAN 84.63 87.09 72.55 93.84 97.54 85.38 1.05 93.26 97.40 1.05 72.41
CharacterTrajectories 86.63 97.69 95.66 96.77 98.86 93.48 5.00 96.62 98.91 5.00 91.44
CMUsubject16 50.00 93.03 97.81 98.37 100.00 50.31 50.00 58.13 99.62 50.00 89.23
ECG 77.39 49.23 83.14 85.60 86.53 50.00 50.00 72.27 85.15 50.00 66.53
JapaneseVowels 95.70 96.96 96.21 97.89 99.28 94.26 11.11 97.71 99.23 11.11 97.21
KickvsPunch 79.17 66.67 65.83 62.50 55.00 50.00 50.00 61.25 55.00 50.00 68.33
Libras 82.78 73.33 63.72 78.33 96.39 65.06 6.67 78.00 95.44 6.67 79.44
NetFlow 77.45 50.00 82.59 50.41 81.05 50.21 50.00 50.77 66.20 50.00 89.49
UWave -999900.00 90.25 85.88 90.76 93.43 84.50 12.50 90.06 92.59 12.50 75.44
Wafer -999900.00 -999900.00 83.41 94.05 94.56 50.00 50.00 50.00 95.97 50.00 75.99
WalkvsRun 50.00 50.00 100.00 100.00 100.00 50.00 50.00 50.00 100.00 50.00 95.42
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PLAsTiCC Data Samples

Here we present example light curves built from the The Pho-
tometric LSST Astronomical Time-Series Classification Challenge
(PLAsTiCC) using techniques laid out in Chapter 3. Each colour
represents one of the 6 passband filters that will be used for
LSST; u, g, r, i, z, y.

60275 60280 60285 60290 60295 60300

Time (days)

−2000

0

2000

4000

6000

8000

10000

F
lu

x
u

n
it

s

g
i
r

u
y
z

FIGURE B.1: SNIa
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FIGURE B.6: Kilonovae
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FIGURE B.7: µ-Lens
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FIGURE B.8: SLSN
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FIGURE B.10: RR Lyrae
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Glossary

Activtion Function The activation function within a neuron
is the function that defines the output of
that neuron relative to the input. Typi-
cally these are non-linear functions that
allow for the network to learn complex
patterns in the data.

Epoch One full forward pass and one full back-
ward pass of all the examples in the
training set.

Hyperparameters The set of parameters that define the
network structure or method of training.
Examples include number of hidden lay-
ers, or the number or size of filters to use
in a convolutional neural network.

Layer A layer in a neural network setting is a
collection of neurons. A layer is defined
as the set of neurons that recieve the
same inputs. A neural network is con-
sidered a deep network if there are many
layers which pass information through.

203



204 B Glossary

Neuron A neuron is mathematical approxima-
tion of a biological neuron in the brain.
A single neuron is described by a set
of inputs, a set of weights, and an ac-
tivation function. The neuron translates
these inputs into a single output, which
can then be used as input for another
layer of neurons.

Parameters Collection of weights and biases that de-
fine the output of a neural network.

Scale Factor, a A mathematical quantity that describes
the changing separation of two points as
the Universe expands.

Sketch A summary or approximation of data
that is too large to query in a reason-
able time-frame.
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Balázs (2011). Algorithms for hyper-parameter optimization. In:
25th annual conference on neural information processing sys-
tems (NIPS 2011). Vol. 24. Neural Information Processing Sys-
tems Foundation.

Betoule, M et al et al. (2014). Improved cosmological constraints
from a joint analysis of the SDSS-II and SNLS supernova sam-
ples. In: Astronomy & Astrophysics 568, A22.

Bhuwalka, Pulkit et al. (2020). Quantization Aware Training with
TensorFlow Model Optimization Toolkit - Performance with Ac-

http://www.mustafabaydogan.com
https://ls.st/ldm-612
https://ls.st/ldm-612
https://ls.st/ldm-723
https://ls.st/ldm-682


208 B Bibliography

curacy. url: https : / / blog . tensorflow . org / 2020 / 04 /

quantization-aware-training-with-tensorflow-model-

optimization-toolkit.html.
Boone, Kyle (2019). Avocado: Photometric classification of astro-

nomical transients with gaussian process augmentation. In: The
Astronomical Journal 158.6, p. 257.

Branco, Paula, Torgo, Luis, and Ribeiro, Rita (2015). A survey of
predictive modelling under imbalanced distributions. In: arXiv
preprint arXiv:1505.01658.

Brausch, Lukas, Hewener, Holger, and Lukowicz, Paul (2022). Clas-
sifying Muscle States with One-Dimensional Radio-Frequency
Signals from Single Element Ultrasound Transducers. In: Sen-
sors 22.7, p. 2789.

Brownlee, Jason (2020). Tour of Evaluation Metrics for Imbalanced
Classification. url: https : / / bit . ly / 3sxqx9Y (visited on
03/10/2021).

Brunel, Anthony, Pasquet, Johanna, PASQUET, Jérôome, Ro-
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Valcin, David, Bernal, José Luis, Jimenez, Raul, Verde, Licia, and
Wandelt, Benjamin D (2020). Inferring the age of the universe
with globular clusters. In: Journal of Cosmology and Astropar-
ticle Physics 2020.12, p. 002.

Varughese, Melvin M, Sachs, Rainer von, Stephanou, Michael, and
Bassett, Bruce A (2015). Non-parametric transient classifica-
tion using adaptive wavelets. In: Monthly Notices of the Royal
Astronomical Society 453.3, pp. 2848–2861.

Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob,
Jones, Llion, Gomez, Aidan N, Kaiser, Lukasz, and Polo-

http://www.damtp.cam.ac.uk/user/tong/cosmo/cosmo.pdf
http://www.damtp.cam.ac.uk/user/tong/cosmo/cosmo.pdf


Bibliography 221

sukhin, Illia (2017). Attention is all you need. In: arXiv preprint
arXiv:1706.03762.

Vesto Slipher (1917). Radial velocity observations of spiral nebulae.
In: The Observatory 40, pp. 304–306.

Vincenzi, Maria et al. (2021). The Dark Energy Survey supernova
programme: modelling selection efficiency and observed core-
collapse supernova contamination. In: Monthly Notices of the
Royal Astronomical Society 505.2, pp. 2819–2839.

Wang, Dun, Hogg, David W, Foreman-Mackey, Daniel, and
Schölkopf, Bernhard (2017). A pixel-level model for event dis-
covery in time-domain imaging. In: arXiv preprint arXiv:1710.02428.

Weiss, Gary M, Yoneda, Kenichi, and Hayajneh, Thaier (2019).
Smartphone and smartwatch-based biometrics using activities
of daily living. In: IEEE Access 7, pp. 133190–133202.

Weng, Lilian (2018).Attention? Attention! In: lilianweng.github.io/lil-
log. url: http://lilianweng.github.io/lil-log/2018/06/
24/attention-attention.html.

Wenger, Marc et al. (2000). The SIMBAD astronomical database-
The CDS reference database for astronomical objects. In: As-
tronomy and Astrophysics Supplement Series 143.1, pp. 9–22.

Wood-Vasey, Michael, Daher, Christine Mazzola, Perrefort, Daniel,
and Raen, Troy (2022). Pitt-Google Broker. https://github.
com/mwvgroup/Pitt-Google-Broker.

Ye, Lexiang and Keogh, Eamonn (2011). Time series shapelets:
a novel technique that allows accurate, interpretable and fast
classification. In: Data mining and knowledge discovery 22.1,
pp. 149–182.

Yoon, Clara E, O’Reilly, Ossian, Bergen, Karianne J, and Beroza,
Gregory C (2015). Earthquake detection through computa-
tionally efficient similarity search. In: Science advances 1.11,
e1501057.

York, Donald G et al. (2000). The sloan digital sky survey: Technical
summary. In: The Astronomical Journal 120.3, p. 1579.

http://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
http://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://github.com/mwvgroup/Pitt-Google-Broker
https://github.com/mwvgroup/Pitt-Google-Broker


222 B Bibliography

Zaharia, Matei et al. (2016). Apache spark: a unified engine for big
data processing. In: Communications of the ACM 59.11, pp. 56–
65.

Zeiler, Matthew D and Fergus, Rob (2014). Visualizing and un-
derstanding convolutional networks. In: European conference on
computer vision. Springer, pp. 818–833.

Zhou, B., Khosla, A., A., Lapedriza., Oliva, A., and Torralba, A.
(2015). Learning Deep Features for Discriminative Localization.
In: CVPR.

Ziv, Jacob and Lempel, Abraham (1977). A universal algorithm
for sequential data compression. In: IEEE Transactions on in-
formation theory 23.3, pp. 337–343.

Zyla, P.A. et al. (2020). Review of Particle Physics. In: PTEP
2020.8. and 2021 update, p. 083C01. doi: 10 . 1093 / ptep /
ptaa104.

https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104


Index

absolute magnitude, 21
alert, 30
apparent magnitude, 21

batch size, 160

cadence, 26
continuity equation, 16
cosmological

constant, 5
principle, 6
redshift, 9

critical density, 19

dark energy, 18
deep compression, 150
depthwise-separable

convolutions, 70
difference

image, 30
imaging, 29

distance modulus, 21

equation of state, 16

light curve, 28

luminosity
apparent, 11
distance, 11
intrinsic, 11

metric, 7
minibatch, 160

perfect fluid, 14
purity, 36

self-attention, 104
skip connections, 69
spacetime, 7
standard candles, 12
standard sirens, 14

TinyML, 156

vacuum energy, 18

wavelets
wavelet, 40

weight-clustering, 150
weight-pruning, 150
weight-quantization, 150

223


	List of Tables
	List of Figures
	I Background
	Motivation and the Road to First Light
	The Expanding Universe
	Spacetime Geometry
	Notions of Distance
	Spacetime Dynamics

	In Search of Dark Energy
	The Legacy Survey of Space and Time
	Transient Classification
	Alert Brokers


	A Brief History of Time-Series Classification
	Photometric Classification: A Multivariate Time-Series Classification Problem
	Evaluating Classifiers
	Performance Metrics
	Confusion Matrix
	Receiver Operating Characteristic
	Precision-Recall Trade-Off


	Traditional Machine Learning Approaches
	Signal Processing with Wavelets

	Neural Networks and the Deep Learning Revolution
	Convolutional Neural Networks
	Recurrent Neural Networks
	AlexNet for Time-series Classification

	Research Overview
	Collaborative Contributions
	Metric Design
	Cadence Optimisation
	Real-time Science Infrastructure

	Thesis Outline



	II Research
	An Astronomical Xception
	Introduction
	The Convolutional Neural Network Story
	The Inception Hypothesis

	Efficient Learning with the Depthwise-Separable Convolution
	1D Depthwise-Separable Convolutions
	Improved Computational Complexity

	atx: The Astronomical-Transient Xception
	Architecture
	Data Interpolation with Gaussian Processes
	Inputting Additional Information
	Trainable Parameters and Hyperparameters

	Implementation, Evaluation Metrics & Training
	Implementation
	Multi-Class Logarithmic-Loss
	Training
	Hyperparameter Optimisation

	Results
	Astronomical Transients Dataset
	Classification Performance

	Conclusions

	Paying Attention to Astronomical Transients
	Introduction
	Attention Is All You Need?
	Attention Mechanisms
	Self-Attention
	The Rise of the Transformer
	Multi-Headed Scaled Dot Product Self-Attention
	Additional Transformer-Block Components
	Input Embedding and Positional Encoding


	t2: The Time-series Transformer
	Architecture
	Convolutional Embedding
	Global Average Pooling
	Class Activation Maps (CAM)
	Inputting Additional Information
	Trainable Parameters and Hyperparameters

	Implementation and Training
	Implementation
	Training
	Hyperparameter Optimisation

	Results
	Classification Performance
	Interpretable Machine Learning

	Conclusions

	Deep Learning Deployment
	Inference in the Age of Large Synoptic Surveys
	Calling All Brokers!
	Community Alert Brokers
	The ZTF Alert Stream: A Proxy for Success
	FINK: A Next Generation Broker

	Performance Engineering for Deployment in FINK
	Line Profile Analysis
	Deep Compression
	Lossless Data Compression
	Efficient File Formats and Frameworks
	Hardware-Accelerated Distributed-Training

	Preliminary Results
	Model Retraining
	Local Processing Tests

	Production Results
	Model Validation
	Alert Throughput/Latency Performance

	Conclusions

	Conclusions
	Research Summary
	Future Work
	ELAsTiCC
	Probabilistic Machine Learning
	Probabilistic Data Structures

	Closing Remarks

	MTS Benchmark Results
	PLAsTiCC Data Samples
	Glossary
	Bibliography
	Index


