
Novel Datasets, User Interfaces and
Learner Models to Improve Learner

Engagement Prediction on
Educational Videos

Maliththa Sahan Sarojan Bulathwela

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

April 8, 2023



2

I, Maliththa Sahan Sarojan Bulathwela, confirm that the work presented in this

thesis is my own. Where information has been derived from other sources, I confirm

that this has been indicated in the work.



Abstract

With the emergence of Open Education Resources (OERs), educational content cre-

ation has rapidly scaled up, making a large collection of new materials made avail-

able. Among these, we find educational videos, the most popular modality for trans-

ferring knowledge in the technology-enhanced learning paradigm. Rapid creation

of learning resources opens up opportunities in facilitating sustainable education,

as the potential to personalise and recommend specific materials that align with in-

dividual users’ interests, goals, knowledge level, language and stylistic preferences

increases. However, the quality and topical coverage of these materials could vary

significantly, posing significant challenges in managing this large collection, in-

cluding the risk of negative user experience and engagement with these materials.

The scarcity of support resources such as public datasets is another challenge that

slows down the development of tools in this research area. This thesis develops

a set of novel tools that improve the recommendation of educational videos. Two

novel datasets and an e-learning platform with a novel user interface are developed

to support the offline and online testing of recommendation models for educational

videos. Furthermore, a set of learner models that accounts for the learner interests,

knowledge, novelty and popularity of content is developed through this thesis. The

different models are integrated together to propose a novel learner model that ac-

counts for the different factors simultaneously. The user studies conducted on the

novel user interface show that the new interface encourages users to explore the

topical content more rigorously before making relevance judgements about educa-

tional videos. Offline experiments on the newly constructed datasets show that the

newly proposed learner models outperform their relevant baselines significantly.



Acknowledgements

I am deeply indebted to Prof. Emine Yilmaz and Prof. John Shawe-Taylor for their

unparalleled supervision. I am very grateful to the chair, and the thesis committees

for providing patient and valuable feedback in shaping this thesis since day one.

I express my deepest gratitude to Dr. Marı́a Pérez-Ortiz, who pushed the hardest
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0.1 Research Impact Statement

The contributions in this thesis have a wider societal impact in different aspects

when it comes to facilitating sustainable development goal 4 [1], providing eq-

uitable, high-quality lifelong education for all. The context-agnostic engagement

prediction models proposed are one of the very first and few approaches address-

ing scalable quality assessment of Open Educational Resources (OER) at present.

The context-agnostic and contextual engagement prediction models proposed in this

work are integrated into our X5GON infrastructure [2] that is aimed at discovering

and enriching OERs at scale so that they can be matched with learners across the

planet. The infrastructure already processes learning resources coming from over

30 repositories and is aiming to expand its coverage exponentially this year to har-

vest enrichments from 100,000s of OERs. The infrastructure already connects over

100,000 unique users every month with these resources. Due to the impact that

the contributions made, it has gained recognition at multiple prestigious venues.

The TrueLearn algorithm [3] has been honourably recognised at the UNESCO mo-

bile learning week. Our X5Learn platform has caught the attention of many OER

conferences such as the OER for a Better World Conference and OER EduScope.

Currently, the X5GON infrastructure, which integrates all the work presented in this

thesis is being developed to be made globally available through UNESCO. There-

fore, the enrichments done by the quality models, personalisation models and the

X5Learn user interface has the potential to reach the entire world population in the

future. The work can be easily expanded into non-OER materials that will expand

its reach. In terms of the impact it makes on the scientific community, this work

presents new ideas that can be used by a new generation of researchers who can in-

vent specific quality instruments that can address quality management in extensive

collections of educational materials. The scalable, transparent learner models pro-

posed in this work vary from neural learner models [4] as it is significantly richer

in terms of transparency and explainability. The human intuitiveness and scalability

of the models make them specifically attractive to repository administrators, poli-

cymakers and educators who want to use transparent, scalable, privacy-preserving
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personalisation capabilities without compromising performance. Furthermore, the

models use data-efficient algorithms that improve computational efficiency. Such

models are key to providing scalable education while having a positive impact on

the environment. These works are already getting improvements and extensions

from various European Union projects such as Encore+ and HumaneAI Network

where other scientists have started building on top of the work presented in this the-

sis. A lot of work still remains undone and warrants future research. The promise

of personalisation also poses risks of artificially intelligent (AI) systems exploit-

ing gender/age/wealth norms. While these risks need to be mitigated, the data ef-

ficiency and transparency of the proposed methods (including publicly available

datasets) will support addressing these issues. Early adaptation of the proposed

tools in the education sector should be done keeping the value of human teachers

and their experience in mind. There is an opportunity for AI systems to support hu-

man stakeholders (learners and teachers) in the learning journey rather than replace

them.
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Chapter 1

Introduction

The primary goal of this work is to leverage personalised recommendations of ed-

ucational videos. The global population grows at a rapid pace demanding more

creative and innovative approaches to provide high-quality education to masses of

learners. These learners can be diverse in many dimensions such as cultural back-

ground, language, geographies, learning preferences etc. Providing and equitable

education to such a diverse population can become very challenging. This has mo-

tivated the United Nations to include Ensuring inclusive and equitable quality ed-

ucation and promoting lifelong learning opportunities for all, in the sustainable

development goals (SDGs) [1], the world’s best plan to build a better world for

people and our planet by 2030. In the formal learning paradigm, a popular learn-

ing setting, learners set to achieve fixed and predefined learning goals by following

a curriculum. Specific learning goals related to a narrow subject area that can be

achieved in a short span of time (e.g. in a few weeks/months) are tackled while a

formal assessment (a test) is conducted at the end of the journey to validate mastery

of the skills. Classroom settings have been the most dominant setting for formal

learning while Massively Online Learning Courses (MOOCs) have now introduced

formal learning to the online setting. However, humans learn throughout their life

and they are interested in learning many skills and achieving learning goals that

may relate to significantly different subject domains over a lifetime. The popularity

of the Internet and the wide availability of informational content has made learning

in such an informal, flexible setting more realistic, giving birth to a generation of
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informal lifelong learners. The intelligent educational recommendation has a strong

potential to address this need.

To provide the needed degree of flexibility, we need to tap into a large collec-

tion of digital learning materials that can be the foundation for a limitless number of

personalised learning pathways. Harnessing the large-scale creation of educational

content requires automatic quality assurance and personalisation. This thesis in-

troduces three novel datasets, an intelligent user interface component for exploring

educational videos and a set of learner models that can predict learner engagement

with fragments of educational videos. These contributions, in unison, help us im-

prove educational recommendation systems.

1.1 Artificial Intelligence in Education (AIEd)

In recent years, Artificial Intelligence (AI) and Machine Learning (ML) have revo-

lutionised how information is personalised to user needs. This opportunity allows

us to focus on more ambitious use cases such as Distance Learning, MOOCs and

Lifelong Learning. Formal evaluations have shown that intelligent tutoring systems

(ITS) produce similar learning gains as one-on-one human tutoring, which has the

potential to increase student performance to around the 98th percentile in a standard

classroom [5, 6, 7]. Additionally, ITS could effectively reduce by one-third to one-

half the time required for learning [5], increase effectiveness by 30% as compared

to traditional instruction [5, 8, 9], reduce the need for training support personnel

by about 70% and operating costs by about 92% and make education affordable to

developing countries [10, 11].

1.2 Open Education Resources (OER)

Open Educational Resources are teaching, learning and research

materials in any medium, digital or otherwise, that reside in the public

domain or have been released under an open license that permits

no-cost access, use, adaptation and redistribution by others with no or

limited restrictions.
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This definition [12] scopes out the domain of OERs to both digital and non-

digital materials while clearly defining several types of use that are permitted within

the realm of OERs. One of the prominent features of OERs is their openness, en-

abled through open-licensing1. Open licensing in open education draws inspiration

from movements in the wider context such as open knowledge and open source

communities. The licensing expectations of OERs are shaped by 5R activities,

namely, Retain, Reuse, Revise, Remix and Redistribute [13]. This allows the gen-

eration of diverse educational resources that can target a flexible, broad spectrum

of learning needs that span beyond formal curricula-constrained or examination-

oriented learning pathways and set the stage to accommodate lifelong, informal

learners [14].

In the scope of this thesis, predicting engagement in educational videos, having

a large collection of videos is essential. OERs are a viable solution in this case as

they are available for utilisation with less restrictive copyright constraints. Many

OER video repositories such as VideoLectures.Net 2, MIT OpenCourseWare 3 and

Ted Talks 4 already contain thousands of educational videos. As we describe in

section 4.2, we use the VideoLectures.Net repository as the data source for this

thesis.

1.3 X5GON Project

Figure 1.1: X5GON Logo

X5GON: Cross Modal, Cross Cultural, Cross Lin-

gual, Cross Domain, and Cross Site Global OER

Network 5 is an initiative that develops innovative,

open technological components to enhance the util-

ity of OERs. It is a European Union-funded research

project led by the University College London. The

X5GON project consists of AI technologies to find, and enrich OERs scattered on

1https://creativecommons.org/about/cclicenses
2http://videolectures.net
3https://ocw.mit.edu
4https://www.ted.com/talks
5https://www.x5gon.org

https://creativecommons.org/about/cclicenses
http://videolectures.net
https://ocw.mit.edu
https://www.ted.com/talks
https://www.x5gon.org
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the Internet and strives to make them discoverable to learners via search and recom-

mendation. Taking up this challenge, X5GON identifies several missing pieces in

the current state-of-the-art. i) Scarcity of public datasets for developing solutions,

ii) gaps in cutting-edge interfacing of human learners to large collections of useful

learning resources, iii) lack of quality assurance instruments and iii) the need for

personalisation mechanisms that are performant, transparent and scalable are some

of these gaps. These gaps align perfectly with the objectives of this thesis making

X5GON an excellent vehicle for this work. Being a core member of this research

project also put me in an excellent position to align the thesis contributions with

real-world gaps identified by the project. X5GON already possesses multiple key

ingredients to our experiments including access and partnerships with massive open

educational video repositories (e.g. VideoLectures.Net), learner interaction logs

and scalable content annotation capabilities (e.g. Wikification [15]). This thesis

benefits from the X5GON technology stack as it consumes a subset of data from

the system, while many outcomes of this thesis, such as the novel user interfaces,

context-agnostic engagement and contextual engagement prediction models can be

directly integrated into the X5GON system to enhance its quality assurance and

personalisation capabilities. The X5Learn user interface, developed in this thesis

becomes the central bridge between the X5GON AI enrichments and the human

learners who benefit from them. While such an integration is a strong demonstra-

tion of the application of the outcomes of this thesis, the contributions of this thesis

apply beyond a single system and can be used with any system that personalises

educational videos for learners.

1.4 Thesis Overview
There has been a significant amount of work done in several relevant research ver-

ticals towards building a good educational recommendation system:

• Information Retrieval: Learning high-quality content representations and

matching content with users. There has been a lot of work on how to measure

and optimise user engagement in recommendation systems.
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Figure 1.2: The basic architecture of a personalised learning system that interacts with the
learner using a user interface. The chapter numbers where contributions are
made to build different parts of the personalised learning system are indicated
in green numbered circles.

• Educational Data Mining: Understanding how to design high-quality learn-

ing materials and how learners acquire knowledge from them.

• Intelligent Tutoring Systems: Everything to do with intelligent/ computer-

aided instruction to learners and assessing mastery of skills.

• Intelligent User Interfaces: Designing future user interfaces that can support

complex tasks while supporting an optimal user experience.

However, these research verticals often progress orthogonal to each other. Con-

trary to this reality, A personalised learning system incorporates different compo-

nents that interplay with each other to recommend suitable learning trajectories to

learners as per figure 1.2. This thesis connects all these knowledge areas to develop

tools and methods for an educational video recommendation system.

As argued in section 1.3, a real-world educational recommender needs to con-

duct quality assurance, content annotation and recommendation at scale. Such a

goal usually entails a large personalisation factor. We define this component as con-

textualised engagement, which captures how engaging a learning resource is, with

regard to the context of the learner (e.g., learning needs/goals and learner knowl-

edge state). Although contextualised engagement has gained interest in recent years
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[16], we argue that there is also a context-agnostic engagement factor, that only re-

lates to features of the learning resource and attempts to capture the gold-standard

label of population-based engagement (i.e. the marginal of contextual engagement

for a resource across the population of learners). Population-based engagement is a

major aspect that can be used for quality assessment of learning resources as well

(among other aspects such as correctness and pedagogical robustness [17]).

As per Figure 1.2 inspired by [18], building an educational recommender en-

tails taking a holistic approach that ties together the i) learner models (that repre-

sents the learner state), ii) domain model (that embeds information about the knowl-

edge area that is being taught) and iii) teaching strategy (that informs the pedagogy

the system would use) and this thesis addresses all of these parts. In addition, it con-

structs novel datasets and novel user interfaces necessary to connect the users to the

recommendation system. The chapter numbers (in green circles) in the figure indi-

cate how different chapters relate to different parts of an educational recommender.

1.4.1 Scope

This thesis proposes a set of datasets, novel interfaces and learner engagement pre-

diction models (both context-agnostic and contextual) to improve watch-time-based

engagement with fragments of educational videos. As the engagement prediction

outputs a continuous score between 0 and 1, the score obtained for each video frag-

ment in the collection can be used to rank them. This ranked list of items for each

user will become the set of ranked recommendations provided to them. As per

Figure 1.2, the contributions in this thesis relate to different components of a per-

sonalised learning system. Several gaps such as scarcity of datasets and lack of

interface components to recommend video fragments were identified from the state-

of-the-art and were addressed in this thesis (Part II). The datasets provide training

and evaluation opportunities to the research community hoping to push the frontiers

of educational recommendation. The contributions to the user interface demon-

strates how the learner models can be connected to the users. However, the core

contribution of the thesis is developing learner models that can capture different

factors driving learner engagement (Part III). Such a solution entails improving the
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learner models, domain models and teaching strategy simultaneously. In this direc-

tion, this thesis studies how modelling context-agnostic engagement and contextual

engagement can improve predictions, as a first step towards building an integrative

educational recommendation system.

Context-Agnostic Engagement captures the quality of a resource with no relation

to the context of the user. Therefore, the engagement potential of the material

will only tie into the features of the learning resource itself. In other words, it

is the marginal of contextual engagement of a resource across a population of

learners. Modelling context-agnostic engagement enables identifying highly

engaging resources across a population of learners before personalising edu-

cational recommendations to individuals.

Contextual Engagement , on the contrary, captures the quality of an educational

resource relative to the context of the learner. This includes the learning re-

quirements/ goals, learner knowledge state, the novelty of the resource rela-

tive to user knowledge and various other factors that are not directly tied to

the educational resource alone.

In part III, we strictly focus on predicting watch time-based learner engage-

ment, an implicit user signal that can be captured from user interactions with the

learning system. This thesis does not focus on predicting explicit assessment out-

comes of learners, which mainly revolves around assessment questions. Also, the

core contributions in this thesis focus on the learner model, domain model and

teaching strategy (parts coloured blue in Figure 1.2). While many different fac-

tors that affect learner contextual engagement exist (e.g. emotional state, location,

internet connectivity etc.), we focus on a few main factors in this thesis, namely,

interest, knowledge and the degree of novelty.

1.4.2 Main Research Questions

As explained in section 1.4.1, the core contribution of this thesis is building learner

models that can predict the engagement of learners with educational videos. We

formulate three main research questions to answer this thesis.
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1.4.2.1 Thesis Research Questions

Research Question 1
How do we predict context-agnostic engagement of a video?

Suitable Features and Labels We explore what population-based labels

align with context-agnostic engagement. We are interested in the fea-

tures of videos that influence it.

Modelling Context-Agnostic Engagement Once the features and labels are

identified, we investigate how machine learning models can be used

to build engagement prediction models and explore what underlying

patterns in data drives their behaviour.

Research Question 2
How do we predict the contextual engagement of a learner with a video?

Factors Affecting Contextual Engagement We identify the different fac-

tors driving the contextual engagement of learners.

Modelling Contextual Engagement We further propose methods to model

different factors affecting learner engagement and distinguish between

the different model hypotheses.

Research Question 3
How do we combine context-agnostic and contextual models?

Combining Models Once different models capturing different aspects of

context-agnostic and contextual engagement are developed, we com-

bine them together to make an integrative prediction. How to combine

these models is a question of interest.

Strengths and Weaknesses We understand if the combination makes the

predictions stronger or weaker. Also, it is useful to verify how the

combined models differ from models used in isolation.
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1.4.3 Chapter Outline

Different chapters in this thesis lead to the development of various tools and meth-

ods that create a recommendation system with educational videos. As shown in

Figure 1.2, an educational recommender is a personalised learning system where

different components need to interplay. The green circles in the figure indicate the

chapter numbers in this thesis where contributions to different components of a per-

sonalised learning system are made.

Chapter 1 describes the background of the problem and the different knowl-

edge areas that are relevant and complementary to the core research. These topics

motivate the reasons behind the research questions of the thesis depicting where the

outputs of the research will fit in the big picture. Chapter 2 further narrows down

the scope of the topics and conducts a detailed discussion to focus on related work

of the main research. The relevant literature is pointed out and discussed to iden-

tify a learner model that can take into account, different factors that affect learner

engagement. A potential learner model that can account for different drivers of en-

gagement is identified in this chapter. This thesis develops and tests the identified

model.

In chapter 3, we formalise the problem setting. The solutions proposed in this

thesis revolve around building a learner model to tackle this problem. Furthermore,

we describe how user interface components are developed and tested in order to

connect the proposed recommendation system to the user. As per Figure 1.2, an

interface is mandatory to bridge the personalisation system developed by answering

the research questions outlined in section 1.4.2. Chapter 3 presents the developed

user interface. Chapter 4 describes the three datasets that were constructed and

released to the public. These datasets are constructed to be support tools helping us

answer the research questions of the thesis. The construction of different features

and labels with descriptions of the datasets is provided in this chapter.

Chapter 5 answers research question 1 in section 1.4.2. The experiments re-

lating to identifying the suitable labels, features and machine learning models for

modelling context-agnostic engagement are presented here. The TrueLearn Inter-
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est, Knowledge and Novelty models are developed in chapter 6 to address research

question 2 in section 1.4.2. The models are described in this chapter along with the

designed experiments and their results. This chapter proposes several novel model

families that capture factors affecting the contextual engagement of learners with

videos. Chapter 7 answers research question 3 in section 1.4.2 by detailing experi-

ments that combine the context-agnostic and contextual models proposed in chapter

5 and 6 respectively. This chapter describes how different ensemble techniques and

hybrid recommendation methods are used to combine the models together to obtain

more accurate predictions.

Finally, chapter 8 discusses the overall results of the previous chapters to iden-

tify the opportunities and limitations of the solutions presented in this thesis. The

broader implications of the proposed models on human intuitiveness and scalability

are also discussed. The conclusions of the overall thesis are summarised along with

potential future directions for further research.

1.5 Summary of Contributions
The work covered in this thesis led to 14 publications, including 2 opinion papers,

peer-reviewed publications in reputed conference venues and a journal article.

Further publications that are related to, but not part of this thesis have been

published as well.

• Sahan Bulathwela, Marı́a Pérez-Ortiz, Emine Yilmaz, and John Shawe-

Taylor. Semantic TrueLearn: Using Semantic Knowledge Graphs in Rec-

ommendation Systems. In Proc. of First KGSWC International Workshop on

Joint Use of Probabilistic Graphical Models and Ontology (PGMOnto), 2021

• Martin Molan, Sahan Bulathwela, and Davor Orlic. Accessibility Recom-

mendation System. In Proceedings of the Conference on Open Educational

Resources, OER ’20, 2020

The list of publications that make up the contents of this thesis is as follows.
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Orlic, Colin de la Higuera, John Shawe-Taylor, and Emine Yilmaz.

SUM20: State-Based User Modelling. In Proceedings of the 13th

International Conference on Web Search and Data Mining, WSDM



Bibliography 35

20, pages 899–900, New York, NY, USA, 2020. Association for

Computing Machinery.

[BPON+21] Sahan Bulathwela, Maria Perez-Ortiz, Erik Novak, Emine Yilmaz,

and John Shawe-Taylor. PEEK: A Large Dataset of Learner En-

gagement with Educational Videos. In Proc. of RecSys Work-

shop on Online Recommender Systems and User Modeling (OR-

SUM’21), 2021.

[BPOYST20a] Sahan Bulathwela, Marı́a Pérez-Ortiz, Emine Yilmaz, and John
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1.5.1 Publications and Personal Contribution

Chapters 1, 2 and 8 that report findings from prior works, the proposal of new

solutions and their relevance to the future of sustainable education are based on

[BPOHST21], [BPOYST20a] and [PONBST21]. I am responsible for the back-

ground research, analysis, structuring of findings and writing of [BPOHST21] and

[BPOYST20a] while my co-authors contributed to discussions, feedback and su-

pervision. I contributed to discussing the state and the future of AI and education

in [PONBST21] while the other authors contributed more to this opinion paper. I

have exclusively incorporated the discussions I contributed to this work as part of

this thesis. The opinions and findings reported are also shaped by the workshop,
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State-based User Modelling (SUM20) 6 we organised. Detailed information about

the workshop was published in [BPOM+20b] and [BPOM+20a]. I was the main

organiser of the workshop and was in charge of planning, inviting speakers, call-

ing for contributions, overseeing the review process and running the workshop on

premises while my co-organisers helped with the tasks.

The development of the user interface described in chapter 3 led to publications

[BKPO20] and [PODR+21] demonstrating the system, as well as the detailed ex-

perimental results reported in [POBD+22]. While I did not directly get involved in

the design and implementation of the Content Flow Bar user interface component,

I played a key decision-making role in the design of the novel interface component

and the development of the X5Learn platform. I solely oversaw the development

and deployment of the visual interface to a public-facing state. In terms of the user

studies reported in [PODR+21], I designed the experimental setup, and the tasks

and determined what user interactions should be logged during the user studies. I

also supervised the developer directly to build the study environment. Once the data

had been collected, I processed the row interaction logs from the experiments and

ran the statistical analyses that are reported in chapter 3. I did not run the thematic

analysis and the analysis of survey feedback myself although I have included these

results in the chapter to support the outcomes from the interaction log analysis that I

conducted. The other co-authors helped with discussions, data processing, feedback

and supervision.

The three datasets, VLE Small, VLE and PEEK, proposed in chapter 4 are de-

scribed in [BPOL+20], [BVPO+22] and [BPON+21] publications respectively. I

undertook the majority of the tasks such as planning, data processing, data clean-

ing, constructing datasets, and writing the manuscript in these works while my co-

authors helped with minor data processing, discussions, feedback and supervision.

The development of context-agnostic engagement models in chapter 5 led to mul-

tiple publications. The literature survey conducted to identify the features included

in the VLE datasets were published in [BYST19]. The details presented in this

6https://www.k4all.org/event/wsdmsum20

https://www.k4all.org/event/wsdmsum20
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chapter are adapted from the experiments and results published in [BPOL+20] and

[BVPO+22]. The majority of the work in this chapter was also conducted by me

while the co-authors of the publications assisted me by providing feedback, discus-

sions and supervision. Chapter 6 describes three families of models capturing the

contextual engagement of learners. The models capturing learner knowledge and

novelty are adapted from [BPOYST20b] paper. The results in chapter 7 combine

both context-agnostic and contextual models and are compiled into a journal article

and published as [Bul22]. In [BPOYST20b] and [Bul22], I conducted planning,

designing, executing, analysing and reporting the experimental results while the

other authors assisted me with discussions, feedback, supervision and support with

writing.



Chapter 2

Related Work

The primary goal of this work is to leverage personalised recommendations of ed-

ucational videos. There are different knowledge areas one should familiarise with

in order to create effective educational recommenders with masses of available e-

learning materials.

Recent years have realised a significant uptake of technology-enhanced learn-

ing and e-learning paradigms that was further fuelled by the COVID-19 pandemic

[21]. Similar to proprietary e-learning materials, Open Educational Resources

(OERs), a freely available collection of learning materials, have set themselves on a

fast growth trajectory, gaining popularity. With innovative content creation models

such as Content Explosion Model [22] and Open Educational Practice [23] boosting

educational resource creation at scale, platforms such as X5GON [2] and X5Learn

[24] progress towards making them easily accessible to learners. Such explosive

growth of educational materials can trigger scaling challenges to the ecosystem.

Mainly, challenges relating to evaluating the overall receptiveness of every learn-

ing resource can become expensive leading to quality assurance challenges. Once

the quality barrier is passed, challenges arise in scalably personalising materials as

many resources exist. As scoped in section 1.4.1, this thesis aims to propose novel

approaches to handling both of these problems.

The work that relates to capturing and improving contextual-agnostic and con-

textual aspects of learner-resource interaction is surveyed and discussed in this

chapter. The final goal of this thesis is to model learner engagement. The work
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related to defining engagement, metrics used and their relevance to learner engage-

ment with video lectures is summarised in section 2.1. The definition of educational

content quality, its relevance to context-based engagement and the related works are

outlined in section 2.2. This work builds the foundation for the context-agnostic en-

gagement prediction models developed in chapter 5. The subsequent sections 2.3

through 2.4 provide a primer in personalising education through modelling contex-

tual engagement of learners. Literature relating to recommendation systems exten-

sively focuses on modelling the interests of users to identify content/items recom-

mended to them. Related work to interest modelling is described in section 2.6.1.

As per section 2.4, learning analytics and intelligent tutoring systems research in

the past mainly revolves around attempting to recover the latent knowledge state of

the learner. Both knowledge tracing and item response theory are the main model

families used to recover the latent knowledge state of a learner. Content novelty

is another aspect that is gaining a lot of interest from the educational data mining

community in recent years [25, 26]. The related work to modelling knowledge and

novelty using the above model families is described in section 2.6.2 and provides

foundations to the TrueLearn models developed in chapter 6. Finally, section 2.8

sheds light on the datasets currently available within the research community, in-

spiring the contribution of novel datasets described in chapter 4.

2.1 User Engagement and Learning Gains

In the context of online education, automatic, semi-automatic and manual methods

of engagement detection exist, while automatic methods can use a range of modal-

ities from vision-based features and sensory data to interaction logs [27]. Within

the scope of this work, we focus on interaction log-based engagement. The engage-

ment of users with the learning material plays a pivotal role in learners attaining

their desired outcomes. A user can be perceived to be learning if learning gains are

evident. There is an abundance of evidence from both online [28, 29] and physical

classroom [30, 31, 32] educational settings showing that higher learner engagement

increases the likelihood of better learning outcomes.
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2.1.1 Population-based Engagement and Quality

Interestingly, automation approaches have been successfully adapted in several

other domains such as Information Retrieval [33] and Healthcare Forum Manage-

ment [34, 35]. According to Lane [17], the three pillars of quality educational re-

sources are 1) pedagogical robustness of materials, 2) correctness of knowledge and

3) suitability of media used to transfer knowledge effectively. Rather than focusing

on the complex tasks of truth discovery and assessing pedagogy, these machine-

learning approaches used in prior works identify quality based on simple, automat-

able features associated with the resource content.

Given that having high engagement potential in a resource is a prerequisite for

the learner population acquiring knowledge from it [17], Context-Agnostic Engage-

ment of a learning resource (the engagement potential of a learning resource within

a learner population) is a key part of assessing the quality of the resource. An ac-

curate, well-articulated educational resource does serve little use when it fails to

engage the learner, which is a prerequisite for knowledge acquisition. It should also

be pointed out that population-based engagement does not solely represent resource

quality as aspects such as correctness, and pedagogical alignment play key roles

too. But one can claim it is a major part of it.

This work is not the first work that has attempted to understand context-

agnostic engagement. More generic work towards this direction has been carried

out using YouTube videos [36]. This study focuses on very few presentation fea-

tures and focuses heavily on YouTube-specific features (eg. Channel reputation, En-

gagement of other videos in the channel etc.). More focused studies using MOOC

videos have led to qualitative findings based on around 800 videos. To the best

of our knowledge, there has been no study with educational videos that have ap-

proached this problem quantitatively using thousands of video lectures which we

aim to do in section 4.

2.1.2 Multimedia-based Educational Resources

Research in higher education has consistently shown that multimedia-based learn-

ing resources such as videos, animations and interactive simulations lead to higher
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engagement and increased learning gains in comparison to explicitly narration/text-

based materials [37]. Among different multimedia-based approaches, instructional

videos and video lectures have gotten a lot of attention due to their relevance to

MOOCs and online learning [38, 39]. There is a wealth of recommendations that are

presented in this line of work that allows a content creator to produce a high-quality

instructional video. Features such as segmenting large lessons into smaller com-

ponents, reducing multi-modal information redundancy and assuring spatial and

temporal contiguity of concepts across a lesson are some of the recommendations

identified through user studies [39, 40]. While these are good guidelines, building

feature detectors that can identify these phenomena in video lectures is complex

and required much further research before applying them at scale to understand the

engageability of multimedia content. Assessing the operational feasibility of using

many scalable features such as lecture length, and level of language in predicting

learner engagement is more realistic at present. This thesis focuses on the latter

family of features that are extensively utilised in chapter 5.

2.1.3 Engagement and Personalisation

In the educational data mining domain, several studies have shown that learner en-

gagement increases the likelihood of achieving better learning outcomes both in

class [30, 32] and in online learning settings [28, 29]. Engagement plays a signif-

icant role in the quality of online courses as well [41, 42, 43]. The quality of an

educational resource is also indicated by its ability to enable learners to achieve

better learning outcomes [17]. Due to these reasons, engagement can be used as a

good proxy for high-quality learner-resource interaction. Engagement can be cap-

tured using both device-based [44] and activity-based techniques [29]. Activity-

based techniques use click streams, video view logs, etc. to heuristically measure

engagement [45, 46, 29, 47]. In the context of learning and education, engagement

is extensively studied in relation to learning outcomes [31, 29] and has shown that

engagement positively attributes to learning.
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2.1.4 Measuring Engagement in Educational Videos

Machine learning-based recommendation systems are largely driven by user feed-

back. User feedback data can be mainly categorised into 1) explicit feedback from

ratings where users provide their positive or negative feedback explicitly and 2)

implicit feedback where user actions in the system intended for different tasks pas-

sively indicate users’ positive or negative reception towards the system. The major-

ity of the earlier works relating to building recommendation systems heavily relied

upon explicit feedback that is provided by users [48]. However, in the history of

recommender system research, there has been a transition from using only explicit

feedback to systems that use implicit feedback of some sort [49, 50]. Inferring user

information from implicit observations is efficient for a variety of reasons. Espe-

cially in a lifelong learning situation where the learner is expected to stay with the

system for a lifetime, it is highly desirable to infer user preferences from implicit

observations of user interactions with the system as 1) explicit feedback is scarce

and hard to collect and 2) it avoids disruptive interventions that may hinder the user

experience eventually leading the user to leave the system permanently.

User engagement with items has been widely used to quantify engagement.

In entertainment (e.g. movies), informational (e.g. news) and e-commerce (e.g.

products) related systems, where recommenders are utilised heavily, both explicit

and implicit user engagement signals are utilised as labels to train AI-based rec-

ommenders. Explicit feedback such as star ratings, thumbs-up/down and detailed

textual reviews that express sentiment has been used in the past. However, using

implicit engagement signals such as click streams, page impressions, video views,

dwell time and watch time has also picked up and is seeing promise in recent years.

In sophisticated MOOC platforms, various different interaction actions of the

users such as lecture watching, taking part in discussions, contributing to the forum

and answering questions can be used to indicate different types of engagement with

the course [30, 28]. Video-based learning platforms can be used to harvest differ-

ent types of activity (e.g. playback, play speed change etc.) that indicate learner

engagement. However, not all platforms provide the entire superset of interactions
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from the user. One of the most basic interaction measurements that can be mea-

sured across any video platform is watch time [51, 38, 36]. In this work, we focus

on watch time as a proxy for learner engagement. Watch-time has been used as

an engagement label to improve the YouTube recommendation system for engaging

videos [47]. Watch time-based engagement has also been used in predicting engage-

ment with general-purpose videos on YouTube [36]. Watch time tends to capture

user engagement better than other proxies such as the number of views as it is ro-

bust to effects such as click-baits [47]. In the context of video lectures, watch-time

based measures, Normalised Engagement/watch Time (NET) is a suitable measure

of learner engagement as the Median of Normalised Engagement (MNET) has been

proposed as the gold standard for context-agnostic engagement with educational

materials in previous work [38]. NET is the watch time normalised by the duration

of the video. The evidence from other work [47, 36] further supports the suitability

of Normalised Engagement Time to represent learner engagement.

2.2 Quality Assurance in Education
One of the major challenges in matching high quality educational materials with

learners is quality assessment and moderation of freshly introduced contents to the

ecosystem [52]. Maintaining the quality of the material is essential for the OER

community as quality plays a critical role in the success of the movement. It is

also noteworthy that scalable quality assurance solutions developed for educational

content can be used across both OER and non-OER ecosystems.

2.2.1 Quality Related Issues in OERs

Camilleri et al. [53] highlights the need to research more into creating standards and

tools enforcing quality in educational resources. Prior work on quality assurance in

education [17] focuses on problems such as verifying pedagogical robustness and

correctness of knowledge. Verifying such features involves complex tasks such

as claim detection, fact-checking etc. These tasks are still in their early stages in

fields such as fake-news detection [54, 55, 56], positioning themselves far from

automation in information verification let alone in education.
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The historically obvious solution to quality assurance in education is expert

labelling as demonstrated in prior work [57, 58]. This has been done in several do-

mains such as healthcare information [59] and readability of text [60]. However, this

labelling approach is expensive and carries significant opportunity costs and scaling

issues as teachers and domain experts are needed. Hence the need to develop mech-

anisms to assess the quality of educational material using learner-generated signals

becomes more important. As the OER movement cannot depend heavily on large

budgets for quality assurance, the community should resort to more sustainable so-

lutions [61]. One of the obvious avenues of research is to identify if the whole or

parts of the quality assurance process are automatable.

According to Clements and Pawlowski [62], three main categories of quality

approaches are used in education:

Generic Quality Approaches. These refer to concepts and procedures providing

quality management in general, independent of the domain.

Specific Quality Approaches. These refer to standards and mechanisms providing

quality management in the domain of Technology Enhanced Learning.

Specific Quality Instruments. These refer to standards, tools and mechanisms

providing quality management related to specific purposes and functions.

Automating quality evaluation of certain aspects of educational resources falls un-

der the Specific Quality Instruments. Tools such as Community Ratings [63] and

Recommender Systems [64] fall under this category. These instruments address se-

lected aspects of quality and some of these are potentially automatable as shown in

other domains such as healthcare fora and information retrieval [65].

Almost all efforts addressing context-agnostic quality assurance focus on the

content creation stage by enforcing standards such as ISO [66]. Although such

standards seem feasible at the organisational level (such as universities), it is more

difficult to achieve due to the wider flexibility for the authors to reuse and re-purpose

educational material in the context of OERs [62]. Other approaches such as Com-

munity Rating [63] and Peer Review [67] have also been proposed to address quality
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assurance. These approaches rely heavily on the social participation of the network.

Modelling popularity also can be seen as a specific quality instrument as it reflects

one aspect of quality. In this direction, we construct several datasets and build

context-agnostic engagement predictors detailed in sections 4 and 5 respectively.

2.2.2 Machine Learning for Quality Assurance

When investigating how the quality of educational resources is modelled using ma-

chine learning, we found that the literature in this area is surprisingly scarce. Out-

lined below are some work we found from education and other domains that we

believe to be relevant towards identifying features that indicate presentation quality.

Wikipedia utilises a review system to evaluate the quality of its articles. Dalip

et al. [68] uses Support Vector Regression (SVR) to predict these quality grades

using text style, structure, network and review information-related features. Us-

ing review and edit related information unique to Wikipedia, some work [69, 70]

attempts to model the credibility of both authors and content.

Readability is being extensively studied as a text quality indicator. Readability

of text can change the user experience among user groups [71]. Both classification

[72] and pairwise ranking [60] models with textual features have been used to pre-

dict the readability of documents. Collins-Thompson and Callan [72] go further to

point out that learning-to-rank algorithms are likely to perform better in this task as

it is a ranking problem.

Automatic Essay Scoring (AES) addresses a similar issue to quality assess-

ment. Promising results have been shown on this task recently through N-gram

models [73] with rank preference SVM [74] and more sophisticated deep learning

models [75]. Much of the work in AES aims to measure learner knowledge by using

features relating to topical relevance and context [76] as they are important in essay

scoring. Models outlined above focus heavily on capturing topical and vocabulary

features of the text, such as Part-of-Speech (POS) tag sequences and word tokens

[74] because of their importance in essay scoring. However, AES solutions also

use non-topical features such as length of the essay [73, 74] and topic cohesiveness,

which are useful in predicting document quality.
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In healthcare, identifying the quality and trustability of information circulated

in online health forums is an important topic. Due to the seriousness of this use

case, standard quality assurance frameworks such as HONcode [77] have emerged.

We identified various attempts in the literature that automate some aspects of this

process [34]. In information search, due to the sheer amount of information present

in the Internet, search engines research heavily into understanding truthfulness [78],

authority [79] and usefulness [80] of information to users. We expand this literature

survey into a detailed discussion of the quality-related features in section 5.1

2.3 Personalisation of Educational Resources
Recommendation systems are popular across multiple domains. Different ap-

proaches such as collaborative filtering [81], Bayesian match making[82] and ex-

treme classification [51] are used to match resources with consumers. In the context

of recommendation systems, state-aware machine learning systems have caught up

a lot of attention in recent years [16, 83]. Contrary to conventional recommenda-

tion systems, a personalised learning system differs as its objectives are different.

Rather than finding similar materials which is usually the case in an e-commerce

or entertainment recommendation system, the primary objective is to discover sen-

sible learning trajectories to a learner that will enable the learners to achieve their

desired learning outcomes in the long run.

2.3.1 Personalised Learning Systems

An average student supported by one-on-one tutoring can achieve two standard de-

viations above an average control student taught under conventional group methods

of instruction. The important line of research is to seek ways to accomplish this un-

der scalable, practical and realistic conditions than one-on-one tutoring [84]. When

considering personalised learning systems, Intelligent Tutoring Systems (ITS) are

one of the most commonly researched application areas that attempt to apply AI

in education. ITS community tries to address the above problem. An ITS usually

contain i) The Domain Model, ii) The Pedagogy Model and iii) the learner model

[18]. The domain model represents the subjects that are taught. The pedagogy
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model represents knowledge about effective approaches used in teaching and learn-

ing. These approaches include knowledge of instructional approaches [85], zone of

proximal development [86] etc. Finally, the learner model is intended to build ”a

representation of the hypothesised knowledge state of the student” [87]. A success-

ful personalised learning system should strive to excel in all the above aspects.

2.3.2 Educational Recommendation Systems (EdRecSys)

Although conventional recommendation approaches (e.g. collaborative filtering)

have been proposed for education [88], EdRecSys have associated unique chal-

lenges, These challenges stem from the objective of bringing learners closer to their

goals in the most effective way and specifically comprise: i) Identifying learner’s

interests and learning goals, as these can significantly affect their motivation [89];

ii) identifying the dynamic background knowledge of learners, the topics covered in

a resource and the prerequisites necessary for benefiting from a learning material;

iii) recommending novel and impactful materials to learners and planning learning

trajectories suitable for learners; and iv) accounting for how different resources are

receptive to engagement from the general population [38].

In recent years, hybrid recommenders [90, 89] and deep learning methods [91]

have been proposed to improve EdRecSys, incorporating additional handcrafted in-

formation such as learning trajectories and goals [92]. However, much still remains

to be done. Most of these approaches rely on manually handcrafting learning tra-

jectories, which are highly domain-specific and hard to scale. Moreover, hybrid ap-

proaches have their own challenges such as lack of transparency to learners/teachers

and not modelling novelty of content. Deep learning methods also suffer from a lack

of transparency [93] of the learned representations while they need a large collec-

tion of data points to train [94]. Recent studies have also shown that deep learning

methods in learner performance prediction bring very little improvement in perfor-

mance in comparison to their non-deep learning counterparts while they bring much

more complexity to the model [95]. These challenges motivate the development of

accurate, scalable and transparent EdRecSys, which is our aim with this work.



2.4. Learning Analytics and Content Analytics 49

2.3.3 Ideal Educational Recommendation Systems

While the personalisation of materials plays a key role in building better recommen-

dation systems, the design of a futuristic recommendation system for education in-

cludes features that go beyond simple personalisation techniques [96]. As a starter,

different concepts are best taught using different media and modalities (text, audio,

video, etc.). Lane [17] argues that a primary part of designing an effective learning

resource is to choose the right media that enable the users to achieve their learning

outcomes. Modern educational resource repositories such as X5GON discover and

index OERs that attribute to various modalities and languages [2]. The ideal recom-

mendation system is able to understand and utilise the majority of these resources

appropriately to have a larger impact. (i) Cross-Modality should be embedded into

intelligent recommenders in order to incorporate a wider fraction of diverse, rich

learning resources in the learning experience of individual learners available to the

learners. (ii) Cross-linguality is also vital in identifying and recommending educa-

tional resources across different languages that are most likely to help the learner.

(iii) Transparency empowers the learners by building trust between the learner and

the system while supporting the learner’s meta-cognition processes such as plan-

ning, monitoring and reflection (e.g. Open Learner Models [97]). Transparency

also provides a smooth pathway to other important aspects of applying AI in Ed-

ucation such as ethics and fairness. (iv) Scalability ensures that a high-quality

learning experience can be provided to large masses of learners over longer periods

of time, essential in facilitating lifelong learning. (v) Data efficiency of the system

allows it to work with less data (fewer, less clean data points), e.g. learning from

implicit engagement data [81, 49].

2.4 Learning Analytics and Content Analytics

As the thesis is scoped at creating a personalisation model to identify and rec-

ommend the most suitable educational materials, and assisting learners on their

personal learning pathway to achieve impactful learning outcomes, we focus on

both aspects of a personalised learning system [98]: (i) learning analytics, which
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capture the learner’s knowledge and other dynamics and (ii) content analytics,

which extract resource characteristics such as knowledge components (KCs) cov-

ered, quality and difficulty of the resources. In the context of learning analytics,

the assessment and learning science communities focus on two main paradigms:

Item Response Theory (IRT) [99] and Knowledge Tracing (KT) [100], which aim to

assess the learner’s knowledge during a limited span of time (e.g. during a test).

Content and learner modelling are fundamental to all adaptive educational sys-

tems including EdRecSys. Most of the literature in this area focuses on estimating

learners’ knowledge, based on their answers to tests [101, 102, 103]. To do so, one

needs to: i) determine the skills required to solve each exercise and ii) infer the

learner’s knowledge state for those skills. These works model the learner at a static

point in time, with a limited set of skills being assessed (in many cases, individual

skill per exercise). However, for more ambitious scenarios such as lifelong learn-

ing, a wider range of skills has to be modelled over longer spans of time and prior

research in this area is surprisingly scarce.

2.5 Content Analytics (Knowledge Components)

Content representations play a key role in recommending relevant materials to learn-

ers. In an educational system, this entails extracting atomic units of learnable con-

cepts that are contained in a learning resource. We refer to these concepts as Knowl-

edge Components (KCs) that can be learned and mastered. These KCs may be

topics/concepts from a taxonomy [100]. However, KC extraction can be challeng-

ing. Expert labelling is the most commonly used approach. Although automated

techniques have been proposed [104, 105], these usually rely on partial expert la-

belling, which can still be expensive or the use of unsupervised learning approaches

[106], which are complex to tune. Advances in deep learning have also led to the

proposal of deep models that learn latent KCs [107, 105] with no human knowledge

engineering. However, these deep representations make the interpretability of the

cognitive models and the resource representation very challenging. Wikification,

a more recent approach, looks promising towards automatically extracting explain-
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able KCs. Wikification identifies Wikipedia concepts present in the resource by

connecting natural text to Wikipedia articles via entity linking [15]. This approach

avoids expensive expert labelling while providing an ontology of humanly inter-

pretable, domain-agnostic KCs. However, Wikipedia KCs may not be as accurate

as those carefully crafted by education experts.

2.5.1 Scalable Content Representation

Content representations play a key role in recommending relevant materials to learn-

ers. In an educational system, this entails extracting atomic units of learnable con-

cepts that are contained in a learning resource. We refer to these concepts as Knowl-

edge Components (KCs) that can be learned and mastered [101, 108]. Amongst

many approaches for extracting KCs, topic, keyword and concept-based approaches

have become popular research directions in the context of informational recommen-

dation systems such as news [109, 110], social content [111, 112] and educational

[3, 113] content recommenders. From their inception, the intelligent tutoring and

EdRecSys communities have heavily relied on manually labelling the KCs in mate-

rial or exercise [114, 92]. In a more relaxed setting where user interest is captured,

social tagging is another approach that has been used [115, 116]. However, hu-

man labelling (expert or social) is not scalable in practice [100, 108] and is prone

to errors when non-experts are involved. Due to this, automated techniques have

been proposed [104, 105]. These techniques usually rely on partial expert labelling,

which can still be expensive or the use of unsupervised learning approaches [106],

that entail complexities in hyperparameter tuning and don’t guarantee to detect top-

ics that are humanly intuitive. Entity Linking [15], a more recent approach handles

the explainability of topics by using humanly-intuitive concepts from a knowledge

base such as Wikipedia. Multiple personalisation models have successfully built

content representations using entity linking to leverage informational [117] and edu-

cational recommenders [118]. While entity linking also brings the risk of the tags in

a generic knowledge base as Wikipedia not aligning perfectly with expert annotated

taxonomies, we use entity linking in this work to represent knowledge components

as it brings a good balance between automation and correctness [3].
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2.5.2 Importance of Fragments of Content

Finding relevance of parts of documents rather than entire documents, may it be

in text [119], audio podcasts [120] or video [121, 122], has become a much rele-

vant research area in the recent years. Often, user learning needs may be granular

enough that a fragment of a resource is sufficient. Previous works have also shown

that learners tend to engage more with relatively short videos [38]. The existence

of bite size videos is also evidence that a reasonable amount of learnable informa-

tion can be captured in the span of an educational video that is about 5 minutes

long. These reasons motivate us to break informational videos into fragments. This

fragmentation has also shown promise in efficient previewing [123] and enabling

non-linear consumption of videos [124]. Our work outlined in section 3.2 further

supports this fact with more evidence. In light of this evidence, this thesis breaks

long educational videos into fragments that are approximately 5 minutes each. This

allows the e-learning system to have video fragments that contain a satisfactory

amount of knowledge while keeping the video fragment length at a favourable value

in terms of retaining viewer engagement [38]. All TrueLearn models proposed in

this thesis (Chapters 5 . . . 7) demonstrates the potential of using fragment-wise rec-

ommendation. This thesis further introduces a novel dataset to push the frontiers

of fragment-wise educational recommendation using the PEEK dataset described in

section 4.5.

2.6 Learning Analytics (Learner State)
Learning analytics is the measurement, collection, analysis and reporting of data

about learners and their contexts, for purposes of understanding and optimizing

learning and the environments in which it occurs 1. The learner context mainly

consists of the learner’s knowledge state, interests, goals and various other aspects.

2.6.1 Interests and Goals

When it comes to the learner context, modelling the interests and personal goals

of individual learners play a key role. This task is an active research area in in-

1https://en.wikipedia.org/wiki/Learning_analytics

https://en.wikipedia.org/wiki/Learning_analytics
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formation retrieval and in the recommendation systems domain. Most works in

information retrieval and recommender system domains attempt to mine user inter-

ests and preferences to guide the information resources presented. One of the most

common approaches to finding interests is to explicitly ask learners about interests

using a questionnaire [125]. This approach is common in web-based recommenda-

tion systems such as www.meetup.comwhere the initial interest definition allows

the system to avoid the cold start problem.

The exploitation of learner interest is also common in personalised learning

systems. However, asking explicit questions constantly from users has deficiencies

in extracting clean information (due to guessing and missing [101]) while it hinders

the user experience. A more implicit approach to recovering the interests of learners

is to use the user interaction history [126]. Some works in the past use a hybrid of

explicit and implicit interest signals to achieve this goal [127]. It is also noteworthy,

that learner goals, set by courses or other formal learning environments that the

learners are expected to achieve, can be interpreted as learner interests as it is of the

learner’s interest to achieve them [91]. While such specific information might be

available in specialised settings, such auxiliary information is often unavailable in

more relaxed learning scenarios such as lifelong/informal learning. In such settings,

the system has to rely on content analytics and the interaction history of individual

learners. When it comes to inferring the latent interests of users, the system has

to exploit the explicit (especially in e-commerce and entertainment domains [128,

129]) and implicit (mainly in social media [130]) preference feedback provided by

the user.

Especially in the social media domain, interest mining is very popular

[131, 132]. Interest models have exploited both explicit feedback (especially in

e-commerce and entertainment domains [128, 129]) and implicit feedback (mainly

in social media [130]). Using the features of the content users interact with in order

to build individualised profiles is a popular approach when it comes to modelling

interest. As a reliable content-based feature, keywords/concepts/entities/topics are

widely used. These techniques in unison are identified as concept-based approaches

www.meetup.com
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[130]. Many concept-based approaches count the number of times the user inter-

acts with different concepts based on their interaction with materials that contain

these concepts. These frequency-based methods build a user interest representation

over time and use a selected similarity metric (e.g. cosine or Jaccard similarity) to

evaluate the most compatible content to the user [113, 133]. Frequency-based user

models [134] built for educational information retrieval have utilised probabilistic

Bayesian modelling in the past inspired by knowledge tracing [100]. While our

proposed interest model utilises the frequency of concept occurrence to build a user

model, Syed2017 tackles information search (where a query dictates the informa-

tion need), a different task in comparison to the content recommendation that we

focus on. Other probabilistic approaches proposed for interest modelling rely on

unsupervised topic detection models such as LDA to discover concepts and model

interests in these concepts (e.g. with content merging [135], in a streaming setting

[136] etc.). As discussed in section 2.5.1, such approaches have their disadvantages

and are not relevant to this work as we use entity linking to discover Wikipedia

concepts. Recent years have also witnessed proposals that utilise deep learning to

learn from user interaction sequences in order to make content recommendations.

This has led to recurrent neural network models being proposed for EdRecSys

[137, 138]. Deep learning approaches lack the humanly-intuitive representations

that we believe to be a key characteristic in an ideal educational recommender [97].

As a consequence, the learners/teachers and other stakeholders lose the ability to

understand and scrutinise the learner model.

The recent work we identified to be most relevant to the proposed interest

model uses concept-based user modelling to recommend MOOCs to learners [118].

In their approach, they consider the user session to be a document where the topics

they visit over time are terms (words) in this document. They compute the Term Fre-

quency (TF) for each user over time to build a user profile. To predict compatibility

with potential future content at time t, the user’s TF-based topic profile up to time

point t− 1 is used. Engagement is predicted by measuring the similarity between

the user profile and the content. This similarity measure can be used to rank recom-
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mendations. [118] further extends this method using the Term Frequency-Inverse

Document Frequency (TFIDF) based profiles that penalise general topics that occur

abundantly and challenge the task of discriminating between users. However, we go

beyond naı̈vely counting concept occurrences to formulate a novel Bayesian model

that can capture the relationship between engagement and latent user interest in or-

der to predict the compatibility between the user and the prospective educational

video. This sophistication is added using extremely computationally efficient algo-

rithms to retain the scalability of the models. A scalable, humanly-intuitive interest

representation of the user is created as a result of this. The proposed interest models

based on the prior work are described in chapter 6.

2.6.2 Learner Knowledge

IRT and KT paradigms are the main two approaches used in modelling learner

knowledge. IRT [99] focuses on designing, analysing and scoring ability tests by

modelling both learner’s knowledge and question difficulty. However, IRT does not

consider changes in knowledge over time. The simplest model, known as Rasch

model [99], proposes to compute the probability of scoring a correct answer as a

function of the learner’s skill θℓ and the difficulty of the question dr:

P(correct answer|θℓ,dr) = f (θℓ−dr), (2.1)

where f is usually a logistic function. This idea has been extended to algorithms

such as Elo [139], to rank chess players based on their game outcomes, where in-

stead of having learners and resources, two players compete. Previous work has

proposed the use of Elo-based algorithms for learner modelling [140], based on

its ability to be computationally light and online while being similar to the Rasch

model. The well-known TrueSkill algorithm [141] improves this idea and extends

this skill learning setting to online gaming, using a Bayesian approach, allowing

teams of players to play a game together (rather than one-on-one) while adding

a dynamic component to avoid skill updates saturating over time (i.e. the model

not being able to update skill parameters over time). These ideas are directly ap-
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plicable to learner knowledge assessment in a lifelong learning setting in multi-

ple ways. i) educational videos can contain a wide range of KCs in them which

will require a ”team” like setting where multiple KCs and learner skills have to

be modelled simultaneously (rather than one skill per exercise), ii) the necessity to

model the knowledge acquisition of learners over significantly long periods of time

may require adding a dynamic component, and iii) modelling populations of infor-

mal learners over long periods of time requires computationally efficient algorithms

(such as online learning schemes).

KT [100] is one of the most widespread models used in intelligent tutoring

systems where the main difference between IRT and KT is that the difficulty of a

question is not taken into account in KT. KT estimates the knowledge acquisition

of learners as a function of practice opportunities provided through questions (a se-

ries of tests) where KCs are present. Numerous variants of KT have emerged since

its inception and showing promise. For instance, modelling additional components

such as individualisation [102] and interventions [142] have led to improving pre-

dictive performance of the KT model family over time. More recently, deep Learn-

ing based proposals [107, 91] are emerging although their reliability and power are

being questioned lately [95]. We utilise KT-based ideas to build baselines for this

work.

2.6.3 Novelty

Content novelty is one of the unique attributes that set aside educational recom-

mendation systems from the rest. When presented with learning materials, learners

intend to learn new things over time. However, the variety of feasible recommen-

dations in a personalised learning system is constrained by the realistic learning

trajectories of the learner. Therefore incorporating content novelty and learning

trajectories play a key role in EdRecSys [26]. Successful attempts report that incor-

porating learning trajectories can be achieved by manually defining the structure of

knowledge constraining the possible pathways through items [92, 127]. However,

this approach is no different from expert labelling of learning resources which suf-

fers from high costs and scaling limitations as discussed in section 2.4. Research
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in educational games has pointed out that learners seek satisfaction in novelty, not

necessarily in increased difficulty [143]. In online chess games, it was found that

players enjoyed most when there was a reasonable degree of challenge in a chess

game [144]. When looking at these scenarios, novelty can be identified as an impor-

tant part of learning. Pedagogies such as Vygotsky’s zone of proximal development

revolve around novelty ensuring that activities provided by the system to the learner

are neither too easy nor too difficult [86]. This concept also analogises with flow

state in psychology [145] which plays a crucial part in game playing where players

with similar skills are matched to produce more engaging games [139, 141]. The

novelty of materials also associate with diversity and serendipity [146] which are

becoming more important aspects of recommender systems [25].

However, introducing unfamiliar materials for the sake of novelty does not

lead to an engaging learner experience. As previous work from cognitive science

and psychology suggests [86, 145], novelty should be introduced systematically by

making the learner experience not too easy nor difficult. IRT-related models such as

TrueSkill [141] explicitly models this region of flow by introducing a draw margin,

a region where the skills of opponent players are close enough that they will end

up with a draw (leading to an exciting game experience for both players) making

TrueSkill a foundational block of the TrueLearn models.

2.7 Combining Multiple Recommenders

As per section 2.6, learner engagement is associated with multiple factors. There-

fore, combining these models is a sensible approach towards exploiting all the iden-

tified hypotheses (content popularity, knowledge, novelty and interest in this case).

There are numerous ways to combine predictors together [147]. Using probabilistic

modelling to combine predictions is one of the simpler ways of doing this [148].

Ensemble techniques (such as Bayesian averaging, Boosting or Bagging) have also

shown promise in robustly combining classifiers [149]. Amongst ensemble meth-

ods, using a meta-learner (a.k.a stacking) is an approach that allows training a meta-

model to weigh the different hypotheses that are being combined. Stacking has also
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been used successfully (with a 10% performance improvement) in the learner mod-

elling domain [150, 151]. We also experiment with multiple online meta-learners,

including a novel model that is introduced in chapter 7, to create a transparent,

scalable learner model.

Apart from ensemble techniques, the recommendation systems community de-

fines hybrid recommenders, which are recommendation strategies that mix the re-

sults of multiple recommenders. Many approaches such as weighting, switching

and reinforcement learning approaches exist to create hybrid recommenders [152].

Beyond weighting predictions from multiple models which happen in stacking de-

scribed in the previous paragraph, we also experiment with switching, where the

hybrid recommender switches between different models for different predictions.

2.8 Related Datasets

While we have extensively discussed prior methods that are related to the work out-

lined in this thesis, it is noteworthy to also point out different datasets that are avail-

able within the research community as we also construct several novel datasets as

part of this thesis contribution. While many video-related datasets coming from var-

ious platforms such as YouTube [51] and Edx [38] have been used in engagement-

related research, the majority of these datasets are not available publicly.

Looking beyond videos, educational IR [153, 71] and Wikipedia page quality

prediction [68, 58] have been attempted using features such as text style, readability,

structure, network, recency and review data. The previously mentioned Wikipedia

article quality dataset [68] is publicly available although user engagement data is

not included. Only explicit quality labels annotated by contributors are provided

with this dataset. Similar datasets (where a small number of experts have given a

quality score) are available for automated essay scoring as well [75].

A few works on engagement prediction with videos (e.g. modelling watch

time) have been done with YouTube [51, 154], where YouTube-specific meta-data

features (e.g. channel reputation, category etc.) are used exclusively. Large-scale

datasets focused on predicting population-based engagement with general-purpose
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videos such as [36] are publicly available. But this dataset lacks focus on educa-

tional videos and has a majority of general-purpose/entertainment-related videos.

Many of the features used in this work share some similarities to the features that

are potentially useful (such as video duration, category, language and topic fea-

tures). This dataset also suffers from the fact that it mainly uses platform-specific

features from YouTube for engagement prediction while such features may not be

available in OER repositories and other video repositories (e.g. Channels). No tex-

tual features relating to understandability and presentation are used nor published

with this dataset, since such features may be of less importance for general-purpose

videos than educational/ informational videos.

In the context of education, a different line of work looks at learner engagement

using learner-specific multi-modal data (brain waves [44], facial expressions [155,

156], gaze-tracking [157] etc.). While tackling a different task, these datasets are

mainly collected in a controlled lab setting where the in-the-wild factor is missing

[156]. A large number of public datasets and competitions in education also relate to

students interacting with learning problems (e.g. ASSISTments2 [158] or multiple

choice questions3 [159]), but these datasets, contrary to the proposed VLE dataset,

do not focus on implicit engagement.

More relevant and similar datasets that address context-agnostic engagement

prediction in education have been emerging with a focus on MOOCs. Studying

approximately 800 videos from the edX platform, Guo et al. [38] manually pro-

cessed and provided a qualitative analysis of engagement, with some features being

relatively subjective and difficult to automate. A similar work [160] takes 22 edX

videos, extracts cross-modal features and manually annotates their quality with no

focus on learner engagement with the videos. Neither dataset is publicly available.

The most relevant dataset in the literature to understand engagement in video lec-

tures, i.e. the work based on approximately 800 videos from a collection of MOOCs

[38], is no longer publicly available. In this case, the data was manually processed

2https://sites.google.com/site/assistmentsdata/home/
assistment-2009-2010-data

3https://www.microsoft.com/en-us/research/event/
diagnostic-questions-neurips2020/

https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data
https://www.microsoft.com/en-us/research/event/diagnostic-questions-neurips2020/
https://www.microsoft.com/en-us/research/event/diagnostic-questions-neurips2020/
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and the authors provided a qualitative analysis of engagement, with some features

being relatively subjective and difficult to automate.

When it comes to modelling personalisation, MOOCCube is a recently re-

leased dataset that contains a spectrum of details relating to MOOC interactions

[161] that can be used for both context-agnostic and contextual engagement pre-

diction. Although large, the video watch logs in MOOCCube come from 190,000

users whereas the datasets contributed in this thesis contain interaction signals that

are generated from over 1.1 Million users (see chapter 4 for details). As central

values (e.g. median) are used for context-agnostic engagement prediction, a larger

user base adds stability to the engagement centres and combats the effects of the

minority of outliers. MOOCCube also uses a closed topic taxonomy disconnected

from Wikipedia which prevents the dataset from using all the powerful features in

Wikipedia (e.g. semantic relatedness [162], category tree to name a few) to improve

prediction models. Neither the authors of the dataset nor anyone else has published

attempts of using the MOOCCube dataset for engagement prediction tasks. There-

fore MOOCCube’s promise in such tasks (which is the focus of this work) is uncer-

tain at this point.

2.9 Summary: An Integrative Learner Model

Firstly, assuring the quality of educational materials that are exposed to the learner is

essential to the success and wide adoption of OERs. Although automating the whole

quality assurance process is significantly challenging at this point, other research

domains show evidence that automating one aspect of the quality assurance process

via estimating context-agnostic engagement is feasible and within reach. Prior work

and the datasets available shows promise in building machine learning models that

are capable of predicting engagement using features associated with the learning

resource alone. The scarcity of datasets also raises the strong need to construct novel

datasets that should be made available to the research community to thrive in this

area of research. Context-agnostic engagement prediction is also useful in building

informative population-based priors that can address the cold-start problem as it
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captures the general engageability of a video based on content-based features. This

hypothesis is tested and the feasibility of such a prior is demonstrated in chapter 5.

Content Analytics and Learning Analytics position themselves at the heart of

personalised learning systems. The majority of personalised learning platforms and

Intelligent Tutoring Systems have the luxury of covering a limited number of KCs

crafted by domain experts due to the narrow scope they attempt to operate in (e.g.

modelling learner knowledge in a specific knowledge assessment task). Contrary

to that, the more ambitious lifelong learning scenario with OERs needs to rely on

a broader spectrum of domain-agnostic KCs that are inter-operable between a wide

range of OERs. The research landscape also shows promise that learning schemes

utilised in algorithms such as TrueSkill have the bandwidth to tackle some of the

unique challenges introduced in personalising education to informal, lifelong learn-

ing (e.g. modelling multiple KCs simultaneously and incorporating a dynamic fac-

tor). Chapters 5 to 7 propose new algorithms that utilise entity linking for content

annotation. These proposed models also provide the capacity to incorporate differ-

ent factors that affect learner engagement. In education use cases, learner interest

and knowledge can be complemented with content novelty. Novelty represents new

knowledge that the learner hasn’t already acquired. The amount of novelty that is

presented by educational material is a function of the learner’s knowledge.

From the above findings, we identify a few different drivers that impact the

learner experience with different learning resources. Variables such as resource

popularity (P), background knowledge (K) of the learner, novelty (N) of content

and learner interests (I) can explain the engagement of a learner with an educa-

tional resource. Figure 2.1 outlines the findings of the literature survey and sets a

representation of engagement that we strive to build through this thesis.
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Figure 2.1: Graphical Model of the Learner Engagement Model that incorporates the
drivers of learner engagement
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Chapter 3

A Novel Interface for Video

Exploration

A major part of building human-centric Artificial Intelligence (AI) is to go beyond

the representation layer (utilised by the AI) to focus on the presentation layer that

bridges human users to the AI system. The work in this chapter was conducted in

collaboration with Human-Computer Interface researchers whose valuable contri-

butions were critical to producing an engaging learner interface. Towards this, a

new user interface component, Content Flow Bar, that can provide fragment-wise

recommendations from the proposed TrueLearn models and X5Learn, an intelli-

gent learning platform that can support the Content Flow Bar are presented. Con-

tent Flow Bar, described in sections 3.2, is a novel user interface component that

uses Wikipedia topics that are linked to different fragments of video lectures to help

users explore topical contents efficiently to make quick relevance judgements. It

can also be thought of as a new form of a preview of the information contained in

an educational video. X5Learn, the learning platform describes in section 3.4, is

a web application that is similar to YouTube or EdX, allowing human learners to

interact with the videos and consume them. It implements intelligent features such

as search, recommendation, and note-taking to support human learning. As part of

this work, the Content Flow Bar is embedded inside the X5Learn learning platform

to support the efficient previewing of educational videos.
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3.1 Interfacing Recommendations to Learners
How do we enhance learner experiences via seamless interfacing of

the AI-powered recommendation engine to the human learners?

While inventing a state-of-the-art approach to recommend educational mate-

rials is one of the key goals of this thesis, this work would not be complete if we

do not answer the above question. The primary objective of improving educational

recommendation systems is to enhance the learner experience. Given that the ma-

jority of contributed models in this work focus on video fragment recommendation,

addressing the issue of developing a suitable learning interface for fragment recom-

mendation is greatly imperative.

One of the primary bottlenecks in information retrieval tasks is that users can

only access the content of a retrieved item serially and sequentially. This not only

applies to processing multiple materials but also, importantly, to filtering lengthy

ones, since users may not know at the outset which parts of the content (e.g. a video)

might be relevant to their needs. To this end, ‘content previews’ could improve the

speed and/or accuracy of user relevance judgements across a variety of content types

and information retrieval tasks [163]. However, much of the potential to build better

navigation tools still appears to be unused in search and recommendation systems.

Analyses of how these tools affect user behaviour, perception and search experience

are also scarce.

To support fragment-wise recommendations, we propose i) Content Flow Bar,

a user interface component that improves navigability and human-intuitive under-

standing of the informational fragments recommended and ii) X5Learn, a sophis-

ticated learning interface, that allows discovering educational materials and effi-

ciently previewing their contents using the Content Flow Bar. Sections 3.2 and

3.4 describe the two tools in detail. Our user studies show the promise of Con-

tent Flow Bar and its power within an intelligent learning platform. In the wild,

a platform similar to X5Learn will be used by a human learner to carry out learn-

ing where recommendation algorithms such as TrueLearn models described in part

III of this thesis will power personalisation in such as system. The Content Flow



3.2. Content Flow Bar (CFB) 66

Bar, embedded in the X5Learn system is a mechanism to present fragment-wise

recommendations from these models to the human learner while supporting hu-

man intuitiveness and rationale behind the relevance judgements of the TrueLearn

models. The experiments demonstrate how the relevance of different fragments of

videos can be visually indicated to learners using the Content Flow Bar, within the

X5Learn learning platform where users can also use other support tools such as

content search.

3.2 Content Flow Bar (CFB)

Written documents, such as e-books and research papers, constitute a substantial

fraction of educational resources. While these are generally considered to be core

learning resources, research in online learner behaviour has shown that it can be

overwhelming and unwieldy to use them in practice, often being skimmed over

[38]. An increasingly popular approach is for students to watch video lectures that

are provided free online. Students find them engaging and more accessible [29].

However, the number of educational videos available on the Internet has grown

exponentially, making it difficult for users to choose. While they can use a search

or recommendation engine on YouTube or Google, this typically provides thousands

of potential videos based on metadata such as title and description. Do they select

the top one on the list, which may be peripherally on topic, not at the right level, or

even boring? Is there another way to provide a way of helping users choose?

In this work, we propose Content Flow Bar (CFB) and evaluate the proposed

navigation tool to support learners and teachers to choose from millions of potential

videos available. This dynamic new visual ‘look ahead’ tool combines Artificial

Intelligence and Human-Computer Interaction to enhance the learner experience.

Our approach is to design a visualisation tool that highlights fragments of videos

that match the search query and can serve as effective entry points (or alternatives -

depending on the learner’s information needs at hand) rather than starting from the

beginning of a video. The goal is to increase transparency, reduce user effort and

put the learner in control of their choices [164].
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3.2.1 Identifying Features of the Content-Flow Bar

While challenges are common across all kinds of learning scenarios, they are most

evident in self-determined/ informal adult learners (as opposed to students at univer-

sity). This is due to the high diversity of individual backgrounds, skills, knowledge,

needs, life situations, commitments, time resources, preferences and goals that can

be found in this target group. Consequently, we could expect considerable variation

in the ways that relevant real-life factors manifest themselves in practice, how they

are perceived and expressed, the impact they have, and how they are dealt with. To

understand the needs of this user segment, collecting in-situ observations of their

needs and behaviours is one of the most effective approaches. An ethnographically-

informed study was conducted to investigate the interaction patterns between hu-

man experts and learners when recommending Open Educational Resources at a

Makerspace in Germany with the presence of two researchers [165]. The goal of

this study was to inform the design of OER recommender systems and interfaces

that are effective and efficient from a learner’s perspective.

The findings from this study resulted in an in-depth understanding of typical

characteristics of the learner-expert interaction when recommending OER.

3.2.1.1 Importance of Triage

Triage was found to be a crucial part of giving informed advice. Learners’ ini-

tial requests were typically framed either as descriptions of planned projects or as

narrative accounts of how the learner encountered a problem within a project.

3.2.1.2 Advice Beyond Content

Many recommendations from the experts included some type of content (usually

OER). However, pure content recommendations were the exception, rather than the

rule. In most cases, the content was recommended in the context of other advice,

such as:

• A breakdown of a given problem into sub-problems / a topic area into

subtopics

• A set of skills and knowledge required to solve a problem
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• Caveats, clarification of common pitfalls and misconceptions

• Safety advice

• Alternative approaches/tools/materials etc - including pros and cons

• The expert’s rationale behind the given advice

• Other places to ask for advice

Occasionally, the expert’s advice concentrated on one of the above points with-

out mentioning specific content.

3.2.1.3 Implications to the design of Content Flow Bar

These observations led us to believe that providing the users with additional topical

details that can link the content to the knowledge areas is pivotal to helping users

make relevant judgements about content. It also showed that pointing the knowl-

edge area of interest to the information seeker is much more important than pointing

them to specific educational content.

In the absence of a human expert to facilitate this triage in an e-learning system,

the innovation one can achieve is to incorporate some of this support within the user

interface to help users identify relevant educational resources. This would mean

creating opportunities for the user to access some of this support information to

reinforce their reasoning when selecting what educational videos to consume.

3.2.2 Early Prototypes

Accounting for the findings in section 3.2.1, a series of prototypes were developed

iteratively by the human-computer interaction researcher while incorporating feed-

back received using various combinations of human-centric methods, including par-

ticipatory design with learners, one-on-one observation, user diaries, data logging,

semi-structured interviews and feedback from education experts. Popular video

platforms such as YouTube and Netflix use thumbnail previews. In addition, they

support information such as the video title and author to help users make informed

relevance judgements.
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3.2.2.1 Thumbnails

As shown in Figure 3.1, our early prototypes indicated that visual indicators such as

thumbnails provide very little information that can help users discriminate among

their potential choices. While world heritage sites can populate a diverse set of vi-

sual thumbnails from different videos, video lectures use a limited set of production

strategies [38] that lead to frames of headshots or slide snapshots to dominate the

majority of the video frames leading to limited visual diversity. This fact further

motivated us to incorporate topical content as part of the Content Flow Bar to help

users identify the differences between videos.

Figure 3.1: Thumbnails being used to represent videos about UNESCO World Heritage
Sites (left) vs. a series of video lectures (right).

3.2.2.2 Ranked Topic Clouds

The next design iteration explored the suitability of text-based previews instead of

thumbnails. Our design is similar to the word cloud design by [166] but differs in

that the items are ranked vertically and left-aligned for faster readability (see Figure

3.2). The items represent the five main topics of the corresponding document, with

the most frequently occurring topic at the top. The name ranked topic clouds was

chosen for this design. A small-scale, within-subjects comparison between thumb-

nails and ranked topic clouds led to the following conclusions:

1. Ranked topic clouds are consistently easy to read and informative, indepen-

dent of the format, modality or structure of the OER.

2. While thumbnails can potentially be distracting, superficial or misleading,

ranked topic clouds aim to represent the content in an objective, unemotional
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way, which may sometimes be preferable.

3. In cases where an OER lacks a descriptive title (e.g. “Lecture 15”), the ranked

topic clouds can partly compensate by covering in the information gap. The-

oretically, this might occasionally prevent good OERs from being unfairly

overlooked based on unlucky titles.

Multiple approaches were experimented with to present the topical contents

of videos to the users in a meaningful way. Figure 3.2 show the four main visual

previews that were developed. The first sub-figure shows a thumbnail while the last

three show an ordered list of the most relevant topics.

Figure 3.2: Different views were developed. From left to right: thumbnails, topic names,
bubbles and swim-lanes view. The bubble and swim-lane approaches use hor-
izontal alignment to indicate where in the video (temporally) different topics
are occurring.

1. Thumbnails: The conventional representation where a snapshot of the OER

is shown. This method especially works for videos.

2. Topic Names: The most frequent topics in the OER are listed so that the

learner can infer the main topics discussed in the resource.

3. Bubbles: The most frequent topics are represented. More semantically related

topics are clustered closer together.

4. Swim-lanes: The most frequent topics are represented. The position in the

OER where the topic word is mentioned is annotated using orange dots in the

respective swim-lane.
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3.2.3 Content Flow Bar: The Final Visual Navigation Tool

The CFB is designed to provide semantic “snippets” of video content, intended to

be useful for both searching and exploring. These snippets are displayed as pop-ups

and overlap in a time series bar, allowing the user to see in advance what topics are

covered in a video. The rationale for this design was for it to be a lightweight tool

that could provide just enough details that could be glanced at while skimming a

video thumbnail to determine if the pop-up keywords match the perceived need, as

illustrated in Figure 3.3.

Card

Video Thumbnail

Content Flow Bar

Cascading Menu

Knowledge 
Component 
Definition

Figure 3.3: A cascading menu containing relevant KCs opens as the user hovers over a frag-
ment in the Content Flow Bar(CFB). The video thumbnail provides an overall
summary of the video and can be replaced with an alternative summarisation
technique. The information panel (below the fragments bar) contains title and
metadata such as source, published date etc.

Selecting a fragment opens a detailed view with the video playing from the

corresponding time as shown in Figure 3.4. In this view, the user can take notes

and provide explicit feedback, e.g. ”too hard” or ”too easy”. The Content Flow

Bar allows fluid preview, recap and navigation within the resource. While we hy-

pothesise that the CFB can be a great tool to allow users to preview the content of

informational videos to choose among a collection of videos, we also hypothesise

that this tool can be utilised to navigate within a video.
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Figure 3.4: Popup view including the video, the Content Flow Bar Bar, description and the
side panel for learner note taking (a feature of X5Learn described in section
3.4).

3.2.3.1 Annotating Knowledge Components

As per section 2.5.1, there are manual, semi-automatic and fully-automatic ap-

proaches to annotating learning resources with relevant KCs. In the context of

the CFB, any of these approaches can be used as the stakeholders see fit. As

our use-case proposes the TrueLearn models that deal with 1000s of open educa-

tional videos, we use Wikification [15] to annotate video fragments with scalable,

humanly-intuitive KCs.

3.2.3.2 CFB to Inform Recommendations

When exploring recommendations, the system ranks the full documents based on

their relevance. Furthermore, the CFB provides fine-grained cues by highlighting

relevant fragments in yellow. Different colour intensities (yellow) can be used to

indicate the predicted relevance of each fragment to the learner (both in Figure 3.3

and 3.4) views. By hovering over a fragment, the user can explore the topics cov-

ered in each fragment, enabling a new and engaging way of looking ahead. It was
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hypothesised that this method of augmenting the content with AI-based annotation

increases the findability and navigability of information in long documents.

3.2.4 Preliminary User Evaluation

Iterative design with learners led to insights into their expectations, preferences and

behaviours. One key finding from the preliminary studies was that staying in context

is important for learners using e-learning platforms. Therefore, a popup was used

instead of loading into a new page to display a selected (clicked) video in the video

player. As seen in Figure 3.4, rather than the new video opening in a new window,

the collection of recommended videos drops to the dimmed background while a

popup window opens over the result set showing the selected video.

A preliminary user study was conducted with 8 participants who were given

two versions of information retrieval tasks, with and without the CFB. Qualitative

feedback indicated that all participants found the CFB engaging, intuitive to use

and helpful for finding information in videos. The reported benefits were especially

pronounced with long videos of unknown content. As one participant stated: ”It’s

very hard if you don’t know the video, to know where the content is, where the

beginning and the end of one thought are. [..] Without [the Content Flow Bar] I

had to watch for a long time before it got to the point I was interested in”. With

the CFB, the participant found the task easier and more enjoyable ”because you can

skip to the part you are actually interested in”. A large-scale experiment that we ran

subsequently is described in section 3.3.

3.3 Validating Content Flow Bar
A controlled user study involving 26 participants was conducted to evaluate the

efficacy of the CFB for information retrieval and gathering.

3.3.1 Goal of Study and Research Questions

The main user study was designed to compare the user performance of a video

player with (treatment) and without the CFB (control condition). More specifi-

cally, the control video player was based on YouTube, showing changing thumb-

nails when hovering, and highlighting watched parts (see Figure 3.5). The en-
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Figure 3.5: Video player with CFB off (Control Condition). Cursor in the timeline indicates
the time position. Red dashes and dots indicate watched parts.

hanced video player had the CFB, including a list of topics covered in each fragment

and the definition of those (as per Figure 3.3 described in section 3.2). Compara-

tive approach is a common method used when evaluating video player interactions

[167, 168].

We designed two tasks relating to machine learning and climate change. Ma-

chine learning was chosen because of being an academic popular topic. Climate

change was chosen because of being of universal concern. Both of these are also

topical and there are many videos available on the platform where the CFB was in-

tegrated. Both were information seeking tasks in which participants were instructed

to find relevant video clips that would be useful for teaching each domain to a set of

university students. The tasks were open-ended and participants could take as much

time as needed to complete each task. This was also because we were interested in

measuring the time to complete the task with/without CFB in an open-ended fash-

ion, so that participants could explore the videos and look up tools in their own time

rather than be primed with instructions to complete tasks in a certain time.

The goal of the study was to understand whether and how the CFB supports

information seeking, is able to facilitate content navigation and supports efficient

browsing of video content. The two main research questions for the study were as

follows:

• How do navigation and browsing compare across the two interfaces?

• What are the differences in terms of information seeking and exploratory be-

haviour?
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3.3.1.1 User Actions

To answer the research questions, we pay special attention to specific aspects of

performance and user experience, focusing on five actions: (i) Opening videos,

i.e. when the participant decides to click on a video and the video player screen

is opened; (ii) playing/watching videos in the video player screen; (iii) exploring

a video (either in the results screen or the video player screen), which refers to

exploring the contents of a video such as keywords in the CFB or frames with the

thumbnails; (iv) selection of relevant video segments, i.e. when the user decides

that a part of a video is relevant to the task at hand and saves the relevant segment in

the workspace and v) information seeking within a video [169], i.e. a seek operation

is when a user navigates within the video (clicks/jumps on multiple time locations

in the video to play).

The actions of opening, playing and selecting parts of videos are the same for

both conditions (CFB on and off). However, exploration differs. In both cases, ex-

ploring the content is done by interacting with the time series bar below the video

(present in both the results and video player screens). When CFB is off, the explo-

ration experience is kept similar to that of the mainstream video player on YouTube.

This is, hovering over the time series bar in the result screen, will display the time

position of the video corresponding to the mouse cursor. Additionally, the video

thumbnails previewing the frames corresponding to the time position are displayed.

In the video screen, the time positions are retained while the thumbnail displaying

is disabled. The watched parts of the video are marked in red. Figure 3.5 shows

a representation of the video player when CFB is off. If the CFB is on, the only

difference is that the time is replaced by CFB popups with Wikipedia keywords and

definitions. Similar to the CFB off condition, the thumbnail previews are enabled

in the results screen and disabled in the video screen.

3.3.2 Experimental Design and Procedure

The study used a repeated measures design, so each participant does both tasks

with CFB and the control condition, with counterbalancing across them to address

training effects and fatigue. This means that the order in which the participants were
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CFBTasks to complete by participants Workspace of saved clips Selection of video clipsRed dots indicating watched parts

Results screen Video player screen

Figure 3.6: Screenshots of the study, highlighting important components. The left sub-
figure shows the Results screen where the videos are displayed for each task.
The right one shows the Video player screen (pop-up) that opens when clicking
on a video.

presented with the two conditions and tasks was randomised. The CFB condition

was demonstrated in the practice task.

Before the study began, participants were sent an information sheet and con-

sent form to sign before the session. The study took place through the Zoom web

conferencing platform. The researcher first gave participants an initial form asking

demographic questions and self-rating for their knowledge of both climate change

and machine learning, topics of the two tasks. Then, the researcher gave a brief

overview of the study and demoed the platform, highlighting the features needed

for the study (including CFB on and off). The participants then practised with both

conditions for the topic “brain” until they felt confident that they could move on to

the main study. Then, each participant performed the information seeking task for

both topics (task order randomised). As explained before, no time constraints were

given to explore the use of the CFB in an open-ended environment. After this they

were asked to fill in a questionnaire about the CFB.Being an information gather-

ing task, if users get familiar with the knowledge area over multiple tasks, this will

have an impact on the interaction behaviour that is captured and analysed. Three

different topics (brain, climate change and machine learning) are used in the three

tasks (practice, task 1 and task 2) to the user to avoid this learning effect that might

confound the analysis.
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Figure 3.6 shows a summary of the user study. For each task (machine learn-

ing and climate change), participants were presented on the results screen with 18

videos that were carefully chosen for the study. The video result set shown in Fig-

ure 3.6 (left) was ranked randomly, i.e., videos were ordered independently of their

relevance to the task topic. However, all the videos were selected to be relevant to

solving the task. This ranking was kept constant among all participants to make sure

each participant sees the videos in the same order. The baseline video player was

based on YouTube, showing changing thumbnails when hovering, and highlighting

watched parts with red. The enhanced video player had the CFB, including a list of

topics covered in each fragment and the definitions. As the user study is restricted to

a static result set (contrary to a user query-driven dynamic result set), the fragment

highlighting feature of CFB was disabled in the user study interface found in Figure

3.6. If a participant clicked on a video, then the video player opened taking the par-

ticipant to the video player screen (see Figure 3.6). Participants were also provided

with the functionality to select video clips and save them to a workspace. Once a

participant has selected a video clip, the selected segment is highlighted in blue on

the CFB, and the video title is displayed in the participant’s workspace. Participants

could also remove any selection from the workspace.

Tasks The participants were presented with the following hypothetical scenarios

from which to complete the two tasks:

Task 1 (Climate Change): “As you are interested in climate change, a friend

has asked you to find 2 interesting video clips illustrating the applications of data

science in climate change. After that, your friend wants you to find 2 clips illustrat-

ing controversial issues in climate change. These video clips will serve to initiate a

debate in class. As watching videos should not take too long, you will have to se-

lect at least 4 short video clips or segments for students to watch (e.g. 5-6 minutes).

Please be advised not to select more than one video clip/segment per video.”

Task 2 (Machine Learning): “Some students want to learn about machine

learning in your next workshop. As its importance is growing, you are tasked with

finding video clips that illustrate key concepts that students can watch at home, and
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make notes about. Then, in the workshop, they will like you to show 2 video clips

on the applications of machine learning and discuss these with them. As watching

videos should not take too long, you will have to select at least 4 short video clips

or segments for students to watch (e.g. 5-6 minutes). Please be advised not to select

more than one video clip/segment per video.”

Videos All the videos selected for the study are found on the platform and belong

to the repository VideoLectures.net. We selected 18 educational videos from each

subject. All the videos are from academic conference presentations (or specialised

seminars and summer schools). In most cases, the speakers’ PowerPoint presenta-

tion has been captured and included in the videos. We made sure that the tasks were

achievable given the selected set of videos.

Questionnaire We developed a questionnaire about specific aspects of the CFB to

understand user experiences with the tool. The questionnaire contained both open-

ended questions and ratings that are inspired by the System Usability Scale [170].

The questionnaire started with questions about demography and teaching experi-

ence. We also requested participants to self-report their knowledge of each topic.

This part of the questionnaire relating to demography and knowledge was done prior

to participants interacting with the tool. The second part of the questionnaire, which

included questions relating to the CFB, was asked after participants took part in the

study. In the second part of the questionnaire, participants were asked first to rate

statements about the CFB, and then more specifically to rate the adequateness of

the topics generated by entity linking and used in the CFB. Some of the statements

participants were asked to rate included: i) The enhanced video player (with CFB)

is intuitive to use. ii) The enhanced video player made finding video clips easier.

iii) I found information seeking with the CFB difficult. iv) Providing definitions of

the topics was helpful. v) More video players should include the CFB. We used

6-item Likert-scales, from strongly disagree to strongly agree. Finally, participants

were asked to describe in detail their experience with the CFB, the user study and

the keywords generated. To conclude, participants were asked if they had any addi-

tional comments related to the study, tool or tasks. A copy of the used questionnaire
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is attached with the supplementary materials.

Qualitative Analysis We conducted an inductive thematic analysis, using the an-

swers to open-ended questions in the study and the interview transcriptions. The

goal of the thematic analysis is to better understand the experiences, perceptions

and reactions of participants to the CFB. We coded the data following the principles

of thematic analysis outlined by Braun and Clarke [171]. We followed the main

steps inherent in this method, including coding and review of the codes, grouping

them into categories and then defining themes. At each stage we strove to ensure

that the emerging patterns in the analysis came from the available data and reflected

the experiences of our participants.

3.3.2.1 Participants

26 participants took part in the study. Most of the participants were aged between

30-39 years. They were all staff (PhD students, postdocs and faculty) from the

Department of Computer Science at i) University College London and ii) The Open

University (UK). They all had teaching experience and were computer literate. We

had slightly more male participants (53.6%) than female (46.4%). Their knowledge

of the two topics - machine learning and climate change - varied. Most participants

reported having average or above knowledge of machine learning, and 40% had

specialist knowledge in machine learning. By contrast, 50% of the participants had

little knowledge, while the rest had mostly average knowledge, of climate change.

Note that while we did not explicitly test for prior knowledge (but, rather allowed

self-reporting), all of the participants came from computer science departments,

thus it is expected that they will have at least basic knowledge of machine learning.

3.3.3 Click Stream and Interaction Log Analysis

We implemented additional programming snippets within the user interface to cap-

ture highly detailed user interaction logs related to clicks and other interactions with

relevant user interface components (e.g. hovering over the objects, triggering and

closing pop-ups, etc.) [172]. The recorded usage logs are post-processed to infer

interaction patterns by computing different interaction metrics [38].
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3.3.3.1 Interaction Metrics

We calculate different interaction metrics used in measuring user behaviours in IR

systems that can be grouped into multiple categories based on time [173, 174],

activity [174, 172], location [173, 175, 176] and selection of video segments. As the

CFB mainly introduces opportunities for previewing the topical content of videos,

more emphasis is given to capturing activities related to users exploring topics in the

videos. The interaction metric categories that we analysed, with or without CFB,

were as follows:

Time We computed a set of interaction metrics that are associated with the time

participants spent on different actions. The metrics that we analysed were: i) time

spent completing the tasks in the study, ii) time spent in the results screen, iii) time

spent watching the videos during the task, iv) time spent exploring the content of

videos during the task, v) time spent exploring the contents of videos in the results

screen, vi) time spent exploring the content of videos in the video player screen, vii)

time spent watching the video per opened video, and viii) time spent exploring the

content of videos per explored video. When considering the exploration of video

content, we measured the time spent hovering over the time series bar (as explained

in section 3.3.1.1).

Activity To analyse different patterns of activity, we measured seven interaction

metrics that fall under frequency and proportion-based metrics. These metrics are:

i) unique number of videos opened/played, ii) number of videos played, iii) number

of play sessions per unique video played (i.e. fraction of (i)/(ii)), iv) number of

segments removed within 1 minute of selection, v) number of segments removed,

vi) time spent exploring in the result screen as a fraction of entire task duration and

vii) time spent exploring in video player screen as a fraction of entire task duration.

Navigation We computed several metrics that gave us cues about where participants

navigate within the system. These were: i) number of seek actions through the entire

task (a seek action is when a user jumps to different time locations in the video

to play), ii) number of seek actions within a video per opened video, iii) deepest

rank of videos played (i.e. the maximum rank in the list of the videos opened),



3.3. Validating Content Flow Bar 81

iv) deepest rank of the video explored (i.e. similar to the previous metric but for

videos explored), and v) mean position navigated within the video (i.e. the average

position in the video, normalised in [0,1], that the participants watched. The deepest

rank gave us insights regarding whether users were encouraged to consider results

that are in lower ranks in the results screen. Larger numbers indicate that users’

attention was caught by lower-ranked items.

Selection We computed some further metrics related to the segments participants

selected as relevant to their task. These were the following: i) time spent before first

selection, ii) number of videos opened/played before selecting the first segment,

iii) number of videos explored before selecting the first segment and iv) average

duration of selected segments.

3.3.4 Results and Discussion of the Analysis

One of the goals of the user study is to objectively compare the interaction metrics

for the two conditions (CFB on vs. off) to see if the distributions from the two

groups are statistically different. Many metrics from interacting with web-based

documents (e.g. watch time for videos, dwell time with clicks [36, 177]) tend to

follow distributions that are non-normal, motivating the use of non-parametric hy-

pothesis tests [38].

As per section 3.3.2, two very different knowledge areas (Climate Change and

Machine learning) were used for the two conditions to avoid the learning effect. Our

initial analysis showed that there are significant behavioural differences between the

topics, possibly due to the different videos and topics contained or the background

of the participants (see section 3.3.4.1 and Figure 3.7 (c)). Therefore, comparing

the same participant’s two conditions as a paired observation can be misleading.

To address this issue, we paired the control task (CFB off) of each participant with

a randomly chosen different participant who carried out the treatment task (CFB

on) for the same topic. Due to the non-normality in our measurements, we used

the Wilcoxon signed-rank test [178] to compare the difference in values between

the two paired conditions. To assure statistical reliability of the result obtained by

synthetically pairing observations, random pairing is iterated 5 times.
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Table 3.1: Various metrics calculated using the interaction logs recorded during the user
study presented with the mean and the statistical analysis done on 5 random user
pairing configurations (mean pairwise difference between CFB off and CFB on).
The differences in pairs that are statistically significant are marked with p< 0.01
as (∗∗∗), p < 0.05 as (∗∗) and p < 0.10 as (∗).

Category Interaction Metric Mean Pairwise Difference Mean Wilcoxon
(CFB On - CFB Off) p value

Time spent completing the task -48.607 0.8034
Time spent in results screen 168.267 0.0305(∗∗)

Time spent watching videos during the task -136.867 0.3718
Time Time spent exploring during the task 189.447 0.0148(∗∗)

(secs.) Time spent exploring in results screen 139.160 0.0004(∗∗∗)

Time spent exploring in video player screen 50.287 0.3005
Time spent watching videos per opened video -22.296 0.5338
Time spent exploring in results screen per explored video 16.524 0.0082(∗∗∗)

Number of unique videos played 0.020 0.8748
Number of videos played -0.507 0.5566
Number of play sessions per unique video played -0.018 0.6416

Activity Number of segments removed within 1 minute of selection -0.113 0.1528
Number of segments removed -0.113 0.3885
Fraction time spent exploring in result screen per task 0.132 0.0005(∗∗∗)

Fraction time spent exploring in video player screen per task 0.082 0.1795
Number of seek actions -8.167 0.2899
Number of seek actions per played video -1.465 0.4080

Navigation Deepest rank of video played -0.153 0.6913
Deepest rank of video explored 1.873 0.0336(∗∗)

Mean position played within the video (fraction) 0.036 0.5555
Time spent before first selection -13.867 0.7122

Selection Number of videos played before first selection -0.533 0.0642(∗)

Number of videos explored before first selection -0.193 0.2903
Average duration of selected segments -12.841 0.8042

The results of hypothesis testing done on the 5 participant pairing configura-

tions are reported in Table 3.1. Detailed results obtained from the 5 pairing config-

urations is attached with the Appendix.

3.3.4.1 Effect on User Interaction

We focus our analysis mostly on the results obtained via statistical analysis of the

user interaction logs, the survey questionnaire and the thematic analysis. Table 3.1

presents the outcome of the statistical analysis conducted on the interaction logs.

We comment both on the mean pairwise difference and the significance of the sta-

tistical tests. Figure 3.7 contains several box plots that indicate noteworthy differ-

ences of behaviours between tasks. Figure 3.8 summarises key results obtained by

analysing the questionnaire.

Differences Across Tasks As shown in Figure 3.7, three box plots summarise one

of the relevant findings. In summary, we found marked differences in the interaction
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Figure 3.7: Box plots of a subset of interaction metrics indicating differences of interaction
behaviours between task order and topic. These plots (specifically subfigures
a) and b)) suggest a learning effect taking place where users spend much longer
time on the first task. Subfigure c) shows that the number of segments selected
for the two different tasks is different although the users were encouraged to
spend similar time periods and to select the same number of segments for both
tasks indicating different complexities of the two topics.

log results when taking into account task topic and task order. Subfigures a) and b)

in Figure 3.7 indicate that the time taken to perform the first task is systematically

larger than the time taken to perform the second task regardless of the condition

(CFB on/off). This suggests that there may be a learning effect taking place during

the study where the participant attempts to familiarise themselves with the entire

system putting a larger cognitive load on them. This learning effect in the first task

seems to be more pronounced when participants are exposed to the CFB as this is

an additional tool that the participants have to get familiarised with. In the second

task, however, both conditions take a similar time, with CFB in some cases taking

less time. This may indicate that the visual CFB tool is intuitive, as there is no ev-

ident difference in task duration in the second task by which point the participants

are familiar with the rest of the system (user interface components and features ex-

cluding the CFB feature). We believe this is evidence that users can understand and

learn the CFB functionality by interacting with it for less than one hour. Subfig-

ure c) shows that the number of segments selected by the users is different based

on the topic of the task although the users were advised to select the same number

of segments at the end of each task. This may be an indication of the difference

in complexity of the task that is associated with the topic, since participants were

more familiar with the topic of machine learning. Additionally, although the tasks

are similar, the climate change one is more specific, asking participants to look for
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i) applications of data science to climate change and ii) controversial issues in cli-

mate change, whereas the machine learning task simply asks to highlight relevant

material for understanding the topic and showing its applications.

These observations motivated us to perform the statistical analysis (outlined in

section 3.3.4) by pairing user tasks that are similar in task order and task topic rather

than using the individual’s two conditions as a paired observation.

Time Spent The main conclusion from the time metrics in Table 3.1 is that par-

ticipants spend much more time choosing and exploring what content to open and

watch when using CFB. This suggests that users may be utilising the CFB to locate

topical content across the videos. This is evidenced by the significance of the tests

of metrics such as time spent in the results screen, time spent exploring during the

task and time spent exploring in the results screen. This behaviour may suggest that

they are using the keywords to make decisions about which videos to watch. This

may indicate that there is promise in CFB enabling users to navigate within a video

collection.

Although the results are not statistically significant, the time metrics in Table

3.1 also show that participants spend less time completing the task with CFB. They

also spend less time watching material. Finally, the results also show that partici-

pants spend more time exploring the content within a specific video.

Users Activity The activity group shows again that participants spend most of the

time during the completion of the task exploring videos on the result screen. Al-

though not statistically significant, they also spend more time exploring the video

player screen. However, they watch fewer videos on average and have fewer play

sessions per unique video played. This may indicate they can make better or quicker

relevance judgements. The number of segments removed within 1 minute of selec-

tion (and across the study) is also less when using CFB. Such behaviour is analogous

to ”quick-back” behaviour in information retrieval when a user reverts their deci-

sion, usually caused by a mistake action. This suggests that having CFB leads to

fewer mistakes in terms of selecting relevant sections.
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Users Navigation The navigation metrics in Table 3.1 give a strong indication that

the CFB enables users to explore deeper in the result set. This evidence demon-

strates the utility of this user interface component to support users even in systems

where the ranking algorithms may not be perfect. Although not statistically sig-

nificant, the deepest rank of video played is less with CFB. This may suggest that,

with CFB, participants may have found evidence of relevance earlier in the result

set. Additionally, Table 3.1 also shows that the number of seek actions performed

by users is less with CFB. This suggests that the tool also empowers users to nav-

igate within a video. However, the effect is not as strong as found in the results

screen. These results lead us to hypothesize that by using the CFB, participants ex-

plore more videos, but also spend more time checking the topical content in those

(as suggested by the conclusions in the previous subsection). However, once they

decide to open a material, they can decide better where to go, and need to take less

seek actions within the video. This is also evidenced by the mean position played

within the video, which shows that with CFB participants play deeper in the video,

even though on average they watch less material.

Selecting Relevant Content The selection metrics in Table 3.1 indicate that par-

ticipants using CFB play less number of videos before selecting the first relevant

video segment for the task. On average, participants also explore fewer videos be-

fore making a relevant judgement and they also spend less time before selecting a

relevant segment of the video. Additionally, the average duration of selected seg-

ments shows that participants with CFB select less content. We believe that this is

because they can select much more fine-grained segments.

3.3.4.2 Users Perception of the CFB

The interviews and the qualitative questionnaire provided insights into how the par-

ticipants perceived the proposed CFB component.

Questionnaire Survey From the questionnaire rating scales, we can see (see Figure

3.8) that most participants had a positive reaction to the CFB (82% agreed it made

finding video clips easier). The majority agreed that they enjoyed using the CFB

and that it was intuitive (75% agreed). Despite some issues reported by participants
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with the adequateness of some keywords, participants seemed to be satisfied with

the CFB. Almost 93% agreed that more video players should include the CFB.

The enhanced
videoplayer is
intuitive to use

The enhanced
videoplayer
made finding

videoclips easier

I found information
seeking with the 

CFB difficult

Providing
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Figure 3.8: Responses to a selection of questions from the user questionnaire. A 6-grade
Likert scale is used. Different shades of blue are used for agreement responses,
while different shades of purple are used for disagreement responses.

Thematic Analysis When analysing the responses to the open-ended questions in

the questionnaire using thematic analysis, we found two main themes. These were i)

supported exploration of video content and ii) positive user experience. We demon-

strate these by including some of the statements made by participants. Similarly to

the results in the survey, participants were positive about the tool, where one stated

”I really like that feature, I would use it often”. Additionally, the CFB seemed help-

ful and easy to use. ”Once you explained it in a couple of minutes, it would be quite

clear to most people how to use it.” “Overall, the flow bar made searching feel

much more focused.” “It is really helpful that many terminologies have explana-

tions of them when you hover over them”. The reaction of some of the participants

when trying to select video clips without the CFB (especially in long videos) is

noteworthy. ”Once I got to the machine learning, when you said find 4 clips...urg”.

Specifically, participants seemed frustrated with the effort required to select the

clips without the CFB: ”Definitely, I think you saw I got quite frustrated in the

first one with the standard video player without the keywords”. Most participants
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highlighted several advantages of the CFB regarding exploring video content in the

open-ended questions, which can be summarized as: i) enhancing video navigation

and locating information, and ii) getting an overview of the videos. Participants

could more easily scroll and skim through the video, which was especially impor-

tant for lengthy ones. “It helps to skip-read the content of the video, especially for

the long videos”. They could locate information more quickly and it enabled them

to select directly which parts of videos they wanted to look at. “If you have a fixed

amount of time you can get through a greater amount of material”. Participants

looked first at thumbnails and video titles, and then the CFB keywords provided

extra cues, which let them select directly the video segments that they wanted to

look at. “I sweep straight forward starting from the section rather than the whole

thing just clicking randomly through the video”. If participants could not find di-

rectly a segment that seemed relevant, the CFB then helped them to narrow down

their search and eliminate information. “It made identifying the detail of the subject

being spoken about much easier; it gave some sense of where the speaker was in the

flow of conversation.” “CFB helps to find starting points within the videos, not nec-

essarily always helping me to find relevant content actually, but at least to quickly

move through.” The CFB enabled participants to get an overview of the video con-

tent and enhance their understanding of the video. ”It increased my knowledge

about the video”. It gave participants a digest of each video and a quick summary

of different video sections. It gives them some context for the ideas presented, al-

lowing them to get a much better sense of the flow of the videos. As stated: ”These

keywords can help in summarising what the idea is about and differentiating one”.

Despite participants’ positive reactions to the CFB, they also noted a few is-

sues. A few misappropriate or misleading keywords were generated. Most partici-

pants seem to have ignored them, although a few were puzzled when they were no-

ticeably out of context and/or incongruous. Some participants highlighted that there

is a lot of repetition across the keywords, thus making the keywords less salient.

”For some videos, the keywords were the same for several segments making it dif-

ficult to distinguish between them”. In particular, for a few videos, a keyword was
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repeated systematically across the video. As a participant pointed such keywords

should be left out, and included as meta-tag for the whole video. However, the re-

action from the participants also provided assurance that Wikification, despite its

occasional errors, improved navigation between and within videos. This could be

supporting evidence of the utility of automatic and scalable entity linking for such

content navigation tools.

3.4 X5Learn: A User-facing Learning Platform
In order to recommend relevant educational video fragments to learners, we develop

a novel learning platform, X5Learn, a personalised learning companion at the In-

tersection of Artificial Intelligence and Human-Computer Interaction. It is intended

to support both teachers and students, alike. For teachers, it provides a powerful

platform to reuse, revise, remix, and redistribute open courseware produced by oth-

ers. These can be videos, PDFs, exercises and other online material. For students,

it provides a scaffolded and informative interface to select content to watch, read,

make notes and write reviews, as well as the ability to plug a powerful personalised

recommendation system that can optimise learning paths and adjust to the user’s

learning preferences.

What makes X5Learn stand out from other educational platforms, is how it

combines human-centred design with AI algorithms and software tools with the

goal of making it intuitive and easy to use, as well as making the AI transparent

to the user. The core search tool of X5Learn supports teachers and learners in the

discovery of open educational materials.

3.4.1 System Overview

X5Learn platform provides users with a number of intelligent tools (developed

within the X5GON project described in section 1.3) for interacting with open ed-

ucational videos, and a set of tools adapted to suit the pedagogical preferences of

users. In order to recommend relevant fragments to learners, the solution lever-

ages content analytics to extract characteristics from resources, such as Knowledge

Components (KCs) covered (refer to section 2.5.1) and various metadata such as the
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Search tool Content Flow Bar with highlights

Cascading menu with definitions

Playlist and suggested learning path

View tools Transparent AI layer

Figure 3.9: Overview of the platform: The screenshot shows the video player GUI using
thumbnails of videos returned by the search engine (with highlighted video
clips that cover the searched query), the playlist on the right, the content flow
bar for each video clip, the AI function for optimizing the learning path and
finally, in the top right corner, the ‘unveil the AI’ button and the different visu-
alisation functionalities (‘view’).

source, published date and modality. To incorporate learning analytics described in

section 2.6, learning analytics are applied to capture the user’s knowledge state and

growth over time. To infer learner state in learning analytics, the TrueLearn models

proposed in chapter 6 can be utilised. Ultimately, X5Learn has been designed as a

suite of interconnected tools:

• X5GON Discovery: This is an AI-powered search engine [179] that enables

learners to discover learning materials with filters (e.g. type of OER, such as

video, PDF etc., license available, and preferred language).

• X5GON Translate: This tool automatically generates translations and tran-

scriptions (via automatic speech recognition) in different languages using AI

techniques [180].

• Content Flow Bar: This is the core UI Component that presents educational

materials returned by our search engine and recommender (see Figure 3.3).
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• TrueLearn Models: an AI-based recommendation models described in chap-

ters 5 onward providing transparent educational recommendations for life-

long learners.

3.4.2 Graphical User Interface

Figure 3.9 illustrates the result screen of the platform. The learning materials that

are relevant to individual users are presented to the user as a result set on this screen.

The user can click on an interesting item and a popup will allow the user to consume

it as shown in Figure 3.4.

The GUI was designed based on familiar video players metaphors such as

YouTube and Video Lectures (see Figure 3.9). It also integrates a number of well-

known visual features, including a search box, popup boxes, cascading menus, time-

lines and visualisations. One of the novel functions provided in the interface is the

Content Flow Bar described in section 3.2. After initiating a search, users can then

view the results as video thumbnails in a window (showing the title and date pub-

lished). The challenge often faced by the user is that there could be 10, 20 or even

more videos returned by the search engine and it can be very time consuming for

learners to find the most suitable material by going through each one sequentially.

3.4.3 Personalisation in X5Learn

As seen in Figure 3.9, all educational materials relevant to the user’s need are pre-

sented using the Content Flow Bar (described in section 3.2). As shown in the

figure, different intensities of yellow indicate the degree of relevance of different

fragments of resources to the user. The personalisation models behind this intelli-

gent user interface can potentially i) compute population-based engagement to ad-

dress cold-start (as described in chapter 5) and ii) estimate contextual engagement

for each user (as described in chapter 6). Individualised relevance scores computed

using the TrueLearn models, the focus of this thesis, can be used to assign the inten-

sity values. This makes the proposed X5Learn platform a perfect learner interface

where TrueLearn models can be utilised.
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3.5 Key Takeaways

We presented the design rationale for the Content Flow Bar (CFB) and the analyses

from our user study describing the efficacy of this novel interaction technique for

supporting discoverability and navigation. Overall, the CFB was found to enhance

early exploratory behaviour and information seeking across sets of videos. It does

this by providing visual cues about the different topics covered throughout a video

that otherwise may not have been perceptible. Two relevant findings from both

the user interaction logs with the tool and the questionnaire were that participants

were able to explore more materials with the CFB and found the tool helpful for

information retrieval tasks (e.g. watched fewer videos before making a relevance

judgment).

Due to the low number of participants in our user study (26), not all the results

in the interaction log analysis are significant. However, we also analysed the means

with and without CFB to extract conclusions regarding this new tool. The findings

were as follows: Participants seemed to spend less time on average to complete the

tasks using CFB. The distribution of time was also different. With CFB, they spent

much more time deciding on what content to watch and also from which starting

point. This is, they explored more across sets of videos and within a specific video.

On the other hand, participants spent on average less time watching material with

CFB, and they opened fewer videos. They also made fewer mistakes in relevance

judgments when using CFB (as evidenced by the number of segments marked as

relevant and then removed by participants). Participants also explored deeper in the

result list and seek less within a video with CFB. Finally, it seemed that participants

took less time with CFB to make relevance judgments and they selected more fine-

grained content segments. The questionnaire highlighted that most participants had

a positive experience with the CFB. They found the tool intuitive and helpful in

providing summaries of the content and helping them with information seeking

tasks.

The CFB tool is intended to be agnostic of content type and scalable to large

collections of documents, with the potential of being used automatically across dif-
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ferent modalities of informational content (e.g. videos, pdfs, audio, etc.). That is,

while many search tools rely on manual annotations or are specific to particular

content types, there is a scarcity of generic, scalable and automatic solutions for

users to preview and search across diverse modalities of content. The backbone of

our interaction tool (Wikification), allows for such features. We hypothesize that

the benefits found may go beyond educational videos and can be used for a wide

range of long document formats, potentially making it a powerful tool in the hands

of learners and teachers.

Looking at the larger picture, there is a need for system designs that can trans-

form how we think about lifelong learning in terms of personalising recommenda-

tions. X5Learn demonstrates a promising step in this direction by emphasising per-

sonalisation and redefining the atomic unit of educational content to be fragments,

rather than entire learning resources. It reconceptualises large educational materials

as building blocks that can be partitioned, recombined and repurposed and mostly,

individually recommended. By combining AI and HCI, the learner experience can

be improved with added transparency, findability and navigability as demonstrated

by this system. The proposed platform shows seamless compatibility with fragment

recommendation models such as TrueLearn as it can i) support content representa-

tions (ie. KC annotated fragments) compatible with TrueLearn models, ii) capture

user interactions that become labels to TrueLearn models and iii) incorporates Con-

tent Flow Bar that can communicate the fragment wise recommendations to the user

visually.



Chapter 4

Problem Statement and Constructing

Relevant Novel Datasets

This chapter describes the problem that is addressed in the thesis while also provid-

ing details of the background datasets that were built in order to support the pro-

posed innovations and experimentation with them. We start by formalising the prob-

lem that is being modelled by TrueLearn models. Due to the scarcity of publicly

available datasets to advance the tasks (detailed in section 2.8), three new datasets

were constructed and released to the public as part of this thesis work. This chapter

describes how the three datasets that were created to do an offline evaluation of the

proposed models were constructed.

4.1 Problem Formulation and Assumptions
We model a scenario where a learner ℓ in learner population L interacts with a

series of educational resources Sℓ ⊂ {r1, . . . ,rR} where rx are fragments/parts of

educational video v. The watch interactions happen over a period of {1 . . . t . . .T}

time steps, R being the total number of resources in the system. In this system with

a total N number of unique KCs, resource rx is characterised by a set of top KCs

or topics Krx ⊂ {1, . . . ,N}. We assume the presence of KC in resource irx and the

degree of KC coverage in the resource drx is observable. Figure 4.1 illustrates the

problem setting we aim to model with the different variables that are associated with

the setting.
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Figure 4.1: Illustration of the problem setting where learner ℓ, with knowledge (that allows
them to tackle novel content) θNK and interests θI is watching fragments of
videos rx containing different knowledge components Krx over time t.

The key idea is to model the probability/likelihood of the binary outcome, en-

gagement et
ℓ,rx
∈ {1,−1} between learner ℓ and resource rx at time t as a function

of the learner interest θ t
ℓI

, knowledge θ t
ℓNK

, presence of KCs irx , and topic coverage

drx for the top KCs covered Krx .

According to Bayes rule the posterior distributions are proportional to:

P(θ t
ℓI
|et
ℓ,rx

,Krx , irx) ∝ P(et
ℓ,rx
|θ t

ℓI
,Krx , irx) ·P(θ t

ℓI
) (4.1)

P(θ t
ℓNK
|et
ℓ,rx

,Krx ,drx) ∝ P(et
ℓ,rx
|θ t

ℓNK
,Krx ,drx) ·P(θ t

ℓNK
) (4.2)

The underlying assumptions for how the learner interest, knowledge and nov-

elty relate to engagement in graphical form can be found in Figure 6.1 and 6.3 in

chapter 6. Equation 4.1 represents the common assumption in interest-based infor-

mational recommendation systems, that a user will engage with an item if there is

interest towards the topics present in the resource [181]. Equation 4.2 is the un-

derlying assumption for knowledge found in TrueLearn Knowledge and TrueLearn

Novel models described in chapter 6, which accounts for the knowledge state of the

user and the novelty of educational materials.
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Figure 4.2: Screen layout of VideoLecture.Net (VLN) website from which the data for the
datasets was sourced. Every lecture can have one or more videos and is associ-
ated with metadata. The lecture transcripts are also available for processing.

4.2 Data Source: VideoLectures.Net

The datasets are constructed using the aggregated video lectures consumption data

coming from a popular OER repository, VideoLectures.Net1 (hereafter referred to as

VLN). It is a repository of scientific and educational video lectures. VLN repository

contains research talks and presentations recorded at numerous academic venues

(mainly conferences) accompanied by lecture slides and other resources associated

with the video. As the talks are recorded at peer-reviewed conferences and presti-

gious research venues, the lectures are reviewed and the material is controlled for

the correctness of knowledge.

Figure 4.2 depicts the different components of the VLN user interface where

a user engages with an educational video. Every lecture has a title, event details

(e.g. conference venue, date, location etc.) and lecture metadata associated with it.

Although most lectures consist of one video, some video lectures may contain more

than one video as shown in Figure 4.2. Registered users of the platform also have

1www.videolectures.net

www.videolectures.net
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the capability to provide explicit feedback on the videos using the star rating system

and comments feature.

The presenters and authors of published work that is recorded by VLN agree

and provide rights to publish their presentation video, slides and supplementary

materials under an open licence on the VLN website which can be used for educa-

tional and research purposes. This allows us to ethically analyse these videos and

construct several datasets that are likely to push the frontiers of educational recom-

mendation research. The majority of research venues covered by VLN are related to

Artificial Intelligence and Computer Science, making most videos associated with

these topics. Although the dataset mainly consists of scientific talks that are geared

towards postgraduate and PhD level learners, a significant number of tutorials (Ta-

ble 4.2) are geared toward university-level students. In that respect, many videos in

the dataset exhibit similarities to the style of conventional MOOC lectures.

4.2.1 Lecture Transcripts/ Translations

Many feature sets such as linguistic features, reading level and topical features

(via entity linking) that are extracted to construct all the datasets, rely on having

the lecture transcript. The transcriptions for the English lectures and the English

translations of the non-English lectures (which is a minority) are provided by the

TransLectures project2 where the word error rate of 21.4 for English transcription

of video lectures is reported [182, 183].

4.3 Context-Agnostic Engagement Datasets
We utilise data from the VLN data source to construct two publicly available

datasets for modelling context-agnostic engagement. Namely,

• VLE Small, a dataset that consists of content-based and video-specific fea-

tures that can be used to model context-agnostic engagement.

• VLE, an extended version of VLE Small dataset that contains more lecture

observation and more features that are related to Wikipedia topics

2www.translectures.eu

www.translectures.eu
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We use VLN data source to i) extract features and ii) extract labels that are

published by the two VLE datasets. Figure 4.3 illustrates how the video metadata,

transcripts and learner interaction logs are utilised to create the VLE datasets.

Figure 4.3: The video data and the learner interaction logs from VideoLectures.Net repos-
itory are processed separately to create the content-based, video-specific fea-
tures and Wikipedia-based Topics. Multiple different engagement labels are
extracted from interaction logs and published in VLE datasets.

As per Figure 4.3, the video collection in VLN repository is used to extract

meta-data and speaker transcripts that are used in feature extraction. The transcript

is further Wikified [15] to extract topics and rank them to create Wikipedia-based

features. The content-based Wikipedia-based and video-specific features extracted

from videos are described in section 4.3.1. As per the bottom part of Figure 4.3,

user interaction logs from the VLE database are used to calculate individual user

watch time, star rating and views. These statistics are then aggregated per video

to calculate the central values that are published as labels. The labels extracted are

described in section 4.3.2.
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4.3.1 Feature Extraction

The dataset provides three types of features as outlined in table 4.1: i) content-based

textual features, ii) Wikipedia entity linking features and iii) video-based features.

Although our dataset is composed of video lecture data, the majority of our features

(with exception of some of the features in the video-based category) can be used

across different modalities of educational material (e.g. books and podcasts) as

they are computed only considering the text transcription.

In this section, we define how different features are calculated from the lecture

transcription. These features have been identified from related work and are cate-

gorised under different verticals of quality assurance in text articles [184, 68, 80, 58]

and engagement with video lectures [38]. These features can be categorised into the

quality verticals such as understandability, topic coverage, presentation, freshness

and authority which are described in detail in section 5.1.

The complete set of features populated in VLE datasets is found in table 4.1

4.3.1.1 Content-based Features

When explaining the features based on content transcripts, several functions need to

be introduced: i) count(s) is a function that returns the number of tokens in string

s, ii) count(t,s) is a function that returns the number of occurrences of tokens in

token set t in string s and iii) u count(t,s) returns the frequency of unique tokens

from token set t in string s. String s can be the transcript text str or the lecture title

stitle. Stop-word Presence Rate and Stop-word Coverage Rate are calculated using

Eq. 4.7 and 4.8 based on the work of Ntoulas et al. [80]. Textual features defined

by Eq. 4.9 through Eq. 4.14 are based on the work of Dalip et al. [57].

More specifically, the content-based features extracted are the following:

• Word Count of lecture transcript str:

Word Count= count(str) (4.3)
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• Title Word Count of lecture stitle:

Title Word Count= count(stitle) (4.4)

• Document Entropy, is calculated over every word w in transcript str as:

Document Entropy= ∑
w∈str

pstr(w) log pstr(w), (4.5)

where pstr(wi) =
count(wi,str)
Word Count .

• FK Easiness is computed using textatistic [185] for transcript str using:

FK Easiness= 206.835−1.015
(

Word Count

sen count(str)

)
−84.6

(
syll count(str)

Word Count

)
(4.6)

where sen count(str) and syll count(str) returns the number of sen-

tences and syllables in transcript str respectively. FK Easiness proxies the

complexity of the language giving a low score for complex language.

• Stop-word Presence Rate of lecture transcript str:

Stop-word Presence Rate=
count(sw,str)

Word Count
(4.7)

• Stop-word Coverage Rate of lecture transcript str:

Stop-word Coverage Rate=
u count(sw,str)

count(sw)
(4.8)

where sw is the set of English stop word tokens in equations 4.8 and 4.7.

• Preposition Rate of the lecture transcript str:

Preposition Rate=
count(prep,str)

Word Count
(4.9)
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where prep is the set of preposition word tokens.

• Auxiliary Rate of the lecture transcript str:

Preposition Rate=
count(auxi,str)

Word Count
(4.10)

where auxi is the set of auxiliary verb tokens.

• To Be Rate of lecture transcript str:

To Be Rate=
count(tobe,str)

Word Count
(4.11)

where tobe is the set of to-be verb tokens.

• Conjunction Rate of lecture transcript str:

Conjunction Rate=
count(con j,str)

Word Count
(4.12)

where con j is the set of conjunction word tokens.

• Normalisation Rate of lecture transcript str:

Normalisation Rate=
count(norm,str)

Word Count
(4.13)

where norm is the set of normalisation suffixes.

• Pronoun Rate of lecture transcript str:

Pronoun Rate=
count(pron,str)

Word Count
(4.14)

where pron is the set of pronoun word tokens.

• Published Date of video lecture v calculates the epoch time of publication

date of the lecture in days. In other words, it is the number of days between
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January 01, 1970 and the lecture published date. :

Published Date= days(vpub date−1970/01/01) (4.15)

The rationale behind the use of these features in educational material has been

covered in detail in section 5.1.

Table 4.1: Features extracted and available in the VLE datasets with their variable type
(Continuous vs. Categorical) and their quality vertical.

Type Feature Reference Quality Vertical
Metadata-based features

Categorical Language (English, non-English) — —
Categorical Domain (STEM, Miscellaneous) — —

Content-based features
Continuous Word Count [58] Topic Coverage
Continuous Title Word Count [184] Topic Coverage
Continuous Document Entropy [184] Topic Coverage
Continuous Easiness (FK Easiness) [57] Understandability
Continuous Stop-word Presence Rate [80] Understandability
Continuous Stop-word Coverage Rate [80] Understandability
Continuous Preposition Rate [57] Presentation
Continuous Auxiliary Rate [57] Presentation
Continuous To Be Rate [57] Presentation
Continuous Conjunction Rate [57] Presentation
Continuous Normalisation Rate [57] Presentation
Continuous Pronoun Rate [57] Presentation
Continuous Published Date — Freshness

Wikipedia-based features
Categorical Top-5 Authoritative Topic URLs [15] Authority
Categorical Top-5 PageRank Scores [15] Authority
Categorical Top-5 Covered Topic URLs [15] Topic Coverage
Categorical Top-5 Cosine Similarities [15] Topic Coverage

Video-based features
Continuous Lecture Duration [38] Topic Coverage
Categorical Is Chunked [38] Presentation
Categorical Lecture Type [38] Presentation
Continuous Speaker speed [38] Presentation
Continuous Silence Period Rate (SPR) — Presentation
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4.3.1.2 Wikipedia-based Features

The Wikipedia topics most connected to the lectures are identified using Wikifica-

tion [15], an entity linking approach. Using the identified Wiki topics, four differ-

ent feature groups are introduced to the dataset. They fall under the Authority and

Topic Coverage verticals described in section 5.1. These four feature groups were

not available as part of the VLE Small dataset while they were introduced in the

larger VLE dataset.

The top-5 authoritative topic URLs and top-5 PageRank scores features rep-

resent the Topic Authority feature vertical. Figure 4.4 (left) shows the summary

of Wikipedia topics that are most authoritative (top 1 topic) in the lectures found

in the dataset. When PageRank score [79] is computed, Wikipedia topics heavily

connected to other topics (i.e. more semantically related [162]) within the lecture

will emerge. Hence, the top-ranking topics are the more authoritative topics within

the context of topics in the lecture. During Wikification [15], a semantic graph is

constructed where semantic relatedness (SR(c,c′)) between each Wikipedia topic

pair c and c′ in the graph are calculated using:

SR(c,c′) =
log(max(|Lc|, |Lc′|)− log(|Lc∩Lc′|)

log |W |− log(min(|Lc|, |Lc′ |)
(4.16)

where Lc represents the set of topics with incoming links to Wikipedia topic c,

| · | represents the cardinality of the set and W represents the set of all Wikipedia

topics. This semantic relatedness graph is used for computing PageRank scores.

It is noteworthy that authority of a learning resource entails author, organisation

and content authority (refer to section 5.1). These features extracted using equation

4.16 and PageRank represent content authority as we are not using any information

attributed to the authors or the organisations of the authors. The top 5 topic URLs

and their relative PageRank Score are included as two feature groups providing 10

distinct features for each video lecture.

The top-5 covered topic URLs and top-5 cosine similarity scores features repre-

sent Topic Coverage feature vertical. The cosine similarity score cos(str,c) between

the Term Frequency-Inverse Document Frequency (TF-IDF) representations of the



4.3. Context-Agnostic Engagement Datasets 103

lecture transcript str and the Wikipedia page c is calculated using:

cos(str,c) =
TFIDF(str) ·TFIDF(c)

∥TFIDF(str)∥×∥TFIDF(c)∥
(4.17)

where TFIDF(s) returns the TF-IDF vector of string s. Topics in the lecture are

then ranked using this score. Figure 4.4 (right) shows the summary of Wikipedia

Topics that are most covered (top 1 topic) in the lectures found in the VLE dataset.

The top 5 covered topic URLs and their cosine similarity scores are included as two

additional feature groups providing 10 distinct features.

Figure 4.4: WordClouds summarising the distribution of the most authoritative (left) and
most covered (right) Wikipedia topics in the dataset. Note that Computer Sci-
ence and Data Science are the two dominant knowledge areas in our dataset.

Topic authority and topic coverage features represent two different aspects of

the content of a video lecture. Authoritative topics are the ones highly connected

and dominant within the range of topics that are discussed in the lecture. An au-

thoritative topic needs to have high semantic relatedness to other topics in the lec-

ture. On the contrary, covered topics represent the heavy overlap between individual

Wikipedia topic page text and the lecture transcript. Figure 4.4 gives further evi-

dence of how these two feature groups are different from each other. The most

emerging Wikipedia topics that are authoritative (left) in the lecture dataset are very

different from the covered topics (right). The figure also shows that the authoritative

topics are narrowly focused concepts (e.g. Machine Learning, Algorithm, Ontology,

etc.) whereas the most covered topics tend to be more general topics (e.g. Time,

Scientific Method, Unit, etc.).
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Table 4.2: 14 types of lectures in the VLE datasets.

Symbol Description Symbol Description
vdb Debate vdm Demonstration
vbp Best Paper vid Introduction
vit Invited Talk viv Interview
vkn Keynote vl Lecture
vop Opening vpa Panel
vpr Promotional Video vps Poster
vtt Tutorial oth Other

4.3.1.3 Video-specific Features

A set of easily automatable features that are video-specific are also included in the

VLE datasets. Features Lecture Duration, In Chunked, Lecture Type and Speaker

Speed are calculated based on prior work [38]. Lecture Duration feature reports the

duration of the video in seconds. Is Chunked is a binary feature which reportsTrue

if the lecture consists of multiple videos, and False otherwise. Lecture type value

is derived from the metadata. The possible values for this feature are described in

Table 4.2.

A novel feature Silence Period Rate (SPR) is introduced using the ”silence”

tags that are present in the video lecture transcript. The feature is defined as:

SPR(v) =
1

D(v) ∑
t∈T (ℓ)

D(t) ·I (N(t) = ”silence”) (4.18)

where t is a tag in the collection of tags T (v) that belong to lecture video v, N

returns the type of tag t and D returns the duration of tag t or lecture v and I (·) is

the indicator function (returning 1 when the condition is verified, 0 otherwise).

4.3.2 Labels

There are several target labels available in the VLE datasets. These target labels

are created by aggregating available explicit and implicit feedback measures in the

repository. Mainly, the labels can be constructed as three different types of quan-

tifications of learner subjective assessment of a video lecture. The complete set of

labels provided with VLE datasets is found in table 4.3.
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Table 4.3: Labels in VLE datasets with their variable type, value interval and category.

Type Label Interval Category
Continuous Mean Star Rating [1,5) Explicit Rating
Continuous View Count (5,∞) Popularity
Continuous SMNET (Eq. 4.20) (0,1) Watch Time
Continuous SANET (Eq. 4.21) [0,1) Watch Time
Continuous Std. of NET (0,1) Watch Time
Continuous Number of User Sessions (5,∞) Watch Time

4.3.2.1 Explicit Rating

In terms of rating labels, Mean Star Rating is provided for the video lecture using a

star rating scale from 1 to 5 stars. As expected, explicit ratings are scarce and thus

only populated in a subset of resources (1250 lectures). Lecture records are labelled

with -1 where star rating labels are missing. The data source does not provide

access to ratings from individual users. Instead, only the aggregated average rating

is available.

4.3.2.2 Popularity

A popularity-based target label is created by extracting the View Count of the lec-

tures. The total number of views for each video lecture as of February 17, 2018, is

extracted from the metadata and provided with the dataset.

4.3.2.3 Watch Time/Engagement

The majority of learner engagement labels in the VLEngagement dataset are based

on watch time. We aggregate the user view logs and calculate the Normalised En-

gagement Time (NET). The Normalised Engagement/watch Time (NET) [38] is

formally, given an user u and a lecture video v, follows:

NET(u,v) =
W (u,v)

D(v)
, (4.19)

where W returns the watch time of user u for video v, and D returns the duration

of v.

As multiple user views for individual lectures were available, we summarised

this information by defining the Median Normalised Engagement Time (MNET)
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as per equation 4.20 and Average Normalised Engagement Time (ANET) as per

equation 4.21 for each lecture v across the whole learner population U :

MNET(l) = medu∈U :W (u,l)>0 (NET(u, l)) . (4.20)

ANET(l) = meanu∈U :W (u,l)>0 (NET(u, l)) . (4.21)

To have the MNET and ANET labels in the range [0,1], we set the upper bound

to 1 and derive Saturated MNET (SMNET) and Saturated ANET (SANET) respec-

tively. Final SMNET (Median Engagement) for lecture v is computed as:

SMNET(v) = max(MNET(v),1) (4.22)

Similarly, Average Engagement is calculated using:

SANET(v) = max(ANET(v),1). (4.23)

Furthermore, the standard deviation of NET for each lecture (Std of Engage-

ment) is reported, together with the Number of User Sessions used for calculating

MNET. These additional features allow future studies to incorporate the degree of

uncertainty and statistical confidence in the engagement labels (e.g. in their loss

functions or performance metrics).

4.3.3 Preserving Anonymity and Ethics

We only publish lectures with more than 5 views to preserve k-anonymity and avoid

revealing learner identities [186].

A regime of additional techniques is used to preserve lecturer anonymity in

order to avoid having unanticipated effects on the lecturer’s reputation by associ-

ating implicit learner engagement values with their content. Rarely occurring Lec-

ture Type values were grouped together to create the other category in Table 4.2.

Language feature is grouped into en and non-en categories in the VLE Small
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dataset. Similarly, subject categories Life Sciences, Physics, Technology, Mathe-

matics, Computer Science, Data Science and Computer subjects are grouped into

stem category and the other subjects into misc category. Rounding is used with

Freshness and Lecture Duration to the nearest 10 days and 10 seconds respectively.

Gaussian white noise (10%) is added to Title Word Count feature and rounded to

the nearest integer.

The large presence of Computer Science related materials in the dataset is also

a reflection of the community the videos come from, where there is a gender imbal-

ance, both in the audience and presenters. To enhance the neutrality of our findings

and contributions, we have avoided using feature classes that could potentially re-

flect gender characteristics. For example, we have avoided using visual features

(such as facial features and presenter emotions) and sound-related features (such as

the pitch) that may actively or passively embed gender characteristics. Instead, we

have focused on features that mainly reflect the informational content of the lec-

tures. Furthermore, where video-specific features are incorporated, we have used

very generic features such as ”speaker speed” that are unlikely to be correlated with

characteristics such as gender or age.

4.4 VLE Small and VLE Datasets

Using the features and labels described in sections 4.3.1 and 4.3.2 respectively. Two

datasets were constructed over time. Initially, the smaller VLE Small dataset was

constructed and published. Later, the larger, more recent VLE dataset was created.

Table 4.4 summarises the key differences between VLE Small and VLE datasets.

Our work is one of the first to address educational engagement prediction with

video lectures, especially from a quantitative perspective including releasing rela-

tively large datasets to the public. As summarised in Table 4.4, the main difference

between the VLE Small and VLE datasets is the size. Apart from the number of

examples where the VLE dataset triples the number of examples in VLE Small,

the bigger dataset also contains lectures that are much more recent. The number

of unique users that have contributed to interactions has also increased by 10-fold.
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Table 4.4: Different aspects of the two VLE datasets and how VLE Small and VLE
datasets differ from each other

Attribute VLE Small VLE

Lecture Related
Number of Lectures 4,063 11,548
Latest Lecture Publish Date February, 2018 December, 2021
Number of Unique Users ≈ 150,000 ≥ 1.1Million
Majority English Lectures

√ √

Non-English Lectures
√

×
Label Related

Mean Star Rating
√ √

View Count
√ √

SMNET (Eq. 4.20)
√ √

SANET (Eq. 4.21)
√ √

Std. of NET
√ √

Number of User Sessions
√ √

Set of Engagement Values ×
√

Feature Related
Content-based Features

√ √

Wikipedia-based Features ×
√

Video-specific Features
√ √

The labels (both explicit and implicit) themselves are more accurate in the bigger

dataset as they are calculated using a larger user population contributing with a sig-

nificantly larger number of events. This means that many of the lectures that already

existed in VLE Small dataset are likely to get improved engagement labels as the

new labels are calculated using more user sessions that interacted with the videos

during a wider time period (including very recent sessions until December 2021).

The code for computing the features outline in section 4.3.1 is publicly avail-

able together with the dataset3. We run an extensive set of experiments to build

context-agnostic engagement prediction models using these two datasets and com-

pare their performance. Details about these experiments and their results are found

in chapter 5.

3https://github.com/sahanbull/VLE-Dataset

https://github.com/sahanbull/VLE-Dataset
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4.5 A Dataset for Personalising Educational Videos
Developing artificial intelligence systems that, mildly at least, understand the struc-

ture of knowledge is foundational to building effective recommendation systems

for lifelong education [30, 161], as well as for many other applications related to

knowledge management and tracing [187, 188]. More recent developments in on-

line education have led to the boom of Open Educational Resources (OERs) and

Massively Open Online Courses (MOOCs). This shift has led AI in education to

break away from the ITS paradigm to also focus on educational recommendation

systems and personalised e-learning platforms that can cater for a more informal

learning setting. In such a setting, self-motivated learners can discover educational

materials online to pursue their lifelong learning goals. To succeed in this landscape,

a wider range of factors such as the diversity of learners, their personal drivers and

how these drivers change over time has to be accounted for. One of the major barri-

ers to building next-generation educational recommendation systems is the scarcity

of publicly available datasets.

We use the same VLN data source described in section 4.2 to construct this

dataset. Within the educational context, most public datasets revolve around pre-

dicting how individuals would answer test questions correctly (e.g. mathematics

ASSISTments [158, 189], problem-solving interactions [159], or multiple choice

questions [190, 191]) rather than how they would engage with learning materials

such as videos. Our proposal, (P)ersonalised (E)ducational (E)ngagement Linked

to (K)nowledge Topics (PEEK) dataset that comprises of watch time interactions

of over 20,000 informal learners watching over 10,200 unique educational video

lectures is a step towards addressing this gap.

4.5.1 Extracting Features

In this section, we describe how the Personalised Educational Engagement linked

to Knowledge topics (PEEK) dataset is constructed. Figure 4.5 outlines the overall

process of creating the PEEK dataset by fragmenting videos, Wikifying them and

finally associating the annotations to user interactions with those video fragments.

As the name suggests, the dataset contains educational videos that have been linked
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Transcription
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Figure 4.5: The video data and the learner interaction logs from VLN repository are pro-
cessed separately to create the Wikipedia-based KCs and also the discrete en-
gagement signals that are published in PEEK dataset.

with knowledge components (Wikipedia concepts) via entity linking [15]. Given

the emergence of recommending fragments of videos (as outlined in section 2.5.2,

we further break each video into smaller parts. We partition the transcript of each

video into multiple fragments where each fragment covers approximately 5 minutes

of lecture time. Having 5-minute fragments allows us to break the contents of a

video into a more granular level while making sure that there are sufficient amounts

of information in each video fragment.

Once the videos are fragmented, we annotate Wikipedia topics to these frag-

ments. This allows annotating learning materials with humanly interpretable KCs

(Wikipedia concepts) at scale with minimum human-expert intervention. This setup

will make sure that recommendation strategies built on this dataset will be tech-

nologically feasible to run on web-scale e-learning systems. Our experiments in

chapter 5 provide strong evidence that powerful learner models can be built on KC

annotations that have been fully automatised using Wikification. However, We re-

strict the dataset to English Wikipedia due to its richness in comparison to other

languages. This means that we will use the English translation rather than the orig-

inal transcription for Wikifying non-English lectures.
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4.5.1.1 Knowledge Component Ranking

As per [15], Wikification produces two statistical values per annotated KC, namely,

PageRank and Cosine Similarity scores that were previously explained extensively

in section 4.3.1.2. The authors of [15] comment that a linearly weighted sum

between the PageRank and Cosine score can be used to rank the importance of

Wikipedia concepts as per equation 4.24.

Rank(c) = α ·PageRank(c)+(1−α) · cos(str,c),where α ∈ [0,1] (4.24)

We experimented with different values for α in equation 4.24 and empirically

validated suitable linear combinations of weights for PageRank score and Cosine

Similarity score using an online adaptation of the Knowledge Tracing model [192],

a very popular learner model used in AI in the education domain. We observed that

a weight of 0.8 on PageRank and 0.2 on Cosine similarity leads to the most suitable

ranking of KCs [193]. We use Rank to identify the five top-ranked KCs for each

lecture fragment. The cosine similarity score as per equation 4.17 is included in

the dataset as a proxy for coverage of that KC in the video fragment. We restrict

the number of KCs to 5. Similar to the observations in Figure 4.4, it was observed

that the PEEK dataset is dominated by KCs related to Computer Science, Artificial

Intelligence and Machine Learning.

4.5.2 Labels

The user interface of the VLN website (refer Figure 4.2) also records the video-

watching behaviours of its users (Interaction logs in Figure 4.5).

We calculate the target label for learner engagement as a discrete variable based

on video watch time which has been used as a proxy for video engagement in both

non-educational [51, 36] and educational [38] contexts. Normalised learner watch

time et
ℓ,r of learner ℓ with video fragment resource rx at time point t is calculated as

per equation 4.25.
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et
ℓ,rx

=W (ℓ,rx)/D(rx), (4.25)

where et
ℓ,rx
∈ {0,1}, W (·) is a function that returns the watch time of learner

ℓ for resource rx and D(·) is a function that returns the duration of lecture frag-

ment rx. The ultimate label et
ℓ,rx

is derived by discretising et
ℓ,rx

where et
ℓ,rx

= 1

when et
ℓ,rx
≥ .75 and et

ℓ,rx
= 0 otherwise. The discretisation rule is motivated by the

hypothesis that a learner should watch approximately 4 minutes of an educational

video fragment that is approximately 5 minutes (duration of a video fragment that

includes 5000 characters from the video transcript) in order to acquire knowledge.

4.6 PEEK Dataset
The final PEEK dataset consists of 290,535 interaction events from 20,019 distinct

users with at least 5 events. These learners engage with 8,801 unique lecture videos

that are partitioned into 36,408 fragments (4.14 fragments per video). The learner

population in the dataset is divided into Training (14,050 learners) and Test (5,969

learners) datasets based on a 70:30 split. The label distribution in the dataset is also

relatively balanced with only 56.35% of the labels being positive. As shown in Fig-

ure 4.6 (i), the majority of learners in the dataset have a relatively small number of

events (under 80) making this dataset an excellent test bed for personalisation mod-

els designed to work in data-scarce environments. VLN repository mainly publishes

videos relating to Computer Science and Machine Learning leading to a learner au-

dience who visit to learn about these subjects.

4.6.1 Structure of the PEEK Dataset

The final dataset consists of 3 files.

1. train.csv, used for hyperparameter validation and training parameters.

2. test.csv, used as the held-out test set.

3. id to wiki url mapping.csv, which contains the mapping between

KC IDs and Wikipedia page URL.
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train.csv and test.csv files contain the actual learner session data

where their interaction with lecture fragments is recorded. The two files contain

70% and 30% of the learners respectively. Both files contain 15 columns that are

described in Table 4.5. As the name suggests id to wiki url mapping.csv

file contains a mapping between the KC ID in the PEEK dataset and the URL of the

Wikipedia page of the concept associated with that KC.

Figure 4.6: Characteristics of the PEEK dataset: (i) number of learners in the training/test
dataset based on the number of events in the session for the individual learner
and (ii) word clouds depicting the most frequently detected Wikipedia-based
knowledge components.

4.7 Key Takeaways
This chapter describes three new datasets that were created to push the frontiers of

context-agnostic and contextual engagement prediction of learners with educational

videos. The VLE datasets that are described in sections 4.4 are used in chapter 5

to develop population-based TrueLearn Popularity models while the PEEK dataset

described in section 4.5 is used in chapter 6 to develop and evaluate the proposed

TrueLearn models. We believe these new datasets are foundational to the commu-

nity to pursue new research avenues in terms of learner modelling in an in-the-wild

informal learning setting. The three datasets published in this chapter are sum-

marised below in table 4.6.



4.7. Key Takeaways 114

Table 4.5: Detailed descriptions of the different columns of the train.csv and
test.csv files included in the PEEK Dataset.

Column Description Details
1 Video Lecture ID An integer ID associated with an individual

video lecture.
2 Video ID An integer ID associated with every video belonging

to the same Video Lecture ID (e.g. 1 . . .v if the lecture
has v videos)

3 Part ID An integer ID fragment rx (e.g 1 . . . f )
4 Timestamp Timestamp (to the nearest second) when the play event

was initiated.
5 user ID An integer ID associated with each unique learner in the

dataset PEEK dataset (IDs in train.csv and
test.csv files are mutually exclusive).

6,8,10,12,14 KC IDs An integer ID associated with each unique Knowledge
Component. This ID can be linked to the human-readable
Wikipedia concept names found in the mapping file
(id to wiki url mapping.csv)

7,9,11,13,15 Topic Coverage Proxy for coverage of the relevant KC in the fragment.
KC coverage is the cosine similarity as per equation 4.17.

16 Label The binary label et
ℓ,ri

, 1 if the learner watched ≥ .75 of
the video fragment, 0 otherwise.

Table 4.6: Summary of the VLE Small, VLE and PEEK datasets that are released to the
public.

Context-agnostic Contextual
Attribute VLE Small VLE PEEK

Lecture/User Related
Number of Lectures 4,063 11,548 10,233
Latest Lecture Publish Date February, 2018 December, 2021 December, 2021
Number of Unique Users ≈ 150,000 ≥ 1.1Million ≈ 20,000
Majority English Lectures

√ √ √

Non-English Lectures
√

×
√

Label/Feature Related
Engagement Labels

√ √ √

Label Type Continuous Continuous Binary Classes
Additional Labels

√ √
×

Content-based Features
√ √

×
Wikipedia-based Features ×

√ √

Video-specific Features
√ √

×
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Chapter 5

Predicting Context-Agnostic

Engagement

This chapter outlines the process of building an automatic, scalable engagement pre-

diction model based on the general engageability of educational videos. contextu-

alised engagement, which captures how engaging a learning resource is with regard

to the context of the learner (e.g., interests and knowledge). Although contextu-

alised engagement has gained interest [102], we argue that there is also a context-

agnostic engagement factor (also referred to as population-based engagement), that

only relates to features of the learning resource and captures the overall engage-

ability of an educational video across a learner population (i.e. the marginal of

contextual engagement for a resource across the population of learners). Modelling

context-agnostic engagement enables identifying highly engaging resources across

a population of learners before personalising educational recommendations to in-

dividuals. This chapter develops novel context-agnostic engagement models, as a

first step towards building an integrative educational recommendation system, that

will join both contextualised and context-agnostic features (as proposed in section

2.9 and demonstrated in section 7.2.3).

The contribution of this thesis toward addressing population-based engage-

ment is threefold. As the literature on understating the engageability of videos in

the education domain was surprisingly scarce, we resort to multiple other domains

to identify features and machine learning models that can be utilised. As the first
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contribution, we start by identifying the various features that can associate with

content quality in section 5.1. The scarcity of publicly available datasets to under-

stand engagement with educational materials adds to the problem. To address this,

we identify a suitable OER repository to construct two novel datasets that consist

of the identified features and labels that indicate context-agnostic engagement of

video lectures. These datasets are described in section chapter 4. This is the sec-

ond contribution. As the final contribution, we use the constructed datasets to run a

series of experiments that validate the usefulness of the said datasets to the model

context-agnostic engagement of video lectures. This work is outlined in section 5.3.

5.1 Quality Verticals
The overall engagability of a learning resource is one aspect of its quality as it will

determine the overall receptiveness of the material [17]. Therefore, we argue that

content features associated with the quality of information are related to predicting

the population-based engagement of a video. As per section 2.2.1, several standards

(e.g. SLS and ISO) have been formalised to ensure educational resource quality at

the content creation stage although work relating to assessing the quality of existing

learning materials at scale is rarely tackled. Due to the scarcity of work exploring

quality features associated with educational materials, we conduct a literature sur-

vey on how quality assurance is handled in several domains (education and beyond)

to determine what features are claimed to be relevant. Five main quality verticals

keep resonating throughout the literature:

1. Understandability

2. Topic Coverage

3. Freshness of Information

4. Presentation

5. Authority
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In this section, we detail the different verticals we observed to affect the quality

of information hence potentially impacting population-based engagement of educa-

tional resources. Figure 5.1 summarises the findings of the literature survey.

5.1.1 Understandability

Understandability of content mainly relates to the effort learners need to incur when

consuming the material. Metrics such as the Fletch Kuncaid Score (FKS), Fletch

Readability Ease Score (FRES), Gunning fog index (FOG), and Simple Measure of

Gobbledygook (SMOG) have emerged from the scientific community and they are

widely adopted when measuring the readability level of documents [194]. In educa-

tional search, incorporating the readability level of a document has been shown to

improve the relevance of documents retrieved for a learner [71]. By accounting for

student effort, Syed and Collins-Thompson [134] further showed that information

search for learning can be improved. Apart from readability, the deviation of a doc-

ument from standard language usage can make understandability difficult. Features

like the intersection between English stop-words and document vocabulary can be

used to capture deviation from natural language [184, 80].

5.1.2 Topic Coverage

Mastery of knowledge components is a widely used metric in the realm of intel-

ligent tutoring systems [108]. Improved results can be obtained for information

search for learning tasks, by using the knowledge component coverage in docu-

ments [134]. This method primarily represents the document as a distribution of

knowledge components and uses this representation to model the learner’s knowl-

edge. Capturing topic coverage has also shown promise in predicting engagement

with informational content in social media [117, 112]. When modelling topic cover-

age of a document, identifying knowledge components/ topics in documents poses

a challenge. In the domain of information search, document entropy has been used

to quantify the focus of a document. This measure will determine if a document is

narrowly focused on a few topics or widely discusses a range of topics. Bendersky,

Croft and Diao [184] used document entropy in modelling quality-biased informa-
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Figure 5.1: Five Quality Verticals: Understandability (Yellow), Topic Coverage (Green),
Freshness of Information (Cyan), Presentation (Blue), and authority (Orange)

tion search. Length features of text documents, such as document length and title

length, have consistently proved to be useful in predicting the quality [80, 195, 76].

In the context of videos, the duration of a video has a direct impact on how much

time a person spends watching it [38, 36].

5.1.3 Freshness of Information

The validity of information may decay over time. This is true for both healthcare

information and educational content. In the context of healthcare forums, having

the publication date mentioned explicitly is considered a good feature of quality

content. Date extracts have been used to automate publication date detection in

health forums [59] using Named Entity Recognition (NER) [196]. The recency of

content is also very important in information retrieval. Search effectiveness can be

improved by incorporating currency [197].
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5.1.4 Presentation

The majority of features we came across in the literature search relate to how the

material is presented. Features like the percentage of white space on a web page

can indicate if the text is coherent and well presented [198]. When talks or lectures

are considered, the presentation quality also depends on how a speaker uses pauses.

The flow of the talk heavily depends on pauses and where breaks are used. Stud-

ies show that language style features like the occurrence rate of conjunction words,

preposition words and various other stylistic features improve quality prediction of

Wikipedia articles [57, 195]. Our belief is that such features have a pivotal role to

play in predicting the population-based engagement of videos as well. Additionally,

an extensive line of work has been done on identifying good practices and their ef-

fect in producing high-quality educational resources is discussed in section 2.1.2.

However, many of these recommendations are modality specific and lack definite

feature definitions (e.g. spacial/temporal contiguity of topics, animative presen-

tation of the speaker etc.) that can transform into automatic and scalable feature

extraction procedures. We believe that this is a promising direction of research in

the future to further enhance the feature sets.

5.1.5 Authority

In education, authority is taken very seriously. When asked, 55% of teachers who

create courses were found to believe that high-quality material comes from rep-

utable sources such as CERN, Harvard and NASA [62]. In academia, there is also

a tendency to consider the reputation of the university and the citation index of

authors as an efficient mechanism to assess academic quality [199]. Quality frame-

works such as HONcode in healthcare treat authority as a core component. The

qualifications of the health forum authors and their affiliations give a huge weight

towards the reliability of information [77]. Specific patterns in how web pages are

linked together can indicate the legitimacy and authority of websites. Link struc-

tures have been used in health forum trustability evaluation [198] and also in deter-

mining the quality of web pages in web search [200, 201]. Apart from people and

organisations, content also carries authority. One could argue that certain topics in
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a domain are authoritative topics if they are highly connected to the other topics

and overarches the message conveyed in the content. Algorithms such as PageRank

[79] can be used to determine content authority [15]. We include Wikipedia-based

topical features in the VLE dataset (section 4.4) motivated by this argument.

5.2 Building Population-based Models
This work is one of the first to address educational engagement prediction with

video lectures, especially from a quantitative perspective. One of our goals is to

verify if easily automatable cross-modal features and video-specific features can

predict context-agnostic engagement of an educational video.

5.2.1 Established Tasks

We establish two prediction tasks in order to set a formal direction to advance build-

ing population-based engagement prediction models. This section introduces the

reader to these tasks The main application areas of these tasks are i) engageability

prediction in educational video repositories and ii) predicting context-agnostic en-

gagement in an online video-based learning setting. The established tasks can be

objectively addressed using the VLE datasets using a supervised learning approach.

The tasks are:

1. Task 1: Predicting context-agnostic (population-based) engagement of

video lectures: Using a set of relevant features and labels to construct ma-

chine learning models to predict context-agnostic engagement in video lec-

tures The task can be treated as a regression problem to predict the engage-

ment estimates.

2. Task 2: Ranking of video lectures based on engagement: Building predic-

tive models that could rank lectures based on their context-agnostic engage-

ment could be useful in the setting of an educational recommendation system,

including tackling the cold-start problem associated with new video lectures.

The task can be treated as a ranking problem to predict the global/relative

ranking of video lectures.
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Other Tasks Several auxiliary tasks revolving around population-based engage-

ment prediction can also be addressed. VLE (both VLE Small and VLE) datasets

are suitable for, not limiting to, several tasks such as i) understanding influential

features for engagement prediction and ii) understanding the strengths and weak-

nesses of different implicit/explicit labels, that have been investigated in prior work

with similar datasets [202]. Furthermore, the video representations, with the use of

unsupervised approaches can be used to iii) understand meaningful hidden patterns

contrasting between clusters of videos (e.g. talks vs. lectures vs. tutorials). With

the use of Wikipedia-based topics available in VLE dataset exclusively, we see op-

portunities in iv) deducing the structure of knowledge based on how topics co-occur

within videos. Such investigations can be done on the VLE dataset in isolation or

can be fused with similar datasets where this task has been attempted before [161].

5.2.1.1 Evaluating Task Performance

We identify Root Mean Squared Error (RMSE) as a suitable metric for Task 1.

RMSE is calculated as per equation 5.1 below:

RMSE =

√
1
n

Σn
i=1(yi− ŷi)2 (5.1)

where n is the number of observations, y and ŷ are actual and predicted val-

ues respectively.Measuring RMSE against the original labels published with the

datasets will allow different works to be compared fairly.

With reference to Task 2, we identify Spearman’s Rank Order Correlation

Coefficient (SROCC) ρ that is illustrated by equation 5.2.

SROCC ρ = 1− 6∑d2
i

n(n2−1)
(5.2)

where d is the pairwise distances of the ranks of the variables ai and bi where

a and b are the two variables evaluated for rank correlation correlation. As before,

n is the number of paired data points.

SROCC is suitable for comparing ranking models that create global rankings

(e.g. point-wise ranking systems). Alternatively, Pairwise Ranking Accuracy (Pair-
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wise) can be used to measure ranking performance. Pairwise ranking accuracy is

intuitive for this task as it represents the fraction of pairwise comparisons where the

model could predict the more engaging lecture.

In the context of the analyses in this chapter, we use SROCC primarily due to

several reasons associated with the experiments presented in this chapter. SROCC

is significantly computationally efficient in comparison to the Pairwise approach

as the global ranking is evaluated exclusively. As seen in section 5.3.2, the models

utilised in our population-based model building experiments produce global ranking

systems that can be reliably evaluated and compared using SROCC.

5-fold cross-validation is used to evaluate model performance with tasks 1 and

2. The folds are released together with the dataset, allowing for fair comparisons

between the models. The five folds can be identified using the fold column in the

VLE datasets. 5-fold cross validation also allows reporting the standard error (1.96

× Standard Deviation) of the performance estimate.

5.3 Methodology
We set up a series of experiments to develop population-based engagement predic-

tion models. Our primary objective within this chapter is to develop population-

based models that can predict watch time-based engagement with videos as we

focus on watch time-based engagement throughout this thesis.

5.3.1 Research Questions
RQ 1

We identify several research questions that need to be addressed.

RQ 1.1 Is watch-time based engagement a viable label?

RQ 1.2 How do different feature sets and training sizes affect performance?

RQ 1.3 How influential are the different features for the tasks at hand?

RQ 1.4 How does the model performance change between different domains?

RQ 1.5 Can these models be used with MOOC/E-learning Systems?
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These research questions map to different tasks defined in section 5.2.1. RQ

1.1 addresses established tasks 1 and 2 outlined in section 5.2.1 while RQ 1.2 tackles

feature influence analysis described as an auxiliary task in the same section. The

remainder of the RQs is focused on understanding the relevance of the proposed

VLE datasets and the models that are produced for application scenarios.

5.3.2 Machine Learning Models

To learn to rank video lectures based on engagement, we develop a series of point-

wise ranking models. Regression algorithms predict the target variable in real value

space (y ∈ R), which allows them to create a global ranking of observations based

on predictions. Going beyond the linear family of models, we also experiment

using kernelised models and ensemble models. Kernelisation allows capturing non-

linear patterns in data without having to operate on the respective basis. Although

it is more computationally efficient than working in the non-linear space itself, it

is more computationally expensive than using a linear model. Our choice of the

kernel for the models is the Radial Basis Function (RBF). RBF kernel is widely

used in the literature and has mathematical connections to other popular kernels

such as exponential and polynomial kernels [203, 204]. We employ standard scaling

as the above models are not scaled invariant. L2 regularisation is used to defend

against overfitting and multicollinearity [205]. As ensemble techniques have shown

to perform well in prior work [58], we employ a Random Forest Regressor (RF) in

the experiment as well. The selected point-wise rankers are summarised below:

Ridge Regression (RR): This is one of the most popular regression algorithms that

is used heavily in econometric and educational economics [36, 206] domains

for statistical modelling.

Kernelised Ridge Regression (KRR): KRR is the kernelised version of RR. We

use a radial basis function (RBF) kernel [204].

Support Vector Regression (SVR): It serves as a baseline as it has been shown to

perform well in predicting the quality of Wikipedia articles before [57]. SVR

is the regression counterpart of the SVM classification algorithm.
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Kernelised SVR (KSVR): This is an SVR variant, which uses an RBF kernel.

Random Forests Regression (RF): As ensemble models have demonstrated supe-

rior performance in similar tasks such as evaluating the quality of Wikipedia

pages using similar features [58], the Random Forests model is used. This

model is also capable of capturing non-linear patterns and does not require

the rescaling of feature variables.

5.3.3 Evaluation

Majority of RQs outlined in section 5.3.1 involve empirical comparison in terms of

engagement prediction and ranking tasks. We devise RMSE and SROCC metrics to

evaluate prediction and ranking performance respectively. We also device pairwise

ranking accuracy (pair.) in a few experiments. In addition, SROCC is used further

whenever the correlation between two variables is measured.

5.3.3.1 Evaluating Feature Influence

SHapley Additive exPlanations (SHAP), which is a model-agnostic framework that

quantifies the impact of features on the model predictions, is used to evaluate fea-

ture influence (RQ 1.3). It reliably estimates the feature importance of complex

model families such as ensembles [207]. A SHAP value is computed for every fea-

ture of every prediction. Given a prediction and a feature, SHAP is computed by

averaging how the prediction changes when the feature is present and vice versa.

This procedure enables quantifying the contribution of each feature to the model

prediction.

5.3.4 Datasets

We utilise the VLE Small and VLE datasets coming from VLN data source1 de-

scribed in chapter 4 to run these experiments. These datasets were created to address

the scarcity of datasets for modelling population-based engagement and are suitable

for the task at hand. The features and labels included in the above datasets are used

and are described in sections 4.3.1 and 4.3.2 respectively.

1http://videolectures.net/

http://videolectures.net/
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5.3.5 Experimental Setup

We run the experiments in a phased manner. RQ 1.1. experiments are used to

identify the most suitable engagement label and the machine learning model. All

subsequent RQs (1.2 . . . 1.5) use the identified engagement label and model.

As the research questions in section 5.3.1 have sequential inter-dependencies

(e.g. determining the viability of labels and features for the population-based en-

gagement should be done before evaluating feature influence or the models’ rele-

vance to different applications), the experiments around building population-based

models were conducted in a phased manner. We use the results of earlier RQs to

determine certain choices pertaining to designing experiments for the latter RQs.

Our initial experimental results for RQ 1.1 outlined in Table 3.1 demonstrate

that the Random Forest (RF) model obtains the best performance among linear and

non-linear models for the two tasks at hand when Raw LSMNET is the target label.

Therefore we use the RF model for all subsequent experiments (RQ 1.2 onward)

with Raw LSMNET as the target label.

As per section 5.2.1.1, we use 5-fold cross-validation to validate RQ 1.1 and

parts of RQ 1.2. This setup allows identifying i) how performance gains are

achieved through adding each new group of features and ii) how performance gains

are achieved through adding new observations. The remainder of experiments ad-

dressing 1.2 and experiments in RQ 1.3 was done using folds 1-4 as training data

and fold 5 of the dataset as testing data. The larger VLE dataset was split in ac-

cordance with the experimental design when addressing the follow on RQs relating

to specific groups of lectures (e.g. Subject-specific, MOOC and E-learning specific

etc.)

The experiments were implemented using Scikit-learn [208], textatistic

[185] and SHAP [207] python packages. The source code in python and dataset are

publicly available2.

2https://github.com/sahanbull/context-agnostic-engagement

https://github.com/sahanbull/context-agnostic-engagement
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5.4 Results and Discussion
This section outlines the results observed from the experiments outlined in section

5.3.5 followed by the discussion of the results.

5.4.1 Viability of Engagement Labels (RQ 1.1)

We use Saturated Median of Normalised Engagement/watch Time (SMNET) pre-

sented in equation 4.22 (section 4.3.2) to quantify engagement, as it has been pro-

posed as the gold standard for engagement with educational materials in previous

work [38]. This label fits in the scope of the thesis as we propose a family of models

to predict learner engagement with videos. Furthermore, we prefer the median (SM-

NET), rather than the average (SANET), because it is more robust to the following

learner behaviours:

1. Some learners land on a video by mistake and immediately leave the lecture

page. The summary engagement rate should not be sensitive to such cases

where engagement is almost 0.0%.

2. Some learners watch parts of the video lecture multiple times in the same

watch session making their total duration watched exceed the total length of

the lecture. This creates user sessions with an engagement rate > 1.

5.4.1.1 Explicit Feedback vs. Video Engagement

A popular and tested label for user engagement with videos is explicit feedback

given in the form of ratings [48]. While star ratings are included in the VLE datasets,

they are i) significantly rare in comparison to implicit view logs and ii) practically

harder to harvest in a real-world system. As a first step, it is reassuring to test if

there is a correlation between explicit and implicit feedback that we aim to use in

this work.

To validate this hypothesis, we analyse the relationship between implicit sig-

nals (engagement and the number of views) and explicit ratings. We take the explicit

feedback (average star ratings) per lecture and align them with the number of views

and proposed SMNET labels that are implicit. Then we use SROCC to evaluate the

rank correlation between these three variables.
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Figure 5.2: Scatter plots showing the relationship between (i) number of views vs. MNET,
(ii) mean star rating for the video lecture vs. MNET and (iii) mean star rating
vs. the number of views, together with the Spearman’s rank correlation coeffi-
cient (SROCC).

This can be found in Figure 5.2, where we show mean star rating vs MNET

and the number of views.

5.4.1.2 SMNET and Its Variants

We observed in our initial data analysis that SMNET values in the VLE datasets

follow a Log-Normal distribution, where it can be seen that most users generally

abandon the lecture after a generally low time threshold. We hypothesise that this

may be because it takes some time to decide whether the content is relevant for the

learner. Users that make it after this threshold seem more committed and thus the

leaving rate is significantly lower. To address this, as this is usually a problem when

using machine learning methods, we applied a log transformation to transform the

engagement signal. The final label, Log Saturated Median Normalised Engagement

Time (LSMNET) for lecture video v is computed as follows:

LSMNET(v) = log(SMNET(v)). (5.3)

To test if LSMNET can be further improved, we compare this approach of

encoding engagement to other alternative ways of quantifying and cleaning engage-

ment signals, drawing inspiration from the literature on psychometrics and subjec-

tive assessment [209, 210] which focuses on explicit human feedback. These works

assume that users present cognitive biases and differences applying this assump-

tion to applications in preference ranking and measuring perception-based quali-
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ties, such as engagement. The intuition behind using these encoding approaches is

that different learners may have a different engagement threshold and scale, simi-

larly, as with explicit ratings [209]. We compare different approaches for defining

engagement:

1. Raw LSMNET, as per equation 5.3 which considers that no user differences

exist and the marginal over the population can be directly used as gold stan-

dard label for engagement, similarly as in [38].

2. Cleaned LSMNET, for which we test the removal of bot-like users (those

users with an average engagement rate less than 5%), which may have a detri-

mental factor in the median of raw engagement.

3. Standardised LSMNET, in which we preprocess LMNET per user (subtract-

ing the mean of the user and dividing by the standard deviation), as commonly

done with human ratings in order to remove user biases and differences [209].

In this scale, positive values indicate lectures that are more engaging than the

mean of the user and vice versa.

4. Comparative MNET, in which we exploit the law of comparative judgement

and use psychometric scaling to go from user comparative engagement data

to a probabilistically interpretable engagement scale [210, 211]. More specif-

ically, we assume that engagement data can only be compared per user (as

users may have different biases, thresholds or engagement scales). To do so,

we generated a matrix of engagement comparisons (of the type: Did learner

i prefer lecture A to B in terms of engagement?), which is used as the input

for psychometric scaling, producing a final scale in which distances can be

interpreted in terms of probability of greater engagement.

As discussed, the limitation of these approaches is that they disregard the context

of the learner and the temporal component that may inherently be present when

engaging with educational material. A different measure to encode engagement is

found in Wu et al. [36], where the main idea is to compare engagement relative to
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the length of the video. The authors propose this for entertainment videos. However,

we argue against this approach in the case of educational material, as the aim is

to take the learner to the desired state in the most efficient way, thus the general

recommendations found in the literature of keeping videos as short as possible [38].

Table 5.1: Spearman’s Rank Correlation Coefficient(SROCC) of engagement prediction
models with standard error from 5-fold cross-validation and cross-modal fea-
tures. Best performing label encoding/ model and the second-best are reported
in bold face and italic face respectively.

Engagement RR SVR KRR KSVR RF
Raw .581±.027 .586±.000 .607±.011 .604±.019 .625±.027
Cleaned .396±.093 .392±.089 .424±.071 .414±.078 .427±.087
Standard .302±.098 .292±.100 .315±.099 .297±.071 .323±.099
Comparative .365±.028 .363±.036 .370±.040 .373±.027 .397±.038

Table 5.2: Pairwise Ranking Accuracy (Pairwise) of engagement prediction models with
standard error from 5-fold cross-validation and cross-modal features. Best per-
forming label encoding/model and the second-best are reported in bold face and
italic face respectively.

Engagement RR SVR KRR KSVR RF
Raw .705±.011 .707±.000 .715±.004 .714±.007 .723±.009
Cleaned .636±.033 .634±.031 .646±.025 .642±.028 .646±.031
Standard .603±.035 .600±.035 .609±.035 .602±.025 .611±.035
Comparative .624±.010 .624±.012 .626±.013 .627±.009 .636±.012

Thus, in order to decide on which is the best way of capturing and quantifying

engagement, we compare the predictability of engagement based on SROCC for the

proposed engagement encodings (raw LMNET, cleaned, standardised and compar-

ative). This simply tells us which output target variable is easier to predict given

the proposed features. Table 5.2 presents these results, with SROCC obtained for

each machine learning model. The larger the correlation, the better performing the

model is.

5.4.1.3 Goodness of Ranking

To show how the accuracy changes when the difference of MNET between two

lectures changes, we first compute all the possible differences between pairs of lec-

tures and binarize these pairs into bins of size 0.1 from 0 to 1, finally we compute
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the pairwise accuracy for each bin. Figure 5.3 shows how the performance of the

model changes based on the difference of MNET between lecture pairs. The bars in

the figure represent the pairwise accuracy for all the pairs that belong to the same

bin. For example, the pairs with the largest difference in MNET are predicted cor-

rectly with 0.962 accuracy whereas pairs with the smallest difference are predicted

with 0.642 accuracy.
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Figure 5.3: Bar chart plot showing how the pairwise accuracy changes based on the differ-
ence of MNET between lecture pairs

Intuitively, a learner might have a similar experience consuming a pair of video

lectures that are similarly engaging (at least disregarding the topic), as one is less

likely to notice the difference. The black line in Figure 5.3 presents the cumulative

pairwise accuracy of the model if we were to assume that the learners are insensitive

to notice the difference of experience for lecture pairs that have a small difference of

MNET. The plotted cumulative pairwise accuracy (y-axis) is computed by restrict-

ing the comparisons to lecture pairs with a difference of MNET between the lower

bound of the x-axis value and 1.0. For instance, the cumulative pairwise accuracy

of the model is 0.816 when the learners do not notice the difference when interact-

ing with similarly engaging lecture pairs with MNET difference of [0.0, 0.2]. This
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value is the pairwise accuracy of all the lecture pairs with an MNET difference of

]0.2, 1.0].

5.4.1.4 Discussion

When observing the plots in Figure 5.2, we can observe that the SROCC is close

to zero. This is mainly because of the large number of lectures with high ratings

but low engagement and the number of views. One conclusion that is clear from

the plot is that the number of views, ratings and engagement do represent very dif-

ferent information. For example, it can be appreciated that the variances of MNET

and the number of views increase with higher ratings, showing heteroskedasticity.

This is an indication that for low-quality resources (with low ratings), engagement

is generally low, whereas, for resources with a higher rating, engagement differs

and may be either high or low. This suggests that there are other factors (such as

attention, time constraints etc.) involved in engagement than simply the quality

perceived by learners. Regarding the number of views, it seems that the correla-

tion is rather negative, showing that the materials with the highest number of views

present very low star ratings. When looking at the overall correlation, it is observed

from Figure 5.2 (ii) that MNET has a positive and relatively stronger correlation

with explicit star ratings providing reassurance towards using watch time-based en-

gagement as a label. However, we observe from the figure that engagement is not

strongly correlated with perceived quality by users (explicit star ratings), meaning

it is inconclusive that raw engagement signals can be used as a proxy for users’

perceived quality of a video.

To further answer RQ 1.1, Tables 5.1 and 5.2 consistently provide evidence

that Random Forest Regressor (RF) used to predict Log Saturated Medium Nor-

malised Engagement Time (LSMNET) produced the best results. This combina-

tion provides significantly better performance compared to all the other combina-

tions experimented. This observation is strong evidence that Raw LSMNET is the

most suitable encoding to represent engagement labels among the different encod-

ing schemes considered. However, the suitability here is also assumed based on the

predictability of labels as we do not have access to true engagement.
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These results suggest that raw LSMNET may be the most appropriate target la-

bel, particularly since the proposed features seem to be more useful when building a

model for predicting raw LSMNET. These results do not contradict the literature as

MNET has been used as the gold-standard way of quantifying engagement in both

educational [38] and non-educational [36] settings. Our experiments thus showed

that the use of subjective assessment inspired transformations do not improve the

predictive power of engagement signals. This may be because these transforma-

tions/correction methods are initially designed to address biases in latent user pref-

erences. Ratings are generated from a user state that is intangible. Although similar

biases may exist in learners when consuming educational materials (e.g. learner

fatigue, different engagement thresholds, language level preferences, etc.) we hy-

pothesise that the most influential driver of engagement is the information content

and style of the video. Information delivery of a video is tied to ”time”, a con-

crete/objective measure equally scaled among all learners rather than a subjective

attribute like preference.

Another observation from Table 5.2 is that KRR and KSVR models outperform

their linear counterparts. This suggests that there could be non-linearity that is

better captured by the kernel techniques. RF seems to be the best-performing model

providing more evidence that non-linearity plays a significant role.

5.4.2 Effect of Feature Sets and Training Size (RQ 1.2)

Table 5.3: RMSE and SROCC with confidence intervals for the engagement prediction
(Task 1) and lecture ranking (Task 2) using the Random Forests model with
both VLE Small and VLE datasets. Better performance per task is highlighted
in bold.

RMSE with Task 1 SROCC with Task 2
Feature set VLE Small VLE VLE Small VLE

Content-based .1801±.006 .1170±.006 .6190±.011 .7504±.013
+ Wiki-based .1798±.007 .1178±.006 .6251±.014 .7505±.013
+ Video-specific .1728±.007 .1098±.007 .6758±.020 .7832±.009

This RQ aims to clarify our understanding of how the training examples and

feature sets affect the models trained.
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5.4.2.1 Feature Sets

To validate the utility of the three feature groups, We use the same datasets with all

the features outlined in section 4.3.1. The models are trained with three different

feature sets in an incremental fashion:

1. Content-based: Features extracted from lecture metadata and the transcript-

based textual features.

2. + Wiki-based: Content-based + 2 Wikipedia-based features (Top 1 Most Au-

thoritative Topic URL and Most Covered Topic URL).

3. + Video-specific: Content-based + Wikipedia-based + Video-specific fea-

tures.

However, due to the large number of topics in the Wikipedia-based feature

groups, we restrict to the top 1 authoritative and covered topic features where they

are encoded as binary categorical variables (presence of the word, rather than term

frequency). Our initial attempts to encode these features in a reduced dimension

space (using Singular Value Decomposition) led to deteriorated results contrary to

our expectations. Practitioners are encouraged to try further encoding of the topic

variables, as it will likely have a positive impact on the performance.

5.4.2.2 Number of Training Examples

In order to validate the effect on the training dataset we compare the predictive per-

formance of the prediction model trained on VLE Small, the smaller and VLE, the

larger dataset almost thrice bigger than VLE Small. The results of this experiment

are outlined in Table 5.3.

To further study the impact of training size in detail, we use the larger VLE

dataset. We experiment by using varying proportions of training data to train the

model. When selecting training data, random sampling is used to keep the diversity

of the lectures similar to the full dataset. All the trained models using different

quantities of training data are then evaluated on the same held-out test set (i.e the

5th fold of the VLE dataset). The results obtained from this experiment are outlined

in Figure 5.9.
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5.4.2.3 Discussion

Table 5.3 provides several indicative observations. Within the VLE datasets them-

selves, using additional feature groups tends to lead to better-performing models.

This trend is also evident in Table 5.5. Results for VLE datasets in Table 5.3

demonstrate this trend where a significant jump in performance is evidenced when

incorporating modality-specific features (Video-specific features) into the cross-

modal content-based features. However, the results also show that the cross-modal

content-based features alone lead to substantial performance. This is a good in-

dication that easy-to-compute, cross-modal features alone are sufficient to build

a system that can predict context-agnostic engagement of videos. From a practi-

cal viewpoint, the proposed cross-modal features are computationally light (unlike

complex deep models, e.g. vision models). Wikification, used in generating Wiki-

based features, also operates at web-scale3. Although the results show minute gains

by adding the Wiki-based features, we believe that this is due to the simplicity of

the Wiki features used in constructing the baselines leaving much room for sophisti-

cation (e.g. exploiting the semantic relatedness of topics). The topics, coming from

a humanly-intuitive taxonomy, leave room for building interpretable features.

5.4.3 Feature Importance Analysis (RQ 1.3)

Understanding how different features influence the engageability of materials is

vital in the educational domain as learners will be guided on life-changing pathways

based on these judgements. In a conventional linear model such as RR or SVM,

feature importance analysis is straightforward as the weight coefficients reflect the

influence of features. For kernelised methods such as KRR and KSVR, the primal

coefficient w j of the learned function for the jth feature can be computed using the

dual coefficients of xi [212].

We identify the best-performing model from RQ 1.1 experiments (RF model)

to analyse feature influence. We use a more recent, model-agnostic explainability

tool, SHapley Additive exPlanations (SHAP) described in section 5.3.3.1 to quantify

feature influence. The model is trained and SHAP analysis is done on the VLE

3http://wikifier.org

http://wikifier.org
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Figure 5.4: SHAP summary plot for cross-modal features.

Small dataset to reduce computations.

The SHAP value summary plots for content-based and video-specific feature

sets are presented in Figures 5.4 and 5.5 respectively, where the features are ordered

based on overall feature influence using the best performing prediction model (RF).

Colour represents the raw feature value (blue low, red high). For example, when

the observed values of a feature are red and they have a negative SHAP value, this

means that higher values of this feature negatively impact LMNET prediction.

Table 5.4 complements Figure 5.4 by giving a more quantitative representation

of how the influence of different features across the test dataset changes. Higher

MAS is associated with more important features.

Furthermore we calculate the Mean Absolute SHAP (MAS) for each feature f

over the observations using equation 5.4:
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Figure 5.5: SHAP summary plot with video-specific features.

MAS f =
1
N

N

∑
n=1

∣∣ SHAP f ,n
∣∣ , (5.4)

where N is the number of observations in the test set.

we obtain a more quantitative understanding of feature influence. Table 5.4

shows the most influential features of the trained model.
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Table 5.4: Influence of content-based features on engagement as per their verticals outlined
in section 5.1

Quality Vertical Feature MAS % MAS
Topic Coverage Word Count .250 .366
Freshness Published Date .107 .157
Understandability Easiness .052 .076
Understandability Stop-word Coverage Rate .042 .061
Presentation Normalization Rate .039 .058
Topic Coverage Title Word Count .039 .057
Presentation To Be Rate .038 .055
Topic Coverage Document Entropy .033 .048
Understandability Stop-word Presence Rate .028 .041
Presentation Conjunction Rate .019 .028
Presentation Preposition Rate .014 .020
Presentation Pronoun Rate .013 .020
Presentation Auxiliary Rate .009 .013

Figure 5.6: Distribution of word count of video lectures

5.4.3.1 Effect of Video Length

Several studies have shown that features that quantify material length have a signif-

icant impact (this is also reaffirmed by our observations in our feature importance

analysis in Figure 5.4 and 5.5) on sustained engagement with the material [38, 68].

We investigate how the length of the lectures impacts engagement prediction (i.e.
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if the engagement predictor is naı̈vely distinguishing between long vs. short video

lectures). We first investigate the distribution of total word count in the video lec-

tures (Figure 5.6), which is directly related to the length. Based on the observed

multi-modal distribution, we make two groups, i) short lectures of less than 5000

words and ii) long lectures (see engagement distribution in Figure 5.7). It can be

seen that, as anticipated, the percentage of watch time (MNET) tends to be shorter

for long lectures.

Figure 5.7: Distribution of engagement labels for short and long lectures.

We investigate how median engagement labels are distributed in the afore-

mentioned groups and also how the pairwise ranking accuracy changes within and

between the groups. These results are illustrated in Figure 5.6 and 5.8 respectively.

5.4.3.2 Discussion

Figures 5.4 and 5.5 both consistently depict the role of video length in governing

learner engagement. The figures validate its impact on engagement, showing that

long videos generally present lower engagement and vice versa, with lecture du-

ration and word count being the most relevant features. Prior studies confirm this

observation [38, 36, 57]). By looking at the five most influential features in Ta-

ble 5.4, we observe that all identified quality verticals (topic coverage, understand-

ability, freshness and presentation) are represented. This observation supports the
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Figure 5.8: Accuracy bar chart for different types of comparisons using short and long
lecture labels.

importance of considering all the different verticals identified in section 5.1 when

predicting context-agnostic engagement. The influence of top features is consistent

with results on quality-biased information search [184] where it was found that Ti-

tle Word Count is comparatively less important. Figures 5.4 and 5.5 also show the

importance of modality-specific features in this prediction task by raising Lecture

Duration, Silence Period Rate and Speaker Speed in Figure 5.5 to high ranks.

When digging deeper into RQ 1.3, Figure 5.8 shows that the model is better

at comparing short-short lecture pairs compared to long-long lecture pairs. In the

context of the VLE Small dataset, this is good because there are more short lectures

than long lectures (Figure 5.6). Recent findings (e.g.[38]) also encourage authors

to make short videos, increasing the likelihood of future video productions being

short lectures. MNET distribution in Figure 5.7 shows that long lectures have a

more skewed target value distribution concentrated closer to 0 compared to short

lectures suggesting that learners tend to consume smaller fractions of long videos.

This is likely to be driven by factors beyond other measured features of the lectures,

such as limited time availability and the short attention span of learners.
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Table 5.5: Pairwise accuracy with standard error via 5-fold cross-validation for RF model
using content-based features vs. content-based + video-specific features. The
better-performing feature set is reported in bold face.

Model Pairwise Accuracy
Subject-agnostic Subject-specific

Content-based Features .724±.014 .733±.018
Video-specific Features .744±.011 .755±.014

5.4.4 Relevance to Computer Science Education (RQ 1.4)

Before exploring this topic, we want to validate if the ranking performance of the

model is dependent on the subject areas. Given that the VLN data source is abun-

dant with Computer Science related videos, it is fair to evaluate if a trained model

significantly differs in understanding the engageability of STEM subjects vs. oth-

ers. To test this, we restrict in some experiments the pairwise accuracy calculation

to pairs of lectures that belong to the same domain (subject-specific column in Ta-

ble 5.5) and observe if the accuracy value changes significantly compared to its

counterpart metric that considers all lecture pairs in a domain-agnostic fashion.

5.4.4.1 Subject-wise Differences

We hypothesise that the topics covered in the content of the lecture are likely to

drive learner engagement. For instance, Data Science lectures can be more popular

than Physics lectures leading to easy pairwise comparison predictions between the

domains.

Table 5.5 shows how the pairwise accuracy increases when restricted to

subject-specific comparisons (lecture pairs belonging to the same subject area). Be-

ing able to rank items in the same group (similar to group-wise ranking [213]) is

clearly an advantage, given that most often, an educational recommendation system

needs to make choices among sets of resources that belong to the same subject area.

5.4.4.2 On Modelling Computer Science Videos

To assess the usefulness of a trained population-based engagement prediction model

on how the VLE dataset is useful in Computer Science (CS) education, we run an

experiment to assess its performance on CS-related videos. We train the model on
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Figure 5.9: Predictive performance for (i) engagement prediction and (ii) lecture ranking
tasks with varying proportions of randomly sampled training data. The test
set performance for the full test dataset (Blue) and subsets of the test dataset
that consist of CS lectures only (Orange) and Non-CS lectures only (Green) are
reported

VLN training data (fold 1-4) and evaluate the performance on i) full test set, ii) CS

videos only and iii) Non-CS videos only. Figure 5.9 illustrates how the performance

of the Full dataset, CS lectures and non-CS lectures with varying training data sizes.

5.4.4.3 Discussion

Results in Figure 5.9 clearly demonstrate that the models trained on VLE datasets

achieve higher performance on CS lectures. A likely reason for this may be the

higher diversity of lectures in the non-CS category as it consists of significantly

different subjects. Nevertheless, Figure5.9 shows that a test set RMSE of ≈ .1 and

SROCC of ≈ .8 is achievable with CS lectures. The main reason for these obser-

vations is caused by the majority of the lectures in the dataset containing concepts

relating to Artificial Intelligence and Data Science (Machine Learning, Ontology

etc.) which are sub-fields of Computer Science as illustrated in Figure4.4. There-

fore, many videos in the dataset contain topics relating to CS, making the trained

models highly suitable for training engagement prediction in CS education.

5.4.5 Relevance to MOOC/ E-Learning Applications (RQ 1.5)

To validate RQ 1.5, we first partition the entire dataset into two parts, i) tutorial

videos (vtt in Table 4.2) and ii) all other videos, as test and train data respectively.

However, tutorials presented in a research conference may significantly vary from

e-learning videos geared for course learning. To address this mismatch, we fur-
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ther identify 1,035 videos (among the tutorials) that exclusively belong to the Open

Course Ware Consortium (OCWC)4. OCWC contains university lectures that have

been intended for course teaching via e-learning. These lectures are recorded using

a variety of MOOC production techniques such as classroom lecture format, talking

head approach and PowerPoint presentation approach [38]. We define these videos

as ocw lectures.

Table 5.6: Performance for OpenCourseWare (ocw), Non-OpenCourseWare (!ocw) tuto-
rial and All tutorial (vtt) videos for engagement prediction and lecture ranking
tasks. Better performance per task is highlighted in bold.

ocw !ocw vtt From Table 5.3
RMSE with Task 1 .0539 .0404 .0406 .1098
SROCC with Task 2 .9485 .9209 .9223 .7832

We use the training data (all except tutorial videos which also includes ocw

videos) to train the engagement model and evaluate prediction performance on i)

OpenCourseWare, ocw lectures, ii) all tutorials but OpenCourseWare, !ocw and

iii) all tutorials vtt, (Entire test data). The trained model is the best-performing

model for RQ 1.2 (RF model with Content + Wiki + Video feature group) reported

in Table 5.3. The experimental results on VLE dataset are found in Table 5.6

5.4.5.1 Discussion

Table 5.5 also shows how the performance differs when using the cross-modal set of

features exclusively vs. adding video-specific features. The addition of video fea-

tures increases the performance by approximately 2%. This result shows that there

is a compromise in performance when restricting features to cross-modal features

but the feature extractors can be reused in a practical scenario.

Table 5.6 shows strong evidence that the models trained with the VLE dataset

generalise really well for engagement modelling in e-learning type videos created

for course teaching amid the dataset containing many different video types (as per

Table 4.2). The models trained perform impressively with tutorial-like videos than

general scientific talks. Having tested with lectures that have been recorded using

4http://videolectures.net/ocwc

http://videolectures.net/ocwc
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different MOOC video production techniques, the high performance obtained on

ocw lectures confirms its effectiveness in building context-agnostic engagement

models for e-learning and MOOC systems.

5.5 Key Takeaways
In this chapter, we explore how population-based models can be built to predict

context-agnostic engagement with educational videos using cross-modal and video-

specific features. We verify that such models can be built to both predict engage-

ment and rank videos. We further verify the suitability of such models built on VLN

datasets for Computer Science education and MOOC/E-learning applications.



Chapter 6

Modelling Contextual Engagement:

Interest, Knowledge and Novelty

This chapter outlines the development of interest (refer to section 6.2.2), knowl-

edge (refer to section 6.2.3) and novelty (refer to section 6.2.4) models that enable

us to model the learner engagement with educational videos. While we have ex-

tensively investigated how context-agnostic engagement prediction models can be

constructed in chapter 5, this chapter will focus on contextual engagement, the en-

gagement of a learner with an educational video that is distinct to individual learn-

ers. Contextual variables have been of interest in the research community as these

variables affect personalisation.

The contribution of this chapter is three-fold. Firstly, we formulate a set of

novel Bayesian online learner models to model user interest, knowledge and nov-

elty. Then we run a series of empirical tests to evaluate the performance of these

models and their comparative stance in relation to relevant baselines. Finally, we

also run a set of post-tests to further understand the qualities of these proposed

models. The models that we identify to competitively model contextual factors in

isolation are utilised in chapter 7 to build integrative learner models that can account

for these factors together.
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6.1 Modelling Learner State
In order to predict learner engagement with videos, we focus on three factors.

Namely, i) learner interest state, ii) learner knowledge state and iii) the degree of

content novelty a learner is receptive to conditioned on their knowledge state. While

user interests [126, 91] and knowledge state [108, 4] have been worked on by the

community extensively, very little work has been done on incorporating novelty

although it plays a key role in educational recommendations systems [26].

6.2 Methodology
In this section, we outline the methodology used to develop the novel models to cap-

ture learner interest, knowledge and novelty. The relevant research questions, the

proposed models and the comparative baselines are outlined along with the dataset

and evaluation metrics used for the investigation.

6.2.1 Research Questions
RQ 2

We identify several research questions that need to be addressed.

RQ 2.1 How well do the interest models perform?

RQ 2.2 How well do the knowledge models perform?

RQ 2.3 Does incorporating novelty assumptions further improve performance?

RQ 2.4 How does TrueLearn differ from the Knowledge Tracing models?

6.2.2 Modelling Interest

When modelling interest, we hypothesise that a learner starts watching a video frag-

ment because they are interested in the topics included in that fragment. Regard-

less of whether they engage positively (watching a significant fraction of the video

fragment), choosing to start watching can be considered a signal of interest in the

topics covered. This leads us to use both positive and negative engagement events

as positive interest signals. Although a proxy of KC coverage (drx) is available to
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Figure 6.1: Graphical illustration of modelling engagement as a function of interest,
P(et

ℓI
|θ t

ℓI
, irx). The proposed models, Interest Tracing and TrueLearn Interest

tests this hypothesis.

the system [3], we need to assume that the learner is only aware of the fact that a

specific topic is present in the video fragment when committing to start watching.

Therefore we use binary features irx to indicate that a subset of KCs Krx were present

in a video fragment when modelling interest. To model the assumptions illustrated

in Figure 6.1 (i), we formulate two online learning models that use density filtering

(posterior of θ
t−1
ℓI

becomes prior for the event at time t) to model learner interest,

θ t
ℓI

. Two interest models are proposed in this chapter.

6.2.2.1 Interest Baselines

As indicated in section 4.5, PEEK is the first dataset of its kind, a dataset that records

in-the-wild engagement of informal learners with video lecture fragments. Due to

the novelty of this dataset, we struggle to find already published baselines. For the

sake of comparing its predictive performance, we propose a naı̈ve set of baselines

that are based on content-based and collaborative filtering.

Content-based Similarity Content-based filtering can measure the similarity be-

tween two items, rx and rx′ . We compute a similarity value, sim(rt−1
ℓ,rx′

,rt
ℓ,rx

) between

two consecutive lecture fragments rt−1
ℓ,rx′

and rt
ℓ,rx

in the learner ℓ’s session. We use

this similarity value to make an engagement prediction êt
ℓ,rx

based on equation 6.1.
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êt
ℓ,rx

=

 1 if sim(rt−1
ℓ,rx′

,rt
ℓ,rx

)≥ threshold

0 otherwise
(6.1)

In this case, we investigate three similarity measures, namely i) Cosine, ii)

Concept-based Jaccard and iii) User-based Jaccard. When computing cosine sim-

ilarity, we represent each video fragment using the bag of concepts representation

where the concepts are the superset of Wikipedia concepts mentioned in the dataset.

The values in this sparse vector are the cosine similarities between the respective

Wikipedia concept and the lecture fragment transcript as per equation 4.17.

An alternative approach to finding concept-wise similarity is Jaccard similar-

ity. Concept-based Jaccard similarity JaccardC (rt−1
ℓ,rx′

,rt
ℓ,rx

), between lecture frag-

ments rt−1
ℓ,rx′

and rt
ℓ,rx

is computed based on equation 6.2.

JaccardC (rt−1
ℓ,rx′

,rt
ℓ,rx

) =
C (rt−1

ℓ,rx′
)∩C (rt

ℓ,rx
)

C (rt−1
ℓ,rx′

)∪C (rt
ℓ,rx

)
(6.2)

where C (·) returns the set of Wikipedia concepts in resource rx

Similarly, one can also measure the similarity between two lecture fragments

based on how many learners interact with both lecture fragments. The user interac-

tions in the training dataset is used exclusively to learn the similarity matrix in order

to avoid data leakage. In this approach, we can calculate the user-wise Jaccard sim-

ilarity JaccardU (rt−1
ℓ,rx′

,rt
ℓ,rx

), as per equation 6.3.

JaccardU (rt−1
ℓ,rx′

,rt
ℓ,rx

) =
U (rt−1

ℓ,rx′
)∩U (rt

ℓ,rx
)

U (rt−1
ℓ,rx′

)∪U (rt
ℓ,rx

)
(6.3)

where U (·) returns the set of learners that interacted with resource rx

Additionally, we identify frequency-based learner models proposed in the

concept-based user interest modelling domain (described in section 2.6.1) as rel-

evant, suitable baselines. Hence, we include Term-Frequency (TF) and Term

Frequency-Inverse Document Frequency (TFIDF) based user interest models that

use the occurrences of concepts in the user interaction session as per equation 6.4

indicates the Term Frequency, TF of concept c at time t where I is an indicator
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function that returns 1 if the concept c occurs in resource fragment rx at time a.

TFt
c =

t−1

∑
a=1

I a
c,rx

(6.4)

As the PEEK dataset already contains topic depth drx , we experiment with two

versions of the TF model where iv) TF(Binary) uses binary (irx indicating pres-

ence/absence of a concept) and v) TF(Cosine) uses cosine similarity values (drx

indicating topic coverage) when creating the content representation vector. We also

experiment with another variation, vi) TFIDF, that uses Inverse Document Fre-

quency (IDF) to discount concepts that occur abundantly across the entire video

collection (common concepts) [118]. All three models are normalised such that the

sum of values in the learner vector adds up to 1 before computing content similar-

ity. These additional baselines are also utilised to compare the proposed interest

models.

6.2.2.2 Interest Tracing

As the initial proposal for modelling interest, we formulate the interest tracing

model. This is a user model where the interest parameter for each user is mod-

elled as a Bernoulli variable. The model assumes that user interest in a KC (topic)

is a probability where values close to 1 indicate a high probability of interest. The

model aims to predict the engagement of learner ℓ with resource rx as:

êt
ℓ,rx

=

 1 if P(et
ℓI,rx
|θ t

ℓI
,Krx , irx)≥ .5

0 otherwise
(6.5)

The graphical model representing the Interest tracing model is presented in

Figure 6.2 (left) and is an adaptation of an online knowledge tracing model (online

KT model) [3] which is inspired by an online skill assessment model [192]. As per

Figure 6.2 (left), we compute P(et
ℓI,rx
|θ t

ℓI
,Krx , irx) by computing the joint probabil-

ity of learner ℓ in KCs Krx as AND(θ t
ℓ j), j ∈Krx and adding a noise factor. The noise

factor accounts for the two scenarios where i) the learner has interest and decides

to disengage due to other reasons (e.g. lack of time, contextual limitation etc.) or
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Figure 6.2: Factor graphs representing the probabilistic graphical models for proposed In-
terest Tracing (left) and TrueLearn Interest (right) models.

ii) the learner lacks interest but decides to engage (e.g. an academic obligation).

Similar factors have been taken into account to address guess and miss situations in

question answering/knowledge tracing scenarios before [100, 192]. As the parame-

ters are Bernoulli and the outcome is binary, we use loopy belief propagation [214]

to execute inference steps in this model.

6.2.2.3 TrueLearn Interest

Alternatively, TrueLearn Interest is a reformulation of IRT inspired TrueSkill model

[141]. The model tries to determine if the learner ℓ has a higher interest in topics Krx

that are present in the resource rx (binary irx) according to the hypothesis presented

in Figure 6.1. Figure 6.2 (right) illustrates the factor graph of TrueLearn Interest

model. Contrary to the Interest Tracing model, TrueLearn Interest uses Gaussian

variables where the level of interest (µℓ) and degree of uncertainty (σ2
ℓ ) are inferred.

irx are binary values that are observable (irx ∼N (1,02)). β 2 factor acts as the noise

factor. The prediction êt
ℓ,rx

is made similarly using the criteria outlined in equation
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6.5. As per Figure 6.2 (right), the prediction probability is calculated using:

P(et
ℓI,rx
|θ t

ℓI
,Krx , irx) = CDFN (pt

ℓIrx
− prx ≥ 0.0). (6.6)

In other words, it is validated if the learner’s interest in topics Krx is signifi-

cantly larger than the sum of irx values. This result in a normal variable as the result

is a difference between two Gaussian variables. The cumulative distribution func-

tion (CDFN ) can be used to quantify the probability that learner interest is larger

(one-tailed estimation).

6.2.3 Modelling Knowledge

Recovering the latent knowledge state of learners is a key approach used in the ITS

community to personalise learning materials. KT and IRT are the main schools

of thought laying the foundations for the approaches proposed. These works are

discussed in detail in section 2.6.2. When modelling the knowledge state, we hy-

pothesise that a learner needs to watch a substantial fraction of a video fragment

(≥ 75%, ≈ 3:45 minutes or more out of a ≈5 minute fragment) in order to acquire

knowledge from that video fragment. This hypothesis is motivated by prior work

showing that a concise amount of information can be contained in a ≈ 5-minute

video [38]. Our proposals aim to model user knowledge and novelty using an online

approach utilising watch-time-based implicit engagement labels which are contrary

to test responses utilised in KT and IRT. The hypotheses we model in this direction

are illustrated in Figure 6.3.

Figure 6.3: Graphical representation of different assumptions that can be made when mod-
elling learner’s knowledge. The methods tested in this paper are set to test these
four hypotheses.
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Figure 6.3 shows the intuition behind different hypotheses for modelling one

single learner skill. Hypothesis i) shows the assumption made in IRT and KT (both

focused on test scoring). This is, if the learner answers correctly to a test, the skill

must exceed the difficulty of the question. The boundary of θℓ− dr = 0 is shown

using a dotted line in all cases. Hypothesis ii) shows the analogue for engagement

(as a function of knowledge), i.e. if the learner is engaged, they have enough back-

ground to make use of the resource and vice versa. However, we hypothesise that

this is very restrictive and that no assumption can be made from the non-engaged

cases (the learner might not be engaged for a myriad of reasons, e.g. the learner

being advanced in a topic and finding the resource too easy, in which case we can

not say that they lack the necessary background). This idea that we can only learn

background knowledge from positive engagement is shown in hypothesis iii) and is

a common assumption when learning from implicit feedback [181]. Hypothesis iv)

in Figure 6.3 illustrates the novelty assumption that we discuss in section 6.2.4. We

propose three distinct knowledge models that follow hypothesis (iii) in Figure 6.3.

6.2.3.1 Knowledge Baselines

Since learning from educational video engagement is a novel research area (contrary

to learning from explicit test answering labels), we were unable not find suitable

baselines to compare our proposals. As the first step, we formulate two relatively

naı̈ve baselines: i) persistence, which assumes a static behaviour for all the users

P(et
ℓ,·) = P(et−1

ℓ,· ), where (·) indicates any resource, i.e. if the learner is engaged

at time t− 1, they will remain engaged in the next event at time t and vice versa;

ii) majority of user engagement, which predicts future engagement based solely on

the mean past engagement of users, i.e. P(et
ℓ,·) =

1
n ·∑

t−1
i=1 P(ei

ℓ,·). The persistence

baseline assumes a common model for both learners and resources. The ”majority”

baseline assumes differences between users and disregards resource differences.

6.2.3.2 Online Multi-skill KT

The first model that we propose is an online version of the knowledge tracing (KT)

model. KT uses Bernoulli variables to model skills θ t
ℓ,h ∼ Bernoulli(πt

ℓ,h), as-

suming that a learner ℓ would have either mastered a skill or not (represented by
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probability πt
ℓ,h) [102]. Since the objective of KT is not to model learning but to

capture the state of mastery at a fixed point in time (since skills are not expected to

change during a test), KT considers that a skill cannot be unlearned (or forgotten)

once a learner has mastered a skill.

For the extension of KT (which we call Multi skill KT), we also consider mul-

tiple skills as multiple topics that can be covered in a single video fragment. The

factor graph of the multi-skill KT model is presented in Figure 6.4 (left). In this

model, learner skills are initialised using a Bernoulli(0.5) prior, assuming that

the latent skill is equally likely to be mastered than not. A noise factor is included

to account for guess and miss scenarios [101]. This reformulation is inspired by

[192].

Figure 6.4: Factor graph for Multi skill KT (left) and TrueLearn Knowledge (right) models.
Plates represent groups of variables (N Wikipedia topics).

6.2.3.3 TrueLearn Knowledge

Our proposal to capture the user knowledge state is called TrueLearn Knowledge.

We use a similar approach for capturing interest outlined in section 6.2.2 creating

the TrueLearn Knowledge model. Contrary to using all the events as positive ex-
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amples, we exclusively use engaged video fragments as instances where knowledge

was acquired. This approach is analogous to the approach used in the TrueSkill

model [141] to model the skill of online video game players.

In TrueSkill, each player ℓ is assumed to have an unknown real skill θ t
ℓ ∈ R,

exhibiting a performance pt
ℓ drawn according to p(pt

ℓ|θ
t
ℓ) = N (pt

ℓ;θ t
ℓ ,β

2) with

fixed variance β 2. The outcome of the game yt
jz between two players ℓ j and ℓz (in

our case learner ℓ and learning resource rx) is modelled as:

P(pt
ℓ j
> pt

ℓz
|θ t

ℓ j
,θ t

ℓz
) := Φ

(
θ t
ℓ j
−θ t

ℓz√
2β

)
, (6.7)

where Φ is the cumulative density of a zero-mean unit variance Gaussian.

Figure 6.4 (right) illustrates the factor graph of the proposed TrueLearn Knowl-

edge model that uses the same approach as equation 6.7. As shown in the figure, the

depth of a topic, drx , (proxied using the cosine similarity between the video tran-

script and the Wikipedia page) is treated as an observed variable which is used to

learn the latent knowledge state, θ t
ℓ of learner ℓ at time t. Finally, the probability

of engagement, p(δ t
ℓr > 0 is computed using the cumulative distribution function of

δ t
ℓr using a similar approach to equation 6.6.

6.2.4 Accounting for Content Novelty

Finally, we extend the knowledge state model described in section 6.2.3 by incorpo-

rating content novelty into the equation. The last plot (hypothesis (iv) in Figure 6.3)

shows the combination of knowledge and novelty. The assumption here is that if the

learner is engaged, they must have the appropriate background and the content must

also be novel to them (i.e. neither too easy nor too difficult). We introduce ε as the

engagement margin representing the degree of novelty accepted by the learner.

6.2.4.1 Novelty Baselines: TrueSkill dynamic-depth

Contrary to the KT models discussed in section 6.2.3.2, this family of models use

Gaussian variables to model skills. The setting is similar to the item response setting

where neither the learner skill θ 0
ℓ nor the depth/difficulty of individual resources d0

rx

are known. The popular TrueSkill model [141] used for inferring user skill in online
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multiplayer video games is the foundational model on which we build the TrueLearn

family of models.

In TrueSkill, each player ℓ is assumed to have an unknown real skill θ t
ℓ ∈ R, ex-

hibiting a performance pt
ℓ drawn according to p(pt

ℓ|θ
t
ℓ) = N (pt

ℓ;θ t
ℓ ,β

2) with fixed

variance β 2, which accounts for noise transforming skills to performance (e.g. a

highly skilled player can have a bad day, a relatively low-skilled player can ran-

domly have a great game etc.). This setup is very similar to the knowledge formu-

lation outlined in section 6.2.3.3.

The dynamic-depth models assume that both the learner skill and the degree

of depth of the resource are both latent and unknown (similar to the IRT formula-

tion) , causing the model to learn them using learner-resource interactions. When it

comes to modelling novelty, the hypothesis presented in Figure 6.3 (iv) is modelled

by these models. We propose two dynamic-depth models, namely, i) Single skill

dynamic-depth TrueSkill, which assumes that the user has a single skill and each

resource has a single degree of depth, and ii) Multi skill dynamic-depth TrueSkill

that assumes there are multiple skill parameters (relating to the distinct KCs) that

exist and can be learned separately.

The factor graphs illustrating the structure of Single skill dynamic-depth

TrueSkill and Multi skill dynamic-depth TrueSkill are presented in Figure 6.5 (left)

and 6.5 (middle) respectively.

6.2.4.2 TrueLearn Novel

While the dynamic-depth TrueSkill models capture content novelty, we hypothesise

that extending the TrueLearn Knowledge model described in section 6.2.3 would

lead to more fruitful results. We realise this hypothesis by formulating the Tru-

eLearn Novel model. The factor graph of the TrueLearn Novel model is illustrated

in Figure 6.5 (right). The key difference of this model from the TrueLearn Knowl-

edge model illustrated in Figure 6.4 (right) is that the probability estimation function

where p(δ t
ℓr > 0, representing hypothesis (iii) in Figure 6.3 is used in the TrueLearn

Knowledge model while the probability |δ t
ℓr| < ε t

ℓ, representing hypothesis (iv) in

Figure 6.3 is used in the TrueLearn Novel model.
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6.2.5 Data

A dataset that has individual user sequential interactions with videos/fragments of

videos is required to evaluate the proposed models described in sections 6.2.2, 6.2.3

and 6.2.4. We use the PEEK dataset that we constructed and described in chap-

ter 4 (refer section 4.5) to evaluate the proposed models. In summary, the PEEK

dataset contains video viewing sessions of over 20,000 unique learners with video

lecture fragments. Each video fragment the learner engaged with is annotated with

Wikipedia-based KCs along with the KC coverage proxied using cosine similarity.

The binary label for each event indicates if the user engaged (ie. watched more than

75% of the video fragment) or not. The rationale behind the binarisation criteria is

presented in section 6.2.4.

6.2.6 Evaluation

The majority of the research questions outlined in section 6.2.1 require empirical

assessment of the the proposed models in comparison to the baselines. Given that

we aim to build an online system, we test the different models using a sequential

Figure 6.5: Factor graph for Single skill dynamic-depth TrueSkill (left) Multi skill
dynamic-depth TrueSkill (middle) and TrueLearn Novel (right) models. Plates
represent groups of variables (N Wikipedia topics).
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experimental design, where engagement of fragment t is predicted using fragments

1 to t− 1 of each learner ℓ. We also use a hold-out validation approach for hyper-

parameter tuning where hyperparameters are learned on the train partition of the

learners in the PEEK dataset and the model is evaluated on the remaining learn-

ers present in the test partition using the best hyperparameter combination. Note

that we both learn and predict the engagement per fragment. The results reported

throughout the section 6.2.7 use learner events 2≤ t ≤ Tℓ for computing the evalu-

ation metrics. This is because all the baselines and our proposals are not capable of

making meaningful predictions when historic data is absent (when t = 1).

Since engagement is binary, predictions for each fragment can be assembled

into a confusion matrix, from which we compute well-known binary classification

metrics i) accuracy, ii) precision, iii) recall and iii) F1-measure. We average these

metrics per learner and weight each learner according to their amount of activity

in the system leading to a single metric that also reflects the event contribution

from each learner. While predicting the accuracy of classifications is important, the

primary objective of an educational recommender is to match relevant content to

the learners. Therefore, we emphasise our focus on precision, recall and the F1-

measure while we use the F1-measure, the harmonic mean of precision and recall

in model selection.

6.2.7 Experimental Setup

Similar to the approach used in chapter 5, we utilise a phased experimental design

where we validate research questions one after the other where the findings and best

models from former RQs become inputs to the subsequent RQs.

As we use a phased approach for experimentation, we start with experimenting

with the predictive performance of the proposed interest models relevant to answer-

ing RQ 2.1. Then we move to experiment with Knowledge and Novelty models

addressing RQs 2.2 and 2.3 respectively. Finally, we run a further analysis to an-

swer RQ 2.4, where the most performant model is compared to the conventional KT

model to identify reasons for prediction improvements.

As per section 6.2.6, we utilise a hold-out validation approach as the PEEK
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dataset already has predefined train and test partitions. This setup allows us to de-

termine how well the proposed factor graphs are going to perform on user sessions

that the models have never encountered during training.

The experiments are implemented in Python programming language where

trueskill library is used to implement the TrueSkill and TrueLearn models.

We use scikit-learn to compute classification metrics. As the proposed mod-

els do not have inter-user data dependencies (except in dynamic depth TrueSkill

models described in section 6.2.4.1), we use pyspark library to massively paral-

lelise modelling individual users. The programming code used in the experiments

are available publicly 1.

6.3 Results and Discussion
This section outlines the results observed from the experiments outlined in section

6.2.7 followed by the discussion of the results.

6.3.1 The Effect of Interest Modelling (RQ 2.1)

To address RQ 2.1, we run experiments using the models detailed in section 6.2.2.

We train the proposed models, i) Interest Tracing and ii) TrueLearn Interest models

to compare them to the identified baselines. We utilise six interest-based baselines,

namely, i) Cosine, ii) JaccardC, iii) JaccardU , iv) TF(Binary), v) TF(Cosine) and vi)

TFIDF models. We hypothesise that the models we propose are capable of capturing

the interest dynamics of the users better and hence will reflect this by demonstrating

superior predictive performance in comparison to the baselines.

We run the comparison using the data described in section 6.2.5. The results

on the full PEEK Dataset are presented in table 6.1. Different numbers of topics

|Krx | are experimented with in order to identify the best performing |Krx | for Inter-

est Tracing and TrueLearn Interest Models. Empirical results showed that the most

predictive feature settings were |Krx |= 1 and |Krx |= 5 for Interest Tracing and Tru-

eLearn Interest respectively. These hyperparameters were used in our experiments

to obtain the results in table 6.1.

1https://github.com/sahanbull/TrueLearn

https://github.com/sahanbull/TrueLearn
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6.3.1.1 Discussion

The results in table 6.1 show clear evidence of the superiority of the TrueLearn In-

terest model in comparison to the baseline interest models with the PEEK dataset.

Table 6.1 shows that the performance of TrueLearn Interest is significantly bet-

ter than the next best-performing baseline in terms of Recall and F1-Score. This

model also surpasses all baselines, but one, when it comes to accuracy. The Cosine

and JaccardU models perform best in terms of precision and accuracy respectively.

While the proposed Interest Tracing approach is used widely to model knowledge,

it is not among the better-performing models when it comes to interest modelling.

This is an indication that the Gaussian-based TrueLearn models are better in com-

parison to their Bernoulli-based tracing counterparts. We explore this further in RQ

2.4.

On the Performance of JaccardU Model The results in Table 6.1 also show that

JaccardU model contends closely with the TrueLearn Interest model. However,

the TrueLearn Interest model significantly outperforms JaccardU in the full PEEK

dataset in terms of F1-Score which combines precision and recall. On the other

hand, JaccardU models are much better at predicting negative engagement as per

the superiority of the accuracy score. From a data efficiency perspective, JaccardU

Table 6.1: Weighted average test performance for accuracy, precision, recall and F1-Score
on the PEEK dataset. The best-performing model and the second-best are re-
ported in bold face and italic face respectively. The proposed models that out-
perform baseline counterparts in the PEEK dataset (p < 0.01 in a one-tailed
paired t-test) are marked with ·(∗).

Algorithm Accuracy Precision Recall F1-Score
Baseline Models

Cosine 55.08 57.86 58.45 54.06
JaccardC 55.46 57.81 60.36 55.03
JaccardU 64.05 57.85 72.76 61.22
TF(Binary) 55.19 56.71 66.60 57.38
TF(Cosine) 55.11 56.75 65.95 57.11
TFIDF 41.80 31.70 9.05 10.67

Interest Models (Our Proposals)
Interest Tracing 47.95 52.05 37.24 38.96
TrueLearn Interest 57.70 56.83 78.74(∗) 62.50(∗)
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has several weaknesses. As the Jaccard score is computed based on the number

of users who visited videos, JaccardU model really struggles when the number of

users is small. This is because the system needs to have enough information about

multiple users visiting pairs of videos before this model can start computing simi-

larities between items. On the contrary, the TrueLearn Interest model doesn’t have

this issue as it doesn’t rely on other users’ actions for recommendation or content

representation. This trait also makes TrueLearn models massively parallelisable and

privacy-preserving by design.

6.3.2 The Effect of Knowledge Modelling (RQ 2.2)

We use the models detailed in section 6.2.3 to run experiments addressing RQ 2.2.

The proposed model, TrueLearn Knowledge, is trained and compared with the iden-

tified baselines, namely, i) Naı̈ve Persistance, ii) Naı̈ve Majority and Multi-skilled

KT models. When experimenting with the Multi-skilled KT models, we use two

variations that use i) both negative and positive events and ii) positively engaged

events exclusively.

The predictive performance obtained using the PEEK Dataset is presented

in Table 6.2. The algorithms labelled with△ use both positive and negative engage-

ment labels. We run these variations to validate our hypothesis that no assumption

can be made about negative engagement labels when training the models (as shown

in Figure 6.3). All KT and TrueLearn models in Table 6.2 model multiple skills.

6.3.2.1 Discussion

Firstly, we can see from the table 6.2 that the naı̈ve persistence model is very com-

petitive. This is mainly because we are predicting learner engagement with consec-

utive fragments of videos. If a learner is watching a single video for some time,

this will mean that the user session will have a series of positive labels sequen-

tially. Therefore, it is usually more probable that if you are engaged, you will stay

engaged. The persistence model clearly has an advantage in this scenario as it is de-

signed to predict the previous label as the current prediction. However, note that the

persistence will perform trivially when recommending new resources as it doesn’t
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Table 6.2: Weighted average test performance for accuracy, precision, recall and F1-Score
on the PEEK dataset. Models labelled with (△) are trained with positive and neg-
ative engagement. The best-performing model and the second-best are reported
in bold face and italic face respectively. The proposed models that outperform
baseline counterparts in the PEEK dataset (p < 0.01 in a one-tailed paired t-test)
are marked with ·(∗).

Algorithm Accuracy Precision Recall F1-Score
Baseline Models

Naı̈ve persistence (△) 76.60 62.90 62.50 62.50
Naı̈ve majority (△) 77.10 55.90 63.30 58.30
Multi skill KT (△) 49.80 49.20 18.80 25.40
Multi skill KT 49.70 49.10 19.20 25.60

Knowledge Models (Our Proposals)
TrueLearn Knowledge (△) 73.60 61.00 55.80 57.30
TrueLearn Knowledge 71.90 60.80 68.60(∗) 62.60(∗)

account for any item-based attributes. While this model can successfully capture

one aspect of the data generation process, it has no ability to rank between items.

The same logic applies to the majority model as well.

Table 6.2 gives evidence that the KT and TrueLearn models are not too far

from the naı̈ve baselines. This is due to the fact that the PEEK dataset contains a

large number of users who have very short sessions which will lead to this recurrent

behaviour having less of an effect (as per figure 4.6). TrueLearn Knowledge model

trained using positive labels exclusively (missing the △), tends to lead the perfor-

mance in relation to the F1 Score. This pattern is also repeated in the multi-skilled

KT model. A deeper look at the table 6.2 points out that the KT and TrueLearn mod-

els that exploit negative labels lead to precision and recall. However, the relatively

larger improvement of recall caused by ignoring negative labels leads to having a

larger F1-score for the positive-only models. This is an indication that the factor

graphs in Figure 6.4 learn a model that predicts positive values more frequently

when negative labels are not utilised, which is also expected. A key conclusion

from this result is that the graphical models that utilise the negative labels in the

training process should be used if the use case demands that negative predictions

are equally important. These models have improved accuracy and precision.
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Table 6.3: Weighted average test performance for accuracy, precision, recall and F1-Score
on the PEEK dataset. Models labelled with (△) are trained with positive and
negative engagement labels. Models labelled with (⊙) learn multiple skill pa-
rameters, one per Wikipedia page. The best-performing model and the second-
best are reported in bold face and italic face respectively.

Algorithm Accuracy Precision Recall F1-Score
Baseline Models

Single Skill TrueSkill (△) 61.00 54.10 47.20 48.00
Multi Skill TrueSkill (△,⊙) 45.40 53.00 43.10 41.80
TrueLearn Knowledge (⊙) 71.90 60.80 68.60 62.60

Novelty Models (Our Proposal)
TrueLearn Novel (△,⊙) 64.40 58.42 80.15(∗) 65.12(∗)

6.3.3 The Effect of Accounting for Content Novelty (RQ 2.3)

To answer RQ 2.3, we utilise the models detailed in section 6.2.4. As explained in

the section, we extend the TrueLearn Knowledge model proposed in section 6.2.3

to account for content novelty. The proposed model, TrueLearn Novel, is trained

and compared with the identified baselines, namely, i) Single Skill dynamic-depth

TrueSkill and ii) Multi Skill dynamic-depth TrueSkill models. When experiment-

ing with the TrueSkill models, we use two variations that use i) both negative and

positive events and ii) positively engaged events exclusively. Models labelled with

(⊙) are trained with multiple skills while the others only model a single skill.

The results are presented in Table 6.3. As the TrueLearn Novel model extends

the TrueLearn Knowledge model from section 6.2.3 by modelling knowledge and

novelty simultaneously, it is sensible to include the performance of the TrueLearn

Knowledge model in table 6.3 for objective comparison.

6.3.3.1 Discussion

Results in table 6.3 suggest that the proposed TrueLearn Novel model demonstrates

significant improvement of F1-Score over its baselines and the TrueLearn Knowl-

edge model. It is evident that the jump in F1-Score for TrueLearn Novel comes

from significantly increasing recall with a small drop of precision in comparison to

the TrueLearn Knowledge model. The increase in recall also leads to decreasing

accuracy of the model. However, the increase in the recall is justified by contrasting
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between Figure 6.3 (iii) and (iv) as we can see that the novelty assumption also treats

items that are slightly difficult to the learner (as they do not possess an exceeding

degree of skill in that KC at present) to be engageable. This is a desired behaviour

of the model as we want to recommend learners with new knowledge over time to

facilitate their learning journey [26]. Furthermore, we are more interested in pre-

dicting engaging video fragments. With respect to the F1-score, the results show

that the TrueLearn Novel’s improvement is statistically significant in comparison

to the next best model in table 6.3. However, if the accuracy and precision of the

prediction is more important, utilising the TrueLearn Knowledge model will result

in better performance in the task.

Single vs. Multi Skill TrueSkill The observations regarding Single vs. Multi skill

TrueSkill model performance in table 6.3 are also noteworthy. It is seen that the

single-skill model manages to outperform (statistically significant superiority) its

multi-skill counterpart. This observation is counter-intuitive as one would expect

the model that has different parameters for different KCs will be a richer model

that can capture the diversity of the KCs contrary to the model with one parameter.

However, the structure and the learning setting of the TrueSkill model provide an

intuitive explanation for this observation.

As per Figure 6.5 (left) and (middle), both TrueSkill algorithms model dt
rx

as

a latent learnable variable. This means that the depth parameter for each video

fragment must be learned from scratch using learner interactions starting from a

non-informative prior, d0
rx

. In the TrueSkill model, the update of learner skills, θ t
ℓ

depends on dt
rx

and the update of topic difficulty dt
rx

depends on the skill of the

learner θ t
ℓ . Therefore, it takes a comparatively higher number of training opportuni-

ties for the model to learn reliable skill and depth values before predicting reliable

engagement outcomes. This means that the performance of the TrueSkill models

will struggle in the early stage of the session. However, when there is only one pa-

rameter to be learned, the number of training opportunities (frequency of the same

skill, depth parameter being updated) massively increases leading to rapid learning.

The fact that the majority of lectures in the PEEK dataset is coming from VideoLec-
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tures.NET belonging to the Computer Science domain (refer Figure 4.4) means that

there is less noise in grouping all KC skills into one skill. We hypothesise that this

behaviour will degrade if learners started jumping between lectures that belong to

drastically different domains (e.g. Computer Science vs. English Literature).

6.3.4 Difference Between KT and TrueLearn Models (RQ 2.4)

In order to address RQ 2.4, we compare the best-performing Knowledge Tracing

(KT) model with the best-performing TrueLearn Model (TrueLearn Novel model).

Based on prior work [141], we hypothesise that the TrueLearn family of algorithms

can learn much faster from user engagement signals in comparison to the KT family

of models. To validate this, we plot the main evaluation metric we use, the F1 score

of each learner in the test set against two attributes that indicate a number of training

opportunities, i) Number of Events, indicating the number of training opportunities

the models have and ii) Topic Sparsity Rate, indicating the number of unique topics

the model has to learn per training opportunity available. The Topic Sparsity is

calculated per learner ℓ using equation 6.8.

Topic Sparsity =
No. of Unique Topics Learner ℓ encountered

No. of Events for Learner ℓ
(6.8)

The plot for KT model and TrueLearn Novel models is presented in Figure 6.6.

6.3.4.1 Discussion

While our previous experiments demonstrate the better performance of TrueLearn

models, our comparison of the F1 performance of users to the number of events and

topic sparsity in Figure 6.6 shows the main reason for the improved performance

of TrueLearn models. As seen in the figure, the intensity of the F1-Score increases

along the x-axis (Topic Sparsity) in TrueLearn Novel (right) in comparison to the

KT model (left). This indicates that the TrueLearn Novel model excels in predicting

engagement in users who go through a diverse set of KCs rapidly in comparison to

the KT model. If we observe the scale of the Topic Sparsity axis in the two plots, it is

seen that there is a significant number of users who has a Topic Sparsity score≥ 4.0

who have obtained an F1 score of 0 with the KT model whereas a non-zero F1 score
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Figure 6.6: F1 score of each learner with their associated topic sparsity rate (x-axis) and a
number of events (y-axis) for Multi skill KT (left) and TrueLearn Novel (right)
models. Each data point represents a learner. Intensity of colour represent
different F1-Scores (darker intensities indicate higher F1 Scores).

has been attained by TrueLearn Novel. This is strong evidence that the TrueLearn

novel model has noteworthy strengths in dealing with low-resource users who have

i) a limited number of events and ii) a diverse set of learning goals (spanning over a

large range of KCs) in comparison to the popular KT model.

6.4 Key Takeaways

This chapter sets the foundations towards building a lifelong learning recommen-

dation system for education using the TrueLearn family of Bayesian learner mod-

els. We present three different approaches, capturing learner interest, novelty and

knowledge. In this framework, recommendation algorithms need to focus on mak-

ing recommendations for which i) the learner has an interest in certain topics, ii) has

enough background knowledge so they are able to understand and learn from the

recommended material, and ii) the material has enough novelty that would help the

learner to improve their knowledge about the knowledge component. We demon-

strate empirically that models founded on the TrueLearn online learning mechanism

can be developed to account for the above three factors. We demonstrate that such

models can also outperform the relevant baselines. Our results using the PEEK

dataset show the potential of such an approach and its promising results. TrueLearn
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also embeds scalability, transparency and data efficiency in the core of its design

showing clear promise towards building an effective lifelong learning recommen-

dation system. These are desired features that are discussed in section 2.3.3 that

should be embedded in a realistic EdRecSys.

One of the key observations from the TrueLearn algorithms (from tables 6.1,

6.2 and 6.3) is that it consistently attains good F1-score by sacrificing precision

to recall. While this can be acceptable in the context of finding relevant educa-

tional materials, there can be educational use cases where accuracy and precision

are equally or more important. In that regard, it would be better to develop mod-

els that can also gain precision and accuracy, leading to a superior F1-Score ob-

tained by both precision and recall rather than sacrificing one to gain the other.

Furthermore, there may be disadvantages to having to use these different models in

isolation rather than having a model that can account for these different factors si-

multaneously. Another weakness of the proposed TrueLearn models in this chapter

is that they all start the learner model with a non-informative prior, θ 0
ℓ . This fac-

tors into making relatively less informed decisions in the early events of the learner

session leading to less accurate predictions. We take into account these weaknesses

in Chapter 7, extensively experimenting with approaches that can overcome these

challenges by combining the individual models proposed in this chapter and earlier

in chapter 5.



Chapter 7

Combining TrueLearn Models

This chapter outlines the development of a series of integrative models that com-

bine the popularity, interest, knowledge and novelty models that were developed

in chapter 5 and 6. While we have investigated in detail how modelling different

context-agnostic and contextual factors affect learner engagement in isolation, there

are obvious advantages in being able to utilise different factors together.

This chapter proposes two main models, namely, i) TrueLearn INK and ii)

TrueLearn PINK. In the essence, these models integrate the individual factors that

affect learner engagement as per the integrative educational recommender proposed

in section 2.9. In the process, a new online probit regressor that can play the role

of a meta-learner overarching the weighting of different models is also developed.

Section 7.2.2 describes the TrueLearn INK model while section 7.2.3 describes the

TrueLearn PINK model.

7.1 Towards an Integrative Learner Model
Our previous works outlined in chapter 6 showed that TrueLearn models that cap-

ture factors of engagement in isolation usually improve the F1 score of the model

by sacrificing accuracy and precision in order to improve recall. While excelling at

predicting as many relevant/ engageable future materials, being precise in identify-

ing educational videos that the user is less likely to engage in is important. Another

problem in TrueLearn models by design is the user-cold start problem where there

is no/little prior information to the model, in the beginning, leading to less accu-
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rate predictions. We hypothesise that we can address these limitations by building

integrative learner models that can account for all different factors of engagement.

7.2 Methodology
This section outlines the methodology used to develop the integrative models. We

identify several research questions that need to be answered in order to build the

solutions we desire. The models, data, metrics and experiments are outlined below.

7.2.1 Research Questions
RQ 3

In order to build more accurate models that are cold-start proof, we identify

several research questions that need to be answered.

RQ 3.1 How can we combine different models (I+N+K) effectively?

RQ 3.2 Do combining TrueLearn models outperform the models in isolation?

RQ 3.3 How severe is TrueLearn INK’s suffering from the cold-start problem?

RQ 3.4 Can population-based engagement models address the user-cold start?

RQ 3.5 How well can combining population-based models (P+INK) help?

7.2.2 Combining Interest, Novelty and Knowledge (INK)

As per section 6.2.2, we formulated the TrueLearn Interest model to infer user in-

terests. Furthermore, we formulated the TrueLearn Novel model to recover the

knowledge state of the learner while accounting for content novelty (refer to section

6.2.3 and 6.2.4 for further details). Our results in chapter 6 demonstrate that these

models outperform the relevant and competent baselines in their respective tasks

while we see that the TrueLearn Novel model that accounts for both learner knowl-

edge and novelty outperforms the TrueLearn Knowledge model that only captures

user knowledge. Ultimately, we have created two distinct graphical models that are

capable of modelling key factors affecting learner engagement.

Given that we have two models based on i) interest (et
ℓI,rx

) and ii) novelty +
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knowledge (et
ℓNK,rx

), we experiment combining the predictions as:

et
ℓINK,rx

= f (et
ℓI,rx

,et
ℓNK,rx

). (7.1)

To choose f (·), we experimented with multiple ensemble learning techniques as per

section 2.7 belonging to two main groups.

• Probabilistic Combination of Outcomes: Using probability theory to combine

the predictions.

• Meta-Learner: Learning how to assign a weighting to the two predictions to

get a more accurate final engagement prediction.

7.2.2.1 Probabilistic Combination and Meta Learners

In the context of probabilistic combination, we try both i) AND(et
ℓI,rx

,et
ℓNK,rx

) opera-

tor, the more restrictive assumption where both models have to predict high proba-

bilities for the ultimate prediction et
ℓINK,rx

to predict positive and ii) OR(et
ℓI,rx

,et
ℓNK,rx

)

operator, the less restrictive assumption [148].

When choosing a meta-learner, we restrict ourselves to online learning

schemes to preserve scalability of TrueLearn INK. We also rule out Multi-layer

Perceptron to maintain a linear meta-learner which increases the interpretability

of the learned weights. We identify Perceptron and Stochastic Logistic Regression

models as suitable candidates for experimentation.

7.2.2.2 Meta TrueLearn

Additionally, we formulate a linear model that learns weights using expectation

propagation analogue to the TrueLearn models. Meta TrueLearn model can be seen

as a Bayesian probit regressor. A similar weight learning scheme has been used

in personalised click-through prediction tasks before [215]. The proposed meta-

learning model is illustrated in Figure 7.1. As seen in the figure, two predictions

from the TrueLearn Interest model and TrueLearn Novelty model, et
ℓI

and et
ℓNK

, are

fed as observed constants (ie. Gaussians with zero variance). The Product Factor
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and Sum Factor are used to model final engagement et
ℓINK

as:

et
ℓINK,rx

= Wt
ℓI
· et

ℓI,rx
+Wt

ℓNK
· et

ℓNK,rx
+bt

ℓ, (7.2)

where Wt
ℓI

, Wt
ℓNK

and bt
ℓ are trainable parameters that are modelled as Gaussian

variables while bt
ℓ is the bias term. The model trains in a greedy fashion contributing

to computational efficiency. Although the prediction step is executed in every time

step, weight updates only happen when misclassification is encountered.

Figure 7.1: Factor graphs representing Meta TrueLearn used in TrueLearn INK model, a
probabilistic graphical model to combine the predictions from both interest and
knowledge-based engagement models.

7.2.3 Combining the Population-based Prior (P+INK)

One of the weaknesses of an online learning scheme such as TrueLearn is that it

starts learning the model using historical interaction data from the user. This means

that these models do not have any historical data in the beginning (when t is close

to 1, hereafter referred to as tsmall) leading to using non-informative priors (Gaus-

sians with mean close to 0 and a large variance) when calculating etsmall
ℓI

and etsmall
ℓNK

.

This causes TrueLearn INK to estimate the same probability of engagement etsmall
ℓINK,rx

for every user regardless of what video fragment rx they watch in the first interac-
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tion with the system, leading to the cold-start problem. Popularity-based (context-

agnostic) recommenders are one remedy to the cold start problem (as we validate in

section 7.3.4).

Chapter 5 has proposed several methods leveraging content features and topi-

cal features (as per Figure 2.1) to predict population-based engagement of an edu-

cational video. We use this approach to build a context-agnostic engagement pre-

dictor for video lectures, estimating eL,rx , engagement of learner population L with

resource rx, creating a prior for engagement where learner knowledge and interest-

based estimates are non-informative. We hypothesise that using such an informa-

tive prior in the early phase of a user session and gradually transitioning to rely on

learned personalised interest and knowledge models (TrueLearn INK) can address

the cold start. We define our final proposal TrueLearn PINK, a hybrid recommender

model that starts engagement prediction heavily relying on a population-based prior

and transitions to TrueLearn INK over time. We devise two approaches used in

hybrid recommendation systems [152], i) switching and ii) stacking (a.k.a. meta-

learner) to facilitate the transition from the population prior to TrueLearn INK.

7.2.3.1 TrueLearn PINK (Switching)

This algorithm starts making engagement predictions using the population-based

engagement predictor and switches after n events. Algorithm 1 is used for each

learner ℓ ∈ L in TrueLearn PINK (switching).

Algorithm 1 Hybrid Recommender TrueLearn PINK using Switching

Require: 0≤ et
ℓI

, et
ℓNK
≤ 1

Require: n≥ 1 ▷ upper ceiling of tsmall
Ensure: t ≥ 1

for t ∈ {1 . . .Tℓ} do
if t ≤ n then ▷ tsmall scenario

et
ℓPINK

← eL,rx ▷ estimate from population-based predictor
else if t > n then

et
ℓPINK

← et
ℓINK,rx

▷ estimate from personalised model
end if

end for
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7.2.3.2 TrueLearn PINK (Meta)

Contrary to the switching approach, this method maintains a set of weights that

determine how much influence the different model predictions (from population-

based, interest and knowledge models) have on the final prediction. This is done by

using the same meta-learner described in Section 7.2.2.2. We include a new additive

component Wt
ℓP
· eL,rx in Equation 7.3 to modify the factor graph (including red-

dashed components of Figure 7.2). Wt
ℓP

is a trainable parameter and is incorporated

into the additive function as:

et
ℓPINK,rx

= Wt
ℓP
· eL,rx +Wt

ℓI
· et

ℓI,rx
+Wt

ℓNK
· et

ℓNK,rx
+bt

ℓ, (7.3)

7.2.4 Data

We test the two main integration as part of this work, namely, TrueLearn INK and

TrueLearn PINK. These integrations involve models being trained on both individ-

ual engagement labels and aggregated population-based labels. We identify two

datasets that are required to conduct the work outlined. We use the PEEK dataset

described in section 4.5 to run the personalisation experiments relating to answering

Figure 7.2: Factor graphs representing Meta TrueLearn used with TrueLearn PINK
model. The same meta-learner in Figure 7.1 can be extended to combine the
population-based model by adding the parts highlighted in red dashes.
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all the research questions outlined in section 7.2.1. To train the population-based

models addressing RQ 3.4 onward, we identify the VLE dataset outlined in section

4.4 to be a suitable dataset. As both datasets are based on VideoLectures.Net repos-

itory, the videos overlap. When training population-based priors to improve person-

alisation, we end up using both the VLE dataset and the PEEK dataset. Therefore,

the set of video lectures in the test data of PEEK dataset was identified beforehand

and removed from the VLE training data to avoid data leakage.

We also create a bespoke dataset from the VideoLectures.Net data to measure

more precise gains of predictive power by using a population-based prior (address-

ing RQ 3.4). The 20 most active user sessions from the PEEK dataset are identified

and the exact Normalised Engagement Time (NET described in section 4.3.2) is

recorded for each video they visited. We call this dataset Active 20 dataset.

How this dataset is used for experimentation and evaluation is described in section

7.2.5 and 7.2.5.1 respectively.

7.2.5 Experimental Setup

We approach answering the research questions outlined in section 7.2.1 in a phased

manner. The sequential integration of different factors is graphically illustrated in

Figure 7.3. As per the figure, the experiments around the proposed models (marked

in red stars) help us to resolve the relevant research questions.

Our first experiment revolves around evaluating the TrueLearn INK model that

combines the interest, novelty and knowledge factors (addressing RQ 3.1 and 3.2).

Once the best-performing TrueLearn INK model is identified, we analyse its per-

formance in learners’ early events to validate the presence of the cold-start prob-

lem (RQ 3.3). As per Figure 7.3 (marked with RQ 3.4 related experiments), we

need to evaluate the usefulness of the developed population-based engagement pre-

diction model before using it to address the cold-start. We run two experiments

assessing how a population-based engagement prior can help i) a personalisation

algorithm that uses the same features as the population-based prior and ii) a contex-

tual modeller such as TrueLearn Novel (the best-performing model in chapter 6).

The final experiments revolve around combining the TrueLearn INK model with the
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Figure 7.3: Graphical illustration of the experimental design where we sequentially inte-
grate (I)nterests, (N)ovelty, (K)nowledge and (P)opularity factors together cre-
ating a unified model.

population-based prior that was developed through the work described in chapter 5.

The systematic integration of TrueLearn Interest, TrueLearn Novel and Population-

based model lead to the final TrueLearn PINK model (addressing RQ 3.5).

7.2.5.1 Evaluation

As the online, personalised models developed in this chapter extends the models

proposed in chapter 6, the same classification task is used to evaluate them. The

sequential experimental design described in section 6.2.6 is used with accuracy,

precision, recall and F1-score. One minor difference exists when we are evaluating

the models for the cold-start problem (RQ 3.3 onward). Instead of computing met-

rics using learner events 2 ≤ t ≤ Tℓ, metrics are computed using events 1≤ t ≤ Tℓ.

This is because the first few events, including the first event of a learner, are where

the user cold-start is present the most. To evaluate if the improvement of metrics is

statistically significant, a learner-wise, one-tailed paired t-test is used. While previ-

ously proposed models in chapter 6 focused on improving the overall F1 score, we

acknowledge how accuracy and precision are also important. We also emphasise on

accuracy and precision when discussing the newly proposed integrative models.
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We use the Active 20 dataset described in section 7.2.4 as part of evaluating

RQ 3.4 using a personalisation model with the item-based features described in

section 4.3.1. A hold-out validation using a learner-wise 70:30 train-test split is

used where the evaluation is done on the test split (30% latest events of the learner).

The Mean Absolute Error, MAE is computed for both models using equation 7.4.

MAE(ℓ) =
1
Nℓ

Nℓ

∑
n=1
| yn− ŷn| , (7.4)

As continuous NET values are predicted in the experiment, MAE is a sensible

evaluation metric to measure the predictive performance of the models. Then we

calculate the difference of MAE(ℓ) between the population-based and personalised

model, ∆ MAE. Thus, a negative value indicates that the population model is better.

The detailed experimental setup and the results are presented in section 7.3.

7.3 Results and Discussion
The results and discussion of the designed experiments are outlined below.

7.3.1 Performance of TrueLearn INK (RQ 3.1)

In this experiment addressing RQ 3.1, we use the two best-performing models from

chapter 6 representing interest, novelty and knowledge. We take the TrueLearn In-

terest model and combine its predictions with the TrueLearn Novel model to create

TrueLearn INK. However, the results in table 6.1 and 6.3 show that the performance

of these two models is very similar to each other. Therefore, it is sensible to validate

if the prediction behaviour of these two models is fairly different from each other.

To validate this, we take the predictions made on the test set by both the models

separately and measure the agreement between their engagement predictions as:

Agreement =
1

∑ℓ∈L Tℓ
∑
ℓ∈L

Tℓ

∑
t=1

A(et
ℓI,rx

et
ℓNK,rx

),

where A =

 1 if et
ℓI,rx

= et
ℓNK,rx

0 otherwise
(7.5)

and L represents the full set of learners.
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The experimental results show that there is only 73.1% agreement between the

predictions coming from the two models.

To identify the best ensembling approach for TrueLearn INK, we benchmark

multiple methods belonging to probabilistic methods and meta-learner-based en-

semble techniques. From the probabilistic front, we try both the AND and OR

assumptions outlined in section 7.2.2.1. We empirically evaluate three online meta-

learners, i) Logistic, ii) Perceptron and iii) Meta-TrueLearn (as illustrated in Figure

7.1). When experimenting with meta-learners, we experiment both with and without

the bias term to identify the best candidate. The predictive performance of the dif-

ferent versions of TrueLearn INK using different combining methods is outlined in

Table 7.1. This table also includes the two best-performing baselines from chapter

6, namely TrueLearn Interest and TrueLearn Novel, when they are used in isola-

tion without combining. We use TrueLearn Interest and TrueLearn Novel models

in isolation as baselines for this experiment. The results are outlined in table 7.1.

Table 7.1: Weighted average of PEEK dataset test set performance for Accuracy, Precision,
Recall and F1-Score. The most performant value and the next best value are
highlighted in bold and italic respectively. The proposed models that outperform
baseline counterparts in the PEEK dataset (p < 0.01 in a one-tailed paired t-test)
are marked with ·(∗).

Algorithm Accuracy Precision Recall F1-Score
Best Baselines from table 6.1 and 6.3

TF(Binary) 55.19 56.71 66.60 57.38
JaccardU 64.05 57.85 72.76 61.22
Single Skill TrueSkill 61.00 54.10 47.20 48.00

TrueLearn Models in Isolation
TrueLearn Interest 57.70 56.83 78.74 62.50
Truelearn Novel 64.40 58.42 80.15 65.12

TrueLearn INK Models (Our Proposals)
AND 65.33(∗) 58.70(∗) 69.80 61.68
OR 56.74 56.74 88.92(∗) 65.63(∗)

Logistic 78.58(∗) 64.07(∗) 68.17 65.86(∗)

Perceptron 78.56(∗) 64.05(∗) 68.58 66.04(∗)

Meta TrueLearn 78.71(∗) 64.19(∗) 68.62 66.14(∗)
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Figure 7.4: Change of meta weights WT
ℓI

(Orange) and WT
ℓNK

(Blue) with respect to the
number of unique topics for each learner ℓ in the test set

7.3.1.1 Meta Weights and Topic Sparsity

In a deeper analysis, we investigate if there is a relationship between the meta

weights Wt
ℓI

and Wt
ℓNK

of TrueLearn INK meta learner and the number of unique

topics/KCs a learner encounters. This analysis is motivated by the relationship we

found in section 6.3 between the topic sparsity and the F1 score of the TrueLearn

Novel algorithm. We create Figure 7.4 by taking the final weights of each user, WT
ℓI

and WT
ℓNK

and plot it against the total number of unique KCs for the user.

7.3.1.2 Discussion

The initial experiment on assessing the agreement of TrueLearn models showed that

there is only 73.1% agreement between the predictions coming from the TrueLearn

Interest and TrueLearn Novel models. Therefore, we can observe that there is a sig-

nificant deviation between the behaviours of the two models (more than one in four

predictions disagree). This observation further reinforces the utility of combining

the two hypotheses together as they are significantly different from each other. The

main principle behind building ensemble models is combining relatively different

hypotheses together to obtain greater statistical power [147].

The primary observation from the table 7.1 is that the majority of the com-

bining approaches (except AND model) lead to significantly improved accuracy,
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precision and F1-Score. Among the TrueLearn INK models, the meta-learning

approaches seem to perform better than the probabilistic combination approaches.

Among probabilistic approaches, the AND model tends to be very restrictive when

predicting positives leading to improved accuracy and precision. On the other

hand, the OR model seems to be too relaxed leading to a significantly higher re-

call at the cost of degraded accuracy and precision. Table 7.1 further shows that

the meta-learner-based approaches are equally competent in prediction, with minor

differences in performance. The novel meta-learner we propose, Meta TrueLearn

demonstrates the best performance among its meta-learning counterparts. Meta

TrueLearn-based TrueLearn INK model results in the best performance among all

the tested models in terms of accuracy, precision and F1-Score while attaining the

highest recall score among the meta-learner-based models. Table 7.1 also shows that

meta-learning-based models lead to more accurate and more precise models pushing

recall lower in comparison to using TrueLearn Interest and TrueLearn Novel mod-

els in isolation. TrueLearn’s tendency to maximise recall by sacrificing precision

and accuracy was one of the issues discussed in chapter 6. The results demonstrate

that the meta-learners that are trained based on the accuracy (as they train the meta-

weights in a greedy fashion when the predictions are wrong) lead to a new family of

models that have leading accuracy and precision scores. This observation is further

reaffirmed by performance reporting in Figure 7.5. The key observation is that this

gain of precision and accuracy is obtained with some loss of recall which would

allow the model to retain its leading position in the F1-score.

The analysis of meta weights of TrueLearn Meta showed that there is a statis-

tically significant relationship between the number of unique topics of each learner

and their final meta-weights. Pearson R correlation analysis between these vari-

ables also showed that the number of unique topics has a positive correlation of

0.028(p≤ .05) and a negative correlation of −0.234(p≤ .01) with WT
ℓI

and WT
ℓNK

respectively. This suggests that the model learns to emphasise interest more when a

large number of new topics are encountered.
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Figure 7.5: How the Mean Accuracy, Precision, Recall and F1-Score at time t across all
users change on TrueLearn Interest (Green), TrueLearn Novel (Yellow) and
TrueLearn INK Meta (Blue) Models

7.3.2 TrueLearn INK vs. Isolated TrueLearn Models (RQ 3.2)

The results in table 7.1 also allow us to compare the performance of the TrueLearn

INK model with the interest and novelty models utilised in isolation.

As a post-step, we further compare the predictive performance of the isolated

models vs. the combined model at different stages of the learner session. We restrict

the plots to t ≤ 50 as the number of learners with more events is very scarce in the

PEEK dataset (refer section 4.5) making the metrics unstable. The results of the

post-analysis are presented in Figure 7.5.

7.3.2.1 Discussion

The main indication of the superiority of the TrueLearn INK model is in table 7.1

where the performance of the two TrueLearn models (Interest and Novel) in isola-

tion is also reported. The table shows that the majority of the INK models including

the best-performing TrueLearn INK Meta model lead statistically in accuracy, pre-

cision and F1 score. This is an observation that strongly supports the combining

of the two models. Figure 7.5 further details the performance of the three models

(two isolated and one combined) at the event level. The sub-figures provide fur-

ther evidence that the performance leap of the TrueLearn INK model is consistent



7.3. Results and Discussion 180

through time. This means that the prediction quality of TrueLearn INK is superior

throughout the learner journey (both in early and later stages) in comparison to us-

ing the models in isolation. The only exception is recalled, where the TrueLearn

INK model is inferior. This is expected as the weight updating mechanism of the

Meta TrueLearn model is driven by accuracy.

However, it is also noticeable that the loss of recall of the INK models is sub-

stantial (≈ 10% between TrueLearn INK Meta and TrueLearn Novel) leading to a

minor increase of the overall F1-Score although it is statistically significant. In the

scenarios where recall is important (which are common in educational use cases),

TrueLearn Novel could be a better alternative to TrueLearn INK models.

7.3.3 TrueLearn INK and the Cold-start Problem (RQ 3.3)

While our assessment of the performance of combining different TrueLearn models

is insightful, the lack of an informative prior is a known limitation of the TrueLearn

family of models although they learn rapidly. We launch an investigation to observe

how severe is this problem which occurs when a new user starts with the system

(user cold-start). We take the learner group and compute the classification metrics

per each event. That is, classification metrics at event t reflect the performance of

predicting the tth event of each learner in the test set. We plot the classification

metrics for the first 10 events in the test set to analyse the performance. The plot is

depicted in Figure 7.6

7.3.3.1 Discussion

In Figure 7.6, the average performance of TrueLearn INK on the first 10 events of

the test set learner sample, clearly shows that it struggles in the first few (≈ 5) events

of each user. This is a sensible observation as TrueLearn INK uses no information

to estimate the engagement of the user at time step 1. This user cold-start scenario is

evidenced in the plot and needs to be addressed in order to improve the effectiveness

of personalisation. This is our objective in creating TrueLearn PINK that addresses

RQ 3.5.
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Figure 7.6: How the Mean Accuracy, Precision, Recall and F1-Score at time t across all
the users change TrueLearn INK Meta Model.

7.3.4 Population-based Engagement and Cold-start (RQ 3.4)

As per section 7.2.5, two experiments evaluating the prediction superiority of util-

ising the population-based prior are conducted as part of answering RQ 3.4. In

the first experiment, we investigate how a personalisation model based on the same

VLE dataset features (outlined in table 4.1) used by the population-based model can

contend with the population-based model itself. The Active 20 dataset described

in section 7.2.4 is used to train a personalisation model for each learner based exclu-

sively on their own engagement with different video lectures. The model, an online

stochastic gradient descent model, trains on the first 70% of data from each user

and starts predicting after that. However, when predicting any event t after the 70%

threshold, the model trained online on all events 1 . . . t−1 is used to predict the prob-

ability of engagement (∈ {0,1}). For each learner ℓ, we make predictions on the Nℓ

test events using (i) a population-based model trained in chapter 5 and (ii) the per-

sonalised model trained on personal events of the learner. We plot the difference of

predictive ability between the two models, ∆ MAE (MAEpopulation−MAEpersonalised)

to investigate if the population model can predict better when the learner is new to

the system. Thus, a negative difference indicates that the population-based model
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is better and vice versa. The results are plotted in Figure 7.7.

Figure 7.7: How the difference between Mean Absolute Error (MAE) of population-based
and personalised models change with the number of training events per learner.
Each data point is an individual learner in the dataset. Negative values indicate
users where the population-based model is superior.

The second experiment attempts to validate if a population-based model

trained on content-based features can address the user cold-start problem when used

with a personalised model that uses learner context (concept-based features), which

is a more mainstream approach. To test this hypothesis, we utilise TrueLearn Novel,

described in section 6.2.4 (hereby referred to as TrueLearn), the best performing

concept-based engagement prediction model from chapter 6, that learns individu-

alised models to predict engagement with educational videos. A key limitation with

personalised models such as TrueLearn is that there is no information about the

user in the beginning, leading to a user cold-start problem which effectively means

having ill-informed engagement predictions at the beginning of the learner session.

To address this, we utilise the same population-based engagement prediction model

where a hybrid recommendation system (hereby referred to as TrueLearn++) is built

by combining it with the TrueLearn model. For simplicity’s sake, TrueLearn++

uses switching [152], where the population-based model is used to make a predic-

tion for the first event, ê1
ℓrx

of the user (where the personalisation model has no

information to work with) and then switched to TrueLearn model which can exploit

the concept-based representation built through the user watch history. The results

of the experiments run on the full PEEK dataset is outlined in table 7.2 while the

performance on the first event, where the baseline differs from the cold-start proof

model, is further expanded in table 7.3.
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Table 7.2: Average test set performance for Accuracy, Precision, Recall and F1-Score. The
more performant value is highlighted in bold. The metrics where the proposed
model outperforms the baseline counterpart in the PEEK dataset (p < 0.01 in a
one-tailed paired t-test) are marked with ·(∗).

Algorithm Accuracy Precision Recall F1-Score
Truelearn 62.69 57.54 81.88 64.98
Truelearn++ 63.51·(∗) 57.91·(∗) 79.13 64.39

Table 7.3: Test set performance for Accuracy, Precision, Recall and F1-Score for first event
of each learner. The more performant value is highlighted in bold. The metrics
where the proposed model outperforms the baseline counterpart in the PEEK
dataset (p < 0.01 in a one-tailed paired t-test) are marked with ·(∗).

Algorithm Accuracy Precision Recall F1-Score
TrueLearn 44.21 44.21 100.00 61.32
TrueLearn++ 56.09·(∗) 50.32·(∗) 53.58 51.90

7.3.4.1 Discussion

When compared with a personalised model using the same features of the VLE

dataset, Figure 7.7, where the y-axis represents the difference in performance

between the population-based and personalised, shows that the population-based

model has better predictive power when the number of training examples available

for the individual learner is limited (≈ 60). This is inferred from the fact that y-axis

values are negative (∆ MAE < 0) in the first part of the plot meaning that the MAE

of the population-based model is smaller than the personalised model. This is repre-

sented by the green line (at a ∆ MAE = 0). The plot shows that a population-based

engagement prediction model that doesn’t use the learner’s data can make better

engagement predictions in the early stage of the user session when the personal

engagement data is scarce.

Table 7.2 shows that incorporating the population-based engagement predic-

tion in TrueLearn Novel (together becoming TrueLearn++) can lead to significant

improvements in accuracy and precision. The same table also shows that the drop

in the overall F1 score can be attributed to the steep drop in Recall Score. Table

7.3 sheds more light on where this steep drop of recall occurs. This is because the

baseline TrueLearn model always predicts positive engagement for the first event
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of the user. As seen in table 7.3, the recall of the baseline TrueLearn model being

1.0 while the accuracy and precision being the same depicts this fact. TrueLearn

predicts positive in event 1 of each user because the model has no information on

which to base the prediction. However, table 7.3 shows that the scenario is differ-

ent in TrueLearn++ as the model has additional information during the first event.

Both accuracy and precision of predictions in the first event of the learner popu-

lation significantly improve. The recall will fall as the proposed context-agnostic

model only captures a population-based prior which may deviate from the individ-

uality of the learners. However, it can be argued that making a prediction with

additional information is better than predicting with no prior information. In the

bigger picture, being able to make more informed and varied predictions for the

first event of learners based on lecture content features enable us to significantly

improve prediction accuracy and precision of TrueLearn++ as seen in Table 7.2. It

is also noteworthy that our experiment, for the sake of simplicity, uses a rule that

could be significantly improved further, e.g. using weights of the probabilities of

both population-based and personalised models at the beginning of a user session

(using weighting or stacking [152]), where the weight of population-based engage-

ment decreases as we gather more information about the user. Such improvements

are proposed in section 7.2.3.

7.3.5 Performance of TrueLearn PINK (RQ 3.5)

Once we have verified that population-based models can help the user-cold start

problem, we want to integrate the population-based model to the most performant

personalisation model we have developed, TrueLearn INK. As described in section

7.2.3, we use two approaches to combine the two models to propose TrueLearn

PINK. The objective of the final experiment is to verify if positive gains are ob-

tained by combining the models while identifying the best method to do it empir-

ically. Table 7.4 shows the performance of TrueLearn PINK when combining the

population-based prior using i) switching as per Algorithm 1 and ii) a meta-learner

as per Figure 7.2. The switching approach uses the population-based model exclu-

sively in the first event of the learner (tsmall ∈ 1 or n = 1) while the meta-learner
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Table 7.4: Weighted average of PEEK dataset test set performance for Accuracy, Precision,
Recall and F1-Score. The most performant value and the next best value are
highlighted in bold and italic respectively. The proposed models that outperform
the baseline counterpart in the PEEK dataset (p < 0.01 in a one-tailed paired t-
test) are marked with ·(∗).

Algorithm Accuracy Precision Recall F1-score
Best Performing Model from Table 7.1

TrueLearn INK 76.26 63.36 69.30 65.84
TrueLearn PINK Models (Our Proposals)

Switching 77.08(∗) 63.92(∗) 66.55 64.95
Meta 78.90(∗) 64.88(∗) 66.06 65.29

Table 7.5: Weighted average of Accuracy, Precision, Recall and F1-Score on the first event
of learners in the PEEK test set. The most performant value and the next best
value are highlighted in bold and italic respectively. The proposed models that
outperform the baseline counterpart in the PEEK dataset (p < 0.01 in a one-
tailed paired t-test) are marked with ·(∗).

Algorithm Accuracy Precision Recall F1-score
Best Performing Model from Table 7.1

TrueLearn INK 44.21 44.21 100.0 61.32
TrueLearn PINK Models (Our Proposals)

Switching 56.09(∗) 50.32(∗) 53.58 51.89
Meta 56.02(∗) 50.25(∗) 53.58 51.85

is set to Wt=1
ℓP

= 0.90, Wt=1
ℓI

= 0.05, Wt=1
ℓNK

= 0.05 in the beginning. All the above

parameters are determined via a grid search on the training data. Table 7.5 provides

a magnified view of the first event’s performance where the difference between the

baselines and the proposals has the maximum effect.

As a post-analysis, we further observe how the new proposal improves the pre-

dictive power on the event level in comparison to Figure 7.6. We use the same

experiment, yet plot the event-level performance of the new proposals against Tru-

eLearn INK to compare them. Figure 7.8 presents these results.
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Figure 7.8: How Accuracy, Precision, Recall and F1-Score of TrueLearn INK (dark blue),
TrueLearn PINK (Switching) (light blue) that uses switching approach and Tru-
eLearn PINK (Meta) (yellow) that uses a meta-learner, change over the time
step t across the entire test set learner population.

7.3.5.1 Discussion

Our final pair of experiments validating TrueLearn PINK also bear fruitful results.

In the full dataset results presented in table 7.4, it is evident that the TrueLearn PINK

models categorically outperform TrueLearn INK models in accuracy and precision

to a statistically significant degree. Among the two TrueLearn PINK models, the

meta-learner-based model significantly outperforms the switching model indicating

that the utilisation of the population prior goes beyond formulating a better predic-

tion in the first event. Both TrueLearn PINK models show that being able to make

a slightly more informed and varied prediction for the early events of the learners

enables significantly improving the prediction. In table 7.5, TrueLearn PINK’s dif-

ference in behaviour in the first event is highlighted. Both accuracy and precision of

predictions in the first event of the learner population significantly improve from the

baseline TrueLine INK model. The recall will fall, as the proposed context-agnostic

model only captures a population-based prior which may deviate from the individu-

ality of the learners. However, it can be argued that making a prediction with partial

additional information is still better than predicting with no prior information.
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Another interesting observation between the PINK algorithms in table 7.4 and

7.5 is the superiority of TrueLearn PINK Meta and TrueLearn PINK Switching

model in each table respectively. The result in table 7.4 suggests that the meta-

learner approach leads to better accuracy and precision on the overall dataset. Rea-

soning this observation is fairly straightforward as the meta-learner approach in-

volves the population-based prior in many events that go beyond the first event.

This is an indication that using the population-based prior in a few more than the

first event is more beneficial. This conclusion is also backed by the fact that the Tru-

eLearn INK model takes about ≈ 5 events to stabilise as per Figure 7.6. However,

it gets interesting as the same meta-learner model is outperformed by the switching

model in the first event (refer table 7.5). This means that using 100% weighting to

the population-based model prediction in the switching approach rather than 90%

in the meta-learner approach leads to significantly better results in the first predic-

tion. The switching model manages to outperform the meta-learning model in accu-

racy, precision and F1 score while retaining the same recall in the first event. This

observation also can be explained. In the meta approach, we fuse the population-

based predictions with two non-informative predictions (90:5:5 in the beginning)

where the non-informative predictions tend towards positive estimates harming ac-

curacy and precision. Hence, we are adding more noise to the prediction when we

reduce the starting weight of the population prior to leading to sub-optimal predic-

tions. These observations give strong evidence of the utility and the power of the

population-based model in the early stages of the user session.

A magnified look at the performance of the first 10 events of learners outlined

in Figure 7.8 further elaborates the above fact. TrueLearn PINK (Switching) in light

blue, only using the population prior in the first event shows superior accuracy and

precision to TrueLearn INK and matches its performance as the algorithm switches

from t ≥ 2. The TrueLearn PINK (Meta) in orange, maintains a learnable set of

meta-weights for popularity, interest and knowledge models. As the population-

based model doesn’t get suppressed in event 2 when using TrueLearn PINK (Meta)

(in contrast to TrueLearn PINK (Switching)), the superiority of accuracy and pre-
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cision persists in the early stage (tsmall scenario) while also beating its counterparts

in F1-Score when t ≥ 2. While falling short to outperform the F1-score of the first

event uniformly predicting TrueLearn INK, the figure shows that the PINK meta-

learner model consistently outperforms TrueLearn INK even after 10 events. The

gains in precision, accuracy and F1 in the first 5 events are visibly significant. This

observation further confirms the superiority of TrueLearn PINK models.

7.4 Key Takeaways
In this chapter, we utilised the individual models that we built in chapter 5 and 6 to

capture factors affecting context-agnostic and contextual engagement and combine

them together. The TrueLearn INK model that combines the contextual models to-

gether improves accuracy, precision and F1 score in comparison to these models

being used in isolation. However, all the models developed in chapter 6 suffer from

the user cold-start problem for which our experiments indicated that the context-

agnostic population-based model could be a remedy. The TrueLearn PINK model

that combined TrueLearn INK with the population-based engagement prediction

model managed to improve accuracy and precision furthermore in comparison to

TrueLearn INK while having significant gains in early-stage engagement predic-

tion. These results in unison indicate to us that combining multiple hypotheses to

model learner engagement allows us to build integrative educational recommenda-

tion models that are capable of accounting for different factors that drive learner

engagement with educational videos.
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Chapter 8

Discussion and Conclusions

This chapter outlines the entire set of works undertaken as part of the thesis to

discuss the results on a broader level. The learnings from the discussion will lead to

a critical analysis of the opportunities and limitations of the work at its current state

leading to the conclusion of the thesis.

8.1 Thesis Summary
The main objective of this thesis is to formulate a set of algorithms that can be used

in an educational recommendation system to predict the engagement of informal

learners with educational videos. To build these algorithms, we focus on context-

agnostic engagement, the general engageability of a video lecture over an entire

learner population (population-based) and contextual engagement, which is associ-

ated with contextual variables of the user such as their interests and knowledge.

In chapter 3 and 4, we build the support tools by constructing a novel user in-

terface that the learners can use to interact with the proposed algorithms while con-

structing two new datasets that are suitable for training and evaluating the proposed

models. The Content Flow Bar and the X5Learn visual navigation tools are devel-

oped along with the VLE and PEEK datasets. In chapter 5, we focus on building

engagement prediction models for context-agnostic engagement where we extract

a set of cross-modal and video-specific features to predict median normalised en-

gagement time (MNET) for different education videos. Our results show promise

in building such population-based prediction models. In chapter 6, we draw our
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attention to contextual models, where three main model families modelling user in-

terests, knowledge and novelty are proposed. These scalable, online and humanly-

intuitive models show that they can outperform the relevant baseline models. As an

outcome, the TrueLearn Interest, TrueLearn Knowledge and TrueLearn Novel mod-

els are developed. Finally, we combine the developed contextual models together

and further integrate them with the context-agnostic prediction model in chapter 7

to build an integrative recommender that can take into account multiple factors af-

fecting learner engagement. As a result, the TrueLearn INK and TrueLearn PINK

models are developed. Our results show that the contextual models developed in

chapter 6 can be further harnessed for personalisation through this approach.

8.2 Discussion of the Overall Results
The results obtained throughout this thesis pave the way to improving the state-of-

the-art when it comes to recommending educational videos.

8.2.1 Importance of the User Interface Components

The experiments in chapter 3 validate the usefulness of novel user interface (UI)

components in facilitating video fragment recommendation. The analyses of user

behaviour and perception regarding the Content Flow Bar has shown that the tool

can improve the learners’ ability to efficiently preview and navigate informational

content. Many observations in the interaction log analysis (refer section 3.3.4) in-

dicated that the learners tend to i) spend more time exploring the topics associated

with different video fragments, ii) spend less time watching videos seeking informa-

tion, iii) explore, click on videos appearing deeper in the result set and iv) un-select

less number of selected video segments (indicating less number of mistaken selec-

tions). These metrics are a good indicator that the novel UI component provokes the

user to use the additional informational content to make informed decisions. The

demonstration of how such a UI component can visually connect recommendations

to the learners is important, as novel recommendation algorithms use the UI to con-

nect with users [18]. Given that this thesis focuses on recommending fragments of

educational videos, the contribution of a suitable user interface component and its
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integration to an e-learning platform is critical. This is because fragment/segment

recommendation is a new topic in the field that has received very little attention.

8.2.2 On the Definition of Learner Engagement

Learner Engagement is a loaded concept with many definitions. Engagement is

measured using different metrics depending on the modality of the educational re-

source (for instance, videos vs. web pages). In relation to consuming videos, many

behavioural actions such as pausing, rewinding and skipping can contribute to la-

tent engagement with a video lecture [29]. However, the definition can range from

using basic measurements such as watch time [38, 51] to conducting complex anal-

ysis of facial expressions and affective states [156]. Although watch time, which

we use in this thesis, has been used as a representative proxy for learner engage-

ment with videos [38], we acknowledge that more informative measures may lead

to more complete and reliable engagement signals. However, proposing methods

that use more invasive measurements of engagement also comes with serious tech-

nological and privacy-related concerns. Therefore, one could argue that using a

measurement such as watch time provides solutions that are more generalisable to

a wide range of e-learning systems in the real world while capturing a very small

amount of personal activity signals. Our results in chapter 5, 6 and 7 also indi-

cate that a reasonable degree of predictive accuracy with educational videos can be

obtained with watch time-related engagement signals. Watch time-based implicit

feedback is passively indicative of learner interests and motivation. This could be

viewed as a current limitation of the proposed models. There are other rich signals

one can harvest from an e-learning platform that can be utilised to recover the la-

tent variables more effectively. For example, user search queries in a system can

be viewed as a useful source to detect KCs that a user is likely to be interested in.

Giving opportunities for a user to test their knowledge by solving a problem is a

more effective way to verify user knowledge. While scarce, the latter-mentioned

implicit signals are much more refined and informative about learner context and

could boost the TrueLearn models significantly. With the complex capabilities of

automatic educational question generation becoming more realistic [216], such sig-
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nals can be harvested at scale and fed into the TrueLearn models. The probabilistic

graphical model design of the TrueLearn algorithms makes it operationally feasible

to incorporate these new signals into the model.

8.2.3 Wikipedia as a Standardised Knowledge Base

The need for a unifying knowledge base and taxonomy has been one of the greatest

challenges faced by the AIEd community since its inception. This is, for example,

essential for deploying AIEd systems at a large scale, as these solutions cannot rely

on handcrafted annotations. Such systems will need to understand the universal

structure and direction of knowledge, identify knowledge prerequisites and have an

understanding of the topics covered in educational materials. All of this needs to be

achieved across multiple modalities of knowledge, languages and cultures.

Wikipedia remains the world’s largest and most up-to-date Encyclopedia. It

achieves this i) by using technologies that support humans to contribute informa-

tion and ii) by including crowdsourcing at the heart of every aspect of Wikipedia.

Wikipedia has a suite of innovative technological tools that reduces human effort

significantly. Wikipedia also leverages AI to help scale this human information

management operation, for example, augmenting intelligence in article quality as-

sessment [58], defending contributors from abuse [217] and various other tasks

[218]. We envision multiple opportunities in utilising Wikipedia to create educa-

tional tools that support equitable lifelong learning opportunities for all. Firstly, the

utility of such a global taxonomy has already been shown in social media [219, 117]

and educational [118] recommenders. We demonstrate the viability and usefulness

of using Wikipedia topics and entity linking to personalise educational videos in

chapter 6 and 7 while we incorporate Wikipedia-based features in chapter 4 and

5 opening up context-agnostic engagement modelling to new research directions.

Secondly, having a humanly-intuitive taxonomy in its foundation (as Wikipedia

does) has many benefits as we describe in section 8.2.6. Finally, such grounding

opens up avenues to cross-disciplinary lifelong learning experiences (across time,

language and geography) as the global taxonomy is domain agnostic and convert-

ible to local taxonomies. While the Wikipedia link graph alone is a rich source of
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universal knowledge, there is a portfolio of auxiliary data structures that surround

Wikipedia and provide much richer information. Ontologies such as Wikidata [220]

and DBPedia [221] that are built on top of Wikipedia unlock higher-level informa-

tion that can be further useful. These ontologies provide additional information such

as concept types (e.g. persons, locations, events, etc.) and relationship types (e.g.

sub-topic) that allow both computers and human stakeholders to exploit Wikipedia

knowledge base to improve AI-powered education.

As a universal knowledge base, Wikipedia can become the common taxon-

omy enabling interoperability among different educational standards and materials

that belong to different nations and educational systems. The feasibility of such

an approach has already been proven in other domains. For instance, knowledge

extracted from Wikipedia graph has played a key role in cross-mapping national In-

dustry 4.0 taxonomies created by different European nations [222, 223]. Wikipedia

has shown the potential to become the common ground that connects orthogo-

nally proposed taxonomies together. Similarly in education, many governments

and organisations have invested resources and expertise in developing curricula,

taxonomies, teaching guidelines and learning resources that uplift the quality of ed-

ucation in local contexts. However, this localisation has posed grievous challenges

as cross-compatibility of knowledge is missing [224], leading to hardening the reuse

of learning materials. Using entity linking, there is an opportunity to ground curric-

ula that originate from different systems into a single taxonomy allowing the global

population to discover relevant educational materials that are enriched beyond their

local environments.

Wikipedia, as an open platform, also comes with its weaknesses, such as ex-

posure to social biases and challenges in fact-checking. Being run on social contri-

butions, Wikipedia is exposed to coordinated manipulation. Contributors carrying

competing interests may get into ”edit wars” and impact the correctness of informa-

tion in Wikipedia [225]. However, by acknowledging and identifying such weak-

nesses, we can work towards mitigating these and engage with stakeholders to uplift

the quality of this living taxonomy.
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8.2.4 VLE and PEEK Datasets

As fragment recommendation is a new topic, the number of public datasets is non-

existent. The amount of public datasets in the education domain is small in general.

These realities motivated us to construct novel datasets from VideoLectures.Net

which we have detailed in chapter 4. The VLE datasets are two of the largest pub-

licly available datasets available for population-based engagement modelling while

they contain implicit and explicit labels. The PEEK dataset is also a unique dataset

that captures how informal learners interact with individual fragments of videos

where the videos have been pre-annotated with Wikipedia concepts. The ability

to automatically harvest these datasets from VideoLectures repository means that

the datasets can be extended periodically to create larger and cleaner datasets. Ta-

ble 5.3 already demonstrates that increasing the training data size leads to better-

performing models in the established tasks.

VLE and PEEK datasets are the first of their kind that present user engagement

with video lectures captured and published within an in-the-wild setting. With these

datasets publicly available, the wider research community will be able to use this

dataset that will create learner models and recommendation models that are more

likely to perform in the wild. The datasets will help the community to move away

from datasets that are produced in controlled or synthetic settings and develop so-

lutions that align better with real-world e-learning applications.

8.2.5 Research Questions 1,2 and 3

Chapter 5 in this thesis outlines a series of experiments that address research ques-

tions associated with building context-agnostic/population-based prediction mod-

els. We argue in this thesis that such models can be useful as i) specific quality

instruments (refer section 2.2.1) and ii) remedy for the cold-start problem. Amid

these uses, building population-based engagement prediction models for educa-

tional videos is a relatively new idea that has caught very little attention from the

community. While machine learning-based tools have been developed for quality

management (refer section 2.2.2 and 5.1), the use of analysing population-based

engagement in the context of e-learning has been confined to small-scale studies
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that do not attempt to build scalable engagement prediction models but rather qual-

itatively understand the factors that affect engagement [38]. On the other hand,

this work proposes machine learning models that have satisfactory predictive capa-

bilities while section 7.3.4 empirically demonstrates that such models can be used

to address the cold-start problem common in recommender systems. The results

in chapter 5 help the community to i) build scalable engagement prediction mod-

els and ii) validate some of the best practices recommended for content creation

[38, 39]. There is potential to use a wider set of features to improve the model

performance and validate more of the design recommendations proposed by prior

work. The approaches presented in this chapter present a methodology to invent

and evaluate the suitability of new features and scalable extraction techniques that

can improve context-agnostic engagement prediction. The same methodology can

be repurposed to ignite interest in the context-agnostic prediction of educational re-

sources that belongs to other modalities such as PDFs, web pages and interactive

learning resources. It should be mentioned that the experiments in this thesis are

early-stage attempts that barely scratch the surface. While we only attempt to anal-

yse and identify the user cold start problem at the beginning of the user session, this

problem can occur in many stages of the user session as we use a high-dimensional

KC space (i.e. a learner may encounter a video fragment with no previously encoun-

tered KCs at any point in their session). It is often likely that the user might have to

be evaluated with a video fragment that has new topics. Therefore, the utility of the

context-agnostic model goes beyond what we test in the scope of this thesis.

There is a lot of focus on modelling the learner’s contextual variables in this

thesis. We introduce three new novel model families in chapter 6, namely, i) Tru-

eLearn Interest, ii) TrueLearn Knowledge and iii) TrueLearn Novel. The models

we propose in this chapter to model different factors affecting user engagement fol-

low a similar probabilistic design. That is, they use the same feature space and the

learning mechanism. While we integrate them using ensemble methods in chapter

7, the uniformity of design makes it simple to produce a single probabilistic graph-

ical model incorporating the different models in the future. For example, modelling
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the interplay between knowledge and interest is much simpler in this scenario than

having factor graphs that work with variable sets and message-passing mechanisms

that are significantly different from each other.

The difference in results obtained in chapter 6 depicts how the different mod-

els capturing the different factors of the learner behave very differently (e.g. some

models exploit recall while others exploit precision). The results in table 6.3 clearly

show how TrueLearn Interest demonstrates higher recall than TrueLearn Knowl-

edge as the interest assumption treats all viewed video fragments as positive signals

for interest while the knowledge model is more conservative in treating signals as

positive. This in turn makes the TrueLearn Knowledge model more precise and

accurate. When incorporating the novelty assumption, which tolerates items that

are marginally difficult, the model predicts positive in cases TrueLearn Knowledge

would not. This allows TrueLearn Novel to retain some accuracy and precision

from Knowledge assumption while increasing recall. The hypotheses we formu-

late to develop the factor graphs are consistently reflected in the change of metrics.

However, it should be noted that a better F1-Score is not always the better answer.

There may be use cases where being more accurate and precise is warranted. In such

as scenario, the more conservative model, TrueLearn Knowledge, may be more suit-

able to the application rather than the TrueLearn Novel model which has a superior

F1-Score due to higher recall.

The diversity of the models we propose in chapter 6 brings a strong rationale

to combine the model predictions coming from different hypotheses together. In

chapter 7, we hypothesise that the influence of a learner’s interest and knowledge

state over their engagement with content varies over time. This would motivate

us to weigh the models differently through the learner session. We use a meta-

learner (that learns to weight the models from data) to facilitate this hypothesis

while our results show that this approach is successful. When incorporating the

context-agnostic model into the ensemble, the objective is to defend against data

scarcity. Data scarcity is a condition that diminishes over time when historic la-

bels accumulate. Therefore, switching [152] is a sensible method in the TrueLearn
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PINK experiments. The overall results show that the combining of the different

models improves results over the compared baselines. The accuracy of the mod-

els improves significantly by pushing precision up. This is the desired effect as

recommenders should also learn to detect less engaging items as much as, more

engaging ones in order to rank them. Once again, there may be applications where

the recall is more important. In a situation like that, a TrueLearn model in isolation

(TrueLearn Interest, Knowledge or Novel) may be the more suitable solution con-

trary to the ensemble model. In conclusion, the evolution of different TrueLearn

models through chapters 6 and 7 does not mean that the final model presented is

the silver bullet that is suitable for all educational use applications. Models like

TrueLearn Interest and TrueLearn Novel are more suitable for applications that de-

mand high recall whereas alternatives like TrueLearn Knowledge and INK may suit

better for different applications. All the different models presented in this thesis

have value in different scenarios. Additionally, even the naive baselines in 6 such as

persistence (capturing the fact that a learner is more likely to engage across multiple

fragments of the same video occurring one after the other) and majority (capturing

the probability to engage of individual learners as a prior) can be combined with the

TrueLearn models to make them richer although these models do not have the ca-

pability to rank videos by themselves. The combining approaches proposed in this

thesis allow a large set of such models to be merged together to make predictions.

This work is a good example demonstrating to the research community that diverse

models capturing different phenomena that play a role in learner engagement can

use to combined together, even in computationally challenging scenarios like online

learning settings.

Our results also suggest that the population-based models can mitigate the

cold-start problem. However, there is a lot of room to experiment with more com-

plex model families such as deep learning models while utilising more complex

features. We have merely proposed a proof-of-concept of using Wikipedia-based

features that has a lot of room for improvement. Based on the strengths observed in

the switching approach, in terms of combining the models together, other ensemble
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methods such as boosting (that puts more emphasis on the mistaken events when

learning) or reinforcement learning the algorithms that can change policies in real

time [226] can be tried.

8.2.6 Humanly Intuitive Representation

Humanly-intuitive features are critical to having explainable models that support

human-friendly explanations [227]. The humanly intuitive features that are included

in the proposed datasets (outlined in table 4.1 and 4.5 in chapter 4) allow human ex-

perts to diagnose and scrutinise the models built on top of them. Model families

that utilise these features in a humanly-intuitive way (defined as interpretable mod-

els [227]) make it simpler to create humanly friendly models that can be understood

easily. Otherwise, a post hoc technique needs to be devised to create humanly-

intuitive explanations (defined as explainable models [227]). The models proposed

in this thesis support human intuitiveness to various degrees. The context-agnostic

models proposed in chapter 5 use both interpretable and explainable models where

the more complex Random Forest model (which is an explainable model) best per-

forming. As human-intuitive features are used in the experiments, a post hoc ex-

planation technique such as SHAP (as per section 5.4.3) can be used to understand

the model. Accordingly, the association between the lecture length and normalised

engagement is explainable. In the eyes of policymakers and scientists, such trans-

parency can serve as a powerful diagnostic tool that will allow scrutinising the

model assumptions and incorporating other non-technical features such as explain-

ability, accountability and fairness that are essential for a global-scale educational

recommender that can shape the future of the broader world population.

TrueLearn models proposed in chapter 6 and 7 build a user state that main-

tains a set of Gaussian variables for each KC the learner encounters. The mean of

each Gaussian can be used to compare if the learner has more skill in that KC in

comparison to another KC in their learner state representation. The variance rep-

resents the degree of uncertainty of the mean estimate. This representation can be

used to build a knowledge/interest profile of the learner that can be visualised us-

ing an open learner model interface [228]. Such humanly-intuitive learner models
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have proven to be key to promoting self-reflection and meta-cognition in learners

[229]. Such expressive models also pave a pathway to facilitating active thinking

and self-regulated learning [230] which are critical triggers for success in an in-

formal, lifelong e-learning scenario. Therefore, having TrueLearn models behind

platforms such as X5Learn supported with explanations provided through Content

Flow Bar would give human learners more control over why they should take rec-

ommendations from an intelligent recommender seriously.

Human intuitiveness goes far beyond presenting insights to the learner. The

presentation can be further extended to a two-way communication channel between

the human learner and the AI system. Users could theoretically check the latent

variables of TrueLearn models to understand what the model believes about them

encouraging the users to intervene and change the model’s perception (e.g. by cor-

recting and repositioning skill/interest parameters for different KCs). The same is

applicable to controlling the ensemble of hypotheses that formulate the final predic-

tion, as it gives the user agency to decide what drives their recommender system.

For instance, the learner could decide to weigh their interest model more than the

knowledge model, depending on their immediate needs. In the hands of a teacher,

similar humanly intuitive recommendations would reduce the time and energy they

would need to spend on discovering the relevant resources that should be shared

with their students. In summary, the transparent representations allow for the devel-

opment of different levels of human-in-the-loop AI within the recommender [231]

supporting different stakeholders/practitioners in the education domain.

8.3 Opportunities and Limitations

The VLE datasets constructed in chapter 4 and the machine learning-based context-

agnostic models built using these datasets (in chapter 5) bring many opportuni-

ties to the research community interested in building context-agnostic models us-

ing content-related features. The significantly larger (15x than [38]) and more

education-focused (than the contenders [36]) datasets, with the know-how to build

scalable engagement prediction models, will enable the community to use the pro-
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posed tools to improve quality management systems and recommendation models

in large educational video repositories. The larger quantity of examples available in

the datasets may enable us to use more complex model families (e.g. deep learning)

that are likely to lead to better engagement prediction. The Wikipedia-based fea-

tures open up limitless possibilities as many sophisticated feature sets can be built

and tested. Due to the connectivity to Wikipedia, both its content and link structures

can be exploited to invent meaningful, yet interpretable features. A further step can

enable other data structures such as knowledge bases (e.g Wikidata, DBPedia), the

Wikipedia category tree etc. to be used for feature creation. Apart from the main

tasks established in section 5.2.1, the VLE dataset can be used to determine fea-

ture importance [38], clusters of videos [161] and other insights used in creating

decision support systems that can help future content creators to create engaging

educational videos. However, we also need to acknowledge the limitations of build-

ing context-agnostic models with the VLE dataset. We only publish lectures with

more than 5 views to preserve k-anonymity and avoid revealing learner identities

[186]. A regime of additional techniques is used to preserve lecturer anonymity in

order to avoid having unanticipated effects on the lecturer’s reputation by associat-

ing implicit learner engagement values with their content. While such precautions

protect the identities of the stakeholders, these constraints significantly impact the

size of the dataset which can be made public. Given the importance of upholding

ethical values and responsible innovation, this can be considered a fair and neces-

sary compromise. The VLE dataset is largely comprised of Computer Science and

Data Science materials (refer to Figure 4.4) that are all delivered in English. While

this is an opportunity for AI and Computer Science education, results in Figure

5.9 show that comparatively less fruitful results are obtained when working with

non-Computer Science materials. The dataset and its features are also not suitable

for non-English video collections. Amid its size, the dataset still lacks a variety

of materials in the topical and lingual sense. At the first sight, the majority of the

lectures in the VLE dataset come from male presenters, potentially creating a sig-

nificant gender imbalance in the dataset. As pointed out in section 4.3.3, we have
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taken some measures to restrict the feature set to what we believe to be more neutral

features. However, since we do not have access to gender information in the data

collected, it is impossible to test and guarantee that there is zero correlation between

the proposed features in the VLE dataset and negative gender biases. Care should

be taken when enhancing these features and there is room to do more rigorous tests

to understand if any biases are present in the dataset.

As chapter 6 and 7 suggest, the TrueLearn family of personalisation models

brings significant performance gains over the baseline recommendation models by

accounting for different factors that affect learner engagement (as per Figure 2.1).

Chapter 7 further elaborates how popularity, learner interests, novelty and knowl-

edge factors can combine together to generate more accurate and precise engage-

ment predictions while combating the cold-start problem commonly present in rec-

ommender systems. The proposed Bayesian models learn rapidly with a very small

number of events making them data efficient. They also exclusively rely on the indi-

vidual learners’ data making them massively parallelisable and privacy-preserving

by design. In a new age where OERs can be resourced for personalised education at

a global scale, data efficiency, privacy and scalability features which the TrueLearn

family of models possesses make it a strong candidate for ensuring quality educa-

tion while respecting the individual liberties and rights of global citizens. Its re-

liance on Wikification [15] for creating content representations also allows scalable

content annotation, which is pivotal to rapidly including large numbers of newly

created materials to the OER collection keeping it up-to-date. Advancement of the

entity linking models themselves causes the TrueLearn family of models to improve

which is another opportunity. Wikipedia, being multi-lingual, cross-domain (from

sciences to arts) and temporally dynamic (updating its knowledge with time) en-

ables building a content representation that is robust to the evolution of universal

knowledge itself (as described in section 8.2.3). While TrueLearn is developing in

a promising direction, it has limitations that demand attention. While TrueLearn

proves excellent in predicting the engagement of learners, engaging with learning

materials does not explicitly translate into users acquiring new knowledge or attain-
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ing learning gains which is the key objective of learning. While learner engagement

correlates with learning gains [31], explicit question answering is the obvious way

to verify knowledge and it is not a feature of the TrueLearn model at this time.

The immaturity of automatic question generation models partly contributes to the

limitation although promising results are emerging lately [216]. In addition, cur-

rent TrueLearn models assume that the KCs they model are independent of each

other although Wikipedia-based KCs are semantically related [162]. Another gap

in the model assumptions currently modelled is the dynamic factors. Results in table

6.2 demonstrate that the persistence and majority models exhibit competitive per-

formance when predicting engagement with video fragments. While these models

don’t capture the topical dynamics of the learners, they capture an important as-

pect of the video consumption behaviour of users. The models also do not account

for phenomena such as interest decay and forgetting that are part of the learner’s

interest and knowledge states. These are major weaknesses of the current model

assumptions that need to be addressed. While the models proposed in this work are

interpretable and transparent by design (paving the way to communicating with hu-

man users), the presentation layer that would connect the AI system and the human

user is partially complete at the moment. While significant efforts have been made

as part of this thesis to bridge this gap (e.g. novel UI components introduced in

chapter 3), the main parts that are associated with visualising the model representa-

tions/rationalisations to the human learner are under-explored and missing. This can

be viewed as a current limitation of the proposed work that needs to be addressed

within the future developments of this work.

8.4 Final Conclusion

Through this thesis, we develop several methods to model context-agnostic and con-

textual factors that affect learner engagement with video lectures to finally unify the

models together to build a more accurate prediction model. We hypothesise that

a learner model that can capture content-popularity, learner interests, novelty and

knowledge as summarised in section 2.9 is capable of capturing the engagement
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behaviour of learners better. A novel user interface component, Content Flow Bar,

that is incorporated with a new learning platform, X5Learn is developed in chapter 3

along with three datasets that have been constructed and published as artefacts sup-

porting the work in the subsequent chapters. Our user studies showed that the newly

proposed UI component encourages the users to explore the topical contents exten-

sively before making decisions regarding which videos should be explored deeper

when a result set of relevant videos are presented before them. These observations

indicate that the UI component is successful in supporting the learner to manage the

recommendations. Chapter 5 and 6 provide ample evidence of the usefulness of the

datasets published as part of this thesis.

Along with a model to predict population-based engagement of video lectures,

three novel model families, namely, i) TrueLearn Interest, ii) TrueLearn Knowledge

and iii) TrueLearn Novel are proposed in chapter 6 to model different factors affect-

ing learner engagement. The results show that the models can outperform relevant

baseline models while achieving significantly high F1-scores as high as 65.12%.

However, this superiority comes from the different hypotheses exploiting recall on

the test dataset hurting the accuracy and precision of the models. In chapter 7,

we combine the models proposed in the previous chapters together to propose two

additional model families i) TrueLearn INK and ii) TrueLearn PINK. Our experi-

ments aim to answer several research questions such as proving the usefulness of

context-agnostic models in addressing the user-cold start problem. Our experiments

successfully show its relevance while also showing that the combining of models

using meta-learning and switching (a technique to build hybrid recommenders) al-

lows us to improve accuracy up to 78.90% and precision to 64.88% by sacrificing

a small degree of recall bringing the F1-score to 65.29%. In summary, the exper-

imental results indicate that the proposed models can successfully predict learner

engagement in comparison to the baselines. All the models that are proposed in this

thesis capitalise on the human-intuitive design that respects the ethics and data pro-

tection rights of the stakeholders while having the capabilities to scale to a global

population.
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8.4.1 Future Directions

Based on the opportunities and limitations identified in section 8.3, the primary

focus of future work should be on addressing the gaps in the model assumptions.

These improvements are likely to produce a set of graphical models that reflect the

true data generation process closely. Modelling the semantic relatedness between

the different Wikipedia-based KCs will allow the modelling of the knowledge state

better. Using such a signal is also useful when the system encounters new KCs while

related KCs might have been encountered in the past. This will allow smarter and

more informed inference during modelling. As many different metrics that capture

semantic relatedness exist, it might be necessary to empirically investigate which

ones are effective for an educational recommendation system. Having a structural

representation that quantifies how topics are related to each other will also give

TrueLearn capabilities to formulate sensible learning pathways that are essential in

personalised education.

Incorporating short-term temporal phenomena such as interest decay, and at-

tention span and long-term effects such as forgetting will allow modelling the learn-

ers better. A lot of work has been done in psychology to study these phenomena and

such learnings can be used to drive the development of these factors into the model.

Another very important aspect that is critical to learner engagement is learner effort

[134, 72]. Coverage of topics has no correspondence to how difficult these topics

are and how much effort is required from the learner. These factors can be embed-

ded in future iterations of the learner model in a way that we can individualise the

variables to distinct learners. While TrueLearn models allow the personalisation of

educational resources, personalisation can also have risks of snowballing users into

very narrow viewpoints. While the novelty element can address this one aspect,

further investigating how we can optimise TrueLearn models by explicitly account-

ing for risks of personalisation is a future direction that should attract attention to

innovate responsibly.

In addition to these major improvements, components required to visualise the

model parameters to the learners are yet to be developed. How the models can
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be generalised to different modalities (e.g. text documents and interactive learning

resources) is not yet explored. Incorporating other interaction signals going beyond

watch time is also a potential future direction. Encouraging more users to register

with X5Learn learning platform (described in section 3.4) will allow larger-scale

studies to be done in order to assess the success of current and future features of

this work.



Appendix A

Word Tokens for the VLE Datasets

The token sets used in computing different content-based features in the VLE

datasets are outlined below.

Token Description Tokens
Set
conj Conjunctions and, but, or, yet, nor
norm Normalizations -tion, -ment, -ence, -ance
tobe To-be Verbs be, being, was, were, been, are, is
prep Prepositions aboard, about, above, according to, across from, after, against,

alongside, alongside of, along with, amid, among, apart from,
around, aside from, at, away from, back of, because of, before,
behind, below, beneath, beside, besides, between, beyond, but,
by means of, concerning, considering, despite, down, down from,
during, except, except for, excepting for, from among, from be-
tween, from under, in addition to, in behalf of, in front of, in place
of, in regard to, inside of, inside, in spite of, instead of, into, like,
near to, off, on account of, on behalf of, onto, on top of, on, oppo-
site, out of, out, outside, outside of, over to, over, owing to, past,
prior to, regarding, round about, round, since, subsequent to, to-
gether, with, throughout, through, till, toward, under, underneath,
until, unto, up, up to, upon, with, within, without, across, long,
by, of, in, to, near, of, from

auxi Auxiliary Verbs will, shall, cannot, may, need to, would, should, could, might,
must, ought, ought to, can’t, can

pron Pronouns i, me, we, us, you, he, him, she, her, it, they, them, thou, thee, ye,
myself, yourself, himself, herself, itself, ourselves, yourselves,
themselves, oneself, my, mine, his, hers, yours, ours, theirs, its,
our, that, their, these, this, those
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Token Description Tokens
Set
sw Stopwords all, show, anyway, fifty, four, go, mill, find, seemed, one, whose,

re, herself, whoever, behind, should, to, only, under, herein, do,
his, get, very, de, none, cannot, every, during, him, did, cry,
beforehand, these, she, thereupon, where, ten, eleven, namely,
besides, are, further, sincere, even, what, please, yet, couldnt́,
enough, above, between, neither, ever, across, thin, we, full,
never, however, here, others, hers, along, fifteen, both, last, many,
whereafter, wherever, against, etc, s, became, whole, otherwise,
among, via, co, afterwards, seems, whatever, alone, moreover,
throughout, from, would, two, been, next, few, much, call, there-
fore, interest, themselves, thr, until, empty, more, fire, latterly,
hereby, else, everywhere, former, those, must, me, myself, this,
bill, will, while, anywhere, nine, can, of, my, whenever, give,
almost, is, thus, it, cant, itself, something, in, ie, if, inc, per-
haps, six, amount, same, wherein, beside, how, several, whereas,
see, may, after, upon, hereupon, such, a, off, whereby, third, i,
well, rather, without, so, the, con, yours, just, less, being, in-
deed, over, move, front, already, through, yourselves, still, its, be-
fore, thence, somewhere, had, except, ours, has, might, thereafter,
then, them, someone, around, thereby, five, they, not, now, nor,
name, always, whither, t, each, become, side, therein, twelve, be-
cause, often, doing, eg, some, back, our, beyond, ourselves, out,
for, bottom, since, forty, per, everything, does, three, either, be,
amongst, whereupon, nowhere, although, found, sixty, anyhow,
by, on, about, anything, theirs, could, put, keep, whence, due,
ltd, hence, onto, or, first, own, seeming, formerly, into, within,
yourself, down, everyone, done, another, thick, your, her, whom,
twenty, top, there, system, least, anyone, their, too, hundred, was,
himself, elsewhere, mostly, that, becoming, nobody, but, some-
how, part, with, than, he, made, whether, up, us, nevertheless,
below, un, were, toward, and, describe, am, mine, an, mean-
while, as, sometime, at, have, seem, any, fill, again, hasnt́, no,
latter, when, detail, also, other, take, which, becomes, yo, to-
wards, though, who, most, eight, amongst, nothing, why, don,
noone, sometimes, together, serious, having, once, hereafter



Appendix B

Validating Knowledge Component

Ranking

We run a preliminary experiment to validate the correctness of KC annotations

obtained via entity linking.

The authors of the Wikifier proposed a linear combination of PageRank and

cosine similarity scores to rank relevant topics for a document [15]. In our work,

we identified the best linear combination using a grid search on training data with

the Multi skill KT model (described in section 6.2.3) and F1 score. The linear com-

bination is used strictly for ranking the most relevant Wikipedia topics. Once the

top topics are identified, only the cosine similarity is used as a proxy for knowl-

edge depth. Cosine similarity, being the inner product of bag-of-words (TF-IDF)

representations of the document and the Wikipedia page of topic (as shown in equa-

tion 4.17), is an intuitive proxy for depth of topic related knowledge covered in a

resource.

Analysing the results Wikifier [15] produces for lectures we hypothesise that

neither PageRank or cosine similarity alone could be used to reliably rank KCs.

This result is clearly shown in Figure 4.4 where the two scores rank very different

topics at the top. PageRank seemed to be very fine-grained and prone to transcript

errors. Cosine similarity, on the other hand, presented very general topics in most

cases, such as ’Science’, ’Data’ or ’Time’. We firstly experimented with a linear

combination of these two and manually validated the superior accuracy obtained
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Table B.1: Top 7 topics for the partitions of a specific lecture before weighted ranking

Part. List of first 7 topics ordered by pagerank
1 Big data, Silicon, Computer science, E-commerce, Mathematics, Gene, Silicon Valley
2 Computer science, Data science, Civil engineering, Decision theory, Terabyte, Science fiction, Run time (program

lifecycle phase)
3 Computer science, Genome, Loss function, Wainwright, Probability distribution, Privacy, Mathematics
4 Loss function, Statistician, Scrapie, Differential privacy, Decision theory, Privacy, Power (statistics)
5 Minimax, Scrapie, Mathematics, Differential privacy, Saddle point, Constrained optimization, Loss function
6 Gradient descent, Convex function, Time complexity, Oracle, Algorithm, Mathematics, Convex combination
7 Differential equation, Computer science, Discrete time and continuous time, Newton (unit), Convex function, Gra-

dient, Function space
8 Differential equation, Newton (unit), Kinetic energy, Polynomial, Geometry, Mathematics, Rate of convergence
9 Differential equation, Discretization, Stiff equation, Discrete time and continuous time, Phase space, Physics, Math-

ematics
10 Stochastic differential equation, Differential equation, Stochastic, Pop music, Mathematics, Science, Inference

(See Table B.1 and B.2). Such a linear combination was also proposed by the au-

thors in [15], however they did not experience any improvement. We then proceed

to test different weights for the linear combination using our proposed version of KT

(Multi skill KT) and the F1-measure. In order to find the linear weights, we exe-

cuted a grid search where values between [0, 1] were assigned to the weights before

training. We concluded that the best results were obtained by weighting PageRank

results by 0.2 and cosine by 0.8 (cosine similarity being previously scaled to be in

the same scale as PageRank).

Table B.2: Top 7 topics for the partitions of the same lecture after weighted ranking

Part. List of first 7 topics ordered by relevance (combination of pagerank and cosine similarity)
1 Big data, Statistics, Data science, Computer, Science, Computer science, Business
2 Statistics, Data, Data science, Science, Computer science, Scalability, Decision-making
3 Statistics, Computer science, Database, Privacy, Computer, Data, Science
4 Database, Differential privacy, Statistics, Data, Privacy, Function (mathematics), Loss function
5 Privacy, Differential privacy, Minimax, Statistics, Data analysis, Data, Mathematical optimization
6 Mathematical optimization, Gradient descent, Algorithm, Gradient, Time complexity, Function (mathematics), Con-

vex function
7 Differential equation, Equation, Gradient, Function (mathematics), Algorithm, Discrete time and continuous time,

Acceleration
8 Equation, Differential equation, Master equation, Derivative, Logarithm, Polynomial, Function (mathematics)
9 Differential equation, Equation, Momentum, Discretization, Stiff equation, Recurrence relation, Symplectic geome-

try
10 Differential equation, Equation, Stochastic differential equation, Control theory, Stochastic, Science, Software
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Adam BlaundefinedEk, Jakub Lokoăundefined, Stefanos Vrochidis, Kai Uwe

Barthel, and Luca Rossetto. Interactive video search tools: A detailed

analysis of the video browser showdown 2015. Multimedia Tools Appl.,

76(4):5539–5571, February 2017.

[165] Stefan Kreitmayer. D6.1 – report of the oer network model and inter-

face design evaluation. https://www.x5gon.org/wp-content/

uploads/2018/12/D6.1-Learner-centric-research.pdf.

Accessed in: 2022-11-02.

[166] Jennifer Williams, Sharon Tam, and Wade Shen. Finding good enough: A

task-based evaluation of query biased summarization for cross-language in-

formation retrieval. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 657–669, Doha,

Qatar, October 2014. Association for Computational Linguistics.

[167] Hyeungshik Jung, Hijung Valentina Shin, and Juho Kim. Dynamicslide: Ex-

ploring the design space of reference-based interaction techniques for slide-

based lecture videos. In Proceedings of the 2018 Workshop on Multimedia

for Accessible Human Computer Interface, MAHCI’18, page 33–41, New

York, NY, USA, 2018. Association for Computing Machinery.

https://www.x5gon.org/wp-content/uploads/2018/12/D6.1-Learner-centric-research.pdf
https://www.x5gon.org/wp-content/uploads/2018/12/D6.1-Learner-centric-research.pdf


Bibliography 232

[168] Kuldeep Yadav, Ankit Gandhi, Arijit Biswas, Kundan Shrivastava, Saurabh

Srivastava, and Om Deshmukh. Vizig: Anchor points based non-linear nav-

igation and summarization in educational videos. In Proceedings of the

21st International Conference on Intelligent User Interfaces, IUI ’16, page

407–418, New York, NY, USA, 2016. Association for Computing Machin-

ery.

[169] Mozilla Developer Network contributors. Htmlmediaelement: seeking

event. https://developer.mozilla.org/en-US/docs/Web/

API/HTMLMediaElement/seeking_event. Accessed: 2021-01-03.

[170] Patrick W Jordan, Bruce Thomas, Ian Lyall McClelland, and Bernard Weerd-

meester. Usability evaluation in industry. CRC Press, 1996.

[171] Virginia Braun and Victoria Clarke. Using thematic analysis in psychology.

Qualitative research in psychology, 3(2):77–101, 2006.

[172] Yiqun Liu, Ye Chen, Jinhui Tang, Jiashen Sun, Min Zhang, Shaoping Ma,

and Xuan Zhu. Different users, different opinions: Predicting search sat-

isfaction with mouse movement information. In Proceedings of the 38th

International ACM SIGIR Conference on Research and Development in In-

formation Retrieval, SIGIR ’15, page 493–502, New York, NY, USA, 2015.

Association for Computing Machinery.

[173] Leif Azzopardi, Paul Thomas, and Nick Craswell. Measuring the utility of

search engine result pages: An information foraging based measure. In The

41st International ACM SIGIR Conference on Research and Development

in Information Retrieval, SIGIR ’18, page 605–614, New York, NY, USA,

2018. Association for Computing Machinery.

[174] Manasa Rath, Souvick Ghosh, and Chirag Shah. Exploring online and offline

search behavior based on the varying task complexity. In Proceedings of the

2018 Conference on Human Information Interaction and Retrieval, CHIIR

https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/seeking_event
https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/seeking_event


Bibliography 233

’18, page 285–288, New York, NY, USA, 2018. Association for Computing

Machinery.

[175] Fan Zhang, Jiaxin Mao, Yiqun Liu, Xiaohui Xie, Weizhi Ma, Min Zhang, and

Shaoping Ma. Models versus satisfaction: Towards a better understanding of

evaluation metrics. In Proceedings of the 43rd International ACM SIGIR

Conference on Research and Development in Information Retrieval, page

379–388, New York, NY, USA, 2020. Association for Computing Machinery.

[176] Alfan Farizki Wicaksono, Alistair Moffat, and Justin Zobel. Modeling user

actions in job search. In Leif Azzopardi, Benno Stein, Norbert Fuhr, Philipp

Mayr, Claudia Hauff, and Djoerd Hiemstra, editors, Advances in Information

Retrieval, pages 652–664, Cham, 2019. Springer International Publishing.

[177] Xing Yi, Liangjie Hong, Erheng Zhong, Nanthan Nan Liu, and Suju Ra-

jan. Beyond clicks: Dwell time for personalization. In Proceedings of the

8th ACM Conference on Recommender Systems, RecSys ’14, page 113–120,

New York, NY, USA, 2014. Association for Computing Machinery.

[178] William Jay Conover. Practical nonparametric statistics, volume 350. John

Wiley & Sons, 1998.

[179] X5GON. X5gon discovery. https://discovery.x5gon.org/,

2019. Accessed: 2020-11-23.
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