
Learning to Search in Reinforcement
Learning

Ioannis Antonoglou

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

CoMPLEX

University College London

March 7, 2023

2

I, Ioannis Antonoglou, confirm that the work presented in this thesis is my

own. Where information has been derived from other sources, I confirm that this

has been indicated in the work.

Abstract

In this thesis, we investigate the use of search based algorithms with deep neural

networks to tackle a wide range of problems ranging from board games to video

games and beyond. Drawing inspiration from AlphaGo, the first computer program

to achieve superhuman performance in the game of Go, we developed a new al-

gorithm AlphaZero. AlphaZero is a general reinforcement learning algorithm that

combines deep neural networks with a Monte Carlo Tree search for planning and

learning. Starting completely from scratch, without any prior human knowledge

beyond the basic rules of the game, AlphaZero managed to achieve superhuman

performance in Go, chess and shogi. Subsequently, building upon the success of Al-

phaZero, we investigated ways to extend our methods to problems in which the rules

are not known or cannot be hand-coded. This line of work led to the development

of MuZero, a model-based reinforcement learning agent that builds a deterministic

internal model of the world and uses it to construct plans in its imagination. We

applied our method to Go, chess, shogi and the classic Atari suite of video-games,

achieving superhuman performance. MuZero is the first RL algorithm to master

a variety of both canonical challenges for high performance planning and visu-

ally complex problems using the same principles. Finally, we describe Stochastic

MuZero, a general agent that extends the applicability of MuZero to highly stochas-

tic environments. We show that our method achieves superhuman performance in

stochastic domains such as backgammon and the classic game of 2048 while match-

ing the performance of MuZero in deterministic ones like Go.

Impact Statement

Artificial intelligence (AI) studies the problem of constructing intelligent agents

that can reason and make optimal decisions in an unbounded range of tasks. Such

systems can have an unprecedented impact on our societies and bring immense ben-

efits to humanity. They can aid us at tackling some of the toughest challenges we

face, from global warming and economic inequality to the widespread availabil-

ity of healthcare and education. They can also serve a more esoteric human need,

that of understanding the inner workings of our own minds. This thesis attempts to

contribute towards the advancement of the field by proposing three novel general

algorithms which have achieved unrivaled superhuman performance in a series of

complex tasks that have been heavily used in the field of AI to measure the capa-

bilities of intelligent systems. The first algorithm, AlphaZero, conclusively demon-

strated the power of deep learning and tree search in computer board game research

and has already had an immense impact on the field. MuZero has illustrated how AI

systems can build internal world models, purely by interacting with their environ-

ment, and effectively employ them for planning in exceedingly complex domains.

This ability has been long considered as essential for the development of intelligent

systems, but had failed to materialize in practice. Stochastic MuZero showed how

such systems can remain resilient in the face of high levels of stochasticity present

in the environment dynamics.

At the same time, the generality of these approaches makes them applicable to

a wide range of scientific and commercial problems. Various scientific communities

in chemistry [105], quantum computing [30] and optimization [73] have already

adopted AlphaZero to accelerate progress in their respective fields. MuZero has

Impact Statement 5

already been incorporated into Tesla’s self-driving system [126], a real world AI

application with tremendous potential for the future of transportation. Moreover, it

has been applied to the problem of video compression at an internet scale within

YouTube’s custom compression algorithm [80].

This line of work has opened up new research avenues for the development of

better algorithms. In the computer board games research, the current best Go and

chess engines are based on the AlphaZero algorithm [91]. It has sparked a renewed

interest in model-based methods and has led to the emergence of new powerful

agents in the fields of optimal control [59], imitation learning [104] and reinforce-

ment learning [31, 52]. Furthermore, it has emphasized the power of systems that

operate based on first principles - such as learning and planning - through the accu-

mulation of experiential data, and how by minimizing the prior knowledge encoded

by human designers and by exploiting the ever growing availability of computa-

tional resources, we can unshackle our agents from the limitations of human cogni-

tion, and arrive at better solutions.

Acknowledgements

Much of the work presented in this document has been the result of my collaboration

with many people within Deepmind. My supervisor David Silver has played a criti-

cal role in all of the work presented here. He has always provided me with guidance,

inspiration and invaluable insight. I want to also thank my secondary supervisor

Thore Graepel for his constructive suggestions and guidance. The AlphaZero algo-

rithm presented in this work was designed in collaboration with David Silver, Julian

Schrittwieser, Thomas Hubert, Karen Simonyan and Arthur Guez. David Silver led

the project and designed the original reinforcement learning algorithm. Karen Si-

monyan proposed the idea of using a single network for representing the value and

policy in AlphaZero. The software used both in AlphaZero and MuZero was imple-

mented in collaboration with Julian Schrittwieser and Thomas Hubert. The initial

version of the implicit model in MuZero was designed by Julian Schrittwieser. I

developed the Stochastic MuZero algorithm and software with invaluable help and

guidance provided by Julian Schrittwieser, Sherjil Ozair and Thomas Hubert.

Acknowledgements 7

To my beloved mother who never saw this adventure to the end.

Contents

1 Introduction 27

1.1 Learning and Planning . 27

1.2 Reinforcement Learning . 28

1.2.1 Value function . 28

1.2.2 Policy . 28

1.2.3 Transition model . 29

1.3 Deep Learning in Reinforcement Learning 29

1.4 Tree-based planning . 30

1.5 From AlphaGo to Stochastic MuZero 30

1.5.1 Limitations of AlphaGo 31

1.5.2 AlphaZero . 32

1.5.3 MuZero . 34

1.5.4 Stochastic MuZero . 35

1.6 Overview . 35

I Prior Work 37

2 Reinforcement Learning 38

2.1 Markov Decision Processes . 38

2.2 Policies and Value functions . 39

2.3 Value-Based methods . 40

2.3.1 Monte Carlo Methods . 40

2.3.2 Temporal Difference Learning 41

Contents 9

2.4 Policy Gradient methods . 42

2.5 Model-Based methods . 43

2.5.1 Model learning . 43

2.5.2 Planning . 45

2.6 Search . 46

2.6.1 Heuristic Search . 46

2.6.2 Monte Carlo Tree Search 47

3 Games for Reinforcement Learning 51

3.1 Board games . 51

3.1.1 Go . 51

3.1.2 Chess . 52

3.1.3 Shogi . 54

3.1.4 Backgammon . 54

3.2 Video games . 55

3.2.1 Atari . 56

3.2.2 2048 . 57

4 AlphaGo 59

4.1 Introduction . 59

4.2 Algorithm . 60

4.2.1 Networks . 60

4.2.2 Tree Search . 61

4.3 Limitations . 63

II Tree Search Planning with Deep Networks 64

5 AlphaZero 65

5.1 Introduction . 66

5.2 Algorithm . 67

5.2.1 Network . 67

Contents 10

5.2.2 Search . 67

5.2.3 Self-play . 68

5.2.4 Training . 70

5.3 Experiments . 70

5.3.1 AlphaGo Zero . 71

5.3.2 Results . 79

5.3.3 Ablations . 83

5.4 Conclusions . 85

6 MuZero 86

6.1 Introduction . 86

6.2 Algorithm . 89

6.2.1 Model . 89

6.2.2 Search . 91

6.2.3 Self-play . 92

6.2.4 Training . 92

6.2.5 Reanalyze . 93

6.3 Experiments . 93

6.3.1 Results . 93

6.3.2 Ablations . 96

6.4 Conclusions . 99

7 Stochastic MuZero 100

7.1 Introduction . 100

7.2 Algorithm . 101

7.2.1 Model . 101

7.2.2 Search . 105

7.2.3 Training . 106

7.3 Experiments . 106

7.3.1 Results . 106

7.3.2 Reproducibility . 109

Contents 11

7.3.3 Ablations . 111

7.4 Conclusions . 112

8 Conclusions 113

8.1 Open Problems in Learning and Planning 113

8.2 The promise of Learning and Planning 114

A AlphaZero Appendix 116

A.1 Domain knowledge in AlphaZero 116

A.2 Experimental Setup . 117

A.2.1 Network Input Representation 117

A.2.2 Network Architecture . 119

A.2.3 Configuration . 120

A.2.4 Opponents . 120

A.2.5 Match conditions . 121

A.2.6 Elo ratings . 122

A.3 Chess Openings . 123

B MuZero Appendix 125

B.1 Hyperparameters . 125

B.2 Data Generation . 125

B.3 Network Input . 126

B.3.1 Representation Function 126

B.3.2 Dynamics Function . 127

B.4 Network Architecture . 127

B.5 Training . 129

B.6 MuZero Equations . 130

Bibliography 132

List of Figures

2.1 A Monte-Carlo Tree Search simulation. Each simulation is com-

prised of four phases: selection, expansion, rollout and backup.

During the selection phase the tree is traversed starting from the

root node until a leaf edge is reached. The edges inside the tree

are selected by computing the pUCT [99] formula. In the expan-

sion phase a new node along with all its edges is added to the tree.

A value estimate for the newly added node is computed during the

rollout phase, by running games of selfplay starting at the current

position until the end of the game and selecting actions using a roll-

out policy πrollout . Finally, the statistics of the affected sub-tree are

adjusted based on the value of the new node. 49

4.1 The policy and value networks of AlphaGo A The policy network

of AlphaGo receives a board position s as input and generates a

distribution over possible actions. B The value network of AlphaGo

evaluates a board position s and returns the expected game outcome

for the current player. 62

List of Figures 13

5.1 Monte-Carlo tree search in AlphaZero a During the selection

phase, starting from the root node, the tree is traversed by select-

ing edges using the pUCT formula [99] (see 2.6.2) until a leaf node

is reached. The pUCT formula combines the current value esti-

mate for the edge Q with an exploration bonus term U which de-

pends on the stored prior probability P and the visit count N of

the edge. b At the expansion phase, a new node is added to the

tree and the associated position s is evaluated by the neural net-

work (P(s, ·),V (s)) = fθ (s). c At the end of each simulation, the

value estimates of the tree edges are updated to track the mean of all

evaluations V in their corresponding subtree. d Once the search is

complete, search probabilities π are returned, proportional to N1/τ

, where N is the visit count of each move from the root state and τ

is a parameter controlling temperature. 68

5.2 Self-play reinforcement learning in AlphaZero a AlphaZero gen-

erates a game of selfplay by executing a MCTS search at each step

using the latest neural network fθ . The actions are selected based

on the search probabilities produced by the search. b AlphaZero’s

neural network takes the current board position s as an input and

outputs a vector p of move probabilities and a scalar value v which

represents the probability of the current player winning the game

starting at position s. The neural network parameters θ are updated

so as to maximise the similarity of the policy vector p to the search

probabilities πMCT S , and to minimise the error between the value

prediction v and the game outcome. The new parameters are used

in the next iteration of self-play a. 69

List of Figures 14

5.3 Empirical evaluation of AlphaGo Zero a Performance of self-play

reinforcement learning. The plot shows the performance of each

MCTS player πMCT S from each iteration i of reinforcement learn-

ing in AlphaGo Zero. Elo ratings were computed from evaluation

games between different players, using 0.4 seconds of thinking time

per move. For comparison, a similar player trained by supervised

learning from human data, using the KGS data-set, is also shown. b

Prediction accuracy on human professional moves. The plot shows

the accuracy of the neural network fθ , at each iteration of self-play

i, in predicting human professional moves from the GoKifu data-

set. The accuracy measures the percentage of positions in which the

neural network assigns the highest probability to the human move.

The accuracy of a neural network trained by supervised learning is

also shown. c Mean-squared error (MSE) on human professional

game outcomes. The plot shows the MSE of the neural network fθ ,

at each iteration of self-play i, in predicting the outcome of human

professional games from the GoKifu data-set. The MSE is between

the actual outcome z ∈ {−1,+1} and the neural network value v,

scaled by a factor of 1/4 to the range [0,1]. The MSE of a neural

network trained by supervised learning is also shown. 72

List of Figures 15

5.4 Performance of AlphaGo Zero. a Learning curve for AlphaGo

Zero using a larger 40 block residual network over 40 days. The plot

shows the performance of each player πMCT S from each iteration i

of our reinforcement learning algorithm. Elo ratings were computed

from evaluation games between different players, using 0.4 seconds

per search. b Final performance of AlphaGo Zero. AlphaGo Zero

was trained for 40 days using a 40 residual block neural network.

The plot shows the results of a tournament between: AlphaGo Zero,

AlphaGo Master (defeated top human professionals 60-0 in online

games), AlphaGo Lee (defeated Lee Sedol), AlphaGo Lee (defeated

Fan Hui), as well as previous Go programs Crazy Stone, Pachi and

GnuGo. Each program was given 5 seconds of thinking time per

move. AlphaGo Zero and AlphaGo Master played on a single ma-

chine on the Google Cloud; AlphaGo Fan and AlphaGo Lee were

distributed over many machines. The raw neural network from Al-

phaGo Zero is also included, which directly selects the move a with

maximum probability, without using MCTS. Programs were eval-

uated on an Elo scale [27]: a 200 point gap corresponds to a 75%

probability of winning. 74

List of Figures 16

5.5 Comparison of neural network architectures in AlphaGo Zero

and AlphaGo Lee. Comparison of neural network architectures us-

ing either separate (”sep”) or combined policy and value networks

(”dual”), and using either convolutional (”conv”) or residual net-

works (”res”). The combinations ”dual-res” and ”sep-conv” cor-

respond to the neural network architectures used in AlphaGo Zero

and AlphaGo Lee respectively. Each network was trained on a fixed

data-set generated by a previous run of AlphaGo Zero. a Each

trained network was combined with AlphaGo Zero’s search to ob-

tain a different player. Elo ratings were computed from evaluation

games between these different players, using 5 seconds of think-

ing time per move. b Prediction accuracy on human professional

moves (from the GoKifu data-set) for each network architecture. c

Mean-squared error on human professional game outcomes (from

the GoKifu data-set) for each network architecture. 76

List of Figures 17

5.6 Go knowledge learned by AlphaGo Zero. a Five human joseki

(common corner sequences) discovered during AlphaGo Zero train-

ing. The associated timestamps indicate the first time each sequence

occured (taking account of rotation and reflection) during self-play

training. b Five joseki favoured at different stages of self-play train-

ing. Each displayed corner sequence was played with the greatest

frequency, among all corner sequences, during an iteration of self-

play training. The timestamp of that iteration is indicated on the

timeline. At 10 hours a weak corner move was preferred. At 47

hours the 3-3 invasion was most frequently played. This joseki is

also common in human professional play; however AlphaGo Zero

later discovered and preferred a new variation. c The first 80 moves

of three self-play games that were played at different stages of train-

ing, using 1600 simulations (around 0.4s) per search. At 3 hours,

the game focuses greedily on capturing stones, much like a human

beginner. At 19 hours, the game exhibits the fundamentals of life-

and-death, influence and territory. At 70 hours, the game is beau-

tifully balanced, involving multiple battles and a complicated ko

fight, eventually resolving into a half-point win for white. 78

5.7 Training AlphaZero for 700,000 steps. Elo ratings were computed

from games between different players where each player was given

one second per move. (A) Performance of AlphaZero in chess, com-

pared with the 2016 TCEC world-champion program Stockfish. (B)

Performance of AlphaZero in shogi, compared with the 2017 CSA

world-champion program Elmo. (C) Performance of AlphaZero in

Go, compared with AlphaGo Lee and AlphaGo Zero (20 blocks over

3 days). 79

List of Figures 18

5.8 Comparison with specialized programs. (A) Tournament evalu-

ation of AlphaZero in chess, shogi, and Go in matches against re-

spectively Stockfish, Elmo and of AlphaGo Zero that was trained for

3 days. In the top bar, AlphaZero plays white; in the bottom bar Al-

phaZero plays black. Each bar shows the results from AlphaZero’s

perspective: win (‘W’, green), draw (‘D’, grey), loss (‘L’, red). (B)

Scalability of AlphaZero with thinking time, compared to Stockfish

and Elmo. Stockfish and Elmo always receive full time (3 hours

per game plus 15 seconds per move), time for AlphaZero is scaled

down as indicated. (C) Extra evaluations of AlphaZero in chess

against the most recent version of Stockfish at the time of writing,

and against Stockfish with a strong opening book. Extra evalua-

tions of AlphaZero in shogi were carried out against another strong

shogi program Aperyqhapaq at full time controls and against Elmo

under 2017 CSA world championship time controls (10 minutes

per game plus 10 seconds per move). (D) Average result of chess

matches starting from different opening positions: either common

human positions, or the 2016 TCEC world championship opening

positions. Average result of shogi matches starting from common

human positions. CSA world championship games start from the

initial board position. Match conditions are provided in appendix A. 82

5.9 Repeatability of AlphaZero training on the game of chess. The

figure shows 6 separate training runs of 400,000 steps (approxi-

mately 4 hours each). Elo ratings were computed from a tourna-

ment between baseline players and AlphaZero players at different

stages of training. AlphaZero players were given 800 simulations

per move. Similar repeatability was observed in shogi and Go. . . . 83

List of Figures 19

5.10 Learning curves showing the Elo performance during training

in Go. Comparison between AlphaZero, a version of AlphaZero that

exploits knowledge of symmetries in a similar manner to AlphaGo

Zero, and the previously published AlphaGo Zero. AlphaZero gen-

erates approximately 1/8 as many positions per training step, and

therefore uses eight times more wall clock time, than the symmetry-

augmented algorithms. 84

List of Figures 20

1 Planning, acting, and training with a learned model. (A) How

MuZero uses its model to plan. The model consists of three con-

nected components for representation, dynamics and prediction.

Given a previous hidden state sk−1 and a candidate action ak, the

dynamics function g produces an immediate reward rk and a new

hidden state sk. The policy pk and value function vk are computed

from the hidden state sk by a prediction function f . The initial hid-

den state s0 is obtained by passing the past observations (e.g. the Go

board or Atari screen) into a representation function h. (B) How

MuZero acts in the environment. A Monte-Carlo Tree Search is

performed at each timestep t, as described in A. An action at+1 is

sampled from the search policy πt , which is proportional to the visit

count for each action from the root node. The environment receives

the action and generates a new observation ot+1 and reward ut+1.

At the end of the episode the trajectory data is stored into a replay

buffer. (C) How MuZero trains its model. A trajectory is sam-

pled from the replay buffer. For the initial step, the representation

function h receives as input the past observations o1, ...,ot from the

selected trajectory. The model is subsequently unrolled recurrently

for K steps. At each step k, the dynamics function g receives as in-

put the hidden state sk−1 from the previous step and the real action

at+k. The parameters of the representation, dynamics and predic-

tion functions are jointly trained, end-to-end by backpropagation-

through-time, to predict three quantities: the policy pk≈ πt+k, value

function vk ≈ zt+k, and reward rk ≈ ut+k, where zt+k is a sample re-

turn: either the final reward (board games) or n-step return (Atari).

. 90

List of Figures 21

2 Evaluation of MuZero throughout training in chess, shogi, Go

and Atari. The x-axis shows millions of training steps. For chess,

shogi and Go, the y-axis shows Elo rating, established by playing

games against AlphaZero using 800 simulations per move for both

players. MuZero’s Elo is indicated by the blue line, AlphaZero’s Elo

by the horizontal orange line. For Atari, mean (full line) and me-

dian (dashed line) human normalized scores across all 57 games are

shown on the y-axis. The scores for R2D2 [68], (the previous state

of the art in this domain, based on model-free RL) are indicated

by the horizontal orange lines. Performance in Atari was evaluated

using 50 simulations every fourth time-step, and then repeating the

chosen action four times, as in prior work [84]. 94

List of Figures 22

3 Evaluations of MuZero on Go (A), all 57 Atari Games (B) and Ms. Pacman

(C-D). (A) Scaling with search time per move in Go, comparing the learned

model with the ground truth simulator. Both networks were trained at 800 simu-

lations per search, equivalent to 0.1 seconds per search. Remarkably, the learned

model is able to scale well to up to two orders of magnitude longer searches

than seen during training. (B) Scaling of final human normalized mean score in

Atari with the number of simulations per search. The network was trained at 50

simulations per search. Dark line indicates mean score, shaded regions indicate

25th to 75th and 5th to 95th percentiles. The learned model’s performance in-

creases up to 100 simulations per search. Beyond, even when scaling to much

longer searches than during training, the learned model’s performance remains

stable and only decreases slightly. This contrasts with the much better scaling

in Go (A), presumably due to greater model inaccuracy in Atari than Go. (C)

Comparison of MCTS based training with Q-learning in the MuZero framework

on Ms. Pacman, keeping network size and amount of training constant. The state

of the art Q-Learning algorithm R2D2 is shown as a baseline. Our Q-Learning

implementation reaches the same final score as R2D2, but improves slower and

results in much lower final performance compared to MCTS based training. (D)

Different networks trained at different numbers of simulations per move, but all

evaluated at 50 simulations per move. Networks trained with more simulations

per move improve faster, consistent with ablation (B), where the policy improve-

ment is larger when using more simulations per move. Surprisingly, MuZero

can learn effectively even when training with less simulations per move than are

enough to cover all 8 possible actions in Ms. Pacman. 97

List of Figures 23

4 Details of MuZero evaluations (A-B) and policy improvement

ablations (C-D). (A-B) Distribution of evaluation depth in the

search tree for the learned model for the evaluations in Figure 3A-

B. The network was trained over 5 hypothetical steps, as indicated

by the red line. Dark blue line indicates median depth from the root,

dark shaded region shows 25th to 75th percentile, light shaded re-

gion shows 5th to 95th percentile. (C) Policy improvement in Ms.

Pacman - a single network was trained at 50 simulations per search

and is evaluated at different numbers of simulations per search, in-

cluding playing according to the argmax of the raw policy network.

The policy improvement effect of the search over the raw policy

network is clearly visible throughout training. This consistent gap

between the performance with and without search highlights the

policy improvement that MuZero exploits, by continually updating

towards the improved policy, to efficiently progress towards the op-

timal policy. (D) Policy improvement in Go - a single network was

trained at 800 simulations per search and is evaluated at different

numbers of simulations per search. In Go, the playing strength im-

provement from longer searches is much larger than in Ms. Pac-

man and persists throughout training, consistent with our previous

results. This suggests, as might intuitively be expected, that the

benefit of models is greatest in precision planning domains. 98

List of Figures 24

1 Stochastic MuZero. (A) Monte Carlo Tree Search used in Stochas-

tic MuZero, where diamond nodes represent chance nodes and cir-

cular nodes represent decision nodes. During the selection phase

edges are selected by applying the pUCT formula in the case of

decision nodes, and by sampling the prior σ in the case of chance

nodes. (B) Training of stochastic model in Stochastic MuZero. Here

for a given trajectory of length 2 with observations o≤t:t+2, actions

at:t+2, value targets zt:t+2, policy targets πt:t+2 and rewards ut+1:t+K ,

the model is unrolled for 2 steps. During the unroll, the encoder e

receives the observation o≤t+k as an input and generates a chance

code ct+k deterministically. The policy, value and reward outputs of

the model are trained towards the targets πt+k, zt+k and ut+k respec-

tively. The distributions σ k over future codes are trained to predict

the code produced by the encoder. 102

2 Planning in 2048. a) Stochastic MuZero, trained using 100 simula-

tions of planning with a learned stochastic model, matched the per-

formance of AlphaZero, using 100 simulations of a perfect stochas-

tic simulator, while a deterministic learned model (MuZero) per-

formed poorly. b) Evaluation of final agent using different levels of

search. Stochastic MuZero scales well during evaluation to inter-

mediate levels of search (roughly comparable to 3-ply lookahead),

exceeding the playing strength of the state-of-the-art baseline [63].

However, as the number of simulations increases we observe dimin-

ishing returns due to imperfections of the learned model. 107

List of Figures 25

3 Stochastic MuZero in Backgammon. a) Stochastic MuZero,

trained using 1600 simulations of planning with a learned stochas-

tic model, matched the performance of AlphaZero, trained using

1600 simulations of a perfect stochastic simulator, as well as match-

ing the superhuman-level program GNUbg Grandmaster. A deter-

ministic learned model (MuZero) performed poorly. b) Stochastic

MuZero’s model scaled well to large searches, and exceeded the

playing strength of GNUbg Grandmaster when using more than 103

simulations. 108

4 Stochastic MuZero in Go. Comparison of Stochastic MuZero and

MuZero in the game of Go. a) Stochastic MuZero and MuZero when

compared in 9x9 Go. MuZero has a search budget of 200 simu-

lations during training of 800 during evaluation, while Stochastic

MuZero uses 400 simulations during training and 1600 during eval-

uation. The Elo scale was anchored so that the performance of the

final MuZero baseline corresponded to an Elo of 2000. b) Stochas-

tic MuZero and MuZero when compared in 19x19 Go. MuZero has

a search budget of 400 simulations during training of 800 during

evaluation, while Stochastic MuZero uses 800 simulations during

training and 1600 during evaluation. The Elo scale was anchored

so that the performance of the final MuZero baseline corresponded

to an Elo of 2000. 110

5 Stochastic MuZero reproducibility across all domains. We ran

our method Stochastic MuZero in all environments using 9 differ-

ent seeds to measure its robustness to random initialization. We ob-

served that there is minimal variation in the performance of Stochas-

tic MuZero for all different seeds. Due to the computational cost of

each experiment we used a smaller number of training steps for each

experiment. 111

List of Figures 26

6 Average distribution of learned chance outcomes. The average

distribution of learned chance outcomes over all chance nodes after

running Stochastic MuZero at each game for 5 episodes. 112

1 Matches starting from the most popular human openings. Alp-

haZero plays against (A) Stockfish in chess and (B) Elmo in shogi.

In the left bar, AlphaZero plays white, starting from the given posi-

tion; in the right bar AlphaZero plays black. Each bar shows the

results from AlphaZero’s perspective: win (green), draw (grey),

loss (red). The percentage frequency of self-play training games

in which this opening was selected by AlphaZero is plotted against

the duration of training, in hours. 124

1 Equations summarising the MuZero algorithm. Here, φ(x)

refers to the representation of a real number x through a linear com-

bination of its adjacent integers, as described in the Network Archi-

tecture section. 131

Chapter 1

Introduction

This thesis studies the problem of planning and learning in complex environments

for artificial intelligent systems.

1.1 Learning and Planning
The goal of artificial intelligence is to devise algorithms which exhibit intelligent

behaviour. We can define intelligence as the ability for a system to interact with its

environment and make decisions to achieve goals [76]. Two features of paramount

importance for intelligence, as demonstrated by biological systems such as, humans

and animals, are the ability to learn and to plan. Learning is the process by which

a system improves its decision-making behaviour based on previous interactions it

had with its environment. On the other hand, during planning an intelligent system

considers possible future scenarios and adapts its behaviour based on those predic-

tions. Learning and planning are closely related, since both attempt to analyse past

or future experience to improve the decision-making abilities of the system at the

present time.

Given their importance, constructing intelligent systems with learning and planning

capabilities has long been one of the main challenges in the pursuit of artificial in-

telligence. In this work we will present new algorithms which combine learning

and planning to achieve super-human performance in a wide range of complex en-

vironments and will demonstrate how these two processes can bootstrap from each

other. Our methods build upon the latest developments in reinforcement learning,

1.2. Reinforcement Learning 28

deep learning and tree-based planning.

1.2 Reinforcement Learning
Reinforcement learning (RL) is a field of research within artificial intelligence,

which studies the problem of making optimal decisions in complex systems. Under

this formalism, we consider two main subsystems: the agent and the environment.

The environment implements the dynamics of the system and defines the optimality

condition via a scalar reward signal, which is used to either encourage or punish the

behaviour exhibited by the agent. On the other hand, the agent perceives the state of

the environment and makes decisions, with the goal of maximizing the cumulative

reward it receives by the environment. The decisions the agent can make at any state

are described by a set of actions available to it. A simple example of a reinforce-

ment learning problem is that of a robot navigating a room and trying to exit from

it. In that scenario, the robot is the agent that perceives the state of the real world

through its sensors and takes actions by controlling its motors. Subsequently, we

can define a reward signal that gives negative reward for bumping into a wall and a

positive reward for approaching the door. The environment in this simple example

is the real world, the system that produces the reward signal and the sensors on the

robot.

1.2.1 Value function

The goal of an agent is to maximize the cumulative reward it receives from the envi-

ronment. A value function computes the expected cumulative reward that the agent

will receive starting from any state in the environment and following its current de-

cision making behaviour. Given this definition, the reinforcement learning problem

can be formulated as finding the behaviour that corresponds to the maximum value

function.

1.2.2 Policy

A policy is a function used to mathematically describe the decision-making be-

haviour of the agent. The policy examines the current state of the environment

and generates a probability distribution over the possible actions that the agent can

1.3. Deep Learning in Reinforcement Learning 29

make at this state. The optimal policy is the one that leads to the highest cumulative

reward, or equivalently, maximum value function.

1.2.3 Transition model

A transition model is a function that approximates the dynamics of the environment.

It receives the current state of the environment and an action as inputs and produces

the next state and intermediate reward. These models are constructed by the agent

and can be used for planning and learning. By using a transition model the agent can

evaluate and improve its policy without directly interacting with the environment.

1.3 Deep Learning in Reinforcement Learning

Artificial neural networks are biologically inspired computational systems [82],

which represent a class of universal function approximators [56]. They consist of

groups of neurons, each of which is a simple computational node. A neuron re-

ceives a set of scalar inputs, combines them in a linear fashion and applies a non

linear function to the resulting value. Neurons are grouped into layers, where all

neurons in a layer operate on the same inputs. Subsequently, these layers can be

stacked together to produce deeper architectures. In recent years the development

of improved hardware and novel algorithms has led to an explosion in the use of

deep neural networks in a wide range of tasks in artificial intelligence, such as ma-

chine translation [130, 114, 23], image recognition [71, 118, 119], natural language

processing [18], and reinforcement learning [84, 83, 101, 36].

Deep reinforcement learning refers to the study of the intersection of reinforcement

learning and deep neural networks. In deep reinforcement learning neural networks

are used to represent value functions, policies and transition models. This has en-

abled the applicability of reinforcement learning methods to an ever expanding list

of complex domains such as board and video games [122, 124, 84, 36, 83], medicine

[77], scientific discoveries [105, 30] and robotics [94].

1.4. Tree-based planning 30

1.4 Tree-based planning

In the context of reinforcement learning, planning is the process by which an agent

makes use of its internal transition model to evaluate and improve its policy. De-

pending on the task at hand, the agent could have access to a perfect model of the

real environment dynamics or it might need to construct one using the experience it

has collected by interacting with the environment.

Tree-based planning algorithms solve the problem of planning by constructing trees

of possible future trajectories. These methods were first proposed in the context of

game theory [133], in an effort to construct intelligent game-playing agents. To bet-

ter illustrate tree-based planning we can consider the game of chess, where the goal

of the agent is to beat its opponent. Starting from any state in the game, the agent

tries to identify the action which maximizes their chances of winning the game. In

tree based planning the agent constructs a tree by considering all of their actions

and subsequently all of their opponent’s actions repeatedly. Given a tree an agent

can select the action which maximizes their chance of winning by considering all

possible game outcomes. In our chess example an agent can use the minimax [92]

decision rule, which finds the action that maximizes the chance of the player win-

ning conditioned on the fact that their opponent tries to minimize it. However, as

more plies are considered the size of the tree grows exponentially. A number of

practical algorithms to counter the above limitation have been proposed in the lit-

erature [20, 98], which attempt to limit the depth and the breadth of the tree using

pruning heuristics, evaluation functions, and sampling approximations.

1.5 From AlphaGo to Stochastic MuZero

AlphaGo is arguably one of the most successful examples of this new generation

of deep reinforcement learning algorithms. It was the first program to beat a hu-

man professional player in the game of Go. Go is a popular ancient two player

board game, which despite its simple rules has proven extremely challenging for

computer programs to master and it has been considered as a grand challenge in the

field of artificial intelligence [107]. AlphaGo managed to achieve superhuman per-

1.5. From AlphaGo to Stochastic MuZero 31

formance, by leveraging the latest developments in the fields of deep learning and

tree based planning. Specifically, it replaced the heuristic evaluation functions used

by previous approaches [27] with deep neural networks trained via reinforcement

learning, and adapted its tree-based search to effectively plan with them.

Despite its success, AlphaGo utilized domain specific knowledge and data and,

withstanding significant human effort, it could only be applied to the game of Go.

AlphaGo, nonetheless, proposed the main principles upon which a new class of

general algorithms could be built, namely the use of deep neural networks trained

using reinforcement learning techniques and combined with a general tree based

planning algorithm, Monte Carlo Tree Search.

1.5.1 Limitations of AlphaGo

AlphaGo makes use of two neural networks when planning. A value function net-

work which evaluates a Go board position and estimates the probability of winning

for each player, and a policy network which when applied to the same position

recommends a list of promising actions for either player. The policy network was

trained in a supervised learning setting, where millions of human games were pro-

vided as training data, and the network was trained to imitate the behaviour of the

human players. Subsequently, the performance of the network was further improved

through self-play 1. The resulting policy was used to generate new artificial games

which then acted as training data to obtain a value function. During game play, Al-

phaGo combined those two networks with a Monte Carlo tree search and a heuristic

evaluation function, which made use of hand-crafted rollouts 2. Given the above de-

scription we can identify a number of limitations in the AlphaGo algorithm:

• It requires access to expert data. AlphaGo made use of an extended database

of Go games player by human professionals to train its policy network. This

1Self-play is a common practice in reinforcement learning, and it involves training a agent such

that it can beat previous versions of itself.
2A rollout is the process of repeatedly applying a policy starting from a game state until the

end of the game. An evaluation function can be obtained by executing multiple rollouts and then

computing the average outcome, see more in 2.6.2

1.5. From AlphaGo to Stochastic MuZero 32

limits its applicability to domains where abundant expert data are available.

• A number of specialized hand-crafted features were provided as inputs to the

networks used by AlphaGo. This includes statistics and game information

which is not readily available in the simple board representation.

• AlphaGo’s evaluation function combined the value estimates generated by

its value function with the ones computed via hand-crafted rollouts which

encoded a significant amount of prior human knowledge.

• Finally, during planning, AlphaGo had access to a perfect simulator of the

game rules and dynamics. In many real world applications such a simulator

is not available or is too computationally expensive.

As a result, extending the applicability of AlphaGo to new domains requires

solutions which overcome the aforementioned limitations. In the following sections

we will describe methods which remove these restrictions and result in new more

powerful and general agents.

1.5.2 AlphaZero

AlphaZero is a general reinforcement learning algorithm which can be applied to

any domain where a perfect simulator of the rules and dynamics is available. It

follows the same principles as AlphaGo, namely it combines a Monte Carlo Tree

search planning algorithm with deep neural networks. However, AlphaZero takes

the idea of self-play a step further and uses this process to train both its value and

policy networks completely from scratch without the need for any expert data, and

without using any prior human knowledge and heuristics. The main idea is to use

planning to support learning and conversely learning to improve planning. As was

demonstrated by AlphaGo, combining a pre-trained policy and value with a Monte

Carlo Tree Search produces a significantly improved policy. AlphaZero makes use

of this property as a learning mechanism. Starting from randomly initialized net-

works, AlphaZero employs planning to generate an improved policy, which is then

used to generate games through selfplay. The improved policy is then encoded

1.5. From AlphaGo to Stochastic MuZero 33

back into AlphaZero’s networks via supervised learning, where the policy network

is trained to imitate the acting policy and the value network is trained to predict the

observed game outcomes. This process is repeated until convergence. The main

properties of the AlphaZero algorithm are summarized below:

• AlphaZero is trained completely from scratch using reinforcement learning

and selfplay. It does not require access to expert data and it does not assume

any prior human knowledge besides the rules of the game.

• Each position is evaluated solely by the value function and no hand-crafted

domain specific rollouts are used inside the search. The value function was

trained to predict the outcome of millions of games of selfplay.

• The inputs provided to the neural networks of AlphaZero are plain numeric

descriptions of the board state and are not based on expert domain specific

knowledge.

• Due to the above properties, the applicability of AlphaZero is not limited to

a single domain but instead the same algorithm can be applied to different

games without any changes. In the experiments described in this work, Al-

phaZero was tested in the games of Go, chess and shogi where it achieved

superhuman performance while significantly outperforming previous algo-

rithmic approaches.

The generality of AlphaZero has allowed its adoption by numerous research

groups to tackle a wide range of challenging real world problems, such as in chemi-

cal synthesis [105] and quantum computing [30]. However, the scope of AlphaZero

is still limited to environments for which a fast and accurate simulator of the dy-

namics is available both during training and deployment. Finally, the algorithm was

originally only applied to two player zero-sum perfect information board games,

instead of the more standard single player reinforcement learning setting.

1.5. From AlphaGo to Stochastic MuZero 34

1.5.3 MuZero

The promise of reinforcement learning lies within its ability to solve a wide range

of problems, ranging from robotics to artificial personal assistants and beyond. In

most domains, hand-coding the environment dynamics is either impossible or the

resulting simulator is prohibitively expensive in terms of compute, rendering its

use during deployment infeasible. As a result, applying the powerful principles of

planning and learning demonstrated by AlphaZero requires methods that can obtain

approximate models of the environment dynamics based only on the experience

collected by the agent in the course of its interactions with the environment.

Model-based reinforcement learning studies the problem of obtaining models of the

environment dynamics and then using them for planning and learning. Under the

classic instantiation of this paradigm, the agent collects a set of state transitions by

interacting with the environment, and subsequently uses them as training data to

obtain a model of the dynamics. In principle this approach could be combined with

AlphaZero without the need of any other changes to the algorithm. However, there

has been a plethora of previous work demonstrating the limitations of this approach

[66, 78]. The main issues are summarized below:

• Model capacity. In many complex environments learning an accurate model

of the environment dynamics in the observation space can be challenging.

This is the case especially in problems with high dimensionality pixel obser-

vations, which is common in many challenging problems in deep reinforce-

ment learning (Atari [15], DM-Lab [13], OpenAI Gym [17] etc.).

• Compounding errors. Planning requires unrolling the learned model for many

steps into the future. As a result even small errors introduced at each unroll

step can easily accumulate to such a degree as to render the model useless.

• Background noise. In many environments there are features in the observation

space which are irrelevant to the task at hand, but could limit the capacity of

the learned transition model. For example the natural lighting in a robotics

problem is irrelevant to the task itself but it affects the observations the robot

1.6. Overview 35

receives through its cameras.

MuZero addresses the above limitations by modeling only the quantities which

are useful during planning, namely the policy, value and reward functions. This

ensures that the model makes better use of its capacity and that it learns to ignore

any irrelevant background noise.

1.5.4 Stochastic MuZero

Real world environments tend to be messy and hard to model. In many cases the

transition dynamics are affected by factors outside the control of the agent itself.

As a result applying the same action to the same state can lead to radically differ-

ent next states. For example, there are environments that involve explicit stochastic

events such as a dice roll, or events that are perceived as stochastic by the agent

such as the wind conditions in a robotics task or the action selected by a different

agent in a multi-agent setting. MuZero explicitly assumes that the environment dy-

namics are deterministic and are affected only by the actions it selects. However, a

more general and theoretically sound approach should consider a distribution over

possible future events and construct plans accordingly.

In this work, in order to address the above limitation, we propose a new agent

Stochastic MuZero that explicitly models the distribution of possible future events.

It directly extends MuZero to a wide range of new stochastic domains, while match-

ing its performance in deterministic ones. It achieves this by using afterstates, in

the model learning and planning algorithms. An afterstate is an intermediate state

after an action has been applied but before the environment has transitioned to an

actual next state. This way the contributions of the actions selected by the agent and

of the environment stochasticity can be modelled separately.

1.6 Overview
In the first part of this thesis, we provide a survey of the relevant literature review.

• In Chapter 2, we describe the key concepts in the reinforcement learning

framework and we survey the relevant work in model-based reinforcement

learning.

1.6. Overview 36

• in Chapter 3, we provide a short description of AlphaGo, the algorithm which

constituted our main inspiration for developing our new methods.

• in Chapter 4, we examine the environments which were used as testbeds in

this work and we review some notable previous approaches which were used

to tackle them.

In the second part of this work we present our contributions to the field of

model based reinforcement learning. Specifically,

• In Chapter 6, we present AlphaZero, a general reinforcement learning algo-

rithm which we apply to the board games of Go, chess and Shogi.

• In Chapter 7, we introduce MuZero, a general model-based reinforcement

learning algorithm, which extends AlphaZero to single and two player deter-

ministic environments for which we do not assume access to a perfect simu-

lator of the environment dynamics.

• In Chapter 8, we describe Stochastic MuZero which further extends the appli-

cability of the MuZero agent to stochastic environments.

• In Chapter 9, we discuss the conclusions of this work and provide insights

into possible future research directions.

Part I

Prior Work

37

Chapter 2

Reinforcement Learning

Reinforcement learning (RL) studies the problem of optimal decision making in

sequential processes. The RL problem is formulated in terms of an agent interacting

with an environment in discrete time steps. The agent is the entity responsible for

making decisions, while everything else is considered part of the environment. At

each time step t, the agent receives an observation st from the environment and

applies an action at . Subsequently, the environment generates a scalar reward signal

rt and transitions to a new state st+1. The goal of the agent is to select actions in

such a way as to maximize the cumulative reward ∑
∞
t rt , given the history of past

states, actions and rewards ht = {s0,a0,r1,s1,a1 · · ·st} it has observed.

2.1 Markov Decision Processes
All environments in RL are fully described by their transition probabilities

Pr(st+1,rt+1 | ht ,at). Markov Decision Processes (MDPs) constitute a particu-

lar subset of environments, which satisfy the Markov property:

Pr(st+1,rt+1 | ht ,at) = Pr(st+1,rt+1 | st ,at) (2.1)

MDPs have been heavily studied in the field of RL [117] due to their mathematical

simplicity and their wide applicability. We call an MDP fully observable if it pro-

vides its Markov state st as an observation to the agent. On the other hand, partially

observable MDPs do not expose their true state but rather an observation which di-

rectly depends on it. In deterministic MDPs, the transition probability function is

2.2. Policies and Value functions 39

described by a Dirac delta function, where for any given state st and action at the

MDP always transitions to the same state st+1.

2.2 Policies and Value functions
The behaviour of an agent is controlled by its policy π . The policy is a function that

maps each state st ∈ S to a probability distribution over actions a ∈ A:

π(at | st) = Pr(At = at | St = st) (2.2)

The goal of an agent is to find a policy that maximises the accumulated reward

it receives from its environment. We can quantify the performance of a policy using

its corresponding value function. The value function is defined as the expected dis-

counted sum of rewards the agent will receive from the environment, when starting

from any state st and selects actions using its policy π:

V π(st) = Eπ

[
+∞

∑
τ=0

γ
τrt+τ

∣∣∣∣ St = st

]
(2.3)

We can use the value function to compare different policies. A policy π ′ is better

than a policy π , π ′ ≥ π when the value function of π ′ is greater than the one for π

for all states V π ′(st) ≥ V π(st). The policy that achieves the maximum discounted

sum of rewards starting from any state st is called the optimal policy and is denoted

with π∗. In the general case, there can be multiple optimal policies, however, they

all share the same optimal value function V ∗(st).

In many cases, it is useful to consider the action value function Q(st ,at). The

action value function is a value function which is conditioned both on the current

state st and action at :

Qπ(st ,at) = Eπ

[
+∞

∑
τ=0

γ
τrt+τ+1

∣∣∣∣ St = st ,At = at

]
(2.4)

The action-value function represents the expected discounted sum of rewards the

agent will receive if they select an action at at time t and follow the policy thereafter.

From the definition it follows that action-value and value functions are connected

by the following equation:

Qπ(st ,at) = ∑
st+1,rt+1

Pr(st+1,rt+1 | st ,at)
[
rt+1 + γV π(st+1)

]
(2.5)

2.3. Value-Based methods 40

The action value function provides a direct connection between values and

selected actions. This is extremely useful, since finding an optimal action value

function Q∗ allows us to easily obtain an optimal policy π∗ by greedily selecting

actions under the action value function, π∗ = argmaxa Q∗(s,a).

2.3 Value-Based methods
Value-based methods make use of the value function to improve the policy of the

agent. Given a value function V (st) we can obtain an improved policy π ′ by greedily

selecting actions under V (st):

π
′ = argmax

a
∑

st+1,rt+1

Pr(st+1,rt+1 | st ,at)
[
rt+1 + γV π(st+1)

]
(2.6)

If the above process was repeated for a number of steps, by first computing a

value function V corresponding to a policy π and subsequently greedily obtaining a

new policy π ′, the final value function and policy would be optimal [117].

2.3.1 Monte Carlo Methods

According to the definition of the value function, computing it in a closed form re-

quires knowledge of the environment transition dynamics. Monte Carlo methods,

instead, obtain unbiased estimates of the value function using only sampled trajecto-

ries collected by the RL agent. Given an trajectory of real experience with observed

rewards (r0, · · · ,rT) and a discount factor γ ∈ [0,1], the Monte Carlo return estimate

for each state st is given by:

Gt =
T

∑
τ=t

γ
τ−trτ+1 = rt+1 + γrt+1 + · · ·+ γ

T−t−1rT (2.7)

Subsequently, a value function estimate can be computed by averaging multi-

ple such estimates:

V̂ (st) =
1
n ∑

i
G(i)

t (2.8)

The above Monte Carlo estimator is bias free, but it suffers from high variance and

it requires many samples to obtain an accurate estimate of the true value.

2.3. Value-Based methods 41

2.3.2 Temporal Difference Learning

A fundamental property of value functions is that they can be defined recursively

through the Bellman equation [117]. This equation connects the value function of

st with the value function of the subsequent states:

V π(st) = ∑
at∈A

π(at | st) ∑
st+1,rt+1

Pr(st+1,rt+1 | st ,at)
[
rt+1 + γV π(st+1)

]
(2.9)

Computing the value function using the Bellman operator still requires access

to the transition dynamics of the environment. However, we can easily obtain a

Monte Carlo sampled based estimate:

V̂ π(st) =
1
n ∑

i

[
r(i)t + γV π(s(i)t+1)

]
(2.10)

A problem with the above equation is that it assumes access to the true value func-

tion at the future states st+1. In practice, we use our current best estimate of the

value at future states st+1 to obtain a new estimate for the current state st . This is

a common practice in statistics called bootstrapping, which reduces the variance in

the estimates at the expense of introducing bias. In the field of value based RL, this

approach is called Temporal Difference Learning, due to the temporal difference

error (TD-error) which is defined as the difference between the current estimate of

the value V̂ (st) and the one step estimate rt+1 + γV̂ (st+1):

δt = rt+1 + γV̂ (st+1)−V̂ (st) (2.11)

By minimizing the above error for all states in the environment, we can obtain the

true value function [117].

The above one-step TD-error has low variance but high bias, which, in prac-

tice, can significantly slow down learning. We can speed up learning by increasing

the number of steps before bootstrapping at the expense of higher variance in our

estimates. The n-step TD estimates can be computed as follows:

Gn
t = rt+1 + γrt+2 + · · ·+ γ

nV̂ (st+n)

δ
n
t = Gn

t −V̂ (st)
(2.12)

From the above equation, it is obvious that by setting n= T we obtain a Monte Carlo

estimate for the value, while by setting n = 1 we are back to the one-step TD-error.

2.4. Policy Gradient methods 42

This way by varying n we can control the variance bias trade-off in our estimates.

Another way to reduce the variance and have more control over the variance bias

trade-off is to combine our n-step estimates into a single estimate. This approach is

called TD(λ), and it combines all the n-step estimates using a λ ∈ [0,1] parameter

as follows:

Gλ
t = (1−λ)

T

∑
n=1

λ
n−1Gn

t (2.13)

By varying the value of λ , we can compute the one step TD-error for λ = 0 or the

Monte Carlo estimate for λ = T .

2.4 Policy Gradient methods
Policy gradient methods solve the reinforcement learning problem by explicitly rep-

resenting the agent’s policy π(s,a) with a parametric function πθ (s,a) and subse-

quently, optimizing θ to maximize the agent’s average reward per time-step:

J(θ) = ∑
s

dπθ (s)∑
a

πθ (s,a)Ra
s (2.14)

where dπθ (s) denotes the stationary distribution of states of the MDP under

the current policy πθ . In these approaches θ is trained using gradient ascent by

differentiating J(θ) using the policy gradient theorem [117]:

∇θ J(θ) = Eπθ

[
∇θ logπθ (s,a)Qπθ (s,a)

]
(2.15)

Computing the above gradient requires obtaining an estimate of Qπθ . A variety of

approaches have been proposed in the literature for estimating Qπθ . In the simplest

case a Monte Carlo estimate can be used, as proposed in the REINRORCE algo-

rithm [135]. On the other hand, actor-critic methods obtain lower variance estimate

of the value by learning a separate value function (see 2.3). Here, there are two

components, the actor which is responsible for training the policy and the critic

which learns a value for the acting policy. Special care should be taken when the

value function approximation is used to ensure that the critic and actor parameters

are compatible: ∇φ Qπ(s,a) = ∇θ πθ (s,a).

One of the main drawbacks of policy gradient methods is that they suffer from

high variance in the gradient estimation, which makes them less efficient in com-

2.5. Model-Based methods 43

parison to the value-based approaches. This can be ameliorated by introducing a

baseline function b(s) which depends only on the state s, and replacing Qπθ (s,a)

with Qπθ (s,a)− b(s). By setting the baseline to be equal to the value function

V πθ (s), we can minimize the variance of the gradient estimate.

The fact that policy gradient methods can directly optimize a parameterized

policy makes them advantageous in problems with a high dimensional or continuous

action space, or in domains where a stochastic policy is preferable.

2.5 Model-Based methods
As we saw previously, all reinforcement learning environments are described by

their transition probabilities Pr(st+1,rt+1 | ht ,at). Model based methods attempt to

learn an approximate model P̂r(st+1,rt+1 | ht ,at) of the real transition probabilities

and subsequently use it to improve the acting policy π(a,s). From a theoretical

standpoint, model-based methods can be more data efficient and lead to a stronger

overall performance, by leveraging synthetic experience generated by the model in-

stead of having to interact with the real environment. However, learning an accurate

enough model of complex environments can be extremely challenging in practice

[66, 78]. At the same time using synthetic data which are out of distribution can

significantly hinder the policy improvement operators employed by model-based

methods.

2.5.1 Model learning

Model learning considers the problem of learning an approximate model of the tran-

sition probabilities of an environment based on the real experience collected by an

agent. This is an instance of a supervised learning problem where a function of pa-

rameters θ is fitted to the observed data. The recent success of deep neural networks

has lead to their wide adoption for the problem of model learning, since they can

model highly complex environment dynamics and generalize well to unseen data.

In this work we will focus on models represented by deep neural networks.

There are two main categories of models proposed in the literature:

• Observation models, which approximate the environment dynamics at the

2.5. Model-Based methods 44

level of raw observations.

• Agent state models, which approximate the environment dynamics implicitly

in terms of an internal representation of states.

In the following paragraphs, we describe each approach separately.

Observation models [87, 22, 66] operate at the level of raw observations. Given

an observation ot and an action at they return the next observation ot+1 and the

intermediate reward rt . Those models are trained end-to-end by fitting them to a

dataset of observed transitions. Despite their simplicity, these models have a number

of drawbacks:

• High computational cost, especially in the case of high dimensional observa-

tions.

• High error accumulation, since any small errors at the observation prediction

quickly accumulate as the model is unrolled for multiple steps.

• Inefficiencies, since the model capacity can be wasted on background obser-

vation features which are irrelevant to the problem at hand.

The above issues make such models unconducive to planning.

Agent state models [87, 46, 51, 90] attempt to overcome the limitations of obser-

vation models by implicitly learning the environment dynamics. As we saw above,

once a model is trained it is combined with an RL method or a planning algorithm

so as to improve the final acting policy π(s,a). Latent models exploit this fact by

defining a latent space of environment states which can accurately predict only the

quantities which are useful for the policy improvement step. In this framework, the

model is conditioned on the current observation ot and future actions at , · · · ,at+k

and is unrolled for k steps. Subsequently, it is trained to make predictions about re-

wards, values, policies or observations at each timestep based on the current latent

state. This reduces the computational cost of the model since it removes the need

for modelling high dimensional observations, it makes the model robust to error ac-

cumulation by unrolling the model for k steps during training and finally, it focuses

2.5. Model-Based methods 45

the capacity of the model only on features which matter for the policy improvement

step.

A particularly interesting instantiation of latent models focuses on predicting

the value function [121, 113, 38, 37, 39, 87] end-to-end. The main idea of these

methods is to construct an abstract MDP model such that planning in the abstract

MDP is equivalent to planning in the real environment. This equivalence is achieved

by ensuring value equivalence, i.e. that, starting from the same real state, the cu-

mulative reward of a trajectory through the abstract MDP matches the cumulative

reward of a trajectory in the real environment. The predictron [113] introduced

value equivalent models for value prediction. Although the underlying model still

takes the form of an MDP, there is no requirement for its transition model to match

real states in the environment. Instead the MDP model is viewed as a hidden layer of

a deep neural network. The unrolled MDP is trained such that the expected cumula-

tive sum of rewards matches the expected value with respect to the real environment,

e.g. by temporal-difference learning.

Value equivalent models have also been applied to optimising value (with ac-

tions). Value-aware model learning [38, 37] constructs an MDP model, such that

a step of value iteration using the model produces the same outcome as the real

environment. TreeQN [39] learns an abstract MDP model, such that a tree search

over that model (represented by a tree-structured neural network) approximates the

optimal value function. Value iteration networks [121] learn a local MDP model,

such that many steps of value iteration over that model (represented by a convolu-

tional neural network) approximates the optimal value function. Value prediction

networks [87] learn an MDP model grounded in real actions; the unrolled MDP is

trained such that the cumulative sum of rewards, conditioned on the actual sequence

of actions generated by a simple lookahead search, matches the real environment.

2.5.2 Planning

Planning refers to the process of improving the acting policy of the agent using a

model of the environment instead of directly interacting with it. The main idea is to

use simulated experience to estimate and improve the value and policy by evaluating

2.6. Search 46

possible future trajectories starting from a given state s.

Model-based planning In model based planning, the main idea is to use the model

as a substitute for the real environment and apply a reinforcement learning algo-

rithm to find the optimal policy. Subsequently, the resulting policy can be applied

directly to the environment. The performance of the obtained policy is directly

affected by the quality of the trained model. In complex environments, where ob-

taining an accurate model can be an extremely challenging task, such methods can

lead to poor performance. On the other hand, in domains with simple dynamics but

complex optimal policies or value functions, this approach could allow for signifi-

cant improvement in data efficiency.

Sample-based planning In sample-based planning, the model is used to generate

artificial trajectories. These trajectories can then be used to estimate the value func-

tion and improve the acting policy. In this approach, the model is not required

to accurately approximate the true transition probabilities Pr(st+1,rt+1 | ht ,at), but

rather it suffices that it can generate samples that follow the same distribution, for

example using neural network based generative temporal models [46, 45, 44].

In the Dyna [116] paradigm, the synthetic data generated by the model are

combined with real environment trajectories in order to augment the experience of

the agent, speed up its learning and improve its data efficiency.

2.6 Search
Similarly to planning, search methods attempt to improve the policy of the agent by

considering future trajectories starting from the current state s. They achieve this

by constructing a tree of future paths given sequences of possible actions. The goal

of the process is to find the sequence of actions that result in the highest cumulative

reward.

2.6.1 Heuristic Search

Heuristic search is an umbrella term used to describe state space tree-based plan-

ning methods. Given a current state s it is possible to find the optimal sequence of

actions by constructing a tree of all possible future trajectories until the end of the

2.6. Search 47

game. However, this approach scales exponentially with the size of the game and

the number of available actions at each internal node, and it is intractable even for

small domains. Heuristic search methods use heuristics to prune the tree both width

and depth wise. This class of algorithms assume access to an evaluation function,

usually implemented using domain specific heuristics, which provides an estimate

of the value function for each leaf node of the tree. The internal nodes are updated

based on the value of their children using an appropriate backup operator. The eval-

uation function is used to reduce both the depth of the tree, since it provides an

immediate feedback for non-terminal leaves, and its width since the value estimates

can be used to prune uninteresting regions of the search space.

Many examples of popular search algorithms fall into this category such as A∗

[47] search which uses a max backup operator, expectimax with a Bellman backup

operator and alpha-beta [92] with min-max backups.

2.6.2 Monte Carlo Tree Search

Monte Carlo Tree Search(MCTS) is a general search algorithm that iteratively con-

structs a tree of possible future trajectories. The tree consists of nodes which corre-

spond to states s and edges (s,a) which describe state action pairs. Each edge stores

a set of statistics:

P(s,a),N(s,a),Q(s,a) (2.16)

where P(s,a) is a prior probability for the edge, N(s,a) is the total times it was vis-

ited, and Q(s,a) is its current value estimate. In some variants of MCTS, a uniform

prior probability is used, where all possible edges starting at node s are considered

equiprobable. The tree is constructed via a series of simulations, where each one of

them is comprised of four phases selection, expansion, rollout and backup.

Selection During the selection phase the algorithm traverses the tree starting at the

root, until it reaches a leaf node. For each intermediate node the algorithm selects

an edge to traverse using a version of the UCT [69] formula.

a = argmax
a

(Q(s,a)+U(s,a)) (2.17)

The U(s,a) term is an exploration bonus, which depends on the prior P(s,a)

2.6. Search 48

and visit N(s,a) statistics of the edge, and is used to ensure that the search does

not select actions greedily under the current value estimates. Many different

flavours of the UCT formula have been proposed in the literature to solve the above

exploration-exploitation problem [6, 7]. A particularly interesting approach for this

work, is pUCT which was used in the AlphaGo agent[108]. pUCT (eq 2.18) biases

the search to explore edges which seem most promising according to their prior

P(s,a).

U(s,a) = cpuctP(s,a)

√
∑b N(s,b)

1+N(s,a)
(2.18)

The cpuct term is a constant used to control the level of exploration, while the term

∑b N(s,b) is equal to the times the node s was visited.

Expansion The selection phase is terminated when a leaf node slea f has been

reached and an edge (slea f ,a) has been selected. Subsequently, the expansion phase

takes place, where a new node is added to the tree and all its edges are initialized.

Rollout In the rollout phase, a rollout-policy is used to compute an estimate of the

value function of the new node slea f . The estimate is obtained by executing the

rollout-policy starting at the state slea f until the end of the episode and computing

the empirical return. We can increase the accuracy of the estimate and reduce its

variance by executing multiple such rollouts at the expense of a higher computa-

tional cost.

Backup The final phase of a simulation is the backup. During this phase the statis-

tics of each traversed edge are updated using the value estimate of the newly added

node slea f .

Q(s,a) :=
Q̂(s,a)+N(s,a)Q(s,a)

1+N(s,a)

N(s,a) := N(s,a)+1

(2.19)

The term Q̂(s,a) corresponds to the Q estimate of the edge given the value

of the leaf Vlea f . In two-player zero sum games where a discount of 1 is usually

assumed and there is only a terminal win-loss reward this is computed as follows:

2.6. Search 49

Q̂(s,a) =

Vlea f , if Player(s) = Player(slea f)

−Vlea f , otherwise
(2.20)

In the general case of an MDP with rewards r ∈ R and discount γ , the Q̂ is

computed using the n-step returns:

Q̂(s,a) =
l

∑
τ=0

γ
τrτ + γ

lVlea f (2.21)

Where rτ ,τ = 0, · · · l are the intermediate rewards observed while transitioning

from state s to the leaf state slea f and l is the length of this transition.

The MCTS algorithm terminates after a pre-specified number of simulations

have completed. Figure 2.1 illustrates the 4 phases of a MCTS simulation.

Figure 2.1: A Monte-Carlo Tree Search simulation. Each simulation is comprised

of four phases: selection, expansion, rollout and backup. During the selection phase

the tree is traversed starting from the root node until a leaf edge is reached. The

edges inside the tree are selected by computing the pUCT [99] formula. In the

expansion phase a new node along with all its edges is added to the tree. A value

estimate for the newly added node is computed during the rollout phase, by running

games of selfplay starting at the current position until the end of the game and

selecting actions using a rollout policy πrollout . Finally, the statistics of the affected

sub-tree are adjusted based on the value of the new node.

2.6. Search 50

At the end of the search, the algorithm selects the action at the root node which

had the most visits, as its best estimate for the optimal action. MCTS is an any-time

algorithm, meaning that at any time the user has access to its current best estimate

of the optimal action, and it provably converges to the optimal solution [70].

Chapter 3

Games for Reinforcement Learning

3.1 Board games
Board games have been extensively studied in the field of artificial intelligence [134,

10, 131, 72, 122, 19, 106, 20, 57]. Games such as chess or Go have been heavily

used as testbeds for the development of new ideas and have significantly boosted

the progress of the field. There are a number of benefits with the use of such games:

• In contrast to the real world, they are constrained and well defined.

• They are challenging to humans.

• They provide an easy way to measure progress by comparing playing

strengths between methods.

• There is an extended literature of game analysis and past games available.

In this section, we provide a short description of the board games used in this

work, along with a review of notable previous work.

3.1.1 Go

The game of Go is a classic oriental two player board game. The game is played

on a 19x19 grid, however, smaller boards of sizes 13x13 or 9x9 are also commonly

used. The players use colored stones, black for the first and white for the second,

to make their moves on the board. Each player can place their stone on an empty

intersection. The stones cannot be moved after they have been placed, unless they

3.1. Board games 52

are captured by the opponent player. Adjacent stones of the same color are called

blocks and they define the territory of each player. The number of empty intersec-

tions adjacent to a block are called its liberties. A block is captured and taken off

the board when it has zero liberties. The goal of each player is to maximize their

territory on the board. A game ends when both players pass and the winner is the

player with the greatest territory. To account for the advantage of the first (black)

player, the second player (white) receives an extra bonus, known as komi, which is

added to its final territory.

Numerous reinforcement learning approaches have been applied to the game

of Go. RLGO [111] combines planning with a learned value function. It uses a

hybrid regime which integrates a variant of Dyna [112] with an alpha-beta search.

The value function is represented as a linear combination of all possible 3x3 stone

patterns and it was trained via selfplay using temporal difference learning [117]

to predict the final outcome of the game. The final agent achieved weak amateur

strength in 9x9 Go. NeuroGo [34, 33] utilized a neural network to learn a local value

function for each intersection of the board. The network was trained via temporal-

difference learning to predict the probability that a given intersection will be part

of the black player’s territory at the end of the game. NeuroGo made extensive

use of Go specific knowledge which was incorporated in the design of the network

architecture.

The most successful computer Go programs utilize a MCTS search during play.

Prior to AlphaGo, programs such as CrazyStone [27], Pachi [9] and Fuego [35]

combined a MCTS search with a fast rollout policy which was based on handcrafted

features and made use of substantial domain specific expertise, achieving strong

amateur level performance in 19x19 Go.

3.1.2 Chess

The game of chess is the most widely-studied domain in the history of artificial

intelligence and computer chess is as old as computer science itself. Charles Bab-

bage, Alan Turing, Claude Shannon, and John von Neumann devised hardware,

algorithms and theory to analyse and play the game of chess. Chess subsequently

3.1. Board games 53

became a grand challenge task for a generation of artificial intelligence researchers,

culminating in high-performance computer chess programs that play at a super-

human level [20, 57].

There is an extensive literature on the application of reinforcement learning

techniques to the game of chess. GnuChess [40] is an open source chess engine,

used for research purposes, which combines a principal variation search with a

heuristic evaluation function. NeuroChess [127] evaluates positions by a neural net-

work that uses 175 handcrafted input features. It was trained by temporal-difference

learning to predict the final game outcome, and also the expected features after two

moves. NeuroChess won 13% of games against GnuChess using a fixed depth 2

search. Beal and Smith applied temporal-difference learning to estimate the piece

values in chess [11], starting from random values and learning solely by self-play.

KnightCap [10] evaluates positions by a neural network that uses as input frames

an attack table based on knowledge of which squares are attacked or defended by

which pieces. It was trained by a variant of temporal-difference learning, known

as TD(leaf), that updates the leaf value of the principal variation of an alpha-beta

search. KnightCap achieved human master level after training online against strong

opponents with hand-initialized piece-value weights. Meep [131] evaluates posi-

tions by a linear evaluation function based on handcrafted features. It was trained

by another variant of temporal-difference learning, known as TreeStrap, that up-

dates all nodes of an alpha-beta search. Meep defeated human international master

players in 13 out of 15 games, after training by self-play with randomly initialized

weights. Giraffe [72] evaluates positions by a neural network that includes mo-

bility maps and attack and defend maps describing the lowest valued attacker and

defender of each square. It was trained by self-play using TD(leaf), also reaching

a standard of play comparable to international masters. DeepChess [32] trained a

neural network to perform pair-wise evaluations of positions. It was trained by su-

pervised learning from a database of human expert games that was pre-filtered to

avoid capture moves and drawn games. DeepChess reached a strong grandmaster

level of play.

3.1. Board games 54

3.1.3 Shogi

Shogi is a classic two player board game, played on a 9x9 board. It is a Japanese

variant of chess, with the fundamental difference that captured pieces can re-enter

the board and be used by the opponent. There are 8 different types of pieces

in Shogi: pawns (9), lances(2), knights(2), silver generals(2), gold generals(2),

bishop(1), rook(1) and king(1). Each player places their pieces to face their op-

ponent and their rank is visible to both players. Similarly to chess the objective

of the game is to achieve a checkmate. Each piece type moves differently: a king

can move one space in any direction, a gold general can move forward, diagonally

forward, sideways or backwards, a silver general can move forward, diagonally for-

ward, or diagonally backwards, a knight can move over other pieces by taking two

steps forward and then one sideways, a lance can take any number of forward steps,

rooks move orthogonally, a bishop can move diagonally, and finally pawns can only

move one space forward. At any point during play two pieces cannot occupy the

same square. An opponent piece can be captured and be taken off the board by mov-

ing a player’s own piece to its square. Captured pieces can re-enter the board and be

used by the player as its own. Pieces can also be promoted by moving them within

the last three rows of the board from the player’s perspective (promotion zone).

Similarly, to chess, Shogi has been used as a testbed for the development of

new methods in artificial intelligence. Beal and Smith [12] applied their method to

Shogi learning solely by self-play. Kaneko and Hoki [67] trained the weights of a

shogi evaluation function comprising a million features, by learning to select expert

human moves during alpha-beta search. They also performed a large-scale opti-

mization based on minimax search regulated by expert game logs [54]; this formed

part of the Bonanza engine that won the 2013 World Computer Shogi Champi-

onship.

3.1.4 Backgammon

Backgammon is an ancient two player, zero-sum, perfect information, stochastic

board game. The board consists of 24 squares (or points) and each player controls

15 checkers, which can move based on the outcome of a dice roll. The two play-

3.2. Video games 55

ers move their checkers in opposite directions and their goal is to move all their

checkers off the board first. In addition to a simple win, a player can also score a

double (gammon) or a triple (backgammon) win. A gammon is achieved when a

player bears off all their checkers before their opponent manages to bear off any,

while a backgammon when the opponent also has checkers left in the player’s home

quadrant (farthermost quadrant from the opponent’s perspective). Each player can

impede the progress of their opponent through hitting the opponent’s checkers or

blocking their advancement. A hit is achieved when a player’s checker advances to

a position with a single opponent’s checker. Then the opponent’s checker needs to

reenter the board in the player’s home quadrant and no further moves are allowed

to the opponent until that happens. A position is blocked to the opponent when it is

occupied by at least two of the player’s checkers. Each player makes moves based

on the values yielded by rolling two dice. In the case of doubles, aka the two dice

have the same value, the player can play up to 4 moves.

One of the challenges of computer Backgammon is its high branching ratio,

since at each ply there are 21 chance outcomes, which yield positions with an av-

erage of 20 legal moves each, resulting in a branching ratio of several hundred per

ply. In the field of artificial intelligence, backgammon was popularized as a stan-

dard testbed by TD-gammon [122]. TD Gammon evaluated positions by a multi-

layer perceptron, trained by temporal-difference learning to predict the final game

outcome. When its evaluation function was combined with a 3-ply search [124]

TD Gammon surpassed the playing ability of world-champion human players. A

subsequent paper introduced the first version of Monte-Carlo search [125], which

evaluated root positions by the average outcome of n-step simulations. Each simu-

lation was generated by greedy move selection and the nth position was evaluated

by TD Gammon’s neural network.

3.2 Video games

The recent developments in the field of deep neural networks and reinforcement

learning has led to the adoption of video games as the ideal testbeds for the devel-

3.2. Video games 56

opment and evaluation of new algorithms. Video games provide a wide range of

challenging tasks, a well defined reward signal in the form of the game score, and

allow for fast experimentation given their modest computational cost. In this thesis,

we used the Atari suite [15] and the 2048 games to assess the performance of our

methods.

3.2.1 Atari

The Atari suite of environments [15] has been heavily used in the literature for eval-

uating deep reinforcement learning algorithms. Here, we enumerate some notable

approaches that led to significant improvements.

One of the first algorithms which successfully combined deep neural network

with reinforcement learning was DQN [84]. DQN utilizes a deep convolutional net-

work to represent a Q function, which is trained via Q-learning. One of the key

difficulties in combining deep network function approximators with RL losses, is

the non-stationarity of the data distribution induced by the RL loop. DQN over-

comes this problem by employing a transition table which stores a history of past

state-action transitions, and by using a separate network to compute the Q-function

targets. This separate network, called target network, is updated every k training

steps to match the online Q network.

In later work, the performance of deep reinforcement learning algorithm was

greatly benefited by new improvements in three main areas: massive parallelization

of the RL loop, improvements in the architecture of the transition table and finally

better learning rules.

The Gorila [85] framework managed to significantly improve the performance

of the DQN algorithm by massively parallelising both the generation of experience

by the agent and the network updates. In their approach multiple actors generated

experience by interacting with separate instances of the environment, while multiple

learners synchronously updated the network. By using multiple actors, their method

reduced the correlation between the training samples and improved the learning

efficiency of the algorithm. At the same time the use of multiple learners allowed

for the use of larger batch sizes, thus reducing the variance of the gradient updates.

3.2. Video games 57

In [101] a new variant of the transition table was introduced which prioritized

different state-action transitions based on their observed TD error. By increasing

the sampling frequency of transitions with a high TD error, the learning was biased

towards transitions which the Q-network found surprising or novel. This approach

was further extended in [55], where it was applied in a massively parallel setup.

A new highly parallelizable asynchronous actor-critic approach was proposed

in [83] (see 2.4). In this setup, multiple actor-learner pairs asynchronously updated

a shared common network. This method managed to significantly outperform a

DQN baseline without requiring access to any specialized hardware (GPU). A syn-

chronous variant of this method was proposed in [36]. There, the learner updates

were synchronized and efficiently computed on a GPU.

Extending value functions to represent distributions over discounted returns in-

stead of expectations has been another transformative idea that has led to significant

increases in performance [14, 29, 28]. In this approach, the TD-error is replaced

by a distributional equivalent which measures the distance of the current prediction

and the n-step target in the space of distributions. By considering full distribu-

tions instead of expectations, distributional value functions can better account for

the uncertainty in the value estimates, which can be beneficial in terms of learning

efficiency and performance.

3.2.2 2048

The game of 2048 is a single player, perfect information, stochastic puzzle game.

The board is represented by a 4x4 grid with numbered tiles, and at each step the

player has four possible actions which correspond to the four arrow keys (up, down,

right, left). When the player selects an action, all the tiles in the board slide in

the corresponding direction until they reach the end of the board or another tile of

different value. Tiles of the same value are merged together to form a new tile with a

value equal to their sum, and the resulting value is added to the running score of the

game. After each move, a new tile randomly appears in an empty spot on the board

with a value of 2 or 4. The game ends when there are no more moves available to

the player that can alter the board state.

3.2. Video games 58

There is a plethora of previous work [120, 136, 88, 97, 86] on combining rein-

forcement learning and tree search methods for tackling 2048. Despite its simplic-

ity, model-free approaches have traditionally struggled to achieve high performance,

while planning-based approaches have exploited perfect knowledge of the simula-

tor. To date, the best performing agent uses the planning-based approach proposed

in [63]. This method uses an expecti-max tree search over a perfect simulator, com-

bined with domain-specific knowledge and a number of novel algorithmic ideas that

exploited the structure of this specific problem.

Chapter 4

AlphaGo

In this chapter we describe the AlphaGo algorithm, which has acted as the main

source of inspiration for the work presented in this thesis.

4.1 Introduction
The game of Go has been traditionally viewed as a grand challenge in the field of

artificial intelligence [81]. Go is a perfect information zero-sum game, meaning

that all the information about the board state is available to both players and the

rewards for the two players sum to zero r1 = −r2. In that respect, Go is similar to

other classic board games, like chess, which have been studied heavily in the field

of AI (see section 3.1.2). However, Go poses new challenges given its huge search

space and the difficulty of evaluating board positions and moves. While previous

approaches that combined an Alpha-Beta search with a heuristic evaluation function

achieved super-human performance in chess and checkers, they only achieved weak

amateur level playing strength in Go.

AlphaGo[108] was the first computer program to achieve superhuman perfor-

mance in Go. It defeated the European champion Fan Hui in October 2015. In

March 2016, it defeated Lee Sedol, the winner of 18 world championship titles,

by a score of 4-1. AlphaGo combines deep neural networks for evaluating board

positions and moves with a Monte Carlo Tree Search (see section 2.6.2) for plan-

ning. It uses two networks, a policy which given a board position produces a list

of promising moves, and a value network which evaluates a board and estimates

4.2. Algorithm 60

the winning probability from that position for each player. The neural networks

are trained separately by utilizing expert human data and reinforcement learning

techniques. During play, starting from the current board state, MCTS uses the two

networks to prune the search space and explore the most promising game variations.

4.2 Algorithm
In this section we describe the two main components of the AlphaGo algorithm,

namely the neural networks and the MCTS search.

4.2.1 Networks

Policy The policy network, shown in figure 4.1 A, is employed by AlphaGo to

produce a list of promising actions for the board positions encountered during its

search. The network receives a state s as an input and it produces a probability

distribution over actions a, pσ (a | s). This network was trained using supervised

learning to predict expert moves. Specifically, the policy weights were updated

using stochastic gradient ascent to maximize the likelihood of the expert action a

given the board state s:

∆σ ∝ ∇σ pσ (a | s) (4.1)

The training dataset was generated using human games stored in the KGS Go server

[1], and it was comprised of 30 million positions. The policy was represented by

a 13 layers deep convolutional neural network with weights σ and rectifier non-

linearities. The distribution over the legal actions was produced by a final softmax

layer.

Along with the main policy network, AlphaGo employs a second smaller pol-

icy network comprised of a single linear layer, during its search. This network is

called during the rollout phase of the MCTS algorithm (see 2.6.2).

Value AlphaGo uses a value network, shown in figure 4.1 B, to evaluate the board

positions encountered during its search. The value network receives a board state

s as an input and produces a scalar value V̂ π(s) which predicts the expected final

outcome of the game when both players select actions using policy π . Ideally, the

acting policy would correspond to the optimal policy π∗ and the value network

4.2. Algorithm 61

would return an estimate of the optimal value function. However, since π∗ cannot

be obtained, AlphaGo uses a different strong policy πρ trained via selfplay rein-

forcement learning to generate training targets for the value network. This policy

was again represented by a deep neural network and it was initialized to be the same

as the policy network obtained via supervised learning (see 4.2.1). Subsequently,

its playing strength was improved via selfplay using a variant of the REINFORCE

learning algorithm (see 2.4). This improved policy was used to generate a training

dataset of state outcome pairs (s,z). The value network was trained on this dataset

by regression using stochastic gradient descent to minimize the mean squared error

(MSE) between the network output V (s) and the corresponding outcome z. Finally,

it used a similar architecture and input representation as the policy network.

4.2.2 Tree Search

The key idea of AlphaGo is to combine the policy and value networks with a MCTS

planning algorithm. To accommodate this, AlphaGo adapts MCTS to efficiently use

the two networks in the following ways:

• When a new node is added, during the expansion phase, the two networks

receive the corresponding board position and compute the policy and value

for this state.

• During the selection phase the output of the policy network is used in the

pUCT formula (see 2.6.2).

• In the simulation phase the board position is evaluated by combining the out-

put of the value network, with the Monte Carlo return computed using its

rollout policy network.

The use of neural networks inside the search increases the computational demands

of the classic MCTS search. To address this, AlphaGo uses a multi-threaded imple-

mentation of MCTS with asynchronous evaluations and utilizes GPUs for comput-

ing the policy and value networks in parallel. At each point several threads traverse

the tree from the root node until they reach a leaf edge. When a thread reaches

4.2. Algorithm 62

Figure 4.1: The policy and value networks of AlphaGo A The policy network

of AlphaGo receives a board position s as input and generates a distribution over

possible actions. B The value network of AlphaGo evaluates a board position s and

returns the expected game outcome for the current player.

a leaf edge it sends an expansion request to a separate network evaluator which

batches multiple requests together and computes their output on the GPU. This way

AlphaGo can increase the size of its search and simultaneously increase its playing

strength for a given time limit by employing more CPUs and GPUs. The published

version of the algorithm used 40 search threads, 48 CPUs and 8 GPUs, while the

authors also showed that their approach can scale to use multiple machines with

1202 CPUs and 176 GPUs.

4.3. Limitations 63

4.3 Limitations
Despite its success AlphaGo suffers from a number of limitations which hinders its

applicability to problems other than Go.

Human data AlphaGo uses a significant amount of human expert data to train its

policy network. In many interesting real world problems such data are limited or

not available. Furthermore, by utilizing human data, we introduce strong human

biases in the solutions considered and produced by the algorithm, which can hinder

its final performance [49].

Domain specific knowledge AlphaGo makes use of many domain specific heuris-

tics and hand-crafted features. The board representation which is processed by

AlphaGo’s networks includes Go specific statistics which were found to increase

the final accuracy of the policy network, while the simulation-policy uses extra

hand-crafted features which led to a stronger playing strength. Moreover, AlphaGo

exploited the inherent symmetries found in the game of Go during training for data

augmentation. Devising those heuristics involved years of research and required

expertise in the game of Go.

Computational requirements and complexity Arguably, AlphaGo has high com-

putational requirements both during training and deployment. It requires the de-

ployment of different training pipelines which use both supervised and reinforce-

ment learning techniques. Obtaining the final networks involved training a policy

network, then improving its strength via selfplay RL, subsequently, generating a

dataset for the value network and finally learning a value function. During deploy-

ment AlphaGo uses hundreds of CPUs and GPUs. As a result, applying AlphaGo to

a new problem requires both the implementation of multiple pipelines and the use

of a significant amount of computational resources.

Part II

Tree Search Planning with Deep

Networks

64

Chapter 5

AlphaZero

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa,

superhuman proficiency in challenging domains. As we saw, AlphaGo became the

first program to defeat a world champion in the game of Go. The tree search in Al-

phaGo evaluated positions and selected moves using deep neural networks. These

neural networks were trained by supervised learning from human expert moves,

and by reinforcement learning via self-play. In this section we introduce a new al-

gorithm, AlphaZero1, which is based solely on reinforcement learning, without hu-

man data, guidance, or domain knowledge beyond game rules, and which achieves

superhuman performance in many challenging domains. Similarly to AlphaGo, Alp-

haZero combines deep neural networks with a MCTS search, but, unlike AlphaGo,

it trains its policy and value networks completely from scratch via reinforcement

learning from games of selfplay. The policy is trained to predict the move selec-

tion generated by the search and the value is trained to predict the final outcome

in games of self-play. We applied our new method to the highly complex domains

of Go, chess and shogi. Within 24 hours, starting from random play, AlphaZero

achieved a superhuman level of play and convincingly defeated a world champion

program in each case.

1The AlphaZero algorithm was previously published in [110, 109]

5.1. Introduction 66

5.1 Introduction

Artificial intelligence aims to create systems that can match or exceed human per-

formance in a wide range of challenging domains. A natural step in this direction,

which has been studied heavily in the literature, is to design algorithms that learn

to imitate the decisions made by human experts [48, 74, 71, 50]. However, this

dependence on expert data prohibits the application of these methods in many real-

world problems where such data are expensive, unreliable, or simply unavailable. A

different approach is to develop domain specific systems which make use of heuris-

tics and hand-crafted features designed by human experts. Such systems have been

successfully applied to complex domains like chess, exemplified by the defeat of

the human world champion by Deep Blue in 1997 [20]. Nonetheless, these domain

specific solutions fail to generalize to other problems, require a substantial human

effort to be developed and by incorporating significant amounts of human prior

knowledge their final performance is limited by the choices of their designers [49].

Reinforcement learning systems can overcome these limitations by learning from

their own experience through trial and error [100, 122]. This allows them, at least

in principle, to exceed human capabilities and to operate in domains where human

expertise is lacking.

AlphaZero is a general reinforcement learning algorithm inspired by AlphaGo,

the first program to achieve superhuman performance in Go. AlphaGo demonstrated

that the playing strength of a policy and value network can be significantly im-

proved by combining them with a tree search. The main idea of AlphaZero is to

exploit this result in a reinforcement learning setting, by utilizing the tree search

as a powerful policy improvement operator. Starting from randomly initialized

weights, AlphaZero generates games of selfplay by running a tree search at each

step, and then uses the improved search policy and game outcomes as training tar-

gets for the policy and value respectively. Unlike AlphaGo, the policy and value

function are represented by a single network with two output heads, which improve

the representation learning efficiency of the algorithm. The network input represen-

tation simply encodes the board observation of each domain and does not include

5.2. Algorithm 67

any hand-crafted features. Finally, the tree-search implemented by AlphaZero re-

lies only upon its network predictions to evaluate positions and sample moves, and

it does not perform any Monte Carlo simulations.

We applied AlphaZero to the games of Go, chess and shogi, without any ad-

ditional domain knowledge, except the rules of the game, demonstrating that a

general-purpose reinforcement learning algorithm can achieve, tabula rasa, super-

human performance across many challenging domains. In each environment we

evaluated our method against the best performing computer program in a series

of matches. In Go, we compared AlphaZero against AlphaGo, where we consid-

ered two different version of the algorithm: AlphaGo Fan which defeated the Eu-

ropean champion Fan Hui in October 2015, and AlphaGo Lee a subsequent version

which defeated Lee Sedol, the winner of 18 international titles, in March 2016. For

chess, we used Stockfish, the world-champion in the 2016 Top Chess Engine Cham-

pionship (TCEC), to assess the playing strength of AlphaZero. Finally in Shogi,

AlphaZero’s playing strength was evaluated against Elmo, the Computer Shogi As-

sociation world-champion which has previously defeated human champions [5].

5.2 Algorithm

5.2.1 Network

AlphaZero uses a deep neural network fθ with parameters θ , which at each time step

t takes a history of raw board observations st = {o1, ...,ot} as an input and outputs

both move probabilities and a value, p,v = fθ (st). The vector of move probabilities

p represents the probability of selecting each move, pa = Pr(a | st). v is the value

estimate for this position st produced by the network. Intuitively, in board games,

the value estimates the expected game outcome or in other words, the probability of

the current player winning from position st . This neural network combines the roles

of both policy network and value network of AlphaGo into a single architecture.

5.2.2 Search

AlphaZero combines its network with a MCTS search (see 2.6.2). The search uses

the neural network fθ to guide its simulations, as shown in Figure 5.1. During

5.2. Algorithm 68

Figure 5.1: Monte-Carlo tree search in AlphaZero a During the selection phase,

starting from the root node, the tree is traversed by selecting edges using the pUCT

formula [99] (see 2.6.2) until a leaf node is reached. The pUCT formula combines

the current value estimate for the edge Q with an exploration bonus term U which

depends on the stored prior probability P and the visit count N of the edge. b At

the expansion phase, a new node is added to the tree and the associated position

s is evaluated by the neural network (P(s, ·),V (s)) = fθ (s). c At the end of each

simulation, the value estimates of the tree edges are updated to track the mean of all

evaluations V in their corresponding subtree. d Once the search is complete, search

probabilities π are returned, proportional to N1/τ , where N is the visit count of each

move from the root state and τ is a parameter controlling temperature.

the selection phase the move probabilities produced by the network are used in the

pUCT formula to bias the search towards the most promising moves. When a new

node is expanded the corresponding state s is evaluated by the network fθ , and its

outputs are used to initialize the node’s value estimate and its edges. AlphaZero’s

search does not use Monte-Carlo rollouts and depends only on the output of the

network to evaluate positions.

5.2.3 Self-play

AlphaZero generates training data for its network from games of self-play as shown

in figure 5.2 a. At each position s a MCTS search is executed using the latest net-

work fθ and actions are selected based on the policy produced by it. This search-

policy πMCT S is obtained by considering the visit counts of the edges of the root

node, πMCT S(a | s) ∝ N(s,a). Intuitively, since MCTS tends to explore more edges

5.2. Algorithm 69

Figure 5.2: Self-play reinforcement learning in AlphaZero a AlphaZero gener-

ates a game of selfplay by executing a MCTS search at each step using the latest

neural network fθ . The actions are selected based on the search probabilities pro-

duced by the search. b AlphaZero’s neural network takes the current board position

s as an input and outputs a vector p of move probabilities and a scalar value v which

represents the probability of the current player winning the game starting at position

s. The neural network parameters θ are updated so as to maximise the similarity

of the policy vector p to the search probabilities πMCT S , and to minimise the error

between the value prediction v and the game outcome. The new parameters are used

in the next iteration of self-play a.

5.3. Experiments 70

which lead to better play, the visit count is a measure of how promising the search

thinks each edge is. As is common practice, the resulting policy can be adjusted

using a temperature parameter τ πMCT S(a | s) ∝ N(s,a)1/τ , where we use the con-

vention that τ = 0 corresponds to a greedy policy.

For each episode of selfplay the algorithm stores the search-policy and the

outcome of the game. These statistics are then used as targets for the policy and

value network. By running a search at each time-step, AlphaZero ensures that its

search policy is much stronger than the raw network policy it used inside its search.

At the same time, this improved policy generates games of stronger play which are

used to train a better evaluation function. This process of improving the quality of

the network using search and subsequently using the improved network to obtain an

even stronger search policy is iterated multiple times in AlphaZero.

5.2.4 Training

The network uses the experience generated during the previous iterations of self-

play to update its weights θ . At each training step i it samples a batch of tuples

(s,πMCT S,z), where s is the board position, πMCT S the move probabilities generated

by MCTS at this position, and z the outcome of the game from the perspective of

the current player (+1,−1 or 0 if the player won, lost or draw respectively). Subse-

quently, the weights are updated using gradient descent to minimize the following

loss:

p,v = fθ (s) l = (z− v)2−π
MCT Slogp+ c‖θ‖2 (5.1)

The value v is trained to predict the self-play winner z and move probabilities p

are adjusted to match the moves distribution produced by the MCTS search. An

extra L2 regularization loss ‖θ‖2 controlled by a parameter c is added to the loss to

combat overfitting.

5.3 Experiments
To evaluate the performance of our AlphaZero agent we applied it to the games of

Go, chess and shogi. For our initial experiments we focused on the game of Go,

where we made used of the symmetries present in the game during both training

5.3. Experiments 71

and selfplay. This version, called AlphaGo Zero, preceded our final version which

was invariantly applied to all three board games. In this section, we present our

experiments starting with the early AlphaGo Zero work followed by the final results

obtained using the general AlphaZero algorithm.

5.3.1 AlphaGo Zero

AlphaGo Zero exploits the fact that the rules of Go are invariant under rotation

and reflection; this knowledge is utilised both by augmenting the data set during

training to include rotations and reflections of each position, and to sample random

rotations or reflections of the position during MCTS. Moreover, it generates self-

play games using the best player from all previous iterations. After each iteration

of training, the performance of the new player is measured against the best player;

if the new player wins by a margin of 55% then it replace the best player. Those

domain specific adaptations of the AlphaZero algorithm were removed in our later

experiments (see 5.3.2).

Results

AlphaGo Zero was trained, starting from completely randomly initialized weights,

for approximately 3 days. It generated 4.9 million games of selfplay using a search

budget of 1,600 simulations at each time step. It was trained for a total of 700,000

steps using a mini-batch size of 2,048 positions. The neural network was repre-

sented by 20 residual blocks [50] of convolutional layers [75, 42] with batch nor-

malization [60] and rectifier non-linearities (see A.2.2 for a detailed description).

Figure 5.3 shows the performance of AlphaGo Zero during self-play reinforcement

learning, as a function of training time, on an Elo scale [27].

Surprisingly, AlphaGo Zero outperformed AlphaGo Lee after just 36 hours;

for comparison, AlphaGo Lee was trained over several months. After 72 hours,

we evaluated AlphaGo Zero against the exact version of AlphaGo Lee that defeated

Lee Sedol, under the 2 hour time controls and match conditions as were used in

the man-machine match in Seoul. AlphaGo Zero used a single machine with 4

Tensor Processing Units (TPUs)[65], while AlphaGo Lee was distributed over many

5.3. Experiments 72

Figure 5.3: Empirical evaluation of AlphaGo Zero a Performance of self-play re-

inforcement learning. The plot shows the performance of each MCTS player πMCT S

from each iteration i of reinforcement learning in AlphaGo Zero. Elo ratings were

computed from evaluation games between different players, using 0.4 seconds of

thinking time per move. For comparison, a similar player trained by supervised

learning from human data, using the KGS data-set, is also shown. b Prediction ac-

curacy on human professional moves. The plot shows the accuracy of the neural

network fθ , at each iteration of self-play i, in predicting human professional moves

from the GoKifu data-set. The accuracy measures the percentage of positions in

which the neural network assigns the highest probability to the human move. The

accuracy of a neural network trained by supervised learning is also shown. c Mean-

squared error (MSE) on human professional game outcomes. The plot shows the

MSE of the neural network fθ , at each iteration of self-play i, in predicting the out-

come of human professional games from the GoKifu data-set. The MSE is between

the actual outcome z ∈ {−1,+1} and the neural network value v, scaled by a fac-

tor of 1/4 to the range [0,1]. The MSE of a neural network trained by supervised

learning is also shown.

5.3. Experiments 73

machines and used 48 TPUs. AlphaGo Zero defeated AlphaGo Lee by 100 games

to 0.

We subsequently applied our reinforcement learning pipeline to a second in-

stance of AlphaGo Zero using a larger neural network and over a longer duration.

Training again started from completely random behaviour and continued for ap-

proximately 40 days. Over the course of training, 29 million games of self-play

were generated. Parameters were updated from 3.1 million mini-batches of 2,048

positions each. The neural network contained 40 residual blocks. The learning

curve is shown in figure 5.4 a.

Finally, we evaluated the fully trained AlphaGo Zero using an internal tourna-

ment against AlphaGo Fan, AlphaGo Lee, and several previous Go programs. We

also played games against the strongest existing program, AlphaGo Master – a pro-

gram based on the algorithm and architecture presented in this work but utilising

human data and features – which defeated the strongest human professional play-

ers 60–0 in online games in January 2017 [58]. In our evaluation, all programs

were allowed 5 seconds of thinking time per move; AlphaGo Zero and AlphaGo

Master each played on a single machine with 4 TPUs; AlphaGo Fan and AlphaGo

Lee were distributed over 176 GPUs and 48 TPUs respectively. We also included a

player based solely on the raw neural network of AlphaGo Zero; this player simply

selected the move with maximum probability. Figure 5.4 b shows the performance

of each program on an elo scale [27]. The raw neural network, without using any

lookahead, achieved an Elo rating of 3,055. AlphaGo Zero achieved a rating of

5,185, compared to 4,858 for AlphaGo Master, 3,739 for AlphaGo Lee and 3,144

for AlphaGo Fan. AlphaGo Zero was also evaluated in a series of a 100 head to

head matches against AlphaGo Master with 2 hour time controls. AlphaGo Zero

won by 89 games to 11.

Ablations

To assess the merits of self-play reinforcement learning, compared to learning from

human data, we trained a second neural network (using the same architecture) to

predict expert moves in the KGS data-set; this achieved state-of-the-art prediction

5.3. Experiments 74

Figure 5.4: Performance of AlphaGo Zero. a Learning curve for AlphaGo Zero

using a larger 40 block residual network over 40 days. The plot shows the perfor-

mance of each player πMCT S from each iteration i of our reinforcement learning

algorithm. Elo ratings were computed from evaluation games between different

players, using 0.4 seconds per search. b Final performance of AlphaGo Zero. Al-

phaGo Zero was trained for 40 days using a 40 residual block neural network. The

plot shows the results of a tournament between: AlphaGo Zero, AlphaGo Master

(defeated top human professionals 60-0 in online games), AlphaGo Lee (defeated

Lee Sedol), AlphaGo Lee (defeated Fan Hui), as well as previous Go programs

Crazy Stone, Pachi and GnuGo. Each program was given 5 seconds of thinking

time per move. AlphaGo Zero and AlphaGo Master played on a single machine on

the Google Cloud; AlphaGo Fan and AlphaGo Lee were distributed over many ma-

chines. The raw neural network from AlphaGo Zero is also included, which directly

selects the move a with maximum probability, without using MCTS. Programs were

evaluated on an Elo scale [27]: a 200 point gap corresponds to a 75% probability of

winning.

5.3. Experiments 75

KGS train KGS test GoKifu validation

Supervised learning (20 block) 62.0 60.4 54.3

Supervised learning (12 layer) 59.1 55.9 -

Reinforcement learning (20 block) - - 49.0

Reinforcement learning (40 block) - - 51.3

Table 5.1: Move prediction accuracy. Percentage accuracies of move prediction

for neural networks trained by reinforcement learning (i.e. AlphaGo Zero) or su-

pervised learning respectively. For supervised learning, the network was trained

for 3 days on KGS data (amateur games); comparative results are also shown from

Silver[108]. For reinforcement learning, the 20 block network was trained for 3

days and the 40 block network was trained for 40 days. Networks were also evalu-

ated on a validation set based on professional games from the GoKifu data set.

KGS train KGS test GoKifu validation

Supervised learning (20 block) 0.177 0.185 0.207

Supervised learning (12 layer) 0.19 0.37 -

Reinforcement learning (20 block) - - 0.177

Reinforcement learning (40 block) - - 0.180

Table 5.2: Game outcome prediction error. Mean squared error on game outcome

predictions for neural networks trained by reinforcement learning (i.e. AlphaGo

Zero) or supervised learning respectively. For supervised learning, the network was

trained for 3 days on KGS data (amateur games); comparative results are also shown

from [108]. For reinforcement learning, the 20 block network was trained for 3 days

and the 40 block network was trained for 40 days. Networks were also evaluated on

a validation set based on professional games from the GoKifu data set.

5.3. Experiments 76

Figure 5.5: Comparison of neural network architectures in AlphaGo Zero and

AlphaGo Lee. Comparison of neural network architectures using either separate

(”sep”) or combined policy and value networks (”dual”), and using either convo-

lutional (”conv”) or residual networks (”res”). The combinations ”dual-res” and

”sep-conv” correspond to the neural network architectures used in AlphaGo Zero

and AlphaGo Lee respectively. Each network was trained on a fixed data-set gen-

erated by a previous run of AlphaGo Zero. a Each trained network was combined

with AlphaGo Zero’s search to obtain a different player. Elo ratings were computed

from evaluation games between these different players, using 5 seconds of think-

ing time per move. b Prediction accuracy on human professional moves (from the

GoKifu data-set) for each network architecture. c Mean-squared error on human

professional game outcomes (from the GoKifu data-set) for each network architec-

ture.

accuracy compared to prior work [108, 79, 24, 128, 21] as shown in tables 5.1

and 5.2. Supervised learning achieved better initial performance, and was better

at predicting the outcome of human professional games (see figure 5.3). Notably,

although supervised learning achieved higher move prediction accuracy, the self-

learned player performed much better overall, defeating the human-trained player

within the first 24 hours of training. This suggests that AlphaGo Zero may be learn-

ing a strategy that is qualitatively different to human play.

To separate the contributions of architecture and algorithm, we compared the

5.3. Experiments 77

performance of the neural network architecture in AlphaGo Zero with the previous

neural network architecture used in AlphaGo Lee (see figure 5.5). Four neural net-

works were created, using either separate policy and value networks, as in AlphaGo

Lee, or combined policy and value networks, as in AlphaGo Zero; and using either

the convolutional network architecture from AlphaGo Lee or the residual network

architecture from AlphaGo Zero. Each network was trained to minimise the same

loss function (see equation 5.1) using a fixed data-set of self-play games generated

by AlphaGo Zero after 72 hours of self-play training. Using a residual network was

more accurate, achieved lower error, and improved performance in AlphaGo by over

600 Elo. Combining policy and value together into a single network slightly reduced

the move prediction accuracy, but reduced the value error and boosted playing per-

formance in AlphaGo by around another 600 Elo. This is partly due to improved

computational efficiency, but more importantly the dual objective regularises the

network to a common representation that supports multiple use cases.

Knowledge Learned by AlphaGo Zero

AlphaGo Zero discovered a remarkable level of Go knowledge during its self-play

training process. This included fundamental elements of human Go knowledge, and

also non-standard strategies beyond the scope of traditional Go knowledge. Figure

5.6 a shows a timeline indicating when professional joseki (corner sequences) were

discovered; ultimately AlphaGo Zero preferred new joseki variants that were pre-

viously unknown (see figure 5.6 b. Figure 5.6 c shows fast self-play games played

at different stages of training. Tournament length games played at regular intervals

throughout training are shown in the appendix A. AlphaGo Zero rapidly progressed

from entirely random moves towards a sophisticated understanding of Go concepts

including fuseki (opening), tesuji (tactics), life-and-death, ko (repeated board sit-

uations), yose (endgame), capturing races, sente (initiative), shape, influence and

territory, all discovered from first principles. Surprisingly, shicho (ladder capture

sequences that may span the whole board) – one of the first elements of Go knowl-

edge learned by humans – were only understood by AlphaGo Zero much later in

training.

5.3. Experiments 78

Figure 5.6: Go knowledge learned by AlphaGo Zero. a Five human joseki (com-

mon corner sequences) discovered during AlphaGo Zero training. The associated

timestamps indicate the first time each sequence occured (taking account of rotation

and reflection) during self-play training. b Five joseki favoured at different stages

of self-play training. Each displayed corner sequence was played with the great-

est frequency, among all corner sequences, during an iteration of self-play training.

The timestamp of that iteration is indicated on the timeline. At 10 hours a weak cor-

ner move was preferred. At 47 hours the 3-3 invasion was most frequently played.

This joseki is also common in human professional play; however AlphaGo Zero

later discovered and preferred a new variation. c The first 80 moves of three self-

play games that were played at different stages of training, using 1600 simulations

(around 0.4s) per search. At 3 hours, the game focuses greedily on capturing stones,

much like a human beginner. At 19 hours, the game exhibits the fundamentals of

life-and-death, influence and territory. At 70 hours, the game is beautifully bal-

anced, involving multiple battles and a complicated ko fight, eventually resolving

into a half-point win for white.

5.3. Experiments 79

Figure 5.7: Training AlphaZero for 700,000 steps. Elo ratings were computed

from games between different players where each player was given one second per

move. (A) Performance of AlphaZero in chess, compared with the 2016 TCEC

world-champion program Stockfish. (B) Performance of AlphaZero in shogi, com-

pared with the 2017 CSA world-champion program Elmo. (C) Performance of

AlphaZero in Go, compared with AlphaGo Lee and AlphaGo Zero (20 blocks over

3 days).

5.3.2 Results

Given the remarkable performance of our AlphaGo Zero agent, we focused on ex-

tending it to other domains. We removed the domain specific assumptions that

AlphaGo Zero makes regarding the symmetries in the game and we applied our

method to the games of chess, shogi and Go. Our algorithm, AlphaZero, achieved

state-of-the-art performance across all games.

We trained separate instances of AlphaZero for chess, shogi and Go. Figure 5.7

shows the performance of AlphaZero during self-play reinforcement learning, as a

function of training steps, on an Elo [26] scale 2. Training proceeded for 700,000

steps (in mini-batches of 4,096 training positions) starting from randomly initial-

ized parameters. During training only, 5,000 first-generation tensor processing units

(TPUs) [65] were used to generate self-play games, and 16 second-generation TPUs

were used to train the neural networks. Training lasted for approximately 9 hours

in chess, 12 hours in shogi and 13 days in Go (see table 5.3).

In chess, AlphaZero first outperformed Stockfish after just 4 hours (300,000

2The prevalence of draws in high-level chess tends to compress the Elo scale, compared to shogi

or Go.

5.3. Experiments 80

Chess Shogi Go

Mini-batches 700k 700k 700k

Training Time 9h 12h 13d

Training Games 44 million 24 million 140 million

Thinking Time 800 sims 800 sims 800 sims

∼ 40 ms ∼ 80 ms ∼ 200 ms

Table 5.3: Selected statistics of AlphaZero training in chess, shogi and Go.

steps); in shogi, AlphaZero first outperformed Elmo after 2 hours (110,000 steps);

and in Go, AlphaZero first outperformed AlphaGo Lee after 30 hours (74,000 steps).

We evaluated the fully trained instances of AlphaZero against Stockfish, Elmo

and the previous version of AlphaGo Zero in chess, shogi and Go respectively (see

figure 5.8). Each program was run on the hardware for which it was designed3:

Stockfish and Elmo used 44 central processing unit (CPU) cores (as in the TCEC

world championship), whereas AlphaZero and AlphaGo Zero used a single machine

with four first-generation TPUs and 44 CPU cores4. The chess match was played

against the 2016 TCEC (season 9) world champion Stockfish. The shogi match was

played against the 2017 CSA world champion version of Elmo. The Go match was

played against the previous version of AlphaGo Zero. All matches were played

using time controls of 3 hours per game, plus an additional 15 seconds for each

move.

In Go, AlphaZero defeated AlphaGo Zero, winning 61% of games. This

demonstrates that a general approach can recover the performance of an algorithm

that exploited board symmetries to generate eight times as much data.

In chess, AlphaZero defeated Stockfish, winning 155 games and losing 6 games

out of 1,000.

3Stockfish is designed to exploit CPU hardware and cannot make use of GPU/TPU, whereas

AlphaZero is designed to exploit GPU/TPU hardware rather than CPU.
4A first generation TPU is roughly similar in inference speed to a Titan V GPU, although the

architectures are not directly comparable.

5.3. Experiments 81

Program Chess Shogi Go

AlphaZero 63k (13k) 58k (12k) 16k (0.6k)

Stockfish 58,100k

(24,000k)

Elmo 25,100k (4,600k)

AlphaZero 1.5 GFlop 1.9 GFlop 8.5 GFlop

Table 5.4: Evaluation speed (positions/second) of AlphaZero, Stockfish, and Elmo

in chess, shogi and Go. Evaluation speed is the average over entire games at full

time controls from the initial board position (the main evaluation in Figure 5.8),

standard deviations are shown in parentheses. Bottom row: Number of operations

used by AlphaZero for one evaluation.

In shogi, AlphaZero defeated Elmo, winning 98.2% of games when playing

black, and 91.2% overall.

AlphaZero searches just 60,000 positions per second in chess and shogi, com-

pared with 60 million for Stockfish and 25 million for Elmo (table 5.4). AlphaZero

may compensate for the lower number of evaluations by using its deep neural net-

work to focus much more selectively on the most promising variations. AlphaZero

also defeated Stockfish when given 1/10 as much thinking time as its opponent (i.e.

searching ~ 1/10,000 as many positions), and won 46% of games against Elmo

when given 1/100 as much time (i.e. searching ~ 1/40,000 as many positions).

The high performance of AlphaZero, using MCTS, calls into question the widely

held belief [4, 32] that alpha-beta search is inherently superior in these domains.

5.3. Experiments 82

Figure 5.8: Comparison with specialized programs. (A) Tournament evalua-

tion of AlphaZero in chess, shogi, and Go in matches against respectively Stockfish,

Elmo and of AlphaGo Zero that was trained for 3 days. In the top bar, AlphaZero

plays white; in the bottom bar AlphaZero plays black. Each bar shows the results

from AlphaZero’s perspective: win (‘W’, green), draw (‘D’, grey), loss (‘L’, red).

(B) Scalability of AlphaZero with thinking time, compared to Stockfish and Elmo.

Stockfish and Elmo always receive full time (3 hours per game plus 15 seconds per

move), time for AlphaZero is scaled down as indicated. (C) Extra evaluations of Al-

phaZero in chess against the most recent version of Stockfish at the time of writing,

and against Stockfish with a strong opening book. Extra evaluations of AlphaZero

in shogi were carried out against another strong shogi program Aperyqhapaq at full

time controls and against Elmo under 2017 CSA world championship time con-

trols (10 minutes per game plus 10 seconds per move). (D) Average result of chess

matches starting from different opening positions: either common human positions,

or the 2016 TCEC world championship opening positions. Average result of shogi

matches starting from common human positions. CSA world championship games

start from the initial board position. Match conditions are provided in appendix A.

5.3. Experiments 83

5.3.3 Ablations

Repeatability

To measure the robustness of our method we repeated our chess experiments mul-

tiple times. Figure 5.9 shows that our training algorithm achieved similar perfor-

mance in all independent runs, suggesting that the high performance of AlphaZero’s

training algorithm is repeatable.

0 50 100 150 200 250 300 350 400
Thousands of Steps

1500

2000

2500

3000

3500

E
lo

Chess

Figure 5.9: Repeatability of AlphaZero training on the game of chess. The fig-

ure shows 6 separate training runs of 400,000 steps (approximately 4 hours each).

Elo ratings were computed from a tournament between baseline players and Alp-

haZero players at different stages of training. AlphaZero players were given 800

simulations per move. Similar repeatability was observed in shogi and Go.

Evaluations

We compared the performance of the AlphaZero and AlphaGo Zero algorithms dur-

ing training. Figure 5.10 shows the Elo achieved by the two agents as a function

of training steps and wall time. Since AlphaZero does not exploit the symmetries

of the Go board during training it requires 8 times more data to achieve the same

performance. We also evaluated a version of AlphaZero that uses the same domain

knowledge as AlphaGo Zero. This agent outperformed AlphaGo Zero both in terms

of training steps and wall-time, we attribute this to the superior network training

5.3. Experiments 84

0 100 200 300 400 500 600 700
Thousands of Steps

0

1000

2000

3000

4000

5000

E
lo

0 50 100 150 200 250 300
Hours

AlphaZero Symmetries

AlphaZero

AlphaGo Zero

Figure 5.10: Learning curves showing the Elo performance during training in

Go. Comparison between AlphaZero, a version of AlphaZero that exploits knowl-

edge of symmetries in a similar manner to AlphaGo Zero, and the previously pub-

lished AlphaGo Zero. AlphaZero generates approximately 1/8 as many positions

per training step, and therefore uses eight times more wall clock time, than the

symmetry-augmented algorithms.

setup of the AlphaZero algorithm (see A for details).

To verify the robustness of AlphaZero in chess, we played additional matches

that started from common human openings (see figure A). AlphaZero defeated

Stockfish in each opening, suggesting that AlphaZero has mastered a wide spec-

trum of chess play. AlphaZero discovered and played frequently common human

openings during self-play training. We also played a match that started from the set

of opening positions used in the 2016 TCEC world championship; AlphaZero won

convincingly in this match too5 (see appendix A). We played additional matches

against the most recent development version of Stockfish 6, and a variant of Stockfish

that uses a strong opening book 7. AlphaZero won all matches by a large margin.

5Many TCEC opening positions are unbalanced according to both AlphaZero and Stockfish, re-

sulting in more losses for both players.
6Newest available version of Stockfish as of 13th of January 2018, from

https://github.com/official-stockfish/Stockfish/commit/

b508f9561cc2302c129efe8d60f201ff03ee72c8
7Cerebellum opening book from https://zipproth.de/Brainfish_download. Alp-

haZero did not use an opening book. To ensure diversity against a deterministic opening book, Al-

phaZero used a small amount of randomization in its opening moves; this avoided duplicate games

but also resulted in more losses.

https://github.com/official-stockfish/Stockfish/commit/b508f9561cc2302c129efe8d60f201ff03ee72c8
https://github.com/official-stockfish/Stockfish/commit/b508f9561cc2302c129efe8d60f201ff03ee72c8
https://zipproth.de/Brainfish_download

5.4. Conclusions 85

5.4 Conclusions
Board games have been heavily studied in the field of artificial intelligence. Games

like chess and subsequently Go have acted as standard testbeds for the development

of new methods. Previous state-of-the-art approaches were based on the use of ex-

pert human data and powerful engines which search many millions of positions,

leveraging handcrafted domain expertise and sophisticated domain adaptations. On

the other hand, AlphaZero has demonstrated that a pure reinforcement learning ap-

proach is fully feasible, even in the most challenging of domains: it is possible to

train to superhuman level, without human examples or guidance, given no knowl-

edge of the domain beyond basic rules. AlphaZero, as our Go experiments have

demonstrated, required just a few more hours to train, and achieved much better

asymptotic performance, compared to training on human expert data. At the same

time it required a search budget of 1/1,000 as many positions as previous programs

which have dominated the research fields of computer chess and shogi. These re-

sults bring us a step closer to fulfilling a longstanding ambition of artificial intelli-

gence [93]: a general games playing system that can learn to master any game.

Chapter 6

MuZero

As we saw previously, AlphaZero manages to achieve superhuman performance in

challenging domains, such as chess and Go, completely from scratch by combining

an MCTS search with deep neural networks. However, AlphaZero assumes access

to a perfect simulator of the environment inside its search. This limits its applica-

bility to domains where such a simulator is available or can be easily constructed.

In many real-world problems the dynamics governing the environment are often

complex and unknown. In this chapter, we present a new method, called MuZero1,

which, by combining a learned model with an MCTS search, achieves superhuman

performance in a range of complex environments without assuming any knowledge

of the underlying dynamics. When evaluated on 57 different Atari games - the

canonical video game environment for testing AI techniques, in which model-based

planning approaches have historically struggled - our new algorithm achieved a new

state of the art. When evaluated on Go, chess and shogi, without any knowledge of

the game rules, MuZero matched the superhuman performance of the AlphaZero

algorithm that was supplied with the game rules.

6.1 Introduction
MuZero builds upon AlphaZero’s powerful search and search-based policy itera-

tion algorithm and it extends it in two important ways: it removes the need for

an explicit simulator by introducing a learned dynamics model and it modifies

1The MuZero algorithm was previously published in [103]

6.1. Introduction 87

AlphaZero’s planning and learning rules to support a broader set of environments

including single agent domains and non-zero rewards at intermediate time-steps.

The main idea of the algorithm is to predict those aspects of the future that

are directly relevant for planning. The model receives the observation (e.g. a Go

board position or an Atari screen) as an input and transforms it into a hidden state.

The hidden state is then updated iteratively by a recurrent process that receives the

previous hidden state and a hypothetical next action. At every one of these steps

the model produces a policy (predicting the move to play), value function (predict-

ing the cumulative reward, for example the final game outcome), and immediate

reward prediction (for example the points scored by playing a move). The model

is trained end-to-end, with the sole objective of accurately estimating these three

important quantities, so as to match the improved policy and value function gener-

ated by search, as well as the observed reward. There is no direct requirement or

constraint on the hidden state to capture all information necessary to reconstruct the

original observation, drastically reducing the amount of information the model has

to maintain and predict; nor is there any requirement for the hidden state to match

the unknown, true state of the environment; nor any other constraints on the seman-

tics of state. Instead, the hidden states are free to represent any state that correctly

estimates the policy, value function and reward. Intuitively, the agent can invent,

internally, any dynamics that lead to accurate planning.

MuZero is designed for a more general setting than AlphaZero. In AlphaZero

the planning process makes use of a simulator that samples the next state and reward

(e.g. according to the environment’s dynamics, or the rules of the game). The

simulator updates the state of the game while traversing the search tree (see Figure

1 A). The simulator is used to provide three important pieces of knowledge: (1)

state transitions in the search tree, (2) actions available at each node of the search

tree, (3) episode termination within the search tree. In MuZero, all of these have

been replaced with the use of a single implicit model learned by a neural network

(see Figure 1 B):

6.1. Introduction 88

• State transitions. AlphaZero had access to a perfect simulator of the envi-

ronment’s dynamics. In contrast, MuZero employs a learned dynamics model

within its search. Under this model, each node in the tree is represented by

a corresponding hidden state; by providing a hidden state sk−1 and an ac-

tion ak to the model the search algorithm can transition to a new node sk =

g(sk−1,ak).

• Legal actions. We consider a standard problem formulation where the set of

legal actions is provided at each time-step alongside the observation. During

search, however, it could be helpful to specify the legal actions at each interior

node - which would require knowledge of how the legal actions change over

time. AlphaZero used the set of legal actions obtained from the simulator

to mask the policy network at interior nodes. MuZero does not perform any

masking within the search tree, but only masks legal actions at the root of

the search tree where the set of legal actions is directly observed. The policy

network rapidly learns to exclude actions that are unavailable, simply because

they are never selected.

• Terminal states. AlphaZero stopped the search at tree nodes representing ter-

minal states and used the terminal value provided by the simulator instead of

the value produced by the network. MuZero does not give special treatment to

terminal states and always uses the value predicted by the network. Inside the

tree, the search can proceed past a state that would terminate the simulator. In

this case the network is expected to always predict the same value, which may

be achieved by modelling terminal states as absorbing states during training.

In addition, MuZero is designed to operate in the general reinforcement learn-

ing setting: single-agent domains with discounted intermediate rewards of arbitrary

magnitude. In contrast, AlphaZero was designed to operate in two-player games

with undiscounted terminal rewards of ±1.

6.2. Algorithm 89

6.2 Algorithm
In this section we describe the MuZero algorithm in detail. A schematic illustration

of our method is shown in Figure 1.

6.2.1 Model

The MuZero model makes predictions at each time-step t, for each of k = 0...K

steps, by a model µθ , with parameters θ , conditioned on past observations o1, ...,ot

and for k > 0 on future actions at+1, ...,at+k. The model predicts three future quan-

tities: the policy pk
t ≈ π(at+k+1|o1, ...,ot ,at+1, ...,at+k), the value function

vk
t ≈ E [ut+k+1 + γut+k+2 + ...|o1, ...,ot ,at+1, ...,at+k], and for k > 0 also the imme-

diate reward rk
t ≈ ut+k, where u. is the true, observed reward, π is the policy used to

select real actions, and γ is the discount function of the environment.

Internally, at each time-step t (subscripts t suppressed for simplicity), the

model is represented by the combination of a representation function, a dynamics

function, and a prediction function. The MuZero model parts are shown in equation

6.1.
Representation s0 = hθ (o1, ...,ot)

Dynamics rk,sk = gθ (sk−1,ak)

Prediction pk,vk = fθ (sk)

(6.1)

The dynamics function, rk,sk = gθ (sk−1,ak), is a recurrent process that com-

putes, at each hypothetical step k, an immediate reward rk and an internal state sk. It

mirrors the structure of an MDP model that computes the expected reward and state

transition for a given state and action [96]. However, unlike traditional approaches

to model-based RL [117], this internal state sk has no semantics of environment

state attached to it – it is simply the hidden state of the overall model, and its sole

purpose is to accurately predict relevant, future quantities: policies, values, and re-

wards. The policy and value functions are computed from the internal state sk by

the prediction function, pk,vk = fθ (sk), akin to the joint policy and value network

of AlphaZero. The “root” state s0 is initialized using a representation function that

encodes past observations, s0 = hθ (o1, ...,ot); again this has no special semantics

beyond its support for future predictions.

6.2. Algorithm 90

Figure 1: Planning, acting, and training with a learned model. (A) How MuZero

uses its model to plan. The model consists of three connected components for rep-

resentation, dynamics and prediction. Given a previous hidden state sk−1 and a

candidate action ak, the dynamics function g produces an immediate reward rk and

a new hidden state sk. The policy pk and value function vk are computed from the

hidden state sk by a prediction function f . The initial hidden state s0 is obtained

by passing the past observations (e.g. the Go board or Atari screen) into a repre-

sentation function h. (B) How MuZero acts in the environment. A Monte-Carlo

Tree Search is performed at each timestep t, as described in A. An action at+1 is

sampled from the search policy πt , which is proportional to the visit count for each

action from the root node. The environment receives the action and generates a

new observation ot+1 and reward ut+1. At the end of the episode the trajectory data

is stored into a replay buffer. (C) How MuZero trains its model. A trajectory is

sampled from the replay buffer. For the initial step, the representation function h

receives as input the past observations o1, ...,ot from the selected trajectory. The

model is subsequently unrolled recurrently for K steps. At each step k, the dynam-

ics function g receives as input the hidden state sk−1 from the previous step and

the real action at+k. The parameters of the representation, dynamics and predic-

tion functions are jointly trained, end-to-end by backpropagation-through-time, to

predict three quantities: the policy pk ≈ πt+k, value function vk ≈ zt+k, and reward

rk ≈ ut+k, where zt+k is a sample return: either the final reward (board games) or

n-step return (Atari).

6.2. Algorithm 91

6.2.2 Search

Given such a model, it is possible to search over hypothetical future trajectories

a1, ...,ak given past observations o1, ...,ot . For example, a naive search could sim-

ply select the k step action sequence that maximizes the value function. More gen-

erally, we may apply any MDP planning algorithm to the internal rewards and state

space induced by the dynamics function. Specifically, we use an MCTS algorithm

similar to AlphaZero’s search, generalized to allow for single agent domains and

intermediate rewards. The MCTS algorithm may be viewed as a search policy

πt = P [at+1|o1, ...,ot] and search value function νt ≈ E [ut+1 + γut+2 + ...|o1, ...,ot]

that both selects an action and predicts cumulative reward given past observations

o1, ...,ot . At each internal node, it makes use of the policy, value function and re-

ward estimate produced by the current model parameters θ , and combines these

values together using lookahead search to produce an improved policy πt and im-

proved value function νt at the root of the search tree. The next action at+1 ∼ πt is

then chosen by the search policy.

MuZero modifies AlphaZero’s MCTS search to support planning with its

learned model and in domains other than two player board games, in the follow-

ing ways:

• The statistics stored at each edge of the tree are augmented to include the

reward rk and state sk which were generated by the model when that edge

was first expanded.

• The backup is generalized to the case where the environment can emit inter-

mediate rewards, have a discount γ different from 1, and the value estimates

are unbounded. For k = l...0, we form an l−k-step estimate of the cumulative

discounted reward, bootstrapping from the value function vl ,

Gk =
l−1−k

∑
τ=0

γ
τrk+1+τ + γ

l−kvl (6.2)

• In environments where the value is unbounded the pUCT rule is adjusted.

The Q value estimates used in the pUCT formula, are normalized using the

minimum-maximum values observed in the search tree up to that point.

6.2. Algorithm 92

Those changes allow the application of the MuZero search in any MDP en-

vironment without requiring any domain specific knowledge about the transition

dynamics or the reward function.

6.2.3 Self-play

Similarly to AlphaZero, MuZero generates experience by selecting actions based on

a policy produced by an MCTS search at each time-step t. The search is guided by

the current version of MuZero’s learned model. Subsequently, the observed transi-

tions are stored in a common replay buffer.

6.2.4 Training

During training, all parameters of the model are trained jointly to accurately match

the policy, value function and reward prediction, for every hypothetical step k, to

three corresponding targets observed after k actual time-steps have elapsed. Simi-

larly to AlphaZero, the first objective is to minimize the error between the actions

predicted by the policy pk
t and by the search policy πt+k. Also like AlphaZero,

value targets are generated by playing out the game or MDP using the search pol-

icy. However, unlike AlphaZero, we allow for long episodes with discounting and

intermediate rewards by bootstrapping n steps into the future from the search value,

zt = ut+1 + γut+2 + ...+ γn−1ut+n + γnνt+n. Final outcomes {lose,draw,win} in

board games are treated as rewards ut ∈ {−1,0,+1} occurring at the final step of

the episode. Specifically, the second objective is to minimize the error between the

value function vk
t and the value target, zt+k.2 The third objective is to minimize

the error between the predicted immediate reward rk
t and the observed immediate

reward ut+k. Finally, an L2 regularization term is also added, leading to the overall

loss:

2For chess, Go and shogi, the same squared error loss as AlphaZero is used for rewards and

values. A cross-entropy loss was found to be more stable than a squared error when encountering

rewards and values of variable scale in Atari. Cross-entropy was used for the policy loss in both

cases.

6.3. Experiments 93

lt(θ) =
K

∑
k=0

lp(πt+k, pk
t)+

K

∑
k=0

lv(zt+k,vk
t)+

K

∑
k=1

lr(ut+k,rk
t)+ c||θ ||2 (6.3)

where lp, lv, and lr are loss functions for policy, value and reward respectively.

Those losses are instantiated differently depending on the environment (see B.6).

6.2.5 Reanalyze

One of the advantages of model-based reinforcement learning is that it can leverage

its model to improve the data efficiency of its learning rule. The model can generate

synthetic experience which can be used to obtain better value estimates and poli-

cies. In order to reap those benefits, we developed a second variant of the MuZero

algorithm, called MuZero Reanalyze. MuZero Reanalyze revisits its past trajecto-

ries and re-executes its search using the latest model parameters, thus producing a

better quality policy than the original search. This fresh policy can then be used

as a new policy target when updating the MuZero model. The search also provides

new better value estimates which can be utilized during training. However, in our

implementation, we empirically found that it is preferably to use bootstrap value

estimates computed directly by the representation function of the model using a

target network mechanism[84]. The target network is a copy of the representation

network where its parameters are updated every N steps to match those of the online

network. By keeping the parameters constant for a number of steps during training

we improve learning by reducing the non-stationarity of the value targets.

6.3 Experiments

6.3.1 Results

We applied the MuZero algorithm to the classic board games of Go, chess and shogi,

as benchmarks for challenging planning problems, and to all 57 games in the Atari

Learning Environment [15], as benchmarks for visually complex RL domains. In

each case we trained MuZero for K = 5 hypothetical steps. Training proceeded for 1

million mini-batches of size 2048 in board games and of size 1024 in Atari. During

both training and evaluation, MuZero used 800 simulations for each search in board

6.3. Experiments 94

games, and 50 simulations for each search in Atari. The representation function uses

the same convolutional [75] and residual [50] architecture as AlphaZero, but with

16 residual blocks instead of 20. The dynamics function uses the same architecture

as the representation function and the prediction function uses the same architecture

as AlphaZero. All networks use 256 hidden planes.

Chess Shogi Go Atari

rmblkans
opopopop
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
POPOPOPO
SNAQJBMR

香 桂 銀 金 玉 金 銀 桂 香

飛 角

歩 歩 歩 歩 歩 歩 歩 歩 歩

歩 歩 歩 歩 歩 歩 歩 歩 歩

角 飛

香 桂 銀 金 玉 金 銀 桂 香

0.0 0.2 0.4 0.6 0.8 1.0
Millions of Training Steps

0

1000

2000

3000

4000

5000

El
o

0.0 0.2 0.4 0.6 0.8 1.0
Millions of Training Steps

0.0 0.2 0.4 0.6 0.8 1.0
Millions of Training Steps

0.0 0.2 0.4 0.6 0.8 1.0
Millions of Training Steps

0

1000

2000

3000

4000

5000

R
ew

ar
d

Figure 2: Evaluation of MuZero throughout training in chess, shogi, Go and

Atari. The x-axis shows millions of training steps. For chess, shogi and Go, the

y-axis shows Elo rating, established by playing games against AlphaZero using 800

simulations per move for both players. MuZero’s Elo is indicated by the blue line,

AlphaZero’s Elo by the horizontal orange line. For Atari, mean (full line) and me-

dian (dashed line) human normalized scores across all 57 games are shown on the

y-axis. The scores for R2D2 [68], (the previous state of the art in this domain,

based on model-free RL) are indicated by the horizontal orange lines. Performance

in Atari was evaluated using 50 simulations every fourth time-step, and then repeat-

ing the chosen action four times, as in prior work [84].

Figure 2 shows the performance throughout training in each game. In Go,

MuZero slightly exceeded the performance of AlphaZero, despite using less com-

putation per node in the search tree (16 residual blocks per evaluation in MuZero

6.3. Experiments 95

Agent Median Mean Env. Frames Training Time Training Steps

Ape-X [55] 434.1% 1695.6% 22.8B 5 days 8.64M

R2D2 [68] 1920.6% 4024.9% 37.5B 5 days 2.16M

MuZero 2041.1% 4999.2% 20.0B 12 hours 1M

IMPALA [36] 191.8% 957.6% 200M – –

Rainbow [53] 231.1% – 200M 10 days –

UNREALa [61] 250%a 880%a 250M – –

LASER [102] 431% – 200M – –

MuZero Reanalyze 741.7% 2183.6% 200M 12 hours 1M

Table 1: Comparison of MuZero against previous agents in Atari. We compare

separately against agents trained in large (top) and small (bottom) data settings;

all agents other than MuZero used model-free RL techniques. Mean and median

scores are given, compared to human testers. The best results are highlighted in

bold. MuZero sets a new state of the art in both settings. aHyper-parameters were

tuned per game.

compared to 20 blocks in AlphaZero). This suggests that MuZero may be caching

its computation in the search tree and using each additional application of the dy-

namics model to gain a deeper understanding of the position.

In Atari, MuZero achieved a new state of the art for both mean and median

normalized score across the 57 games of the Arcade Learning Environment, outper-

forming the previous state-of-the-art method R2D2 [68] (a model-free approach)

in 42 out of 57 games, and outperforming the previous best model-based approach

SimPLe [66] in all games. MuZero Reanalyze was also evaluated on the Atari 57

suite using 200 million frames of experience per game, achieving a median nor-

malized score of 731% and outperforming previous state-of-the-art model-free ap-

proaches. Table 1 summarizes the results of our Atari experiments.

Details regarding the implementation of our algorithm and the hyperparameters

used can be found the in the appendix B.

6.3. Experiments 96

6.3.2 Ablations

To understand the role of the model in MuZero we ran several ablation experiments,

focusing on the board game of Go and the Atari game of Ms. Pacman.

First, we tested the scalability of planning (Figure 3A), in the canonical plan-

ning problem of Go. We compared the performance of search in AlphaZero, using

a perfect model, to the performance of search in MuZero, using a learned model.

Specifically, the fully trained AlphaZero or MuZero was evaluated by comparing

MCTS with different thinking times. MuZero matched the performance of a perfect

model, even when doing much larger searches (up to 10s thinking time) than those

from which the model was trained (around 0.1s thinking time, see also Figure 4A).

We also investigated the scalability of planning across all Atari games (see

Figure 3B). We compared MCTS with different numbers of simulations, using the

fully trained MuZero. The improvements due to planning are much less marked

than in Go, perhaps because of greater model inaccuracy; performance improved

slightly with search time, but plateaued at around 100 simulations. Even with a

single simulation – i.e. when selecting moves solely according to the policy network

– MuZero performed well, suggesting that, by the end of training, the raw policy has

learned to internalise the benefits of search (see also Figure 4B).

Next, we tested our model-based learning algorithm against a comparable

model-free learning algorithm (see Figure 3C). We replaced the training objective

of MuZero (Equation 1) with a model-free Q-learning objective (as used by R2D2),

and the dual policy and value heads with a single head representing the Q-function

Q(·|st). Subsequently, we trained and evaluated the new model without using any

search. When evaluated on Ms. Pacman, our model-free algorithm achieved identi-

cal results to R2D2, but learned significantly slower than MuZero and converged to

a much lower final score. We conjecture that the search-based policy improvement

step of MuZero provides a stronger learning signal than the high bias, high variance

targets used by Q-learning.

To better understand the nature of MuZero’s learning algorithm, we measured

how MuZero’s training scales with respect to the amount of search it uses during

6.3. Experiments 97

Figure 3: Evaluations of MuZero on Go (A), all 57 Atari Games (B) and Ms. Pacman (C-D).

(A) Scaling with search time per move in Go, comparing the learned model with the ground truth

simulator. Both networks were trained at 800 simulations per search, equivalent to 0.1 seconds per

search. Remarkably, the learned model is able to scale well to up to two orders of magnitude longer

searches than seen during training. (B) Scaling of final human normalized mean score in Atari with

the number of simulations per search. The network was trained at 50 simulations per search. Dark

line indicates mean score, shaded regions indicate 25th to 75th and 5th to 95th percentiles. The

learned model’s performance increases up to 100 simulations per search. Beyond, even when scal-

ing to much longer searches than during training, the learned model’s performance remains stable

and only decreases slightly. This contrasts with the much better scaling in Go (A), presumably due

to greater model inaccuracy in Atari than Go. (C) Comparison of MCTS based training with Q-

learning in the MuZero framework on Ms. Pacman, keeping network size and amount of training

constant. The state of the art Q-Learning algorithm R2D2 is shown as a baseline. Our Q-Learning

implementation reaches the same final score as R2D2, but improves slower and results in much

lower final performance compared to MCTS based training. (D) Different networks trained at dif-

ferent numbers of simulations per move, but all evaluated at 50 simulations per move. Networks

trained with more simulations per move improve faster, consistent with ablation (B), where the pol-

icy improvement is larger when using more simulations per move. Surprisingly, MuZero can learn

effectively even when training with less simulations per move than are enough to cover all 8 possible

actions in Ms. Pacman.

6.3. Experiments 98

Figure 4: Details of MuZero evaluations (A-B) and policy improvement abla-

tions (C-D). (A-B) Distribution of evaluation depth in the search tree for the learned

model for the evaluations in Figure 3A-B. The network was trained over 5 hypo-

thetical steps, as indicated by the red line. Dark blue line indicates median depth

from the root, dark shaded region shows 25th to 75th percentile, light shaded re-

gion shows 5th to 95th percentile. (C) Policy improvement in Ms. Pacman - a

single network was trained at 50 simulations per search and is evaluated at differ-

ent numbers of simulations per search, including playing according to the argmax

of the raw policy network. The policy improvement effect of the search over the

raw policy network is clearly visible throughout training. This consistent gap be-

tween the performance with and without search highlights the policy improvement

that MuZero exploits, by continually updating towards the improved policy, to ef-

ficiently progress towards the optimal policy. (D) Policy improvement in Go - a

single network was trained at 800 simulations per search and is evaluated at differ-

ent numbers of simulations per search. In Go, the playing strength improvement

from longer searches is much larger than in Ms. Pacman and persists throughout

training, consistent with our previous results. This suggests, as might intuitively be

expected, that the benefit of models is greatest in precision planning domains.

6.4. Conclusions 99

training. Figure 3D shows the performance in Ms. Pacman, using an MCTS of

different simulation counts per move throughout training. Surprisingly, and in con-

trast to previous work [8], even with only 6 simulations per move – fewer than

the number of actions – MuZero learned an effective policy and improved rapidly.

With more simulations performance jumped significantly higher. For analysis of

the policy improvement during each individual iteration, see also Figure 4 C and D.

6.4 Conclusions
Many of the breakthroughs in artificial intelligence have been based on either

high-performance planning [20] or model-free reinforcement learning methods

[84, 89, 132]. In this chapter we have described a method that combines the bene-

fits of both approaches. Our algorithm, MuZero, has both matched the superhuman

performance of high-performance planning algorithms in their favoured domains

– logically complex board games such as chess and Go – and outperformed state-

of-the-art model-free RL algorithms in their favoured domains – visually complex

Atari games. Crucially, our method does not require any knowledge of the envi-

ronment dynamics, potentially paving the way towards the application of powerful

learning and planning methods to a host of real-world domains for which there ex-

ists no perfect simulator.

Chapter 7

Stochastic MuZero

Despite its generality and impressive performance the applicability of the MuZero

agent is still limited by its use of deterministic models. This hinders its perfor-

mance in environments that are inherently stochastic, partially observed, or so large

and complex that they appear stochastic to a finite agent. In order to overcome

this limitation, we developed a new algorithm, called Stochastic MuZero1, which

learns a stochastic model of the environment dynamics, by incorporating afterstates,

and subsequently, uses this model to perform a stochastic tree search. Stochastic

MuZero matched or exceeded the state of the art in a set of canonical single and

multi-agent environments, including 2048 and backgammon, while maintaining the

superhuman performance of standard MuZero in the game of Go. In this section we

describe our new method in detail.

7.1 Introduction
Stochastic MuZero is the first empirically effective approach for handling stochas-

ticity in value equivalent (see 2.5.1) model-learning and planning. It extends the

MuZero model and MCTS search to account for stochasticity in the environment

dynamics. Its model is factored to first transition deterministically from state to

an afterstate, and then to branch stochastically from the afterstate to the next state.

This factored model is trained end-to-end so as to maintain value equivalence for

both state value function and action value function respectively, and is combined

1The Stochastic MuZero algorithm was previously published in [3]

7.2. Algorithm 101

with a stochastic variant of the MCTS algorithm. We implement it using a dis-

crete generative network, and subsequently, we extend MCTS to effectively use it

by introducing chance nodes in the tree.

We apply our method, Stochastic MuZero, to several environments in which

handling stochasticity is important. First, we consider the popular stochastic puz-

zle game 2048, in which the prior state of the art exploits a perfect simulator and

significant handcrafted domain knowledge. In our experiments, Stochastic MuZero

achieved better results without any domain knowledge. Secondly, we consider the

classic stochastic two-player game of backgammon, in which near-optimal play has

been achieved using a perfect simulator. Stochastic MuZero matches this perfor-

mance without any prior knowledge of the game rules. Finally, we evaluated our

method in the deterministic board game of Go. There our method matched the

performance of MuZero, demonstrating that Stochastic MuZero extends MuZero

without sacrificing performance.

7.2 Algorithm

In this section we present our novel algorithm Stochastic MuZero. Our approach

combines a learned stochastic transition model of the environment dynamics with a

variant of Monte Carlo tree search (MCTS). First, we describe the new model and

subsequently how it is combined with MCTS for planning.

7.2.1 Model

Afterstates We consider the problem of modeling the dynamics of a stochastic en-

vironment. Similarly to MuZero, the model receives an initial observation o≤t at

time step t and a sequence of actions at:t+K , and needs to make predictions about

the future values, policies and rewards. In contrast to MuZero which only considers

latent states which correspond to real states of the environment, Stochastic MuZero

makes use of the notion of afterstates [117] to capture the stochastic dynamics. An

afterstate ast is the hypothetical state of the environment after an action is applied

7.2. Algorithm 102

Figure 1: Stochastic MuZero. (A) Monte Carlo Tree Search used in Stochastic

MuZero, where diamond nodes represent chance nodes and circular nodes represent

decision nodes. During the selection phase edges are selected by applying the pUCT

formula in the case of decision nodes, and by sampling the prior σ in the case of

chance nodes. (B) Training of stochastic model in Stochastic MuZero. Here for a

given trajectory of length 2 with observations o≤t:t+2, actions at:t+2, value targets

zt:t+2, policy targets πt:t+2 and rewards ut+1:t+K , the model is unrolled for 2 steps.

During the unroll, the encoder e receives the observation o≤t+k as an input and

generates a chance code ct+k deterministically. The policy, value and reward outputs

of the model are trained towards the targets πt+k, zt+k and ut+k respectively. The

distributions σ k over future codes are trained to predict the code produced by the

encoder.

7.2. Algorithm 103

but before the environment has transitioned to a true state:

st
at // ast

;;

##

// st+1

By using afterstates, we can separate the effect of applying an action to the environ-

ment and of the chance transition given an action. For example, in backgammon,

the afterstate corresponds to the board state after one player has played its action

but before the other player had the chance to roll the dice. It is also possible to

define the value of an afterstate as V (ast) = Q(st ,at) and the transition probabili-

ties of the environment dynamics Pr(st+1 | ast) = Pr(st+1 | st ,at). An afterstate can

lead to multiple states based on a chance event. In our work we assume that there

is a finite number of possible states M that the environment can transition to, given

an afterstate, and this way we can associate each transition with a chance outcome

ci
t . An example of a chance outcome could be the result of the dice in a game of

backgammon. By defining afterstates ast and chance outcomes ct , we can model a

chance transition using a deterministic model st+1,rt+1 =M(ast ,ct) and a distri-

bution Pr(st+1 | ast) = Pr(ct | ast). The task of learning a stochastic model is then

reduced to the problem of learning afterstates as and chance outcomes c.

Model The stochastic model of Stochastic MuZero consists of 5 functions: a repre-

sentation function h which maps the current observation o≤t to a latent state s0
t , an

afterstate dynamics function φ which given a state sk
t and an action at+k produces

the next latent afterstate ask
t , a dynamics function g which given an afterstate ask

t and

a chance outcome ct+k+1 produces the next latent state sk+1
t and a reward prediction

rk+1
t , a prediction function f which given a state sk

t generates the value vk
t and pol-

icy pk
t predictions, and a afterstate prediction function ψ which given an afterstate

ask generates a value prediction Qk
t , and a distribution σ k

t = Pr(ct+k+1 | ask
t) over

7.2. Algorithm 104

possible future chance outcomes ct+k+1. The model equations are shown in 7.1.

Representation s0
t = h(o≤t)

Prediction pk
t ,v

k
t = f (sk

t)

Afterstate Dynamics ask
t = φ(sk

t ,at+k)

Afterstate Prediction σ
k
t ,Q

k
t = ψ(ask

t)

Dynamics sk+1
t ,rk+1

t = g(ask
t ,ct+k+1)

(7.1)

During inference, given an initial observation o≤t and a sequence of actions

at:t+K , we can generate trajectories from the above model by recurrently unrolling

it and by sampling chance outcomes from the distributions ct+k+1 ∼ σ k
t .

Chance outcomes Stochastic MuZero models the chance outcomes by using a novel

variant of the VQ-VAE method. Vector Quantised Variational AutoEncoder (VQ-

VAE, [129]) is a generative modeling technique which uses four key components:

an encoder neural network e, a decoder neural network d, a vector quantisation

layer vq, and an autoregressive model m. Given an input xt , the encoder produces an

embedding ce
t = e(xt). The quantisation layer comprises of a set of M codes {ci}M

i=0,

called the codebook, and quantises the encoder’s output embedding ce
t by returning

the nearest code ct = ckt along with its index kt = argmini ‖ci−ce
t ‖. Additionally, in

the backwards pass, this quantisation is treated as an identity function, referred to as

straight-through gradient estimation [16]. The decoder produces a reconstruction of

the input x̂t = d(ct). The autoregressive model predicts a distribution p(kt |c<t) =

m(c<t) over the code index at time t using the quantised embeddings c<t of the

previous timesteps. The VQ-VAE equations are shown in Equations 7.2.

Encoder ce
t = e(xt)

Quantisation ct ,kt = vq(ce
t)

Decoder x̂t = d(ct)

Model p(kt |c<t) = m(c<t)

(7.2)

Typically, the encoder, decoder, and codebook are trained first and then frozen to

train the autoregressive model in an additional second stage. The total loss for the

7.2. Algorithm 105

VQ-VAE is

Lvqvae
φ

=
N−1

∑
t=0

[
‖x̂t− xt‖︸ ︷︷ ︸

reconstruction

+β ‖ct− ce
t ‖

2︸ ︷︷ ︸
commitment

−γ log p(kt |c<t)︸ ︷︷ ︸
second stage

]
(7.3)

Stochastic MuZero uses a VQ-VAE with a constant codebook of size M. Each entry

in the codebook is a fixed one-hot vector of size M. By using a fixed codebook of

one hot vectors, we can simplify the equations of the VQ-VAE 7.2. In this case,

we model the encoder embedding ce
t as a categorical variable, and selecting the

closest code ct is equivalent to computing the expression onehot(argmaxi(c
e,i
t)).

The resulting encoder can also be viewed as a stochastic function of the observation

which makes use of the Gumbel softmax reparameterization trick [62] with zero

temperature during the forward pass and a straight through estimator during the

backward. There is no explicit decoder in our model, and contrary to previous work

[90] we do not make use of a reconstruction loss. Instead the network is trained

end-to-end in a fashion similar to MuZero. In section 7.2.3 we explain the training

procedure in more detail.

7.2.2 Search

Stochastic MuZero extends the MCTS algorithm used in MuZero by introducing

chance nodes and chance values to the search. In the stochastic instantiation of

MCTS, there are two types of nodes: decision and chance [25]. The chance and

decision nodes are interleaved along the depth of the tree, so that the parent of each

decision node is a chance node. The root node of the tree is always a decision node.

In our approach, each chance node corresponds to a latent afterstate (7.2.1) and it

is expanded by querying the stochastic model, where the parent state and an action

are provided as an input and the model returns a value for the node and a prior dis-

tribution over future codes Pr(c | as). After a chance node is expanded, its value is

backpropagated up the tree. Finally, when the node is traversed during the selection

phase, a code is selected by sampling the prior distribution 2. In Stochastic MuZero

each internal decision node is again expanded by querying the learned model, where
2In practice we follow the same quasi-random sampling approach as in [90] (A.3), where the

code is selected using the formula argmaxc
Pr(c|as)
N(c)+1 .

7.3. Experiments 106

the state of the chance parent node and a sampled code c are provided as an input,

and the model returns a reward, a value and a policy. Similarly to MuZero the value

of the newly added node is backpropagated up the tree, and the pUCT (2.6.2) for-

mula is used to select an edge. The stochastic search used by Stochastic MuZero is

shown schematically in figure 1.

7.2.3 Training

The stochastic model is unrolled and trained in an end-to-end fashion similar to

MuZero. Specifically, given a trajectory of length K with observations o≤t:t+K ,

actions at:t+K , value targets zt:t+K , policy targets πt:t+K and rewards ut+1:t+K , the

model is unrolled for K steps as shown in figure 1 and is trained to optimize the

sum of two losses as shown in equation 7.4: a MuZero loss and a chance loss for

learning the stochastic dynamics of the model.

Ltotal = LMuZero +Lchance (7.4)

The MuZero loss is the same as the one described in MuZero (see equation 6.3).

The chance loss is applied to the predictions Qk
t and σ k

t which correspond to the la-

tent afterstates ask. The Qk
t value is trained to match the value target zt+k and the σ k

is trained towards the one-hot chance code ct+k+1 = onehot(argmaxi(e(o
i
≤t+k+1)))

produced by the encoder. Finally, following the standard VQ-VAE practice, we

use a VQ-VAE commitment cost to ensure that the output of the encoder ce
t+k =

e(o≤t+k+1) is close to the code ct+k. Equation 7.5 shows the chance loss used to

train the model.

Lchance
w =

K−1

∑
k=0

lQ(zt+k,Qk
t)+

K−1

∑
k=0

lσ (ct+k+1,σ
k
t)+β

K−1

∑
k=0

∥∥ct+k+1− ce
t+k+1

∥∥2

︸ ︷︷ ︸
VQ-VAE commitment cost

(7.5)

7.3 Experiments

7.3.1 Results

We applied our algorithm to a variety of challenging stochastic and deterministic

environments. First, we evaluated our approach in the classic game of 2048, a

7.3. Experiments 107

Figure 2: Planning in 2048. a) Stochastic MuZero, trained using 100 simula-

tions of planning with a learned stochastic model, matched the performance of Al-

phaZero, using 100 simulations of a perfect stochastic simulator, while a determin-

istic learned model (MuZero) performed poorly. b) Evaluation of final agent using

different levels of search. Stochastic MuZero scales well during evaluation to in-

termediate levels of search (roughly comparable to 3-ply lookahead), exceeding the

playing strength of the state-of-the-art baseline [63]. However, as the number of

simulations increases we observe diminishing returns due to imperfections of the

learned model.

stochastic single player game. Subsequently, we considered a two player zero-sum

stochastic game, Backgammon, which belongs to the same class of board games

such as Go, chess or Shogi where MuZero excels, but with stochasticity induced by

the use of two dice. Finally, we evaluated our method in the deterministic game of

Go, to measure any performance loss caused by the use of a stochastic model and

search in deterministic environments in comparison to MuZero.

In each environment, we assess our algorithm’s ability to learn a transition

model and effectively use it during search. To this end, we compare Stochastic

MuZero (using a stochastic learned model) to MuZero (using a deterministic learned

model), AlphaZero (using a perfect simulator), and a strong baseline method (also

using a perfect simulator). In the following sections we present our results for each

environment separately.

7.3. Experiments 108

Figure 3: Stochastic MuZero in Backgammon. a) Stochastic MuZero, trained

using 1600 simulations of planning with a learned stochastic model, matched the

performance of AlphaZero, trained using 1600 simulations of a perfect stochastic

simulator, as well as matching the superhuman-level program GNUbg Grandmaster.

A deterministic learned model (MuZero) performed poorly. b) Stochastic MuZero’s

model scaled well to large searches, and exceeded the playing strength of GNUbg

Grandmaster when using more than 103 simulations.

2048

The game of 2048 (see 3.2.2) is a stochastic, single player, perfect information puz-

zle game played on a 4x4 board. Figure 2 compares the performance of Stochas-

tic MuZero in 2048 to AlphaZero, MuZero and the state-of-the-art Jaskowski 2016

agent [63]. Our method outperformed Jaskowski 2016, while using only a quarter

of the training data. Stochastic MuZero also achieved the same performance as Al-

phaZero (using a perfect simulator), despite learning the model, and performed far

better than MuZero (using a deterministic model).

Backgammon

Backgammon is a classic two player, zero-sum, stochastic board game (see 3.1.4);

it was popularized as a standard testbed for reinforcement learning and artificial

intelligence by TD-gammon [123]. Here we focus on the single game setting, where

the final score takes the values ±1 for a simple win or loss, ±2 for a gammon and

±3 for a backgammon.

In all experiments we compared to GNUbg Grandmaster [41], a superhuman-

level open-source backgammon player. GNUbg combines a learned value function

7.3. Experiments 109

based on handcrafted features with a specialized min-max tree search using a perfect

stochastic simulator. GNUbg Grandmaster uses a 3-ply look-ahead search over a

branching factor of 20 legal moves on average and 21 chance transitions.

Stochastic MuZero, using a learned stochastic model of the environment and

only 1600 simulations per move, achieved the same playing strength as GNUbg,

as shown in Figure 3b. The model learned by Stochastic MuZero is of high qual-

ity: it reached the same playing strength as AlphaZero (using a perfect stochastic

simulator), and much higher strength than MuZero (using a deterministic learned

model).

The model also robustly scaled to larger planning budgets (Figure 3c): the

performance of Stochastic MuZero improved with increasing number of simulations

per move, and ultimately exceeded the playing strength of GNUbg Grandmaster.

Given the high dimensionality of the action space in Backgammon, our

Backgammon experiments used the sample-based search introduced by [59].

Go

Finally, we applied our method to the game of Go, since the goal of Stochastic

MuZero is to extend the applicability of MuZero to stochastic environments while

maintaining the latter’s performance in deterministic environments. Figure 4 shows

the Elo [26] achieved by Stochastic MuZero and MuZero during training. Although,

Stochastic MuZero requires twice the number of network expansions in compar-

ison to MuZero to achieve the same performance, due to the use of a stochastic

MCTS instead of a deterministic one, we ensure that the methods are computation-

ally equivalent by halving the network depth for the chance and dynamic parts of

the Stochastic MuZero’s network.

7.3.2 Reproducibility

In order to evaluate the robustness of our method in all different environments, we

replicated our experiments using three different initial random seeds. We observe

that our method is robust to the random initialization and there is minimal variation

in its performance between multiple runs. Due to the computational cost of each

7.3. Experiments 110

Figure 4: Stochastic MuZero in Go. Comparison of Stochastic MuZero and

MuZero in the game of Go. a) Stochastic MuZero and MuZero when compared

in 9x9 Go. MuZero has a search budget of 200 simulations during training of 800

during evaluation, while Stochastic MuZero uses 400 simulations during training

and 1600 during evaluation. The Elo scale was anchored so that the performance

of the final MuZero baseline corresponded to an Elo of 2000. b) Stochastic MuZero

and MuZero when compared in 19x19 Go. MuZero has a search budget of 400

simulations during training of 800 during evaluation, while Stochastic MuZero uses

800 simulations during training and 1600 during evaluation. The Elo scale was an-

chored so that the performance of the final MuZero baseline corresponded to an Elo

of 2000.

7.3. Experiments 111

Figure 5: Stochastic MuZero reproducibility across all domains. We ran our

method Stochastic MuZero in all environments using 9 different seeds to measure

its robustness to random initialization. We observed that there is minimal variation

in the performance of Stochastic MuZero for all different seeds. Due to the com-

putational cost of each experiment we used a smaller number of training steps for

each experiment.

experiment we used a smaller number of training steps for each experiment.

7.3.3 Ablations

In order to investigate the distribution of chance outcomes at each chance node for

Stochastic MuZero, we collected a dataset for each game by storing the probability

distribution over chance nodes, σ k
t = Pr(ct+k+1|ask

t), for all afterstate prediction

network evaluations invoked throughout all searches in 5 episodes. Subsequently,

we sorted each chance node distribution and finally, we computed the average dis-

tribution, as shown in Figure 6. We observed that in the case of a deterministic

environment like Go, the chance distribution collapsed to a single code, while in

stochastic environments the model used multiple codes. Furthermore, in Backgam-

mon, the chance distribution had a support of 21 codes with non-negligible proba-

bility, which corresponds to the number of distinct rolls of two dice.

7.4. Conclusions 112

Figure 6: Average distribution of learned chance outcomes. The average distri-

bution of learned chance outcomes over all chance nodes after running Stochastic

MuZero at each game for 5 episodes.

7.4 Conclusions
In this chapter, we presented a new method for learning a stochastic model of the

environment, in a fully online reinforcement learning setting, and showed that the

learned model can be effectively combined with planning. Our approach builds on

top of MuZero, a model-based reinforcement learning agent that has been widely

successful in a range of environments and settings, but its applicability is limited to

deterministic or weakly stochastic environments.

We have shown that our algorithm, Stochastic MuZero, can overcome the lim-

itations of MuZero, significantly outperforming it in stochastic environments, and

achieving the same or better performance than an equivalent program (AlphaZero)

that makes use of a perfect simulator for the environment. Finally, we have demon-

strated that Stochastic MuZero matched or exceeded the performance of previous

methods that use a perfect stochastic simulator, in a pure reinforcement learning

setting without using any prior knowledge about the environment.

Chapter 8

Conclusions

8.1 Open Problems in Learning and Planning

Model-based reinforcement learning has traditionally focused on the development

of methods that combine models of the environment dynamics with some form of

planning. The learned model usually operates at the time granularity of single time

steps, while the planning method assumes that the model can perfectly emulate

the dynamics of the real environment. However, this is different from biological

systems, which tend to construct plans at abstract time scales and assume that their

future predictions can be inaccurate.

Planning at the level of single actions can limit the applicability of classic

model-based methods in domains where the agent needs to make decisions at dif-

ferent time scales (i.e. robotics). Applying our powerful search algorithms to

these problems requires the development of solutions which employ temporally ab-

stracted models that can make predictions at different time scales. Designing such

models and learning abstraction spaces which can best explain the environment dy-

namics is a challenging problem left for future research.

Recent developments in the field of deep learning have provided the tools to

obtain really powerful models of the transition dynamics of a wide range of en-

vironments. However, these models still suffer from approximation errors when

employed in really complex domains or when they need to make predictions about

events far into the future. This can be catastrophic when they are combined with

8.2. The promise of Learning and Planning 114

search methods, such as MCTS, which assume that the model is perfect. Our

MuZero (see chapter 6) experiments have demonstrated these problems in an ex-

perimental setting, with diminishing returns for an increased search budget in do-

mains such as Atari or with the difference in performance between AlphaZero and

MuZero for extremely long searches in the game of Go. A promising future research

direction is to couple the search and learning into a unified framework so that the

planning module is trained to account for errors in the model predictions.

8.2 The promise of Learning and Planning

In this thesis we presented a series of general purpose reinforcement learning meth-

ods that rely on planning to achieve superhuman performance in a wide range of

challenging domains. We have developed AlphaZero (see chapter 5), a general

reinforcement learning algorithm which combines a tree based search with deep

neural networks and is trained completely from scratch without any domain spe-

cific adaptations, only through games of self-play. AlphaZero achieved superhu-

man performance in the games of Go and chess, domains which have historically

acted as standard testbeds for the development of new ideas in the field of artifi-

cial intelligence. Subsequently, we applied our powerful tree based search method

to the visually complex and challenging domain of Atari, by employing a learned

model of the environment dynamics. The resulting algorithm, MuZero (see chapter

6) outperformed all previous approaches. It overcomes the limitations of previ-

ous model-based approaches by training its model to predict only those quantities

that matter for planning. Finally, we extended the applicability of our approach

to highly stochastic problems. Our algorithm, Stochastic MuZero (see chapter 7),

adapts MuZero’s tree search to account for stochastic transitions and introduces a

novel training regime for learning a stochastic model of the environment dynamics.

Stochastic MuZero achieved superhuman performance in challenging stochastic do-

mains such as backgammon and 2048, while performing on par with MuZero in Go.

Constructing plans and executing them is an important feature of human and

animal behaviour. Research in human psychology [64] has shown that humans

8.2. The promise of Learning and Planning 115

construct mental models of the world and use them for planning and inference. As

we strive to develop more sophisticated artificial agents it is important to design

methods which can plan and construct models of their environment.

As Richard Sutton said in his bitter lesson [115], the past few decades of AI

research have shown that the most successful methods in tackling hard problems are

the ones which can scale efficiently with more data and compute. Approaches like

MuZero that combine planning and learning are well positioned to take advantage

of the increasing availability of computational resources and data. Devising better

such techniques may provide unprecedented dividends in the future.

Appendix A

AlphaZero Appendix

A.1 Domain knowledge in AlphaZero
AlphaZero was provided with the following domain knowledge about each game:

1. The input features describing the position, and the output features describing

the move, are structured as a set of planes; i.e. the neural network architecture

is matched to the grid-structure of the board.

2. AlphaZero is provided with perfect knowledge of the game rules. These are

used during MCTS, to simulate the positions resulting from a sequence of

moves, to determine game termination, and to score any simulations that

reach a terminal state.

3. Knowledge of the rules is also used to encode the input planes (i.e. castling,

repetition, no-progress) and output planes (how pieces move, promotions, and

piece drops in shogi).

4. The typical number of legal moves is used to scale the exploration noise (see

below).

5. Chess and shogi games exceeding 512 steps were terminated and assigned a

drawn outcome; Go games exceeding 722 steps were terminated and scored

with Tromp-Taylor rules.

AlphaZero did not use an opening book, endgame tablebases, or domain-specific

heuristics.

A.2. Experimental Setup 117

A.2 Experimental Setup

A.2.1 Network Input Representation

We describe the representation of the board inputs, and the representation of the

action outputs, used by the neural network in AlphaZero. Other representations

could have been used; in our experiments the training algorithm worked robustly

for many reasonable choices.

The input to the neural network is an N×N× (MT +L) image stack that rep-

resents state using a concatenation of T sets of M planes of size N×N. Each set of

planes represents the board position at a time-step t−T +1, ..., t, and is set to zero

for time-steps less than 1. The board is oriented to the perspective of the current

player. The M feature planes are composed of binary feature planes indicating the

presence of the player’s pieces, with one plane for each piece type, and a second set

of planes indicating the presence of the opponent’s pieces. For shogi there are ad-

ditional planes indicating the number of captured prisoners of each type. There are

an additional L constant-valued input planes denoting the player’s colour, the move

number, and the state of special rules: the legality of castling in chess (kingside

or queenside); the repetition count for the current position (3 repetitions is an auto-

matic draw in chess; 4 in shogi); and the number of moves without progress in chess

(50 moves without progress is an automatic draw). Input features are summarized

in Table 1.

A move in chess may be described in two parts: first selecting the piece to

move, and then selecting among possible moves for that piece. We represent the

policy π(a|s) by a 8× 8× 73 stack of planes encoding a probability distribution

over 4,672 possible moves. Each of the 8× 8 positions identifies the square from

which to “pick up” a piece. The first 56 planes encode possible ‘queen moves’ for

any piece: a number of squares [1..7] in which the piece will be moved, along one of

eight relative compass directions {N,NE,E,SE,S,SW,W,NW}. The next 8 planes

encode possible knight moves for that piece. The final 9 planes encode possible

underpromotions for pawn moves or captures in two possible diagonals, to knight,

bishop or rook respectively. Other pawn moves or captures from the seventh rank

A.2. Experimental Setup 118

Go Chess Shogi

Feature Planes Feature Planes Feature Planes

P1 stone 1 P1 piece 6 P1 piece 14

P2 stone 1 P2 piece 6 P2 piece 14

Repetitions 2 Repetitions 3

P1 prisoner count 7

P2 prisoner count 7

Colour 1 Colour 1 Colour 1

Total move count 1 Total move count 1

P1 castling 2

P2 castling 2

No-progress count 1

Total 17 Total 119 Total 362

Table 1: Input features used by AlphaZero in Go, chess and shogi respectively. The

first set of features are repeated for each position in a T = 8-step history. Counts

are represented by a single real-valued input; other input features are represented by

a one-hot encoding using the specified number of binary input planes. The current

player is denoted by P1 and the opponent by P2.

A.2. Experimental Setup 119

Chess Shogi

Feature Planes Feature Planes

Queen moves 56 Queen moves 64

Knight moves 8 Knight moves 2

Underpromotions 9 Promoting queen moves 64

Promoting knight moves 2

Drop 7

Total 73 Total 139

Table 2: Action representation used by AlphaZero in chess and shogi respectively.

The policy is represented by a stack of planes encoding a probability distribution

over legal moves; planes correspond to the entries in the table.

are promoted to a queen.

The policy in shogi is represented by a 9× 9× 139 stack of planes similarly

encoding a probability distribution over 11,259 possible moves. The first 64 planes

encode ‘queen moves’ and the next 2 planes encode knight moves. An additional

64+2 planes encode promoting queen moves and promoting knight moves respec-

tively. The last 7 planes encode a captured piece dropped back into the board at that

location.

The policy in Go is represented using a flat distribution over 19×19+1 moves

representing possible stone placements and the pass move. We also tried using a

flat distribution over moves for chess and shogi; the final result was almost identical

although training was slightly slower.

Illegal moves are masked out by setting their probabilities to zero, and re-

normalising the probabilities over the remaining set of legal moves.

The action representations are summarized in Table 2.

A.2.2 Network Architecture

The neural network consists of a “body” followed by both policy and value “heads”.

The body consists of a rectified batch-normalized convolutional layer followed by

A.2. Experimental Setup 120

19 residual blocks [50]. Each such block consists of two rectified batch-normalized

convolutional layers with a skip connection. Each convolution applies 256 filters

of kernel size 3× 3 with stride 1. The policy head applies an additional rectified,

batch-normalized convolutional layer, followed by a final convolution of 73 filters

for chess or 139 filters for shogi, or a linear layer of size 362 for Go, representing

the logits of the respective policies described above. The value head applies an

additional rectified, batch-normalized convolution of 1 filter of kernel size 1× 1

with stride 1, followed by a rectified linear layer of size 256 and a tanh-linear layer

of size 1.

A.2.3 Configuration

During training, each MCTS used 800 simulations. The number of games, posi-

tions, and thinking time varied per game due largely to different board sizes and

game lengths, and are shown in Table 5.3. The learning rate was set to 0.2 for each

game, and was dropped three times during the course of training to 0.02, 0.002 and

0.0002 respectively, after 100, 300 and 500 thousands of steps for chess and shogi,

and after 0, 300 and 500 thousands of steps for Go. Moves are selected in proportion

to the root visit count. Dirichlet noise Dir(α) was added to the prior probabilities

in the root node; this was scaled in inverse proportion to the approximate number

of legal moves in a typical position, to a value of α = {0.3,0.15,0.03} for chess,

shogi and Go respectively. Positions were batched across parallel training games

for evaluation by the neural network.

During evaluation, AlphaZero selects moves greedily with respect to the root

visit count. Each MCTS was executed on a single machine with 4 first-generation

TPUs.

A.2.4 Opponents

To evaluate performance in chess, we used Stockfish version 8 (official Linux re-

lease) as a baseline program. Stockfish was configured according to its 2016 TCEC

world championship superfinal settings: 44 threads on 44 cores (two 2.2GHz In-

tel Xeon Broadwell CPUs with 22 cores), a hash size of 32GB, syzygy endgame

A.2. Experimental Setup 121

tablebases, at 3 hour time controls with 15 additional seconds per move. We also

evaluated against the most recent version, Stockfish 9 (just released at time of writ-

ing), using the same configuration.

Stockfish does not have an opening book of its own and all primary evalua-

tions were performed without an opening book. We also performed one secondary

evaluation in which the opponent’s opening moves were selected by the Brainfish

program, using an opening book derived from Stockfish. However, we note that

these matches were low in diversity, and AlphaZero and Stockfish tended to produce

very similar games throughout the match, more than 90% of which were draws.

When we forced AlphaZero to play with greater diversity (by softmax sampling

with a temperature of 10.0 among moves for which the value was no more than 1%

away from the best move for the first 30 plies) the winning rate increased from 5.8%

to 14%.

To evaluate performance in shogi, we used Elmo version WCSC27 in com-

bination with YaneuraOu 2017 Early KPPT 4.79 64AVX2 TOURNAMENT as a

baseline program, using 44 CPU threads (on two 2.2GHz Intel Xeon Broadwell

CPUs with 22 cores) and a hash size of 32GB with the usi options of EnteringK-

ingRule set to CSARule27, MinimumThinkingTime set to 1000, BookFile set to

standard book.db, BookDepthLimit set to 0 and BookMoves set to 200. Addition-

ally, we also evaluated against Aperyqhapaq combined with the same YaneuraOu

version and no book file. For Aperyqhapaq, we used the same usi options as for

Elmo except for the book setting.

A.2.5 Match conditions

We measured the head-to-head performance of AlphaZero in matches against each

of the above opponents (Figure 5.8). Three types of match were played: starting

from the initial board position (the default configuration, unless otherwise spec-

ified); starting from human opening positions; or starting from the 2016 TCEC

opening positions 1.

1The TCEC world championship disallows opening books and instead starts two games (one

from each colour) from each opening position.

A.2. Experimental Setup 122

The majority of matches for chess, shogi and Go used the 2016 TCEC su-

perfinal time controls: 3 hours of main thinking time, plus 15 additional seconds of

thinking time for each move. We also investigated asymmetric time controls (Figure

5.8B), where the opponent received 3 hours of main thinking time but AlphaZero

received only a fraction of this time. Finally, for shogi only, we ran a match using

faster time controls used in the 2017 CSA world championship: 10 minutes per

game plus 10 seconds per move.

AlphaZero used a simple time control strategy: thinking for 1/20th of the re-

maining time. Opponent programs used customized, sophisticated heuristics for

time control. Pondering was disabled for all players (particularly important for the

asymmetric time controls in Figure 5.8).

Resignation was enabled for all players (-650 centipawns for 4 consecutive

moves for Stockfish, -4,500 centipawns for 10 consecutive moves for Elmo, or a

value of -0.9 for AlphaZero and AlphaGo Lee).

Matches consisted of 1,000 games, except for the human openings (200 games

as black and 200 games as white from each opening) and the 2016 TCEC openings

(50 games as black and 50 games as white from each of the 50 openings). The

human opening positions were chosen as those played more than 100,000 times in

an online database [2].

A.2.6 Elo ratings

We evaluated the relative strength of AlphaZero (Figure 5.7) by measuring the Elo

rating of each player. We estimate the probability that player a will defeat player

b by a logistic function p(a defeats b) = (1+10(celo(e(b)−e(a))))−1, and estimate the

ratings e(·) by Bayesian logistic regression, computed by the BayesElo program

[26] using the standard constant celo = 1/400.

Elo ratings were computed from the results of a 1 second per move tournament

between iterations of AlphaZero during training, and also a baseline player: either

Stockfish, Elmo or AlphaGo Lee respectively. The Elo rating of the baseline players

was anchored to publicly available values.

In order to compare Elo ratings at 1 second per move time controls to standard

A.3. Chess Openings 123

Program Win Draw Loss

Stockfish 57.1 % 42.9 % 0.0 %

Elmo 98.7 % 1.0 % 0.3 %

Table 3: Performance comparison of Stockfish and Elmo, when using full time

controls of 3h per game, compared to time controls of 1s per move.

Elo ratings at full time controls, we also provide the results of Stockfish vs. Stockfish

and Elmo vs. Elmo matches (Table 3).

A.3 Chess Openings

A.3. Chess Openings 124

Figure 1: Matches starting from the most popular human openings. AlphaZero

plays against (A) Stockfish in chess and (B) Elmo in shogi. In the left bar, AlphaZero

plays white, starting from the given position; in the right bar AlphaZero plays black.

Each bar shows the results from AlphaZero’s perspective: win (green), draw (grey),

loss (red). The percentage frequency of self-play training games in which this open-

ing was selected by AlphaZero is plotted against the duration of training, in hours.

Appendix B

MuZero Appendix

B.1 Hyperparameters
For simplicity we preferentially use the same architectural choices and hyperparam-

eters as in previous experiments. Specifically, we started with the network architec-

ture and search choices of AlphaZero. For board games, we use the same UCB

constants, dirichlet exploration noise and the same 800 simulations per search as in

AlphaZero.

Due to the much smaller branching factor and simpler policies in Atari, we

only used 50 simulations per search to speed up experiments. As shown in Figure

3B, the algorithm is not very sensitive to this choice. We also use the same discount

(0.997) and value transformation (see Network Architecture section) as R2D2 [68].

For parameter values not mentioned in the text, please refer to the pseudocode.

B.2 Data Generation
To generate training data, the latest checkpoint of the network (updated every 1000

training steps) is used to play games with MCTS. In the board games Go, chess and

shogi the search is run for 800 simulations per move to pick an action; in Atari due

to the much smaller action space 50 simulations per move are sufficient.

For board games, games are sent to the training job as soon as they finish. Due

to the much larger length of Atari games (up to 30 minutes or 108,000 frames),

intermediate sequences are sent every 200 moves. In board games, the training

job keeps an in-memory replay buffer of the most recent 1 million games received;

B.3. Network Input 126

in Atari, where the visual observations are larger, the most recent 125 thousand

sequences of length 200 are kept.

During the generation of experience in the board game domains, the same ex-

ploration scheme as the one described in AlphaZero is used. Using a variation of this

scheme, in the Atari domain actions are sampled from the visit count distribution

throughout the duration of each game, instead of just the first k moves. Moreover,

the visit count distribution is parametrized using a temperature parameter T :

pα =
N(α)1/T

∑b N(b)1/T
(B.1)

T is decayed as a function of the number of training steps of the network.

Specifically, for the first 500k training steps a temperature of 1 is used, for the next

250k steps a temperature of 0.5 and for the remaining 250k a temperature of 0.25.

This ensures that the action selection becomes greedier as training progresses.

B.3 Network Input

B.3.1 Representation Function

The history over board states was used as input to the representation function for

Go, chess and shogi is represented similarly to AlphaZero. In Go and shogi we

encode the last 8 board states as in AlphaZero; in chess we increased the history to

the last 100 board states to allow correct prediction of draws.

For Atari, the input of the representation function includes the last 32 RGB

frames at resolution 96x96 along with the last 32 actions that led to each of those

frames. We encode the historical actions because unlike board games, an action in

Atari does not necessarily have a visible effect on the observation. RGB frames are

encoded as one plane per color, rescaled to the range [0,1], for red, green and blue

respectively. We perform no other normalization, whitening or other preprocessing

of the RGB input. Historical actions are encoded as simple bias planes, scaled as

a/18 (there are 18 total actions in Atari).

B.4. Network Architecture 127

B.3.2 Dynamics Function

The input to the dynamics function is the hidden state produced by the representa-

tion function or previous application of the dynamics function, concatenated with

a representation of the action for the transition. Actions are encoded spatially in

planes of the same resolution as the hidden state. In Atari, this resolution is 6x6 (see

description of downsampling in Network Architecture section), in board games this

is the same as the board size (19x19 for Go, 8x8 for chess, 9x9 for shogi).

In Go, a normal action (playing a stone on the board) is encoded as an all zero

plane, with a single one in the position of the played stone. A pass is encoded as an

all zero plane.

In chess, 8 planes are used to encode the action. The first one-hot plane en-

codes which position the piece was moved from. The next two planes encode which

position the piece was moved to: a one-hot plane to encode the target position, if

on the board, and a second binary plane to indicate whether the target was valid (on

the board) or not. This is necessary because for simplicity our policy action space

enumerates a superset of all possible actions, not all of which are legal, and we use

the same action space for policy prediction and to encode the dynamics function

input. The remaining five binary planes are used to indicate the type of promotion,

if any (queen, knight, bishop, rook, none).

The encoding for shogi is similar, with a total of 11 planes. We use the first 8

planes to indicate where the piece moved from - either a board position (first one-hot

plane) or the drop of one of the seven types of prisoner (remaining 7 binary planes).

The next two planes are used to encode the target as in chess. The remaining binary

plane indicates whether the move was a promotion or not.

In Atari, an action is encoded as a one hot vector which is tiled appropriately

into planes.

B.4 Network Architecture
The prediction function pk,vk = fθ (sk) uses the same architecture as AlphaZero:

one or two convolutional layers that preserve the resolution but reduce the number

B.4. Network Architecture 128

of planes, followed by a fully connected layer to the size of the output.

For value and reward prediction in Atari we follow [95] in scaling targets using

an invertible transform h(x) = sign(x)(
√
|x|+1− 1)+ εx, where ε = 0.001 in all

our experiments. We then apply a transformation φ to the scalar reward and value

targets in order to obtain equivalent categorical representations. We use a discrete

support set of size 601 with one support for every integer between −300 and 300.

Under this transformation, each scalar is represented as the linear combination of

its two adjacent supports, such that the original value can be recovered by x =

xlow ∗ plow + xhigh ∗ phigh. As an example, a target of 3.7 would be represented as a

weight of 0.3 on the support for 3 and a weight of 0.7 on the support for 4. The value

and reward outputs of the network are also modeled using a softmax output of size

601. During inference the actual value and rewards are obtained by first computing

their expected value under their respective softmax distribution and subsequently

by inverting the scaling transformation. Scaling and transformation of the value

and reward happens transparently on the network side and is not visible to the rest

of the algorithm.

Both the representation and dynamics function use the same architecture as

AlphaZero, but with 16 instead of 20 residual blocks [50]. We use 3x3 kernels and

256 hidden planes for each convolution.

For Atari, where observations have large spatial resolution, the representation

function starts with a sequence of convolutions with stride 2 to reduce the spatial

resolution. Specifically, starting with an input observation of resolution 96x96 and

128 planes (32 history frames of 3 color channels each, concatenated with the cor-

responding 32 actions broadcast to planes), we downsample as follows:

• 1 convolution with stride 2 and 128 output planes, output resolution 48x48.

• 2 residual blocks with 128 planes

• 1 convolution with stride 2 and 256 output planes, output resolution 24x24.

• 3 residual blocks with 256 planes.

• Average pooling with stride 2, output resolution 12x12.

B.5. Training 129

• 3 residual blocks with 256 planes.

• Average pooling with stride 2, output resolution 6x6.

The kernel size is 3x3 for all operations.

For the dynamics function (which always operates at the downsampled resolu-

tion of 6x6), the action is first encoded as an image, then stacked with the hidden

state of the previous step along the plane dimension.

B.5 Training
During training, the MuZero network is unrolled for K hypothetical steps and

aligned to sequences sampled from the trajectories generated by the MCTS actors.

Sequences are selected by sampling a state from any game in the replay buffer, then

unrolling for K steps from that state. In Atari, samples are drawn according to pri-

oritized replay [101], with priority P(i) = pα
i

∑k pα
k

, where pi = |νi− zi|, ν is the search

value and z the observed n-step return. To correct for sampling bias introduced

by the prioritized sampling, we scale the loss using the importance sampling ratio

wi = (1
N ·

1
P(i))

β . In all our experiments, we set α = β = 1. For board games, states

are sampled uniformly.

Each observation ot along the sequence also has a corresponding search policy

πt , search value function, νt and environment reward ut . At each unrolled step k

the network has a loss to the policy, value and reward target for that step, summed

to produce the total loss for the MuZero network (see Equation 6.3). Note that, in

board games without intermediate rewards, we omit the reward prediction loss. For

board games, we bootstrap directly to the end of the game, equivalent to predicting

the final outcome; for Atari we bootstrap for n = 10 steps into the future.

To maintain roughly similar magnitude of gradient across different unroll steps,

we scale the gradient in two separate locations:

• We scale the loss of each head by 1
K , where K is the number of unroll steps.

This ensures that the total gradient has similar magnitude irrespective of how

many steps we unroll for.

B.6. MuZero Equations 130

• We also scale the gradient at the start of the dynamics function by 1
2 . This

ensures that the total gradient applied to the dynamics function stays constant.

In the experiments reported in this paper, we always unroll for K = 5 steps.

For a detailed illustration, see Figure 1.

To improve the learning process and bound the activations, we also scale the

hidden state to the same range as the action input ([0,1]): sscaled = s−min(s)
max(s)−min(s) .

All experiments were run using third generation Google Cloud TPUs [43]. For

each board game, we used 16 TPUs for training and 1000 TPUs for selfplay. For

each game in Atari, we used 8 TPUs for training and 32 TPUs for selfplay. The

much smaller proportion of TPUs used for acting in Atari is due to the smaller

number of simulations per move (50 instead of 800) and the smaller size of the

dynamics function compared to the representation function.

Note that the network is trained separately for each environment (i.e. one

model for each different Atari game or board game). However, in principle the

same model could be shared between different environments during training, or

could be tested in new environments (i.e. zero-shot generalisation); this approach is

left to future work.

B.6 MuZero Equations

B.6. MuZero Equations 131

Model

s0 = hθ (o1, ...,ot)

rk,sk = gθ (sk−1,ak)

pk,vk = fθ (sk)

 pk,vk,rk = µθ (o1, ...,ot ,a1, ...,ak)

Search

νt ,πt = MCT S(s0
t ,µθ)

at ∼ πt

Learning Rule

pk
t ,v

k
t ,r

k
t = µθ (o1, ...,ot ,at+1, ...,at+k)

zt =

 uT for games

ut+1 + γut+2 + ...+ γn−1ut+n + γnνt+n for general MDPs

lt(θ) =
K

∑
k=0

lp(πt+k, pk
t)+

K

∑
k=0

lv(zt+k,vk
t)+

K

∑
k=1

lr(ut+k,rk
t)+ c||θ ||2

Losses

lp(π, p) = π
T log p

lv(z,v) =

 (z− v)2 for games

φ(z)T logv for general MDPs

lr(u,r) =

 0 for games

φ(u)T logr for general MDPs

Figure 1: Equations summarising the MuZero algorithm. Here, φ(x) refers to

the representation of a real number x through a linear combination of its adjacent

integers, as described in the Network Architecture section.

Bibliography

[1] Kgs games database, 2017. URL: https://u-go.net/

gamerecords/.

[2] Online chess games database, 365chess, 2017. URL: https://www.

365chess.com/.

[3] Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K Hubert,

and David Silver. Planning in stochastic environments with a learned model.

In International Conference on Learning Representations, 2022.

[4] Oleg Arenz. Monte carlo chess. bachelor thesis, Technische Universität

Darmstadt, Darmstadt, 2022.

[5] Computer Shogi Association. Results of the 27th world computer shogi

championship. http://www2.computer-shogi.org/wcsc27/

index_e.html. Retrieved November 29th, 2017.

[6] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of

the multiarmed bandit problem. Mach. Learn., 47(2–3):235–256, may 2002.

[7] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The

nonstochastic multiarmed bandit problem. SIAM J. Comput., 32(1):48–77,

jan 2003.

[8] Kamyar Azizzadenesheli, Brandon Yang, Weitang Liu, Emma Brunskill,

Zachary C. Lipton, and Animashree Anandkumar. Surprising negative re-

sults for generative adversarial tree search. CoRR, abs/1806.05780, 2018.

https://u-go.net/gamerecords/
https://u-go.net/gamerecords/
https://www.365chess.com/
https://www.365chess.com/
http://www2.computer-shogi.org/wcsc27/index_e.html
http://www2.computer-shogi.org/wcsc27/index_e.html

Bibliography 133

[9] Petr Baudiš and Jean-loup Gailly. Pachi: State of the art open source go

program. In H. Jaap van den Herik and Aske Plaat, editors, Advances in

Computer Games, pages 24–38, Berlin, Heidelberg, 2012. Springer Berlin

Heidelberg.

[10] J. Baxter, A. Tridgell, and L. Weaver. Learning to play chess using temporal

differences. Machine Learning, 40(3):243–263, 2000.

[11] Donald F. Beal and Martin C. Smith. Temporal difference learning for heuris-

tic search and game playing. Inf. Sci., 122(1):3–21, 2000.

[12] Donald F. Beal and Martin C. Smith. Temporal difference learning applied to

game playing and the results of application to shogi. Theoretical Computer

Science, 252(1–2):105–119, 2001.

[13] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wain-

wright, Heinrich Küttler, Andrew Lefrancq, Simon Green, Vı́ctor Valdés,

Amir Sadik, et al. Deepmind lab. arXiv preprint arXiv:1612.03801, 2016.

[14] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional per-

spective on reinforcement learning. In ICML, 2017.

[15] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The ar-

cade learning environment: An evaluation platform for general agents. Jour-

nal of Artificial Intelligence Research, 47:253–279, 2013.

[16] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or prop-

agating gradients through stochastic neurons for conditional computation.

arXiv preprint arXiv:1308.3432, 2013.

[17] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint

arXiv:1606.01540, 2016.

[18] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-

plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,

Bibliography 134

Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,

Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,

Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott

Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,

Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-

shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and

H. Lin, editors, Advances in Neural Information Processing Systems, vol-

ume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[19] Michael Buro. From simple features to sophisticated evaluation functions.

In H. Jaap van den Herik and Hiroyuki Iida, editors, Computers and Games,

pages 126–145, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[20] M. Campbell, A. J. Hoane, and F. Hsu. Deep Blue. Artificial Intelligence,

134:57–83, 2002.

[21] Tristan Cazenave. Residual networks for computer go. IEEE Transactions

on Games, 10(1):107–110, 2018.

[22] Silvia Chiappa, Sébastien Racanière, Daan Wierstra, and Shakir Mohamed.

Recurrent environment simulators. In 5th International Conference on

Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,

Conference Track Proceedings. OpenReview.net, 2017.

[23] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua

Bengio. On the properties of neural machine translation: Encoder–decoder

approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Seman-

tics and Structure in Statistical Translation, pages 103–111, Doha, Qatar,

October 2014. Association for Computational Linguistics.

[24] Christopher Clark and Amos Storkey. Training deep convolutional neural

networks to play Go. In Francis Bach and David Blei, editors, Proceedings

of the 32nd International Conference on Machine Learning, volume 37 of

Bibliography 135

Proceedings of Machine Learning Research, pages 1766–1774, Lille, France,

07–09 Jul 2015. PMLR.

[25] Adrien Couetoux. Monte Carlo Tree Search for Continuous and Stochastic

Sequential Decision Making Problems. Thesis, Université Paris Sud - Paris

XI, September 2013.

[26] R. Coulom. Whole-history rating: A Bayesian rating system for players

of time-varying strength. In International Conference on Computers and

Games, pages 113–124, 2008.

[27] Rémi Coulom. Computing ”Elo ratings” of move patterns in the game of Go.

J. Int. Comput. Games Assoc., 30:198–208, 2007.

[28] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit

quantile networks for distributional reinforcement learning. In ICML, 2018.

[29] Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos.

Distributional reinforcement learning with quantile regression. CoRR,

abs/1710.10044, 2018.

[30] Mogens Dalgaard, Felix Motzoi, Jens Jakob W. H. Sørensen, and Jacob Friis

Sherson. Global optimization of quantum dynamics with AlphaZero deep

exploration. npj Quantum Information, 6:1–9, 2019.

[31] Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Pol-

icy improvement by planning with Gumbel. In International Conference on

Learning Representations, 2022.

[32] Omid E David, Nathan S Netanyahu, and Lior Wolf. Deepchess: End-to-

end deep neural network for automatic learning in chess. In International

Conference on Artificial Neural Networks, pages 88–96. Springer, 2016.

[33] M. Enzenberger. Evaluation in Go by a Neural Network Using Soft Segmen-

tation, pages 97–108. Springer US, Boston, MA, 2004.

Bibliography 136

[34] Markus Enzenberger. The integration of a priori knowledge into a Go playing

neural network. 1996.

[35] Markus Enzenberger, Martin Müller, Broderick Arneson, and Richard Se-

gal. Fuego—An Open-Source Framework for Board Games and Go Engine

Based on Monte Carlo Tree Search. IEEE Transactions on Computational

Intelligence and AI in Games, 2(4):259–270, 2010.

[36] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih,

Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Im-

pala: Scalable distributed deep-rl with importance weighted actor-learner ar-

chitectures. In International conference on machine learning, pages 1407–

1416. PMLR, 2018.

[37] Amir-massoud Farahmand. Iterative value-aware model learning. In Pro-

ceedings of the 32nd International Conference on Neural Information Pro-

cessing Systems, NIPS’18, page 9090–9101, Red Hook, NY, USA, 2018.

Curran Associates Inc.

[38] Amir-Massoud Farahmand, Andre Barreto, and Daniel Nikovski. Value-

Aware Loss Function for Model-based Reinforcement Learning. In Aarti

Singh and Jerry Zhu, editors, Proceedings of the 20th International Confer-

ence on Artificial Intelligence and Statistics, volume 54 of Proceedings of

Machine Learning Research, pages 1486–1494, Fort Lauderdale, FL, USA,

20–22 Apr 2017. PMLR.

[39] Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and Shimon White-

son. TreeQN and AtreeC: Differentiable tree planning for deep reinforce-

ment learning. 10 2017.

[40] Inc. Free Software Foundation. Gnu chess.

[41] Inc. Free Software Foundation. Gnu backgammon, 2004.

Bibliography 137

[42] Kunihiko Fukushima. Neocognitron: A self-organizing neural network

model for a mechanism of pattern recognition unaffected by shift in posi-

tion. Biological Cybernetics, 36:193–202, 1980.

[43] Cloud TPU. https://cloud.google.com/tpu/.

[44] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy

evolution. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-

Bianchi, and R. Garnett, editors, Advances in Neural Information Processing

Systems, volume 31. Curran Associates, Inc., 2018.

[45] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha,

Honglak Lee, and James Davidson. Learning latent dynamics for planning

from pixels. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Pro-

ceedings of the 36th International Conference on Machine Learning, vol-

ume 97 of Proceedings of Machine Learning Research, pages 2555–2565.

PMLR, 09–15 Jun 2019.

[46] Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba.

Mastering atari with discrete world models. In International Conference on

Learning Representations, 2021.

[47] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for

the heuristic determination of minimum cost paths. IEEE Transactions on

Systems Science and Cybernetics, 4(2):100–107, 1968.

[48] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of sta-

tistical learning: data mining, inference and prediction. Springer, 2 edition,

2009.

[49] Frederick Hayes-Roth, Donald A Waterman, and Douglas B Lenat. Building

expert systems. Addison-Wesley Longman Publishing Co., Inc., 1983.

https://cloud.google.com/tpu/

Bibliography 138

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity map-

pings in deep residual networks. In 14th European Conference on Computer

Vision, pages 630–645, 2016.

[51] Mikael Henaff, William F Whitney, and Yann LeCun. Model-based plan-

ning with discrete and continuous actions. arXiv preprint arXiv:1705.07177,

2017.

[52] Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt,

Laurent Sifre, Theophane Weber, David Silver, and Hado Van Hasselt.

Muesli: Combining improvements in policy optimization. In Marina Meila

and Tong Zhang, editors, Proceedings of the 38th International Conference

on Machine Learning, volume 139 of Proceedings of Machine Learning Re-

search, pages 4214–4226. PMLR, 18–24 Jul 2021.

[53] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Os-

trovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David

Silver. Rainbow: Combining improvements in deep reinforcement learning.

arXiv preprint arXiv:1710.02298, 2017.

[54] Kunihito Hoki and Tomoyuki Kaneko. Large-scale optimization for evalu-

ation functions with minimax search. Journal of Artificial Intelligence Re-

search (JAIR), 49:527–568, 2014.

[55] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hes-

sel, Hado van Hasselt, and David Silver. Distributed prioritized experience

replay. In International Conference on Learning Representations, 2018.

[56] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-

ward networks are universal approximators. Neural Networks, 2(5):359–366,

1989.

[57] Feng-hsiung Hsu. Behind Deep Blue: Building the Computer that Defeated

the World Chess Champion. Princeton University Press, 2002.

Bibliography 139

[58] Aja Huang. AlphaGo Master online series of games, 2017. URL: https://

deepmind.com/research/alphago/match-archive/master.

[59] Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin

Barekatain, Simon Schmitt, and David Silver. Learning and planning in com-

plex action spaces. In Marina Meila and Tong Zhang, editors, Proceedings

of the 38th International Conference on Machine Learning, volume 139 of

Proceedings of Machine Learning Research, pages 4476–4486. PMLR, 18–

24 Jul 2021.

[60] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

[61] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul,

Joel Z. Leibo, David Silver, and Koray Kavukcuoglu. Reinforcement learn-

ing with unsupervised auxiliary tasks. In 5th International Conference on

Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,

Conference Track Proceedings. OpenReview.net, 2017.

[62] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with

gumbel-softmax. 11 2016.

[63] Wojciech Jaśkowski. Mastering 2048 with delayed temporal coherence learn-

ing, multi-state weight promotion, redundant encoding and carousel shaping.

IEEE Transactions on Computational Intelligence and AI in Games, 04 2016.

[64] Philip N. Johnson-Laird. Mental models and human reasoning. Proceedings

of the National Academy of Sciences, 107(43):18243–18250, 2010.

[65] Norman P. Jouppi, Cliff Young, Nishant Patil, et al. In-datacenter perfor-

mance analysis of a tensor processing unit. In Proceedings of the 44th An-

nual International Symposium on Computer Architecture, ISCA ’17, pages

1–12. ACM, 2017.

https://deepmind.com/research/alphago/match-archive/master
https://deepmind.com/research/alphago/match-archive/master

Bibliography 140

[66] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski,

Roy H. Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Pi-

otr Kozakowski, Sergey Levine, Ryan Sepassi, George Tucker, and Hen-

ryk Michalewski. Model-based reinforcement learning for Atari. CoRR,

abs/1903.00374, 2019.

[67] Tomoyuki Kaneko and Kunihito Hoki. Analysis of evaluation-function learn-

ing by comparison of sibling nodes. In Advances in Computer Games - 13th

International Conference, ACG 2011, Tilburg, The Netherlands, November

20-22, 2011, Revised Selected Papers, pages 158–169, 2011.

[68] Steven Kapturowski, Georg Ostrovski, John Quan, Rémi Munos, and Will

Dabney. Recurrent experience replay in distributed reinforcement learning.

In ICLR, 2019.

[69] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning.

In Proceedings of the 17th European Conference on Machine Learning,

ECML’06, page 282–293, Berlin, Heidelberg, 2006. Springer-Verlag.

[70] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning.

In Proceedings of the 17th European Conference on Machine Learning,

ECML’06, page 282–293, Berlin, Heidelberg, 2006. Springer-Verlag.

[71] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,

L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information

Processing Systems, volume 25. Curran Associates, Inc., 2012.

[72] Matthew Lai. Giraffe: Using deep reinforcement learning to play chess.

Master’s thesis, Imperial College London, 2015.

[73] Alexandre Laterre, Yunguan Fu, Mohamed Khalil Jabri, Alain-Sam Cohen,

David Kas, Karl Hajjar, Torbjorn S. Dahl, Amine Kerkeni, and Karim Beguir.

Ranked reward: Enabling self-play reinforcement learning for combinatorial

optimization. CoRR, 2018.

Bibliography 141

[74] Yann LeCun, Y. Bengio, and Geoffrey Hinton. Deep learning. Nature,

521:436–44, 05 2015.

[75] Yann LeCun and Yoshua Bengio. Convolutional Networks for Images,

Speech, and Time Series, page 255–258. MIT Press, Cambridge, MA, USA,

1998.

[76] Shane Legg. Machine super intelligence. 2008.

[77] Siqi Liu, Kay Choong See, Kee Yuan Ngiam, Leo Anthony Celi, Xingzhi

Sun, and Mengling Feng. Reinforcement learning for clinical decision

support in critical care: Comprehensive review. J Med Internet Res,

22(7):e18477, Jul 2020.

[78] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew

Hausknecht, and Michael Bowling. Revisiting the arcade learning environ-

ment: Evaluation protocols and open problems for general agents. J. Artif.

Int. Res., 61(1):523–562, jan 2018.

[79] Chris J. Maddison, Aja Huang, Ilya Sutskever, and David Silver. Move eval-

uation in Go using deep convolutional neural networks. In International

Conference on Learning Representations, 2015.

[80] Amol Mandhane, Anton Zhernov, Maribeth Rauh, Chenjie Gu, Miaosen

Wang, Flora Xue, Wendy Shang, Derek Pang, Rene Claus, Ching-Han Chi-

ang, Cheng Chen, Jingning Han, Angie Chen, Daniel J. Mankowitz, Jackson

Broshear, Julian Schrittwieser, Thomas Hubert, Oriol Vinyals, and Timothy

Mann. Muzero with self-competition for rate control in vp9 video compres-

sion, 2022.

[81] John McCarthy. Ai as sport. Science, 276(5318):1518–1519, 1997.

[82] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas imma-

nent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–

133, 1943.

Bibliography 142

[83] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves,

Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.

Asynchronous methods for deep reinforcement learning. In ICML, 2016.

[84] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel

Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas

Fidjeland, Georg Ostrovski, Stig Petersen, Charlie Beattie, Amir Sadik, Ioan-

nis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane

Legg, and Demis Hassabis. Human-level control through deep reinforcement

learning. Nature, 518:529–533, 2015.

[85] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory

Fearon, Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suley-

man, Charles Beattie, Stig Petersen, Shane Legg, Volodymyr Mnih, Koray

Kavukcuoglu, and David Silver. Massively parallel methods for deep rein-

forcement learning. CoRR, abs/1507.04296, 2015.

[86] Todd W. Neller. Pedagogical possibilities for the 2048 puzzle game. J. Com-

put. Sci. Coll., 30(3):38–46, January 2015.

[87] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, editors, Advances in Neural Information Processing Systems,

volume 30. Curran Associates, Inc., 2017.

[88] Kazuto Oka and Kiminori Matsuzaki. Systematic selection of n-tuple net-

works for 2048. In Aske Plaat, Walter Kosters, and Jaap van den Herik,

editors, Computers and Games, pages 81–92, Cham, 2016. Springer Interna-

tional Publishing.

[89] OpenAI. OpenAI five. https://blog.openai.com/

openai-five/, 2018.

[90] Sherjil Ozair, Yazhe Li, Ali Razavi, Ioannis Antonoglou, Aaron Van

Den Oord, and Oriol Vinyals. Vector quantized models for planning. In Ma-

https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/

Bibliography 143

rina Meila and Tong Zhang, editors, Proceedings of the 38th International

Conference on Machine Learning, volume 139 of Proceedings of Machine

Learning Research, pages 8302–8313. PMLR, 18–24 Jul 2021.

[91] Pascutto, Gian-Carlo and Linscott, Gary. Leela chess zero.

[92] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem

Solving. Addison-Wesley Longman Publishing Co., Inc., USA, 1984.

[93] Barney Pell. A strategic metagame player for general chess-like games. Com-

putational Intelligence, 12:177–198, 1996.

[94] J. Peters, S. Vijayakumar, and S. Schaal. Reinforcement learning for hu-

manoid robotics. In IEEE-RAS International Conference on Humanoid

Robots (Humanoids2003), Karlsruhe, Germany, Sept.29-30, 2003.

[95] Tobias Pohlen, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan

Horgan, David Budden, Gabriel Barth-Maron, Hado van Hasselt, John Quan,

Mel Večerı́k, et al. Observe and look further: Achieving consistent perfor-

mance on Atari. arXiv preprint arXiv:1805.11593, 2018.

[96] Martin L Puterman. Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons, 2014.

[97] Philip Rodgers and John Levine. An investigation into 2048 AI strategies.

In 2014 IEEE Conference on Computational Intelligence and Games, pages

1–2, 2014.

[98] Tord Romstad, Marco Costalba, Joona Kiiski, et al. Stockfish: A strong

open source chess engine. https://stockfishchess.org/. Re-

trieved November 29th, 2017.

[99] Christopher D. Rosin. Multi-armed bandits with episode context. Annals of

Mathematics and Artificial Intelligence, 61:203–230, 2010.

https://stockfishchess.org/

Bibliography 144

[100] A. L. Samuel. Some studies in machine learning using the game of checkers

II - recent progress. IBM Journal of Research and Development, 11(6):601–

617, 1967.

[101] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized

experience replay. In International Conference on Learning Representations,

Puerto Rico, 2016.

[102] Simon Schmitt, Matteo Hessel, and Karen Simonyan. Off-policy actor-critic

with shared experience replay. arXiv preprint arXiv:1909.11583, 2019.

[103] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,

Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Has-

sabis, Thore Graepel, Timothy P. Lillicrap, and David Silver. Mastering

Atari, Go, Chess and Shogi by Planning with a Learned Model. Nature,

588(7839):604–609, 2020.

[104] Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin

Barekatain, Ioannis Antonoglou, and David Silver. Online and Offline Rein-

forcement Learning by planning with a learned model. Advances in Neural

Information Processing Systems, 34:27580–27591, 2021.

[105] Marwin Segler, Mike Preuss, and Mark Waller. Towards ”AlphaChem”:

Chemical Synthesis Planning with Tree Search and Deep Neural Network

Policies. 2017.

[106] Brian Sheppard. World-championship-caliber scrabble, 2002.

[107] David Silver. Reinforcement Learning and Simulation-Based Search in Com-

puter Go. PhD thesis, CAN, 2009.

[108] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep

neural networks and tree search. nature, 529(7587):484, 2016.

Bibliography 145

[109] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,

Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,

Thore Graepel, et al. A general reinforcement learning algorithm that mas-

ters chess, shogi, and Go through self-play. Science, 362(6419):1140–1144,

2018.

[110] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,

Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian

Bolton, et al. Mastering the game of go without human knowledge. Nature,

550(7676):354, 2017.

[111] David Silver, Richard Sutton, and Martin Müller. Temporal-difference search

in computer go. In Machine Learning, 2012.

[112] David Silver, Richard S. Sutton, and Martin Müller. Sample-based learn-

ing and search with permanent and transient memories. In Proceedings of

the 25th International Conference on Machine Learning, ICML ’08, page

968–975, New York, NY, USA, 2008. Association for Computing Machin-

ery.

[113] David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez,

Tim Harley, Gabriel Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre

Barreto, and Thomas Degris. The predictron: End-to-end learning and plan-

ning. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th

International Conference on Machine Learning, volume 70 of Proceedings

of Machine Learning Research, pages 3191–3199. PMLR, 06–11 Aug 2017.

[114] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence

learning with neural networks. In Z. Ghahramani, M. Welling, C. Cortes,

N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Informa-

tion Processing Systems, volume 27. Curran Associates, Inc., 2014.

[115] Richard Sutton. The bitter lesson, 2017. URL: http://www.

incompleteideas.net/IncIdeas/BitterLesson.html.

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Bibliography 146

[116] Richard S Sutton. Dyna, an integrated architecture for learning, planning,

and reacting. ACM SIGART Bulletin, 2(4):160–163, 1991.

[117] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-

duction. The MIT Press, second edition, 2018.

[118] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. Going deeper with convolutions. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pages 1–9, 2015.

[119] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbig-

niew Wojna. Rethinking the inception architecture for computer vision.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2818–2826, 2016.

[120] Marcin Szubert and Wojciech Jaśkowski. Temporal difference learning of

n-tuple networks for the game 2048. In 2014 IEEE Conference on Computa-

tional Intelligence and Games, pages 1–8, 2014.

[121] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel.

Value iteration networks. In Proceedings of the 30th International Confer-

ence on Neural Information Processing Systems, NIPS’16, page 2154–2162,

Red Hook, NY, USA, 2016. Curran Associates Inc.

[122] Gerald Tesauro. TD-gammon, a self-teaching backgammon program,

achieves master-level play. Neural Computation, 6(2):215–219, 1994.

[123] Gerald Tesauro. Temporal difference learning and TD-Gammon. Commun.

ACM, 38(3):58–68, March 1995.

[124] Gerald Tesauro. Programming backgammon using self-teaching neural nets.

Artificial Intelligence, 134(1-2):181–199, 2002.

Bibliography 147

[125] Gerald Tesauro and Gregory R. Galperin. On-line policy improvement using

monte-carlo search. In Advances in Neural Information Processing Systems

9, pages 1068–1074, 1996.

[126] Tesla. Tesla AI Day. https://www.youtube.com/watch?v=

j0z4FweCy4M, 2021.

[127] Sebastian Thrun. Learning to play the game of chess. In Advances in neural

information processing systems, pages 1069–1076, 1995.

[128] Yuandong Tian and Yan Zhu. Better computer Go player with neural network

and long-term prediction. 2015.

[129] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete

representation learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural

Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[130] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you

need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, editors, Advances in Neural Information Process-

ing Systems, volume 30. Curran Associates, Inc., 2017.

[131] J. Veness, D. Silver, A. Blair, and W. Uther. Bootstrapping from game tree

search. In Advances in Neural Information Processing Systems, pages 1937–

1945, 2009.

[132] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu,

Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo

Ewalds, Petko Georgiev, et al. Grandmaster level in StarCraft II using multi-

agent reinforcement learning. Nature, 2019.

[133] John von Neumann. 1. On the Theory of Games of Strategy, pages 13–42.

Princeton University Press, 2016.

https://www.youtube.com/watch?v=j0z4FweCy4M
https://www.youtube.com/watch?v=j0z4FweCy4M

Bibliography 148

[134] Yizao Wang and Sylvain Gelly. Modifications of UCT and sequence-like

simulations for Monte-Carlo Go. In 2007 IEEE Symposium on Computa-

tional Intelligence and Games, pages 175–182, 2007.

[135] Ronald J. Williams. Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Mach. Learn., 8(3–4):229–256, may 1992.

[136] Kun-Hao Yeh, I-Chen Wu, Chu-Hsuan Hsueh, Chia-Chuan Chang, Chao-

Chin Liang, and Han Chiang. Multistage temporal difference learning for

2048-like games. IEEE Transactions on Computational Intelligence and AI

in Games, 9(4):369–380, 2017.

	Introduction
	Learning and Planning
	Reinforcement Learning
	Value function
	Policy
	Transition model

	Deep Learning in Reinforcement Learning
	Tree-based planning
	From AlphaGo to Stochastic MuZero
	Limitations of AlphaGo
	AlphaZero
	MuZero
	Stochastic MuZero

	Overview

	I Prior Work
	Reinforcement Learning
	Markov Decision Processes
	Policies and Value functions
	Value-Based methods
	Monte Carlo Methods
	Temporal Difference Learning

	Policy Gradient methods
	Model-Based methods
	Model learning
	Planning

	Search
	Heuristic Search
	Monte Carlo Tree Search

	Games for Reinforcement Learning
	Board games
	Go
	Chess
	Shogi
	Backgammon

	Video games
	Atari
	2048

	AlphaGo
	Introduction
	Algorithm
	Networks
	Tree Search

	Limitations

	II Tree Search Planning with Deep Networks
	AlphaZero
	Introduction
	Algorithm
	Network
	Search
	Self-play
	Training

	Experiments
	AlphaGo Zero
	Results
	Ablations

	Conclusions

	MuZero
	Introduction
	Algorithm
	Model
	Search
	Self-play
	Training
	Reanalyze

	Experiments
	Results
	Ablations

	Conclusions

	Stochastic MuZero
	Introduction
	Algorithm
	Model
	Search
	Training

	Experiments
	Results
	Reproducibility
	Ablations

	Conclusions

	Conclusions
	Open Problems in Learning and Planning
	The promise of Learning and Planning

	AlphaZero Appendix
	Domain knowledge in AlphaZero
	Experimental Setup
	Network Input Representation
	Network Architecture
	Configuration
	Opponents
	Match conditions
	Elo ratings

	Chess Openings

	MuZero Appendix
	Hyperparameters
	Data Generation
	Network Input
	Representation Function
	Dynamics Function

	Network Architecture
	Training
	MuZero Equations

	Bibliography

