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12 Place du Panthéon, 75231 Paris Cedex 05, France
4Department of Statistics, University of Oxford, 24–29 St Giles’,
Oxford OX1 3LB, UK; email: 709839951@qq.com

(Received November 26, 2018; revised May 22, 2019; accepted July 22, 2019)

ABSTRACT

We propose a model for conduct risk losses, in which conduct risk losses are char-
acterized by having a small number of extremely large losses (perhaps only one)
with more numerous smaller losses. It is assumed that the largest loss is actually a
provision from which payments to customers are made periodically as required. We
use the pseudo-marginal (PM) Markov chain Monte Carlo method to decompose the
largest loss into smaller partitions in order to estimate 99.9% value-at-risk. The par-
titioning is done in a way that makes no assumption about the size of the partitions.
The advantages and problems of using this method are discussed. The PM proce-
dures were run on several representative data sets. The results indicate that, in cases
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where using approaches such as calculating a Monte Carlo-derived loss distribution
yields a result that is not consistent with the risk profile expressed by the data, using
the PM method yields results that have the required consistency.

Keywords: pseudo-marginal (PM); Markov chain Monte Carlo (MCMC); importance sampling;
value-at-risk (VaR); loss distribution; conduct risk.

1 INTRODUCTION

Modeling distributions for conduct risk has proved to be a challenge because the
losses involved have particular properties, which will be noted in Section 1.3. Con-
duct risk forms part of Basel II risk category 4.2 (“Clients, Products & Business Prac-
tices” (CPBP)). The full Basel II risk class taxonomy may be found in Basel Commit-
tee on Banking Supervision (2006). The general guidance for modeling operational
risk losses is given in Basel Committee on Banking Supervision (2011), although
conduct risk is not treated as a special case. However, its characteristics set it apart
from other risk classes. Basel Committee on Banking Supervision (2011) specifies
that losses corresponding to any particular risk class should be modeled using fat-
tailed severity distributions and frequency distributions that are appropriate for rare
events. The fat-tailed category comprises distributions such as lognormal, Weibull
and generalized Pareto. The class of frequency distributions centers on Poisson and
negative binomial. All of these distributions have been routinely used in the insur-
ance industry since the 1960s. A summary of usage in the insurance industry may be
found in, for example, Alexander (2001) or Gay (2004). Modeling techniques used
in the insurance industry have been widely adopted for operational risk modeling
since 2000 (Cruz et al 2015).

The proposed introduction of the standardized measurement approach (SMA) for
calculating operational risk capital effectively eliminates the need to do any modeling
of operational risk (conduct risk included). However, operational risk modeling is
still needed for prudent risk management. That is the purpose of the proposals in this
paper. The accepted metric for both prudent risk management and regulatory capital
assessment has been the value-at-risk at 99.9% (specified in Basel Committee on
Banking Supervision (2011)), and that remains our target.

1.1 Use of the term “VaR”

In this paper, the term “VaR” should be taken to mean value-at-risk at 99.9%,
unless some other percentage is indicated. The term “regulatory capital” is used
interchangeably with value-at-risk at 99.9%. Given the onset of the SMA, the term

Journal of Operational Risk www.risk.net/journals



Pseudo-marginal conduct risk 3

“prudential capital” might be more appropriate, since the purpose of the processes
discussed in this paper is to manage risk capital in a prudential way.

1.2 Contribution of this paper

Conduct risk losses have become increasingly prominent in calculations of regula-
tory capital during the past decade. There is a specific reason for this: they can be
extreme, and those extremities have a significant effect on the outcome of calcula-
tions. In many cases, these outcomes are not consistent with an established risk pro-
file: the resulting capital may be too small to satisfy regulatory authorities, or unnec-
essarily large so that bank lending is impeded. Crude methodology adjustments and
approximations can be made in order to address this problem, but it is difficult to jus-
tify them satisfactorily. The method presented in this paper – the “pseudo-marginal”
(PM) Markov chain Monte Carlo (MCMC) approximation – is an attempt to calcu-
late a satisfactory regulatory capital without making adjustments and approximations
that cannot be justified. The PM technique has had few practical applications to date.
Therefore, the results reported here should be seen as a significant step forward in
conduct risk modeling and, more generally, in applied statistics.

1.3 The characteristics of conduct risk losses

The characteristics of conduct risk losses that set them apart from other risk classes
are the following:

(1) severe aggregation of multiple small losses into single extremely large losses
(often these aggregations take the form of provisions, which are discussed in
Section 2.2);

(2) low annual frequency (sometimes less than fifty per year);

(3) a small number of large losses (often only one) that are significantly larger
(two or more orders of magnitude) than their counterparts;

(4) in many cases the largest losses comprise subcomponents that cannot be used
directly, either because they are not known precisely or because using them
would invalidate Basel II regulations.

The above characteristics make conduct risk losses an extreme example of oper-
ational risk losses. Therefore, alternative ways to assess regulatory capital for them
are needed. The aim of this paper is to present an alternative way to model conduct
risk, using the PM Monte Carlo method. This is a relatively new statistical tech-
nique, which first appeared in 2009 and has not, to our knowledge, been applied in
any financial context before. A detailed explanation will be given in Section 5.2. The
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PM method is particularly well suited for modeling conduct risk because it specif-
ically addresses the points listed above. In particular, it is capable of analyzing the
effect on regulatory capital of a single loss that is significantly larger than all the
others.

In principle, the characteristics listed above are not exclusive to conduct risk
losses. We have, for example, observed external fraud data sets that have severe
outliers. In nonfinancial contexts, the Fitch operational loss database includes excep-
tionally large losses that dwarf all others. The BP Gulf of Mexico oil leak is one
of them. Therefore, although the references in this paper are to conduct risk, that
category is generalizable to any data set that satisfies the above characteristics.

In this analysis, we seek to solve the problem of how to determine VaR for conduct
risk losses that have the particular characteristics referred to above, such that the
calculated capital is consistent with a bank’s risk profile. The phrase “consistent with
a bank’s risk profile” means that the capital should not be so high that it inhibits
lending significantly, and it should not be so low that it cannot cover unexpected
further losses. Currently, a minimum capital value can be calculated using empirical
losses only (the “empirical bootstrap”; see Mitic and Bloxham (2018, Algorithm 1)).
If the calculated capital is less than the empirical bootstrap value, the latter would be
accepted in preference to the calculated value. The empirical bootstrap value is used
as a “reasonableness test” for VaR calculated by other means in Section 7.5. How to
calculate an upper limit to 99.9% VaR is currently an open question. Despite a lack
of clarity on a well-defined upper limit, we provide some guidance with the results
in Section 7.

1.4 Structure of this paper

Section 2 gives an account of the main problems encountered when modeling con-
duct risk. Section 3 explains the data modification that the PM method uses to operate
successfully. A literature review (Section 4) leads to a discussion of the PM method
itself, which starts in Section 5 and continues in Section 6. There are many pre-
liminaries that are components of the PM method, an account of which may be
found in Section 5.2. The heavily statistical parts of that account are given in the
online appendixes. In the results section (Section 7), we concentrate on the numeri-
cal results of the PM method when it is used with importance sampling rather than
rejection sampling. The latter method is prohibitively slow, so we do not consider it
in this analysis. The end result we seek is a single figure for 99.9% VaR for the data
sets under consideration. These are presented in Section 7.3.1. Sensitivities to model
parameters are discussed in Section 7.6. Finally, the advantages and disadvantages of
the PM method used in the context of a VaR estimation for conduct risk are assessed
in Section 8.
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2 CONDUCT RISK MODELING

Modeling operational risk losses using severity and frequency distributions is prob-
lematic in some cases, and conduct risk losses are of particular concern. There is
the general problem of which severity distribution to choose, given that several have
passed a goodness-of-fit (GoF) test. The highest p-value for the calculated value of
a GoF statistic may not always be the primary choice: other considerations could
include the location of outliers or information-based statistics, such as the Akaike
information criterion. More significantly for conduct risk, no distributions may pass
the GoF test. In the latter case, a default distribution (often lognormal) must be used.

A further general problem concerns using a frequency distribution that is appropri-
ate for rare event modeling, which may not be appropriate if events are not rare. For
example, less than five events per year may be considered “rare”, but not hundreds or
thousands, as is the case with many operational risk data sets. Some conduct risk data
sets we consider in this paper may be considered to satisfy this “rare” event criterion,
but once additional (small) losses are included, “rare” degrades to “commonplace”.
Nevertheless, there are mitigating procedures. One is to use an empirical frequency
distribution. Another is to use a normal frequency distribution. A Poisson distribu-
tion with parameter � may be approximated by a normal distribution with mean and
variance both equal to �, provided that � is sufficiently large. In practice, sufficiently
large means greater than twenty, which applies for most operational risk data sets.
We mention this general problem only because a Poisson frequency distribution is
used extensively in operational risk VaR calculations, including those in this paper,
even though a Poisson model might be a poor fit to data.

2.1 The “correct” value for VaR

We highlight a third problem when attempting to estimate operational risk VaR in a
separate section, because it addresses the heart of the issue and is particularly impor-
tant for conduct risk. However VaR is calculated, the resulting value may appear far
too high or too low. The terms “too high” and “too low” are subjective, but a measure
of them can be obtained indirectly. The regulator may decide that a bank’s calculated
capital is too low by comparing the calculated regulatory capital with that for other
banks of similar size, and then demand additional reserves. Risk managers may con-
sider the calculated capital to be too high because it is significantly more than a
previously calculated value. Retention of excessive capital impairs the bank’s ability
to lend. Either way, we argue that the calculated VaR should be consistent with a
bank’s current risk profile. This is precisely the problem with the conduct risk losses
considered for this paper: the VaR calculated in the same way as for other operational
risk classes is judged to be “too high”. The task is then to find a statistically sound
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way to calculate a VaR for conduct risk losses that is consistent with a bank’s current
risk profile.

2.2 Provisions

So far, “loss” and “losses” have been used as general terms for the data under con-
sideration. In the case of a large conduct risk loss, the term is more likely to be
a provision: a fund reserved to cover future operational risk payments. Banks rou-
tinely provision anticipated losses, the practice being more prudent than having to
react to actual losses in arrears. In recent years, banks have had to make extremely
large provisions for payment protection insurance (PPI) compensation claims. Those
provisions have been particularly high, and they are classified as a subcategory of
conduct risk. The specific Basel II designation is “improper business or market prac-
tices” (see Basel Committee on Banking Supervision 2006, Annex 9, Paragraph 4.2).
These large PPI provisions are exactly those referred to at the start of Section 1.3.
They are extremely large and infrequent. Section 2.3 gives some examples. Follow-
ing the establishment of a particular provision, payouts to individual customers will
be made using that provision. In the case of PPI, the provision will likely accommo-
date thousands of such payouts, since individual payouts are rarely more than a few
thousand pounds sterling.

The Basel Committee directives on data to be used for modeling severity distri-
butions (Basel Committee on Banking Supervision 2011) clearly state that all losses
resulting from the same operational risk event should be aggregated, given that they
fall into the same risk category. These regulations also imply that any loss used for
modeling should be listed on a company balance sheet. In this context, the provisions
are the balance sheet items, not the individual payments to customers. Therefore, it
is the provisions that should be modeled. In most cases, it is not possible to decom-
pose any given provision into individual payments. Those payments are usually made
against a current set of provisions, not against any particular member of the set. We
refer to a provision’s constituent payments as “missing data”, because the number
of them or their size is not necessarily known. The practice of aggregating multiple
small losses by a single large provision is a particular characteristic of conduct risk
losses. Other types of operational risk losses are provisioned, but CPBP provisions
tend to be particularly large.

2.3 Examples of PPI provisions

In this section, we give an idea of the overall size of CPBP losses, in terms of both
totals and individual provisions. Two publications from the UK Financial Conduct
Authority (FCA) show how large the CPBP losses can be. Financial Conduct Author-
ity (2018) reports that the mean redress paid was just under £2100 for each PPI
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TABLE 1 Total payment protection insurance payouts, January 2011 to December 2018.

PPI
Year payouts

2011 2 137
2012 6 279
2013 5 220
2014 4 477
2015 4 476
2016 3 624
2017 3 360
2018 4 435

Total 34 008

Payout values are given in millions of pounds sterling. Source: Financial Conduct Authority (2019).

TABLE 2 Largest PPI provisions, 2012.

PPI
Bank provision

Lloyds 5 275

Barclays 2 176

RBS 1 735

HSBC 1 338

Santander 751

Bank of America 506
(MBNA)

Others 1 219

Total 13 000

PPI provision values are given in millions of pounds sterling. Source: UK Parliament (2013).

complaint upheld in the second half of 2017, and just over £2500 in the first half of
2017. Table 1 shows yearly PPI refunds and compensations, sourced from Financial
Conduct Authority (2019).

In addition to total PPI provisions, UK Parliament (2013) lists individual large PPI
provisions for UK banks in 2012, shortly after PPI mis-selling was widely reported.
The largest of these are shown in Table 2. By 2016, the total PPI provision had risen,
and the Guardian published an article under the headline “Bill for PPI mis-selling
scandal tops £40bn” (Treanor 2016). Note that the headline figure was somewhat
exaggerated, especially as data for 2017 and 2018 was not available in 2016!
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3 THE DISTRIBUTION OF CONDUCT RISK LOSSES

In the next subsection, we consider the effect of provisions on regulatory capital.
The tail losses (especially the largest loss) have a significant effect on overall VaR.
Provisions can form a major part of these tail losses, and we focus on the role of
the largest loss as a provision. The effect of such low-frequency/high-value losses
is to inflate VaR to an unrealistic level. Our aim is therefore to find a legitimate
way to reduce the calculated VaR that is not wholly influenced by the largest loss.
The general strategy is to partition the largest loss, the partitions being a proxy for
the customer payments that it comprises. Two examples of “nonlegitimate” ways to
reduce capital are ignoring large losses and partitioning large losses arbitrarily.

3.1 Partitions of the largest loss

Consider a set of N losses S D fx1; x2; : : : ; xN�1; yg, where y is the largest loss
(most likely a provision). Assume that all the xi are drawn from a lognormal distribu-
tion. We select the lognormal distribution because it is a relatively simple fat-tailed
distribution that is appropriate for many of the data sets we have considered. It is
assumed that the largest loss is substantially larger than all the others. Theoretically,
it is possible to decompose this provision into its constituent payments (the “missing
data”), but in practice this is not practical (see the earlier discussion). Therefore, we
aim to decompose the largest loss into n partitions, and we allow those partitions to
represent the constituent payments. The value of n is treated as a parameter of the
model developed in subsequent sections, and we require an estimate of it. Given such
a decomposition of the largest loss into n partitions, we can then regard S as draws
from a common lognormal distribution. Once the lognormal parameters have been
determined, they can be used in a linear discriminant analysis (LDA) process (Fra-
chot et al 2001) with a Poisson frequency distribution with parameter � (the annual
loss frequency) to derive VaR for a loss distribution.

Let y be decomposed into n partitions Z D fz1; z2; : : : ; zng, each assumed to be
lognormally distributed with parameters � and �2:

y D

nX
iD1

zi ;

zi � LN.�; �2/; i D 1; 2; : : : ; n;

n � Po.�/: (3.1)

The partitioning described above is illustrated in Figure 1.
In the LDA procedure, it is necessary to ensure that the sum of any draws from

Z is y. We proceed using Bayes’s theorem. The Bayes likelihood function can be
written as the product of the densities of the xi and of y. So, if the densities are
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FIGURE 1 Partitioning of the largest loss y into n smaller losses zi .
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denoted by f .xi ; �/, where� D f�; �; �g is a vector of parameters, x is a vector of
the xi and g is the density of y, then the likelihood function has the following form:

L.xI�/ D g.y j �/
N�1Y
iD1

f .xi j �/: (3.2)

Evaluation of g.y j �/ presents a problem, and it can be approximated by its
expected value in the following way:

(1) generate n from a single draw from Po.�/;

(2) generate the zi from LN.�; �/ subject to y D
Pn
iD1 zi ;

(3) calculate multiple instances of the likelihood function;

(4) calculate the mean likelihood.
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3.2 The PM: general outline

We aim to fully define the probability distribution g in (3.2) so that we can take sam-
ples from it and calculate the 99.9% VaR. In advance of any calculations, we have
to make use of what little we know about g. We can select what we think is a suit-
able distribution and choose parameters at random. With those parameters we test
the likelihood given by (3.2). Progressively changing the parameter values enables
us to see if the likelihood can be improved (ie, increased), and we aim to maximize
the likelihood. In order to complete the likelihood calculations, we have to resort to
Monte Carlo techniques (specifically MCMC) using the Metropolis–Hastings (MH)
algorithm. The aim is to find a target stationary distribution for g by specifying a
sequence of proposal distributions (with their parameters) and testing their likeli-
hood. The problem lies in the MH calculation: it cannot always be done. The solu-
tion is to use the PM amendment of the MH algorithm. The PM method allows for an
approximation to be made within the MH calculation. That approximation ensures
that the calculation can proceed.1

4 LITERATURE REVIEW

This section contains references to and brief discussions of literature that is rele-
vant to the theory of the PM method. Some alternatives are also included. Relevant
terminology will be explained in detail from Section 5 onward.

4.1 PM: theory

A precursor to the development of the PM method appeared in Lin et al (2000) in
the context of theoretical physics (specifically simulations of problems such as lat-
tice quantum chromodynamics with dynamical fermions). In probability estimations
using MCMC and the MH algorithm, it was necessary to ensure that probability
estimates were not greater than 1 or less than 0. This was achieved by defining a
two-stage loglikelihood ratio test, effectively a modification of the base MH loglike-
lihood ratio. This method indicated that advancements in accuracy and speed could
be achieved by modifying the loglikelihood ratio. Further advances were achieved in
the field of statistics, in addition to the 2003 breakthrough by Beaumont.

The PM method was first suggested in Beaumont (2003), although the term was
not used at the time. The context was to investigate the genetic component of the
threat to endangered species arising from low population size. The rate of species
inbreeding is dependent on population size. The problem had previously been tackled

1 The PM method is sometimes referred to in the literature by its full name: pseudo-marginal
Markov chain Monte Carlo (PMMCMC).
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by sampling gene frequency using serial samples taken from the same population and
applying Bayesian analysis. Prior to 2003, the established method used for Bayesian
analysis in which the form of a posterior distribution was not clear was the MCMC.
In Beaumont’s application, MCMC calculations proved to be too computationally
intensive. As discussed in Section 5.1, we highlight the key amendment proposed
in Beaumont (2003) to solve the computation problem. Finding proposal param-
eter candidates in step 2c of the MH algorithm that was used to implement the
MCMC process proved to be intractable. Increasing sample sizes by grouped sam-
ples allowed for faster convergence to the target distribution; in Beaumont (2003),
this “grouped sample” method was termed “grouped independence MH” (GIMH). In
GIMH, sampling is from a distribution other than the (target) stationary distribution,
and that is the key point of the PM algorithm.

PM is an adaptation of GIMH, and a precursor of it was suggested in Andrieu and
Thoms (2008) in the context of adaptive MCMC methods. MCMC and the adaptive
variations discussed in Andrieu and Thoms (2008) essentially rely on a homogeneity
assumption for the proposal sequence that leads to the target stationary distribution.
The idea that proposals should be replaced by approximations was intended to deal
with nonhomogeneous cases.

A formal transition from GIMH to PM was provided by Andrieu and Roberts
(2009), who coined the name by which the technique is now known. The first part of
the name (pseudo) is due to the use of a “pseudo” distribution in place of a target sta-
tionary distribution. The second part of the name (marginal) is due to the calculation
of a limiting marginal distribution using MCMC. A formal replacement of a pro-
posal distribution by an estimator of it is described in Andrieu and Roberts (2009).
The proof that such a substitution is valid under prescribed conditions is lengthy and
complicated, so only a brief summary of the main points is given below.

� If a sequence of proposal distributions is irreducible and aperiodic, then the
replacement of those distributions by estimators of them in the GIMH process
can be proved to result in a convergent sequence (Andrieu and Roberts 2009,
Theorem 1).

� The main result extends the above proof to provide a bound on the loss of
efficiency of the approximating estimator compared with the ideal distribu-
tion. This loss can be made arbitrarily small by making the sequence of pro-
posal distributions sufficiently long. The attached conditions are mild. First,
the norm of the difference between the proposal distribution and its estimator
must tend to zero as the sequence length increases. Second, weights associated
with those estimators also tend to zero as the sequence length increases. The
second point is important because convergence cannot be ensured if weights
increase.
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� Under more stringent assumptions, a GIMH sequence can be shown to con-
verge uniformly.

Following the formal proof of the PM method, some extensions to and a discussion
of it emerged.

Filippone and Girolami (2014) provide a general overview of the PM method
in the context of predictive classification problems using Gaussian process Bayes
priors. Comparisons are made with other classification methods: support vector
machines (SVM) and the Gaussian process classifier (GPC). Filippone and Giro-
lami (2014) include a discussion of sampling methods (including importance sam-
pling) and consider a comprehensive analysis of the relative efficiency of classifi-
cation algorithms. Using simulated data sets, they conclude that the PM achieved
the best quantification of uncertainty compared with all other classifiers considered.
SVM was the worst. Varying the number of importance samples showed that very
few samples (no more than sixty-four) are needed to produce acceptable results.

The PM method may be viewed as a “noisy” version of the MCMC algorithm,
because introducing an estimator of a stationary distribution results in some volatility
of the parameter estimates. This point was addressed by Andrieu and Vihola (2015),
who provided mild conditions under which the PM sequence of parameter estimates
would converge. Further, they showed that the asymptotic variance of the PM algo-
rithm converges to the asymptotic variance of the basic MCMC algorithm, provided
that the accuracy of the estimators is increased. The impact of this result for our
purposes is that we do not need to be particular over our choice of Bayes likelihood.

The issue of a “noisy” estimator was further discussed in Murray and Graham
(2016). The MH algorithm incorporates an accept/reject step for the proposal distri-
bution, or its estimator in the PM case. If the distribution of the estimator is heavy-
tailed, the estimate often gets rejected and the sequence of parameter estimates can
remain constant for long stretches. PM algorithms are often subject to this “sticking”
behavior. In an improved PM algorithm, two parameter updates are used. The first
uses a standard random number generator. The second uses random numbers that
are evolved as part of a Markov chain on a joint auxiliary target distribution. The
technique is known as “slicing”. The result is that the parameter estimates advance
provided that the functions in the loglikelihood part of MCMC are continuous almost
everywhere.

It was observed that the size of the data sample used affects the efficiency of
convergence of the PM sequence of proposal distributions. This problem was inves-
tigated by Doucet et al (2015), who showed that the number of samples should be
chosen such that when the exact likelihood is efficient the variance of the loglike-
lihood approximation lies between 1 and 4. This result has a bearing on our choice
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of sample size for a Bayes likelihood function (100 was used). See Section 6.1 for
details.

Dahlin et al (2015) pointed out that the sequence of PM parameter estimates is
often highly autocorrelated. They proposed a modification to the PM algorithm in
which a Crank–Nicolson proposal function is used. The result was to introduce a
positive correlation in the sequence, leading to improved computational cost.

Deligiannidis et al (2018) developed the correlated PM (CPM): a modification
of the PM method that uses a likelihood ratio estimator calculated using two cor-
related likelihood estimators. It was found that the performance of the PM algo-
rithm, as developed by Andrieu and Roberts (2009), was liable to degradation as the
number of data points increased. The number of data points is not a problem for
our study because the numbers used are relatively small. The CPM method uses a
revised form of the ratio of estimators of the proposal parameters (see the algorithm
detail in step 2c of Algorithm 5.1). The resulting ratio has a small relative variance,
and therefore mimics the original MH better. Computation efficiency was found to
be proportional to the number of data points. More significantly for our purposes,
the variance of the loglikelihood ratio estimator should be between 1.0 and 2.0 in
regions of high probability mass. Informally, Deligiannidis (personal communica-
tion) has informed us that a range of 1.0–3.0 is acceptable. Note that the result from
Doucet et al (2015) is more generous because the conditions used for its derivation
are less stringent. This point is mentioned in the discussion of the Bayes likelihood
function in Section 6.1.

A variant of the CPM method (Tran et al 2017) is currently in preparation. Tran
et al describe an approach known as “block PM”, in which the random numbers that
define samples are divided into blocks. The blocks are such that the likelihood esti-
mates for the proposed and current values of the parameters to be estimated differ
only by the random numbers in one block. The parameters for any proposal distribu-
tion are set to apply to one block only. The payoff is variance reduction, but at the
expense of a more complicated loglikelihood ratio. See step 2c in Algorithm 5.1.

In recent studies by Quiroz et al (2018a,b), a PM framework was implemented,
where at each iteration the loglikelihood from n observations was estimated from a
random subset of those observations of size m D O.

p
n/. Control variates are used

to reduce the variability in the loglikelihood estimates, and a correlated PM scheme
improved the acceptance probability in the MH algorithm. Two types of control vari-
ates are used: parameter expanded and data expanded. Parameter expansion uses a
Taylor approximation of the loglikelihood function, and in data expansion, data are
partitioned and the centroid of each partition is used in the loglikelihood function.
The package of control variates with subsampling serves to reduce both the variance
of the MCMC process and the computation time.
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4.2 PM: applications

Few applications that are not associated with theoretical advances of the PM method
exist, as the method is relatively new. The genetics application in Beaumont (2003)
has already been discussed in Section 4.1, and that study should be seen as a major
advance in the field of extensions of MCMC. A brief account of some others follows.

In Kronander et al (2015), light transport in heterogeneous media (smoke, clouds,
fire, etc) was modeled by MCMC sampling of light paths. The aim was to synthesize
visual renderings for films, games, etc. Basic MCMC did not yield a consistent esti-
mator for a stationary path distribution. The PM method provided a means to better
explore the path space, and to consequently reduce image noise.

The context in Peters et al (2017) is the allocation of the regulatory capital of
insurance companies to business units. The task is similar to the problem tackled
in this paper, as they both involve a partition of a total amount (in our case, it is
a partition of the largest operational risk loss). The difference is that in Peters et al
(2017) the number of partitions is known in advance, while in ours it is not. A further
similarity is that the stationary distribution sought in Peters et al (2017) is lognormal,
and the PM method is used to approximate it in the MCMC process.

4.3 Other numerical approximation methods

Some alternatives to the PM are discussed briefly here. They are mostly similar to the
PM algorithm in that they modify an MCMC algorithm in some way. Of these, the
particle MCMC (pMCMC) is probably the most viable alternative to PM, although
it is more useful for higher-dimensional MCMC. It should be noted that PM directly
addresses the issue of “missing data”, the components of which have both unknown
frequencies and unknown sizes.

4.3.1 pMCMC

pMCMC is an extension of particle filtering methods and is closely related to PM in
that an unknown or intractable term is approximated by a known term. It was origi-
nally developed in the field of state-space time series analysis for filtering, smooth-
ing and prediction. Although “particle” methods had been in use in some form or
other since the 1950s, their statistical foundation was not formalized until 1996 (see
Del Moral 1996). Significant advances to the technique were made by Andrieu et
al (2010), who applied particle filtering to build efficient proposal distributions for
MCMC. A less formal account of the underlying theory may be found in Gustavsson
(2010).

The name “particle” in this context is a misnomer: “sample” would be more appro-
priate. Particle filtering proceeds by taking samples (“particles”), initially at random,
from a proposal distribution. In the state space, at each time step, the state of each
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sample is measured in order to calculate the corresponding space. Better fits are
weighted more than less good fits. At the next time step, there is a resampling of par-
ticles with higher weights. As time progresses, the approximation should improve
with increasing emphasis on the higher-weighted particles. Comments on the paper
by Andrieu et al (2010) were made by Peters and Cornebise (2009), who noted the
parallels with PM: an approximation to the proposal function can reduce the variance
of the approximation.

The pMCMC method was extended in Peters et al (2013) by adding an adaptive
stage. At each time step, an initial stage uses the pMCMC method to estimate a
proposal function. In the second stage, variance reduction is achieved by using an
optimal Kalman filter. Both stages use Rao–Blackwellizing: calculating marginal
distributions in a way that uses the Rao–Blackwell formula. A similar technique
was used by Doucet et al (2000) to improve sampling efficiency in high-dimensional
spaces.

Septier and Peters (2015) describe the sequential MCMC (sMCMC) method,
which is a further variant of particle filtering. Again, its purpose is to reduce variance
(ie, “noise”) due to weight degeneracy in high-dimensional systems. In sMCMC, the
accept–reject step of the MH algorithm is implemented by an empirical approxima-
tion obtained from previous iterations of the algorithm. This recursive step allows
sMCMC to sample more efficiently. Septier and Peters (2015) embed the sMCMC
into a more general context that covers multiple MCMC variants.

4.3.2 Other miscellaneous methods

Further approximation methods exist for sums of lognormal random variables. In
general, they provide improved accuracy at the expense of more extensive numerical
computation and complexity. Two examples are Wu et al (2005) and Cobb et al
(2012). Wu et al propose a method in which a Gauss–Hermite approximation is
matched to the moment-generating function of the lognormal sum. In Cobb et al
(2012), a lognormal distribution obtained using the Fenton–Wilkinson method is in
turn approximated by a mixture of truncated exponentials. The parameters of the
latter are polynomial functions of the lognormal scale parameter.

An earlier variant on the theme of replacement of an intractable MCMC term may
be found in Peters and Sisson (2006). The context of this study is operational risk,
and in particular how MCMC may be used with the Tukey “g-and-h” distribution,
which has no closed form. As a result, the value of a proposal function is estimated
by a metric that calculates the distance between a vector of summary statistics acting
on both the simulated and observed data. The simulated data is used if the value of
the metric is within an acceptable tolerance and is rejected otherwise. This method
is also discussed in Marjoram et al (2004).
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The “zigzag” algorithm, discussed in Bierkens et al (2016) and Bierkens and
Roberts (2017) is a different type of MCMC amendment. It proceeds by replacing the
exact gradient of the log of the Bayes posterior with an unbiased estimator, obtained
by subsampling. Bierkens and his coworkers show that the stationary distribution
resulting from this approximation tends to that of the Bayes posterior (Bierkens and
Roberts 2017; Bierkens et al 2016). Further, with variance reduction using control
variates of the unbiased estimate, very efficient scalable results can be obtained in a
big data context.

5 THE PSEUDO-MARGINAL METHOD: BACKGROUND AND
TECHNICALITIES

In this section, we summarize the elements of Markov chain and Bayesian methods
with an emphasis on how they relate to the PM method as applied to conduct risk
losses. Their main impact is a modification of the MH algorithm.

MCMC can be used as an alternative to calculating the expected value of a set
of observations of a distribution, which is not applicable if such samples are depen-
dent. So, for a random variable X with probability distribution p.x/, x 2 Œa; b�,
let f�1; �2; : : : ; �ng be a sequence of parameters corresponding to random depen-
dent observations fx1; x2; : : : ; xng ofX . The dependency is governed by the Markov
chain transition matrix T , which specifies that the probability that each observation
�t is equal to some value st depends only on the previous observation �t�1. The
goal of the MCMC process – and its means of propagation, the MH algorithm – is to
determine a stationary distribution pT .�/, defined as follows:

T pT .�/ D pT .�/: (5.1)

MCMC is used to estimate pT .�/ numerically in cases where its functional form
is not readily apparent. It is usual to reject the first part (the “burn-in”) of the Markov
sequence �1; �2; : : : due to instability compared with the latter part of the sequence.
We typically used the first 30% of the sequence as the burn-in. The way in which
samples are obtained is a significant problem in the implementation of our analy-
sis. Rejection sampling is commonly used: instead of sampling from the stationary
distribution, samples are drawn from a different “proposal” distribution q.�/. The
sample from q.�/ is accepted with probability pT .�/=Wq.�/, where W must sat-
isfy pT .�/ 6 Wq.�/ for all values of � . It is not unusual for most samples to be
rejected, implying that the sampling process is very lengthy. This was the case in our
implementation, and we used importance sampling instead. With importance sam-
pling (see, for example, Liu 2004), a more accurate approximation can be obtained
by sampling from an alternative distribution. Values of � that have a more significant
effect on maximum likelihood calculations can be obtained.
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5.1 The MH algorithm

The MH algorithm is crucial in determining the stationary distribution in (5.1) in
cases where no analytical form for it is apparent. Good explanations may be found
in Chib and Greenberg (1995) and Robert (2016). Given the importance of the MH
algorithm for the PM method, we give a summary of the MH algorithm here.

Starting with an initial parameter value �1, the MH algorithm generates a sequence
�1; �2; �3; : : : , from which an approximation of the stationary distribution pT .�/
may be made. In each of M cycles, a new value of � , ��, is proposed, having
been drawn from a proposal distribution q.�� j �/. That value is either accepted
or rejected according to a random draw from a U Œ0; 1� distribution. If it is rejected,
the current value of � is retained. The MH algorithm is summarized in Algorithm 5.1.

ALGORITHM 5.1 (MH algorithm)

(1) Initialize an arbitrary initial value �1 > 0.

(2) For t D 2; 3; : : : ;M , repeat the following steps for each value �t :

(a) propose a new candidate ��, drawn from the proposal distribution
q.�� j �/;

(b) draw a single random number u from U Œ0; 1�;

(c) calculate the acceptance ratio

r D min
�
1;
pT .�

�/q.�t j �
�/

pT .�t /q.�� j �t /

�
I

(d) if u < r , �tC1 D ��; otherwise, �tC1 D �t .

(3) Discard an initial burn-in percentage (often 20–30%) of the �t . The remaining
values mirror the target stationary distribution pT .�/.

5.2 From MH to PM

See step 2c. The only difference between the MH and PM algorithms is in the ratio
of the pT terms in step 2c of Algorithm 5.1. In that step, pT is replaced by a non-
negative unbiased estimator of pT , denoted by OpT . Andrieu and Roberts proved that
is it sufficient to use an unbiased estimator of the target distribution in the MCMC
process for convergence to the target distribution. Therefore, the PM algorithm is
identical to the MH algorithm, but with step 2c replaced by the steps in (5.2). The
latter equation needs the calculated estimators OpT .��/ and OpT .�t / of pT .��/ and
pT .�t /, respectively.
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ALGORITHM 5.2 (PM algorithm: PM, step 2c)

r D min
�
1;
OpT .�

�/q.�t j �
�/

OpT .�t /q.�� j �t /

�
: (5.2)

The replacement of OpT .�t / by OpT .��/ and pT .�t / by pT .��/ looks like a small
change, but it is a very significant one. With suitable estimators, it allows a tractable
calculation in the MH algorithm. We can therefore give a one-sentence summary of
PM as follows:

PM D MH with sampling from an unbiased estimator of the MCMC stationary
distribution.

The rigorous proof in Andrieu and Roberts (2009) that the stationary distribution
admitted by the Markov chain of the PM algorithm (using the unbiased estimator OpT )
is the same as the stationary distribution admitted by the Markov chain of the MH
algorithm (using pT ) is complicated. Consequently, a simplified outline of the proof
is given in Appendix A online. This proof is based on the outline of Picchini (2018),
with notation amended to correspond to the notation used in this paper. Another
outline proof may be found in Zheng (2016).

The key point in the proof is the substitution of the estimator OpT .�/ for the station-
ary distribution pT .�/ admitted by the Markov chain, which has a transition matrix
T such that the exact relationship T pT D pT applies. A rigorous justification for
this step is given in Andrieu and Roberts (2009, Theorem 1). There are underly-
ing assumptions that the Markov chain associated with T must be irreducible and
aperiodic. The next subsection gives a brief overview of the principal features of the
online appendixes.

5.2.1 PM: key points

Appendix A online sets out the basis of the approximation of a general distribu-
tion q.�/ by the mean of random samples drawn from the conditional distribution
q.� j s/. This conditional distribution is a marginal of a joint distribution of � and
a “disturbance” parameter, s. Denoting the mean value of the samples by Oq.�/, the
final result in Appendix A online is that the expected value of Oq.�/ is q.�/:

Es. Oq.�// D q.�/: (5.3)

The result in (5.3) is extended to a Bayesian context in Appendix B online. The
underlying theory is given in Section 5.2.2.

As far as operational risk VaR is concerned, the aim of using the PM approxi-
mation is to reduce the calculated VaR to a level consistent with an established risk
profile, but only when it is needed. The conditions under which it should be used
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were discussed in Section 1.3. The key points are the presence of one or more very
large outlier losses, leading to a calculated VaR that is considered (by risk managers)
to be inconsistent with the risk profile of a financial institution. Further comments on
this point may be found in Sections 7.2.1 and 7.8, where the results are presented.

5.2.2 PM: key points in a Bayesian context

When the stationary distribution pT is used in a Bayesian context, the likelihood is
denoted by pT .x j �/, and the prior by f .�/. In both cases, � is a parameter vector.
The posterior is then given by pT .� j x/ in (5.4), which incorporates the “evidence”,
pT .x/:

pT .� j x/ D
pT .x j �/f .�/

pT .x/
;

pT .x/ D

Z
pT .x j �/f .�/ d�: (5.4)

Appendix B online gives an account of how the PM method is applied when the
target distribution is a Bayesian posterior.

Extending the ideas in Section 5.2.1, the general distribution q.�/ is replaced by
a Bayesian posterior distribution. The starting point is the relationship between a
Bayesian posterior q.��j�/, a prior q.��/ and a likelihood expressed in terms of
the Markov chain stationary distribution pT .� j ��/. That relationship also has a
normalization factor pT .�/:

q.��j�/ D
pT .� j �

�/q.��/

pT .�/
: (5.5)

The next stage is threefold, and it is necessarily included because it is assumed
that the distributions q.�/ and pT .�/ are intractable. They are replaced by estimators,
which are approximations but can be computed. First, the augmentation introduced
in Appendix A online is applied to functions q and pT . Second, the functions them-
selves are replaced by estimators, denoted by “hat” symbols. Lastly, the joint density
of �� and s is given as a product of their respective densities, q.��/ and Np.s/:

Oq.��; s j �/ D
OpT .� j s; �

�/q.��/ Np.s/

OpT .�/
: (5.6)

The argument then proceeds to show that the expected value of the estimator
OpT .�/ is the exact function pT .�/:

Es. OpT .�// D pT .�/: (5.7)

The interchangeability of a function with its estimator is the key point of the PM
method.
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Once OpT .�/ has been replaced by pT .�/, and the exact Bayesian relationship

q.��j�/

q.��/
D
pT .� j �

�/

pT .�/

has been applied, (5.6) reads

Oq.��; s j �/ D
OpT .� j s; �

�/q.�� j �/ Np.s/

pT .� j ��/
: (5.8)

The final stage is to show that the target posterior distribution can be obtained by
calculating the marginal distribution of Oq.��; s j �/, ie,Z

Oq.��; s j �/ ds D q.�� j �/: (5.9)

All the terms on the right-hand side of (5.8) can be calculated once they are
replaced by their estimators. Then, the integral in (5.9) can be approximated by
Monte Carlo sampling.

5.2.3 Determination of VaR

It should be remembered that the point of using the PM method is to determine a
single VaR value for any given data set. Further, that value should be consistent with
the risk profile expressed by the data: neither too low nor too high. The task is then
to determine that single value by selecting an appropriate number of partitions for
the largest loss.

Before carrying out any numerical trials, it was not clear how many partitions (the
number n in Section 3.1) to use. Experience shows that a reduction in VaR results
if the largest loss (y in Section 3.1) is partitioned, but it is not possible to tell in
advance how large that reduction will be. There is an additional problem that if too
many partitions are used, the increased frequency will lead to an increase in VaR.
Some values for the number of partitions make sense intuitively. For example, given
data spanning Y years, it makes sense to subdivide the largest loss into Y partitions
(not necessarily equal). It also makes sense to subdivide them into 2Y partitions,
each of which nominally represents a six-month period. Continuing in this way, 12Y
partitions represent a nominal split by month. Further partitioning is clearly possible
but may not correspond to any well-defined time period.

A general strategy is to repeat the complete PM calculation for a varying number
of partitions and to defer a decision until all results have been reviewed. A possible
outcome is that a limiting value for VaR exists as the number of partitions increases.
It is not clear in advance of calculations whether or not such a limit exists. The
results in Section 7.3 are not totally clear on this point, but once obtained, a strategy
to determine VaR can be advanced. Details are reported in Section 7.3.
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6 APPLICATION OF THE PSEUDO-MARGINAL METHOD TO
CONDUCT RISK LOSSES

We seek to partition the largest loss into a series of smaller losses, not necessarily all
the same size. The smaller losses replace the largest loss, and lognormal parameters
for the result are determined using the PM method outlined above. A much weaker
alternative is to simply replace the largest loss by a “sensible” partitioned form of
it, but that approach suffers from certain deficiencies. First, the way the partitioning
should be done is arbitrary. Second, simple partitioning is not justified by the Basel
regulations (Basel Committee on Banking Supervision 2011) unless there are par-
ticular partitions that could be associated with provisions for particular conduct risk
events. Third, the results (Section 7) show that an arbitrarily small VaR value can be
achieved by using a sufficient number of partitions.

6.1 Dirichlet likelihood

The Dirichlet likelihood function models the precise situation described in Sec-
tion 3.1: the largest loss is partitioned, but neither the number of partitions nor the
amount allocated to each partition is known in advance. The likelihood function
represents sums of draws from a lognormal distribution derived by partitioning the
largest loss. We regard the largest loss (treated as a provision) as containing a number
of “unknown” smaller losses, which are the payments covered by the provision. The
partitions of the largest loss act as proxies for these payments. We cannot use pay-
ments directly, so we simulate them in a statistically rigorous way. A Monte Carlo
technique based on the Dirichlet distribution is used to draw samples for this Monte
Carlo process. Using a Dirichlet distribution for the Bayesian likelihood means that
no assumptions are made about the number of elements in each partition. In general,
(6.1) gives the n-fold Dirichlet density f .x; ˛/ in which ˛ D f˛1; ˛2; : : : ; ˛ng is a
parameter vector and the support of the random variables x D fx1; x2; : : : ; xng is
.0; 1/, with

Pn
iD1 xi D n:

f .x; ˛/ D
� .
PN
iD1 ˛i /Qn

iD1 � .˛i /

nY
iD1

x
˛i

i : (6.1)

In (6.1), the variable n is the number of partitions of the largest loss, defined
in (3.1). For simplicity, we use ˛i D 1, i D 1; : : : ; n. In this case, (6.1) reduces
to a Gamma function:

f .x; ˛/ D � .n/ for all xi 2 x: (6.2)

The Dirichlet distribution is used to estimate a value for the likelihood estimator in
(3.2). Dirichlet samples of size 100 were sufficient to achieve a stable result without
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compromising the time taken to do the whole calculation. In the PM algorithm, there
is a trade-off between convergence of the lognormal parameters � and � and the
computing time. Using a large sample size will typically result in MH averages with
low asymptotic variance, but the computing time required to construct the likelihood
estimator g.y j �/ increases. A sample size of 100 is consistent with the variance
conditions specified in Doucet et al (2015) and Deligiannidis et al (2018).

6.2 Gamma priors

We now assign prior distributions for the parameters of the assumed lognormal distri-
butions for the proxy losses z from Section 6.1. There are two lognormal parameters
to consider: � and � . There is much uncertainty about the distribution of �, and
an uninformative prior in the form of a Gamma distribution with a large expected
value is appropriate. There is more certainty about � . VaR calculated from a log-
normal distribution is very sensitive to the value of � , and if this is too high, VaR
is likely extremely large. Therefore, we set the prior on � such that its expected
value is unlikely to result in a very large VaR. So, a maximum value of � D 3 is
preferable. A Gamma distribution � .a; b/ has expected value a=b. Therefore, the
following Gamma distributions are appropriate for the priors:

� � �

�
1

1000
;
1

1000

�
; � � �

�
1

3
;
1

3

�
: (6.3)

Both distributions in (6.3) have an expected value of 1, but the range of values
generated in a random sample for the � prior is much greater than that generated in
a random sample for the � prior. This is consistent with the uninformative choice
of prior for � and the informative choice of prior for � . The probability that � > 3

is approximately 0:1, which is small enough for the purpose of finding proposal
parameter values in the PM algorithm.

6.3 Posterior

The required stationary distribution pT is the limiting posterior distribution obtained
from a sequence of parameter vectors f�1; �2; : : : ; �ng. The result is very sensitive
to the value of the initial parameter, �1. Therefore, care has to be taken to choose
suitable initial values, which are reported in Section 7.

In the MCMC process, the parameters of pT , � and � are updated according to
the following schema:

�tC1 D �t C ";

�tC1 D �t C ";

" � N.0; �2/:

9>=>; (6.4)
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The subscripts refer to successive steps in the Markov chain. Both � and � are per-
turbed by a stochastic term ", which is normally distributed with mean zero and
constant variance �2. In practice, � D 1

10
was used.

6.4 The Fenton–Wilkinson approximation

Equation (3.1) assumes a partitioning of the largest loss, y, into n sublosses, each
having a LN.�; �2/ distribution, where n is a Poisson random variable. Therefore,
any random sample drawn from the set of sublosses is a sum of lognormally dis-
tributed random variables. Informal trials show that the sum of a large number of
lognormally distributed random variables also appears to be lognormally distributed,
but only under certain conditions, as detailed below. The convergence of the sum of
a large number of lognormal random variables to a single lognormal random vari-
able is formalized in the Fenton–Wilkinson (Fenton 1960) approximation (see (6.5)).
This approximation is considered here simply because a sum of lognormal random
variables occurs naturally in the foregoing analyses, and it therefore appears to be a
viable alternative to the PM method.

If y D
Pn
iD1 zi , where zi � LN.�; �2/, then y � LN.�y ; �2y /, where

�2y D log
�

e�
2
� 1

nC 1

�
;

�y D log.ne� C 1
2
.�2 � �2y //:

9>=>; (6.5)

The equations in (6.5) are based on the approximate relationships E.y/ D nE.zi /
and VaR.y/ D nVaR.zi / and are derived by matching moments. They are used in
conjunction with an MH MCMC algorithm to produce a sequence of successive val-
ues for the parameters of a target distribution. It was hoped, but not guaranteed, that
such a sequence would converge. The Fenton–Wilkinson approximation is known to
be a good approximation to some distribution tails, but not, in general, to distribu-
tion bodies. The approximation can be improved by matching the second and third
moments, or even the third and fourth moments, if upper tail or extreme upper tail
probabilities are the main interest. Details of these and similar amendments may be
found in Rook and Kerman (2015).

7 RESULTS

In this section, we report the results of using the PM method to decompose the largest
loss into proxy payments, and we attempt to settle on a VaR value for the data con-
sidered. The results are compared with a much simpler method in which the largest
loss is partitioned uniformly. VaR is determined by fitting a distribution to the result

www.risk.net/journals Journal of Operational Risk



24 P. Mitic and J. Hu

of that partitioning, then using the LDA procedure. In addition, we report on the
stability and sensitivity of the parameter values obtained.

7.1 Data and implementation

The customizations described in Section 6 are applied to six CPBP data sets. The first
four are internal and are labeled CPBP29, CPBP9, CPBP1879 and CPBP2032. The
numerical part of the names gives the number of losses in each case. The date range
for CPBP29 and CPBP9 is January 2011 to December 2015 inclusive, and the date
range for CPBP1879 is January 2013 to December 2017 inclusive. CPBP2032 has a
6.5-year data window of January 2012 to June 2018. The fifth data set, CPBP-ORX,
is external, and originates from the Operational Risk data eXchange (ORX).2 The
data set CPBP-ORX is significantly larger than the internal data sets. It has nearly
7600 losses, the largest of which is £6553 million, which is 40.5% of the total loss in
this data set. The effect of a large number of smaller losses is also significant. CPBP9
is an extreme example of conduct risk losses. With only nine losses, distribution
fitting is unreliable. The largest loss is £1220 million, which is 75% of the total
loss. The data sets CPBP29, CPBP9, CPBP1879, CPBP2032 and CPBP-ORX are
representative of data that we have seen in the past few years and are consistent with
the characteristics of the conduct risk losses discussed in Section 1.3. They contain
large losses, but CPBP1879 and CPBP2032 have about 1800 “smaller” losses (ie,
less than £10 000), totaling approximately £5 million. That total is small compared
with the mean annual loss, but the increased annual frequency has a significant effect
on the numerical results reported in Section 7.3.

The data set CPBP-RAN is a synthetic data set, generated as a random sample of
size 500 from a LN.12; 2/ distribution. In addition, it has one large loss of £1.1 bil-
lion, which is approximately twice the sum of all the other 500 losses, making a
total of £1.628 billion for all 501 losses. CPBP-RAN nominally spans the five years
2014–18. Although CPBP-RAN is labeled as “conduct risk”, it resembles other risk
classes we have observed in that there is one clear outlier.

All the results reported were calculated using the R statistical language, run on a
Microsoft Windows computer with an i7 processor and 16 GB of RAM. Timings are
given in the relevant sections.

7.2 Results without partitions

As a preliminary to reporting the results using the PM method, we first give the
99.9% VaR for the data in Section 7.1 with the unmodified data (ie, with no parti-
tions). These are the “base” results that are obtained by using the LDA procedure

2 See https://managingrisktogether.orx.org/.
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TABLE 3 CPBP data: 99.9% VaR, no partitions.

Base VaR without Largest Empirical
Data set VaR largest loss loss (%) TNA bootstrap VaR

CPBP29 8 317 4 776 35.4 0.045 2 165
CPBP9 65 424 10 727 75.0 0.065 3 649
CPBP1879 8.7 8.1 36.3 0.066 2 293
CPBP2032 5.1 4.8 35.6 0.064 2 073
CPBP-ORX 313 213 40.5 0.053 20 597
CPBP-RAN 747 632 67.2 0.008 3 363

TNA, transformed normal GoF measure for the lognormal severity fit. All VaR values are in millions of pounds
sterling.

(Frachot et al 2001), having fitted a lognormal distribution. In the brief discussion
after Table 3, we indicate why these “base” results are unsatisfactory. The table also
shows the VaR value if the largest loss is removed so that we may see its effect. The
“Largest loss (%)” column shows the largest loss as a percentage of the sum of all
losses.

Table 3 also shows the 99.9% VaR results obtained using the empirical bootstrap.
These are indicators of minimum VaR since, in a random sample, it is impossible
to draw a sample member that is greater than the largest empirical loss. The TNA
column gives the “transformed normal” GoF measure for the lognormal severity fit.
This measure was specifically developed for the context of operational risk losses and
is discussed in detail in Mitic (2015). Note that, since distribution parameters have to
be estimated from data, established GoF tests (such as Kolmogorov–Smirnov) are not
strictly applicable. The critical two-tail 95% significance value of the TNA statistic
is 0.068. Any measured TNA value less than that can be regarded as an indicator of a
suitable data fit at 5% significance. All VaR values are in millions of pounds sterling.

We consider the “base” VaR for CPBP29 too high and unduly affected by the
largest loss. The largest loss is due to PPI compensations, which are nonrecurrent.
However, removing it is unsafe, as it is possible that it could be replaced in future
years by an equally large loss due to something else. We have found that, over the
past six years, the “base” result is considerably greater than the sum of all other risk
classes, and it is consequently not credible.

The “base” VaRs for CPBP1879 and CPBP2032 are too low, and are due to the
effect of higher-frequency, low-value losses. They do not reflect the presence of the
largest losses, which are of the same order as that for CPBP29. The huge dispar-
ities between the empirical bootstrap values and the (lognormal) fitted values are
a startling illustration of the way the largest loss affects VaR. The disparities are
due to the difference between pointwise sampling for the empirical bootstrap and
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localized sampling in the case of the fitted distribution. In the former case there is an
inflated probability of drawing several large losses in a random sample based on the
mean annual loss frequency, since each loss has the same probability of being drawn.
Drawing a very large loss is unlikely in the latter case.

CPBP-ORX appears to be an intermediate case that has an exceptionally large
loss, with a long tail of smaller losses to mitigate the largest losses. Prior to doing
the calculations, it was thought that the largest loss of CPBP-RAN would have a
dramatic effect on VaR. After calculations, it was seen that the effect was there, but
it was not as dramatic as originally thought.

Although CPBP-RAN passes the TNA GoF test for a lognormal distribution, it
passes the same GoF for a generalized Pareto distribution, but with a near-to-zero
TNA test statistic of 0:0076. The implication is only that CPBP-RAN could have
been generated as a random sample from a generalized Pareto distribution.

The “base” VaR results for CPBP9 show in a dramatic way that a Monte Carlo-
based “loss distribution” modeling approach is inappropriate. It is clearly incor-
rect, and is comparable with the gross domestic product (GDP) of many European
countries. For example, the GDP of Spain in 2017 was US$38 103 million.3

7.2.1 Inappropriate application of the PM method

The PM method is intended for use where the largest loss (or losses) are much larger
than the others. These are typified by the data sets in Table 3. They are all extreme
cases, and the huge VaR values that emerge from alternative calculations clearly indi-
cate that an alternative is required. The PM method is not intended for use when it
is not needed. We consider that the distinction between when it is and when it is not
needed should be a subjective decision in the same way that a choice of modeling
distribution or threshold is. Therefore, at this stage, we do not wish to be overpre-
scriptive and define rigid criteria for judging when the PM method should be used.
Ultimately, the choice reduces to whether or not the capital calculated using other
means is too large to be contemplated by the organization concerned. Both risk man-
agers and risk modelers have a good feeling for when this happens. A more objective
alternative would be to compare the calculated capital of an organization with that of
similar organizations. That, too, is subjective, because all organizations are different.

Having said that, it is instructive to consider what might happen if the PM method
is applied to a data set when it need not be. Therefore, we applied it to the data set
CPBP-RAN after removing the largest loss. The resulting data set is termed CPBP-
RAN-LN. Without that largest loss, CPBP-RAN-LN reduces to the original random
sample from a lognormal distribution that formed the basis of CPBP-RAN. Since

3 https://data.oecd.org/spain.htm.
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FIGURE 2 PM 99.9% VaR results.
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CPBP-RAN-LN is the result of a random sample from a lognormal distribution, a
simple lognormal fit suffices for the “correct” VaR calculation. The results for the
“correct” calculation and its PM equivalent are reported in Section 7.8.

7.3 PM with importance sampling

The PM method using importance sampling was applied to the data sets in Sec-
tion 7.1 using partition sizes ranging from 5 to 8000. The variation of VaR with
the number of partitions is illustrated in Figure 2. In each case, 25 000 Monte Carlo
iterations were used. The sensitivity of VaR to the number of Monte Carlo itera-
tions is discussed in Section 7.6. The underlying data for these figures is shown in
Appendix C.1 online. Note that, in order to fit all cases in the same figure, the profile
for CPBP-ORX shows the actual values (in millions of pounds sterling) divided by
ten (ie, the actual VaR values are the displayed values multiplied by ten). That way,
the shape of the CPBP-ORX profile can be seen in the context of all the others.

The shapes of all but one of the profiles in Figure 2 are essentially the same: an
initial increase in VaR followed by a relaxation to what appears to be a limiting value.
The initial rise for CPBP29 is not apparent in Figure 2. It is only expressed in the
“base” case (ie, with no partitioning), when VaR D 8317 (as in Table 3). The profile
for CPBP9 is similar to the profile for CPBP29 but starts its relaxation stage (at five
partitions) at a much higher VaR value. The initial points are not shown since they
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FIGURE 3 PM 99.9% VaR results: 5000–9000 partitions.
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would mask the shape of the others. They are .5; 241 289/ and .10; 61 259/. CPBP29
and CPBP9 are almost coincident.

Figure 3 is an extension of Figure 2 for partitions in the range 5000–9000. It
shows the distinction between the profiles of the data sets more clearly. Note that for
CPBP-ORX the actual VaR values (in millions of pounds) have been divided by ten
for clarity (as for Figure 2).

We note the following points.

� Inconsistent results appeared for 8000 or more, but less than 10 000, partitions.
The calculated VaR could be either significantly larger or significantly smaller
than the VaR values obtained for partitions in the range 5000–7500. Further,
very different VaR values could be obtained for repeated runs using either 9000
or 10 000 partitions. We attribute this to the nonconvergence of the MCMC
process, even for up to 100 000 Monte Carlo iterations.

� Floating point operations failed for more than 10 000 partitions. The Dirich-
let likelihood part of the PM calculation has an exponential term that cannot
be evaluated within the precision limits of the R interpreter (see Appendix D
online).

� The limiting value referred to above is not clear cut. It is discussed below in
Section 7.3.1.
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TABLE 4 99.9% limiting VaR.

Limiting
Data set VaR

CPBP29 409
CPBP1879 436
CPBP2032 286
CPBP9 375
CPBP-ORX 270
CPBP-RAN 313

Limiting VaR values are given in millions of pounds sterling.

The PMMCMC process can be lengthy. For 25 000 iterations it took fifteen min-
utes for the smallest number of partitions and the smallest data sets, rising linearly
to approximately six hours for the largest number of partitions with the largest data
sets. The LDA part of the PM calculation takes one to two minutes, depending on
the annual frequency. As such, it is a very small component of the total time taken
for the most complete calculations.

7.3.1 PM with importance sampling: VaR estimation

The discussion in Section 5.2.3 refers to a procedure for estimating VaR that was to
be dependent on the results derived in Section 7.3. The profiles in Figure 2 appear to
be trending toward a limit (but not necessarily the same limit for all cases). In fact, a
small downward drift is apparent between 5000 and 8000 partitions (see Figure 3).

Nevertheless, we assume that a limiting VaR value exists and model the relaxation
(downward-sloping) portions of Figure 2 by an exponential distribution of the form

v D vm C .L � vm/.1 � e�.p�pm//: (7.1)

This model depends on identifying the number of partitions that corresponds to the
maximum VaR (ie, the local maximum of each profile in Figure 2). In (7.1), p and v
denote the number of partitions and VaR, respectively; the local maximum is denoted
by the point .pm; vm/, the limit point is denoted by L and the exponential relaxation
factor is denoted by �.

Table 4 shows the results of the above procedure. The limiting VaR values are cor-
rect to the nearest million pounds and were calculated using the VaR values obtained
for 8000 partitions or less. For more than 8000 partitions, we noted instability in the
results of the PM VaR calculation. We discuss this point further below.

Note that the limiting VaR for CPBP-ORX is much larger than the other limiting
VaR values. This reflects the larger size of the data set, and the extremely large losses
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within it. Care should be taken when reviewing the results in Table 6 in Appendix
C.1 online. A limiting value has been assumed in order to be able to derive a single
VaR value per data set. It is possible that if many more partitions are used, the calcu-
lated VaR values will fall far below the limiting values indicated. That calculation is
not possible since floating point operations become intractable for more than 10 000
partitions, and the Markov chains become unstable at that level. Possibly, then, any
further decline in the calculated VaR in the region of 8000–10 000 partitions is due
partly to that instability.

Some suggestions for alternative strategies for determining the required single
VaR values are indicated below:

� find the VaR corresponding to the number of partitions for which the mag-
nitude of the gradient of a .p; v/ profile becomes sufficiently small (say
1%);

� calculate the mean value of VaRs for a high-value range of partitions (5000–
8000).

These tend to produce lower values than those in Table 6 in Appendix C.1 online,
which is less acceptable from a prudential viewpoint.

The R code to support the PM method and the VaR calculation is given in
Appendix C.1 online.

7.3.2 Combination of internal and external data

The VaR values in Table 4 are listed separately, but in practice they are usually used
in “internal plus external” data combinations. In this section, we therefore present the
results of such a combination in which the limiting VaR calculated using the external
data set, CPBP-ORX, is combined with each of the other internal data sets in turn.
A common method of doing this is to use a linear combination in which a weight,
w, is calculated using the Bühlmann–Straub credibility method. Consequently, the
weight is known as a credibility weight. The Bühlmann–Straub method is described
in Bühlmann and Gisler (2005). It is reiterated in a simpler form in Mitic and Blox-
ham (2018), where the two methods of calculating variance (one is the variance of
all the data, the other is the variance of means of segments of the data) are clarified.
So, if Vint and Vext are the VaRs for an internal and external data set, respectively, the
combined VaR, V , is given by

V D wVint C .1 � w/Vext: (7.2)

This linear combination is a very quick way to combine two VaR values, given
that they have already been calculated separately. The credibility weight is more
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TABLE 5 Internal–external 99.9% limiting VaR combination.

Internal
data set w V

CPBP29 0.9979 409
CPBP1879 0.9219 423
CPBP2032 0.9391 285
CPBP9 0.9980 375
CPBP-RAN 0.9653 312

V values are given in millions of pounds sterling.

often used to weight internal and external data within a maximum likelihood calcu-
lation. A combined “internal plus external” distribution is sought, and its parameters
are estimated by a sequence of likelihood calculations. At the i th such calculation,
distinct likelihood values,Li;int andLi;ext, respectively, are calculated using the inter-
nal and the external data. The quantity Li D wLi;intC .1�w/Li;ext is the likelihood
value returned. The maximum likelihood is then max.Li /, and the corresponding
“internal plus external” distribution parameters are recorded. VaR is calculated using
those parameters by any appropriate means. We usually find that the results obtained
using the approximation in (7.2) are close to those obtained using maximum likeli-
hood. Table 5 shows the VaR results when CPBP-ORX is combined with each of the
other data sets using the numerical results in Table 4.

The values of w shown in Table 5 are all near 1, indicating, as is often the case,
that there is a significant bias in favor of internal data. The purpose of the external
data is to augment the internal data with higher-value losses that have not been real-
ized internally, but could be in the future. Therefore, the combined “internal plus
external” VaRs should be much closer to the internal values in Table 4. The date
ranges for some internal/external combinations in Table 5 are not strictly compara-
ble, but nevertheless, the Bühlmann–Straub method is sufficiently robust. Usually,
external losses are far in excess of internal losses, and VaRs obtained for internal/
external combinations are consequently significantly greater than those using inter-
nal data only. Table 5 shows that adding external data increases VaR in all cases
except CPBP1879 and CPBP2032. The PM method has the effect of damping the
significance of huge losses (which are outliers) such that the VaRs for internal and
external data sets are of comparable size.

7.4 Use in practice

The profiles of the data sets considered, as illustrated in Figure 2, are essentially
similar. There is an initial rise (which may be very rapid) to a peak value, followed
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by a relaxation to a region of “deemed convergence”, from which a final VaR figure
may be extracted. In order to do this, much of the profile must be present. We recom-
mend running PM calculations covering the entire range of 5–8000 partitions with
a much reduced number of MCMC iterations. In practice, only 2000 are necessary
to get a good idea of what the VaR profile will look like. That process takes about
thirty minutes. Afterward, it is possible to focus on the relaxation portion of the VaR
profile and to do more accurate calculations. The total time requirement for accurate
calculations (at least 10 000 MCMC iterations, and preferably more than 25 000) is
in the region of twenty-four to thirty-six hours. Given that the calculation need not
be done frequently, that time is not too much of a burden. However, it is strongly
suggested that multiple runs are done in the region near 8000 partitions to establish
the stability of the result. Further, a trimmed mean of all results for multiple repeated
runs should be used to determine VaR.

7.5 Uniform partition results

The PM method proceeds by partitioning the largest loss in a statistically sound way
and calculating VaR using the partitioned data. In this section, we consider, for com-
parison, a simple partitioning that is not acceptable statistically but is nevertheless
intuitively appealing. We call this the “uniform partition” method. In uniform par-
titioning, the largest loss is simply split into a prescribed number of equally sized
sublosses that replace the largest loss. Although this partitioning method is easy,
it is inconsistent with Basel regulations (Basel Committee on Banking Supervision
2011), which require that all losses used for modeling should originate from distinct
operational risk events. A case can be made for subdividing the largest loss into y
partitions, where y is the number of years spanned by the data. The reason for this
would be to amortize the largest loss over a number of accounting years. However,
the split into equally sized sublosses is arbitrary. Figure 4 shows the results. The data
used for Figure 4 is given in Table 7 of Appendix C online. Note that the profiles in
Figure 4 for CPBP29 and CPBP9 appear to be almost coincident.

The advantage of uniform partitioning is that it is fast. The time required to gen-
erate each point in Figure 4 was approximately 1.5 minutes using one million Monte
Carlo cycles in the LDA process.

The profiles in Figure 4 mask a fundamental problem with uniform partitioning.
With a sufficiently large number of partitions, it is possible to obtain a VaR value that
is arbitrarily close to zero. Given the vertical scale in Figure 4, it is not clear whether
a limiting value is zero or slightly greater than zero. However, Table 7 in Appendix C
shows that VaR values do, indeed, tend to zero. In some cases, many iterations in the
LDA procedure are needed. For example, CPBP-ORX needs approximately 100 000
partitions to see a near-zero limit. Further, partitioning by the number of years (or
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FIGURE 4 Uniform partitioning of the largest loss y into n smaller losses zi .
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even the number of months) spanned by the data has little effect on “base” VaR.
Both of these properties are clearly undesirable, so uniform partitioning is not a safe
procedure.

7.6 PM with importance sampling: sensitivities

Two sensitivities are discussed in this section. First, we consider the stability of the
calculated VaR by repeating the entire VaR process multiple times. Then we con-
sider the stability, in a single VaR calculation, of the calculated lognormal parameter
values to the number of iterations in the MCMC process.

7.6.1 MCMC stability

To get some idea of the response of the PMMCMC process to its input parame-
ters, the same procedure was run 120 times with the same set of parameters for
10 000 MCMC iterations, and the VaR values obtained were recorded. The data set
CPBP2032 was chosen because it is typical of current internal data sets. The num-
ber of partitions used was 5600, which corresponds closely to the number required
to generate the limiting VaR value given in Table 4 for CPBP2032 (£286 million).
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FIGURE 5 MCMC stability (10 000 iterations).
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Figure 5 shows a histogram of the results obtained, with a superimposed density plot
and fitted normal distribution.

The data for Figure 5 gave the following summary statistics, with a symmetric
95% confidence interval .�L; �U/ based on a normal distribution:

� D 288:0;

� D 4:14;

.�L; �U/ D .279:9; 296:1/:

9>=>; (7.3)

The form of the profile in Figure 5 is approximately normal, and passes a TNA test
for normality at 98.4% confidence. The dashed line shows a normal density based
on 1000 samples, from a N.�; �/ distribution (with parameters as in (7.3)). The
time taken for each complete VaR calculation was approximately fifty-five minutes.
Therefore, the time taken to generate the data for Figure 5 was approximately 55 �
120 D 6600 minutes (�110 hours).

7.6.2 Stability of lognormal parameters

To study the effect of the number of MCMC iterations on the stability of the calcu-
lated lognormal parameters, the values of the lognormal � and � parameters were
recorded during the course of one instance of the MCMC process with 10 000 itera-
tions. The results are shown in Figures 6 and 7. In Figure 6, the gray traces show the
actual parameter values recorded, each with a Loess-smoothed trace in black. The
smoothing parameter in each case (ie, Loess parameter “span”) was 0.3, which indi-
cates local trend without excessive volatility. The vertical lines indicate the cutoff
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FIGURE 6 PM importance sampling MCMC progression for lognormal parameters (a) �
and (b) � .
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FIGURE 7 Density plot for lognormal parameters (a) � and (b) � .
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points for the MCMC burn-in (2500), which were used to derive the results in Fig-
ure 2. The corresponding density plots for � and � are shown in Figure 7. Both
densities include only the post-burn-in values.

Although the parameter traces in Figure 6 vary by significant amounts in some
cases, there is no overall trend. The trace of smoothed values is effectively horizon-
tal. If the Loess “span” parameter is increased to 0.9 (ie, 90% smoothing), the �
smoothed trace is almost horizontal, and the � smoothed trace has only a very minor
concave appearance. These traces indicate that the mean values of the post-burn-in
� and � values can be safely used without needing excessive MCMC iterations and
that a short burn-in (eg, 25%) is also safe.
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FIGURE 8 Fenton–Wilkinson approximation for partitioning the largest loss y into n

smaller losses zi .
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The mean values for � and � for the post-burn-in period shown in Figures 6 and 7
were 10.84 and 1.55, respectively. The corresponding VaR was £292 million, which
is well within the confidence interval in (7.3).

7.7 Fenton–Wilkinson approximation results

Figure 8 shows the results of approximating the sum of n partitions of the largest loss,
each modeled by a lognormal distribution, by a single lognormal distribution that has
parameters given by (6.5). The R code for the Fenton–Wilkinson approximation and
the associated MH MCMC procedure are given in Appendix D online.

Two of the profiles in Figure 8 have been scaled in order to fit them all on one
graph for comparison (for CPBP29, CPBP9, the actual VaR is the VaR indicated
multiplied by 1 000 000). The points to note are the shape of the profiles and any
apparent limiting behavior.

The actual values from which the profiles in Figure 8 were derived are given,
without scale factors, in Appendix C.3 online.

The profiles in Figure 8 indicate that the Fenton–Wilkinson approximation is
unsuitable for use in our context. All data sets except CPBP-RAN show increasing
VaR as the number of partitions increases. The increase appears to be very slight for
CPBP2032, CPBP1879 and CPBP29, but the values in Appendix C.3 confirm that it
is significant compared with the magnitude of the VaR values observed. Some of the
values listed in that appendix are extraordinarily large. For example, the largest VaR
values obtained are in the region of £100 000 billion. Such values are even larger
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than huge sovereign economic figures like the 2018 Q2 gross national product of the
United States (US$15 057 billion)!4 Values that big are a warning that the method is
not appropriate. The existence of a limiting VaR is doubtful. Arguably, CPBP-RAN
does approach a limit near 2000 partitions, but it is difficult to tell, as floating point
operations fail for more than 2000 partitions.

The advantage of using the Fenton–Wilkinson approximation is that the time taken
to generate results is very short. Using 25 000 MCMC iterations, the slowest profile
to generate (CPBP-ORX) in Figure 8 took less than five minutes, and the fastest
(CPBP9) took less than one minute.

7.8 Inappropriate use of the PM method

In Section 7.2.1, the idea of using the PM method when it is not needed was consid-
ered. Specifically, the data set CPBP-RAN-LN was derived from the data set CPBP-
RAN by removing its largest loss. As a result, CPBP-RAN-LN resembles the lognor-
mal distribution from which it was generated as a random sample. Fitting a lognor-
mal distribution to CPBP-RAN-LN resulted in lognormal parameters � D 12:023

and � D 1:888. The LDA calculation using those parameter values yielded a “cor-
rect” 99.9% VaR of £640 million. That VaR value is appropriate given the type of
distribution and its parameter values.

However, applying the PM method yielded a much lower limiting VaR value of
£92 million. That value is clearly not appropriate since CPBP-RAN-LN does not
satisfy the (somewhat loose) conditions set out in Section 1.3 that both the largest
loss and the calculated VaR should be extreme values. The largest loss for CPBP-
RAN-LN is only 16.6% of the sum of all losses, whereas the largest losses for other
data sets considered in this paper are at least 35% of the sum of all losses. A small
number of partitions of the largest loss for CPBP-RAN-LN result in approximately
“correct” VaR values. Figure 9 shows how VaR varies with the number of partitions
for CPBP-RAN-LN. The profile is similar to the profiles in Figure 3.

We stress again that discretion is needed when applying the PM method. It should
be used only when there is a clear indication that other methods are inadequate.
We consider that this decision should be qualitative, based on the judgment of risk
managers.

8 CONCLUSION AND FURTHER WORK

The aim of this study was to determine a value for the 99.9% VaR for conduct risk
losses such that the value obtained is consistent with the risk profile expressed by

4 Converted from US$20 310 billion (https://fred.stlouisfed.org/series/GNP) at an average rate of
1.3489 for 2018 Q2 (https://www.bankofengland.co.uk/boeapps/database).
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FIGURE 9 Use of the PM method in inappropriate cases.

0

100

200

300

400

500

600

700

800

900

0 1000 2000 3000 4000 5000

V
a
R

 9
9
.9

%
 (

£
m

)

Partitions

those losses. The phrase “consistent with the risk profile” is not well defined, but
practitioners have a very good sense of its meaning. The VaR value should not be
so high that it actively prevents a bank from lending because of retention of the VaR
amount as a reserve. There is no objective standard for assessing a maximum value
for VaR given a set of losses other than a general idea of what the reserve should be.
The VaR value should not be so low that any reserve cannot cover unexpected losses.
The empirical bootstrap can be used to determine a minimum value, but the exam-
ples in Table 3 show that this metric is unreliable in the case of conduct risk losses.
The imbalance between the largest loss (taken here to be a provision that comprises
an unknown number of small payments to customers) and smaller losses can eas-
ily lead to gross distortions in a simple curve-fitting calculation. We have proposed
the PM method as a way to estimate a VaR that avoids calculating an unrealistic
value. The largest loss (assumed to be a provision comprising multiple unknown
payments to customers) is partitioned in a statistically sound way in order to simu-
late the unknown components of the largest loss. The results show an apparent limit
for VaR as the number of partitions increases, but an additional assumption – that a
limiting VaR can be calculated using an exponential distribution – is still needed to
be able to quote a “single” figure for VaR. A surprising consequence of applying the
PM method to several data sets is that the final VaR values obtained are similar (apart
from CPBP-ORX), despite the extreme dissimilarities of the original data sets. The
internal data sets considered all represent the same risk profile. They differ because
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of factors such as improved data collection, reallocation of losses to alternative risk
units and error corrections.

8.1 Further work

The following are suggestions for continued work.

(1) Replace the lognormal distribution used in the PM method by an alternative
such as a lognormal mixture or a generalized Pareto distribution.

(2) Partitioning as described in this paper is applied to the largest loss only. It could
be applied to further large losses, although partitioning should be restricted to
losses that are actually provisions. Extending partitioning in this way poses
a combinatorial problem with respect to the number of cases that could be
considered.

DECLARATION OF INTEREST

The authors report no conflicts of interest. The authors alone are responsible for the
content and writing of the paper.

ACKNOWLEDGEMENTS

The authors are grateful for the help of Professor George Deligiannidis at the
Department of Statistics, University of Oxford, in the preparation of this paper.

REFERENCES

Alexander, C. (2001). Market Models: A Guide to Financial Data Analysis. Wiley.
Andrieu, C., and Roberts, G. O. (2009). The pseudo-marginal approach for efficient

Monte Carlo computations. Annals of Statistics 37(2), 697–725 (https://doi.org/10.1214/
07-AOS574).

Andrieu, C., and Thoms, J. (2008). A tutorial on adaptive MCMC. Statistical Computing
18, 343–373 (https://doi.org/10.1007/s11222-008-9110-y).

Andrieu, C., and Vihola, M. (2015). Convergence properties of pseudo-marginal Markov
chain Monte Carlo algorithms. Annals of Applied Probability 25(2), 1030–1077 (https://
doi.org/10.1214/14-AAP1022).

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain Monte Carlo
methods. Journal of the Royal Statistical Society B 72(3), 269–342 (https://doi.org/
10.1111/j.1467-9868.2009.00736.x).

Basel Committee on Banking Supervision (2006). International convergence of capital
measurement and capital standards. Revised Framework, June, Bank for International
Settlements. URL: https://www.bis.org/publ/bcbs128.pdf.

www.risk.net/journals Journal of Operational Risk



40 P. Mitic and J. Hu

Basel Committee on Banking Supervision (2011). Operational risk: supervisory guide-
lines for the Advanced Measurement Approaches. Report, June, Bank for International
Settlements. URL: https://www.bis.org/publ/bcbs196.pdf.

Beaumont, M. A. (2003). Estimation of population growth or decline in genetically
monitored populations. Genetics 164, 1139–1160.

Bierkens, J., and Roberts, G. (2017). A piecewise deterministic scaling limit of lifted
Metropolis–Hastings in the Curie–Weiss model. Annals of Applied Probability 27(2),
846–882 (https://doi.org/10.1214/16-AAP1217).

Bierkens, J., Fearnhead, P., and Roberts, G. (2016). The zig-zag process and super-
efficient sampling for Bayesian analysis of big data. Annals of Statistics 47(3), 1288–
1320 (https://doi.org/10.1214/18-AOS1715).
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