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A New Scalable and Secure Access Control Scheme
using Blockchain Technology for IoT

Sivaselvan N, Vivekananda Bhat K, Senior Member, IEEE, Muttukrishnan Rajarajan, Senior Member, IEEE
and Ashok Kumar Das, Senior Member, IEEE

Abstract—The growth of IoT devices is so rapid that several
billions of such devices would be in use in a span of four-year
period. Essential security mechanisms need to be put in place to
curb several security attacks prevalent in IoT. Access control
is an important security mechanism that ensures legitimate
and controlled access to critical and limited resources in IoT.
The current access control schemes for IoT could not handle
burgeoning number of IoT devices, while meeting the necessary
level of security. Consequently, in this paper, we propose a
new scalable and secure access control scheme for IoT. With
blockchain as the root-of-trust, the proposed scheme performs
access control for the IoT devices without having the resource-
constrained IoT devices to be part of the blockchain network and
to possess substantial amount of blockchain data. Blockchain’s
tamper-proof property makes it an ideal candidate to be chosen
as the root-of-trust. The scheme is secure against various security
attacks prevalent in IoT. A proof-of-concept implementation for
the scheme is developed and deployed in Ethereum Mainnet. The
transaction costs of the different operations in the scheme are
fairly below USD 3. Furthermore, scalability of the proposed
scheme in different scenarios is investigated.

Index Terms—Internet of Things (IoT), Blockchain, Authenti-
cation, Access control.

I. INTRODUCTION

Internet of Things (IoT) has turned out to be one of the most
prominent paradigms for several applications like smart home,
smart health care, smart city, smart grid, smart transportation,
smart farming and so on. It is foreseen that, by the year
2025, there would be 75 billion IoT devices [1] spanning
many application areas. The other side of IoT is that several
IoT environments are experiencing various security threats [2].
Executing the essential security mechanism(s) to maintain the
necessary level of security for the increasing number of IoT
devices becomes challenging.

Among the different security mechanisms, access control
is essential to ensure that only legitimate IoT devices are
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allowed access to critical and limited resources in the system.
Access control schemes that are devised following the cen-
tralized design philosophy do not meet the needs of advanced
and dynamic IoT scenarios. Realizing the need for a new
way of approaching the problem, researchers moved towards
developing decentralized access control solutions. Blockchain
technology [3] has the potential to provide robust decentralized
solutions. Many decentralized access control solutions for IoT
using blockchain technology [4–11] have been proposed. How-
ever, these blockchain-based access control solutions could
not manage rapidly growing number of IoT devices, while
maintaining the required security level.

A. Motivation and Contributions

With the rapid growth of IoT devices and various security
attacks reported in IoT, there is a critical requirement to
enforce the necessary security mechanisms, especially, access
control for controlled access to pivotal and limited resources in
IoT. The current blockchain-based access control solutions [4–
11] that are designed to fulfill the needs of dynamic IoT
scenarios could not handle burgeoning number of IoT devices,
while maintaining the required security level. In particular, the
schemes [4–7] [11] scale reasonably better. But, they could
only partially offer security against the attack vectors identified
and enumerated in the classical threat models [12, 13] and
other attacks prevalent in IoT. The scheme [9] is comparatively
secure but scalability is not investigated. On the other hand, the
access control technique introduced in [8] is neither scalable
nor secure. The scheme [10] is secure. However, scalability is
not investigated. Therefore, we made the following contribu-
tions in this paper.
• A new scalable and secure access control scheme us-

ing blockchain technology for IoT is proposed. With
blockchain as the root-of-trust, the proposed scheme
carries out access control for the IoT devices without the
need for them to be part of the blockchain network and to
hold substantial volume of blockchain data. Blockchain’s
tamper-proof property that ensures data integrity makes
it the right candidate to be chosen as the root of trust. In
the proposed scheme, any blockchain node can register
as a device manager on-demand to handle the rapidly
growing number of IoT devices. The proposed scheme
utilizes smart contracts to store the necessary information
for access control in the blockchain and manage them.

• The proposed scheme is analyzed for the security attacks
enumerated in the classical threat models [12, 13] such
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as repudiation, information disclosure, impersonation,
Denial-of-Service (DoS), and other conventional attacks
like traceability, private-key compromise, collusion.

• A proof-of-concept implementation for the proposed
scheme is developed and deployed in Ethereum Mainnet
to obtain the real transaction costs of different contract
operations in the scheme.

• To ascertain the proposed scheme’s performance with
the increased and diversified workload, scalability of the
proposed scheme in four well identified and formulated
scenarios is examined.

• The storage overhead for blockchain transactions in the
proposed scheme is studied. The scheme’s computational
and communication overheads are also evaluated.

B. Paper Structure
The rest of the paper is structured as follows: Section

II reviews the related work of decentralized access control
schemes in IoT. Section III presents the blockchain-based ar-
chitecture for the proposed scheme. The proposed blockchain-
based access control scheme for IoT is discussed thoroughly
in Section IV. Section V presents the security analysis of the
scheme. The transaction costs of different contract operations
in the proposed scheme are assessed by a proof-of-concept
implementation in Section VI. Besides, the study of scalability
of the proposed scheme is carried out. Also, the storage,
computational and communication overhead in the scheme are
studied. Furthermore, the closely related existing schemes are
compared with the features of the proposed scheme in Section
VI. Section VII concludes the paper.

II. RELATED WORK

This section discusses the recent and closely related decen-
tralized blockchain-based access control schemes in IoT. The
classical threat models [12, 13] are employed in identifying
the security weaknesses in the related work. The attack vectors
considered in accordance with these models for the aforesaid
purpose are “repudiation”, “information disclosure”, “imper-
sonation”, “DoS”, “traceability”, “private-key compromise”,
and “collusion”.

“A framework based on blockchain technology to enable
secure mutual authentication, so as to enforce fine-grained
access control policies for industry 4.0 environment” was
proposed in [4]. The framework is usable and scalable. But, the
framework is not secure against “traceability”, “information
disclosure”, and “collusion” attacks.

Xu et al. [5] devised a “blockchain-based federated access
control system based on capability for IoT” considering two
IoT domains. The system is scalable. However, the system is
vulnerable to “traceability” attacks. Besides, the system is less
usable.

Novo [6, 7] introduced a “scalable access control scheme
based on blockchain technology for IoT”. The scheme is based
around smart contracts of blockchain technology. The scheme
is usable and scalable. However, it has limitations in security
aspect. The scheme is not secure against “repudiation”, “infor-
mation disclosure”, “impersonation”, “DoS”, and “collusion”
attacks.

Zhang et al. [8] presented a “framework based on smart
contracts for decentralized access control in IoT environment”.
The framework is usable. But, it is vulnerable to “traceabil-
ity”, “information disclosure”, “impersonation”, “DoS”, and
“collusion” attacks. Moreover, the framework is less scalable
since the number of contracts in the system is equivalent to
the number of resource requesting entities.

“A blockchain-based access control protocol for IoT-enabled
smart-grid system” was devised in [9]. The protocol is secure
against most of the security attacks considered. However, in
the protocol, a registration authority generates the identities,
public and private keys for the smart meters and service
providers. This may result in “private-key compromise” and
“key-escrow” attacks. Furthermore, scalability of the protocol
is not examined.

We proposed a “blockchain-based scheme for authentication
and capability-based access control in IoT” in [10]. The
scheme is usable. In the design of this scheme, scalability
requirement is not realized and considered. Henceforth, the
ability of the scheme to scale with increasing IoT devices
is not investigated. Moreover, the scheme’s security analysis
does not consider sufficient threat models. We addressed these
substantial requirements in the present work.

“A blockchain-based access control framework for IoT
endpoint” was presented in [11]. The framework is scalable.
However, operation compatibility between the IoT network
and blockchain network is achieved by integrating blockchain
technology into the gateway nodes in the IoT network. This
makes the framework less usable. Besides, the scheme is
vulnerable to “traceability”, “private-key compromise”, and
“information disclosure” attacks. This is because device au-
thentication is based around the pre-defined secrets embedded
into the IoT devices at the time of manufacturing.

We discuss some closely related existing blockchain-based
public-key infrastructure (PKI) approaches as we propose a
blockchain-based PKI for IoT-device access control in this
paper. In [14], the authors devised “An automated, resilient,
and transparent public-key infrastructure” called “BlockPKI”.
Kubilay et al. [15] proposed “A new PKI model with certificate
transparency based on blockchain” called “CertLedger”. In
both the approaches, a dedicated group of certificate authorities
that belongs to one organization issues and revokes certificates.
Hence, the approaches are prone to “collusion” attacks among
the certificate authorities and compromising the overall net-
work.

“A blockchain-based decentralized public-key infrastructure
for information-centric networks” was presented in [16]. The
framework sets up a decentralized PKI by combining the smart
contracts of blockchain and optimized zero-knowledge proof-
verifiable presentations. The framework realizes the manage-
ment of public-key certificates through blockchain and ensures
the authenticity and availability of public keys in decentralized
infrastructure.

Table I summarizes the merits and limitations of the cur-
rent blockchain-based access control schemes and proposed
scheme.
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TABLE I: Summary of the Related Work.
Decentralized access Merit Limitations

control scheme
[4] • Scalable • Vulnerable to traceability, information disclosure, and collusion attacks

• Usable
[5] • Scalable • Vulnerable to traceability attack

• Less usable
[6, 7] • Scalable • Vulnerable to repudiation, information disclosure, impersonation, DoS, and collusion attacks

• Usable
[8] • Usable • Not scalable

• Vulnerable to traceability, information disclosure, impersonation, DoS, and collusion attacks
[9] • Secure • Scalability is not examined

• Usability is not examined
[10] • Usable • Scalability is not examined

• Resistance to private-key compromise attack is not analyzed
[11] • Scalable • Vulnerable to traceability, private-key compromise, and information disclosure attacks

• Less usable
Proposed • Scalable • Need to conduct usability study as future work

• Secure
• Usable

III. BLOCKCHAIN-BASED ARCHITECTURE

With blockchain as the root-of-trust, the proposed scheme
carries out authentication and access control for the IoT
devices without the need for them to be part of the blockchain
network and to keep enormous amount of blockchain data.
In the proposed scheme, any blockchain node can register as
a device manager on-demand to handle the rapidly growing
number of IoT devices. The proposed scheme uses smart
contract to store the information needed for access control
in the blockchain and manage them. The blockchain-based
architecture for the proposed scheme is presented in Fig.
1. The different components in Fig. 1 are described in the
following section. The different stages labeled “a - f” are
outlined in Section III-B.

A. Components in the architecture
The blockchain-based architecture has the following com-

ponents:
1. IoT network: The IoT networks consist of resource-

constrained IoT devices. These different networks are con-
nected to the blockchain network through the interfaces.

2. Interface: An interface acts as an intermediary between
the IoT and blockchain network that obtains Constrained
Application Protocol (CoAP) messages from the IoT network,
translates into blockchain-intelligible JSON - Remote Proce-
dure Call (JSON-RPC) messages and vice-versa. The interface
has abundant computing power, memory, and energy to handle
the messages from IoT and blockchain network. There are
many such interfaces in the architecture so that multiple and
simultaneous messages can be effectively handled.

The blockchain network consists of a smart contract deploy
node, device managers, miners, and a smart contract.

3. Smart contract deploy node: The Smart Contract
Deploy Node (SCDN) is a special, privileged, and trusted
blockchain node that deploys the smart contract on the
blockchain network. It owns the smart contract. SCDN may
be elected using the suitable trust metrics produced by an
appropriate trust evaluation mechanism whose evaluation is
based on the evidences (past behaviours). In this connection,
the past behaviours of the blockchain nodes may be recorded
in the blockchain. SCDN maintains the blockchain data to
ensure data availability in the system in the event that all the
blockchain nodes went offline.

4. Device manager: A device manager is a blockchain
node which controls one or more devices in the IoT network.

Only the device manager interacts with the smart contract
to store the necessary information in the blockchain and
manage them. It pays the fees for the blockchain transactions
initiated to invoke the smart contract functions. However, it
does not store blockchain information or validate transactions.
Furthermore, the device manager performs only limited and
lightweight offchain cryptographic operations. Therefore, even
a resource-constrained device can enroll as a device manager.
There are many device managers in the setup to ensure that i)
the increasing number of IoT devices are managed effectively
and ii) an IoT device enrolled under one or more device
managers is operating under the control of at least a device
manager in case the other managers go offline. Each manager
can define access control policies for the IoT device. Thus, the
multiple managers act as policy administration points for the
IoT device resulting in decentralized policy administration.

5. Miner: The miners control the consensus process in the
blockchain network. They validate the blockchain transactions.
They execute the consensus algorithm for the blockchain
transactions so that this new block of transactions can be
added to the blockchain. Also, they store the blockchain
information and therefore act as blockchain data repositories.
The blockchain data can be queried from the miners whenever
needed.

6. Smart contract: The smart contract has functions
to store the essential information for access control in the
blockchain and manage them. Only the device managers can
invoke these functions by initiating blockchain transactions.
The miners will keep a record of these transactions.

B. Outline of the different stages in the system

This section presents an outline of the different stages in
the system.

a) The SCDN initiates the blockchain transaction to
deploy the smart contract on the blockchain network. If the
transaction is successful, the blockchain network returns the
blockchain address of the contract to SCDN. SCDN holds this
address to present it to those blockchain nodes willing to enroll
as device managers. The steps in a device manager enrollment
are explained in Section IV-A.

b) The interface acts as intermediary between the IoT
and blockchain network. It is crucial that the authenticity of
the interface is verified before any essential communication
is made. The authenticity is verified using the interface’s
certificate. For this purpose, the device manager registers the
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Fig. 1: Blockchain-based access control architecture.

interface’s certificate in the blockchain. The device manager
revokes the interface’s certificate in case the interface exhibits
any malicious behaviour. This stage is elaborated in Section
IV-B.

c) Each IoT device operates under the control of at least
one device manager in the system. Hence, it is essential that
the IoT device enrolls under one or more device managers. The
IoT device maintains the count of its device managers locally
to avoid getting enrolled under too many managers. During an
enrollment, the IoT device verifies interface’s authenticity and
then sends its consent to enroll under the device manager.
The manager enrolls the device by initiating a blockchain
transaction. The device manager disenrolls the IoT device if
the device shows any signs of malicious behaviour. Thereafter,
the information about the disenrollment is broadcasted to all
other device managers so that those managers which have
enrolled this malicious device can do disenrollment of this
device. The enrollment of an IoT device under a device
manager is detailed in Section IV-C.

d) It is critical that the IoT device is authenticated before
it requests access to a resource in another IoT device. The
authentication is performed based on the device’s certificate.
In this connection, the device’s certificate is registered in the
blockchain with the help of the device manager. Prior to this
registration, the manager verifies if the device is enrolled. The
manager can revoke the device’s certificate in case any misbe-
haviour is observed. Thus, this setting presents a decentralized
PKI based on blockchain technology. It does not require huge
infrastructure and cumbersome certificate management unlike
conventional PKI. Therefore, blockchain-based PKI is cost-
effective compared to the conventional PKI. The steps in the
registration of a device certificate are explained in Section
IV-D.

e) The IoT devices are mutually authenticated using
the blockchain-based PKI (decentralized PKI). The devices’
certificates are queried from the miner and are used in the
mutual authentication process. The authentication process is
elaborated in Section IV-E.

f) When an IoT device requests access to a resource in
another IoT device, it is absolutely necessary to verify the
access rights of the requesting device. For this purpose, the
device manager adds an access token containing the context
and access rights for the requesting device in the blockchain by
consulting the requested device. The access control process is
carried out based on this token. The device manager revokes
the device’s token if any malicious behaviour is witnessed.
Following this, the device is evicted from the current session.
As a result, the device would be required to go through the
authentication process once again. The access control process
is detailed in Section IV-F.

IV. PROPOSED SCHEME

In this section, we present our blockchain-based access
control scheme for IoT. In the scheme, we first perform
authentication and then access control to ensure legitimate
and controlled access to critical and limited resources in IoT.
Authentication is performed using the decentralized PKI based
on blockchain technology presented by the scheme. Access
control is carried out based on access token containing the
context and access rights of an IoT device to a particular
resource in another IoT device.

The proposed scheme is split into 6 stages: 1) Device man-
ager enrollment (offline), 2) Registration of interface certificate
(offline), 3) Enrollment of IoT device (offline), 4) Registration
of device certificate (offline), 5) Authentication (online), and
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6) Access control (online). Table II introduces the meanings
for the symbols used in the scheme.

TABLE II: Symbols and their Meanings
Symbol Meaning
b addrDM Blockchain address of device manager ′DM ′

pu kDM , pr kDM Public, private keys of DM
msgregister , msgenroll, Messages
msgconsent, msgauth
σ1, σ2, σ3, σ4 Digital signatures
idInt Identity of interface ′Int′
pu kInt, pr kInt Public, private keys of Int
exp Expiration time
uuidD1, uuidD2 Universally unique identifiers of

IoT devices ′D1′ and ′D2′

suuidD1, suuidD2 Secondary universally unique
identifiers of D1 and D2

countDM Count of DMs controlling a device
C Cipher text
rid Registration identifier
rnd Cryptographically strong random number
CertInt, CertD1, CertD2 Self-signed X.509 certificates

of Int, D1 and D2
T Timestamp
σ5, σ6 Digitally signed timestamps
ctxt Context-awareness parameter
AR Access rights
CapD1, CapD2 Capabilities of D1 and D2
cid Random unique capability identifier
aR Requested access
DS(.) Digital signature primitive
E(.) Public-key encryption
D(.) Private-key decryption
h(.) Cryptographic hash
CSPRNG(.) Cryptographically strong pseudo random

number generator
∥,⊕ Concatenation and bitwise XOR

operations

1

SCDN Device Contract

Requests the address
of the contract

Provides the address

EnrollAsDeviceManager()

Returns the blockchain
address for the enrollment

Generates
pu_kDM , pr_kDM

AddPubKey(pu_kDM)

DisenrollDeviceManager()∗

UpdatePubKey(pu_k′
DM)∗

Fig. 2: Device manager enrollment.

A. Stage 1: Device manager enrollment

Fig. 2 presents the steps executed in the device manager
enrollment stage. They are explained below:

Step 1. A device in the blockchain network which
is willing to enroll as Device Manager (DM ) re-
quests SCDN for the blockchain address of the contract.
SCDN provides the device with the address. Subsequently,
the device initiates a blockchain transaction to invoke
EnrollAsDeviceManager() contract function. If the trans-
action is completed successfully, the device is returned a
blockchain address b addrDM that identifies this device as
DM . Thus, the device is enrolled as DM .

Step 2. DM generates Elliptic Curve Cryptography (ECC)
or RSA-based public/private keys pu kDM , pr kDM . It
then adds its public key to the blockchain by invok-
ing AddPubKey(pu kDM ) contract function through a
blockchain transaction. This is done to enable entities to query
pu kDM from the miner in case if they wish to send any
necessary information to DM in encrypted form.

Step 3 (Optional). A DM may disenroll itself by invoking
DisenrollDeviceManager() contract function. This results
in revocation of all the capability tokens (access control
policies) added by the DM through the RevokeCapability()
function. However, if this is the only DM for a particular
IoT device, the function would not allow it to disenroll. In
this manner, the scheme ensures that an IoT device has at
least one DM at any point of time. A DM updates its
key-pair periodically to avoid pr kDM leakage due to cyber
attacks. Consequently, DM will have to perform periodic
updation of its public key in the blockchain by invoking
UpdatePubKey(pu k′DM ) contract function.

B. Stage 2: Registration of interface certificate

Fig. 3 represents the steps in the registration of interface
certificate stage. These steps are described below:

Step 1. An Interface (Int) sends a request to register its
certificate in the blockchain to DM . Following this, DM
prepares register interface certificate message msgregister and
the corresponding signature σ1 = DS(msgregister, pr kDM ).
It decides the expiration time ′exp′ which would be used by
the interface Int in the following step in the preparation of its
certificate. DM sends b addrDM ,msgregister, σ1, and exp to
Int.

Step 2. Int queries the public key of DM from the miner
by calling Query() method with suitable identity parameter
b addrDM . It is to be noted that a call to Query() method
does not require a blockchain transaction. Thus, blockchain
transactions are avoided in the context of accessing data from
the miner. With pu kDM , Int validates DM ’s signature by
checking DS(σ1, pu kDM ) == msgregister If the verifi-
cation succeeds, Int generates idInt, its public/private keys
pu kInt and pr kInt. Thereafter, it prepares signature σ2 =
DS(msgregister, pr kInt) and self-signed X.509 certificate
CertInt = (idInt∥pu kInt∥exp∥σ2). It sends the encrypted
certificate C = E(CertInt, pu kDM ) to DM .

Step 3. DM decrypts C using pr kDM , obtains CertInt
and then pu kInt. Subsequently, it validates interface signa-
ture by checking DS(σ2, pu kInt) == msgregister. It also
checks ′exp′ for integrity. If the verification is successful,
DM computes h(CertInt), registers the certificate for Int
by invoking RegisterCertificate(idInt, h(CertInt)) con-
tract function through a blockchain transaction. This function
does not permit further registrations using the same idInt.
Once ′exp′ is reached, an Int will have to register certificate
again but using a different idInt.

Step 4 (Optional). An Int updates its key-pair peri-
odically to prevent pr kInt leakage owing to cyber at-
tacks. Accordingly, Int prepares a new certificate Cert′Int
using its new public key pu k′Int and sends it to DM .
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1

Int Miner Contract SCDN DM

Requests the register certificate operation

Prepares msgregister, σ1 =
DS(msgregister, pr_kDM),
Decides ′exp′

b_addrDM ,msgregister, σ1, exp

Query(b_addrDM)

Checks
DS(σ1, pu_kDM)
== msgregister

Prepares σ2 =
DS(msgregister, pr_kInt),
CertInt =
(idInt∥pu_kInt∥exp∥σ2),
C =
E(CertInt, pu_kDM)

C

Decrypts C using
D(C,pr_kDM),
Obtains pu_kInt

Checks
DS(σ2, pu_kInt)
== msgregister
&& received ′exp′

RegisterCertificate(idInt, h(CertInt))

UpdateCertificate(idInt, h(Cert′Int))
∗

RevokeCertificate(idInt)
∗

Fig. 3: Registration of interface certificate.

Then, DM updates the certificate of Int by invok-
ing UpdateCertificate(idInt, h(Cert′Int)) contract function.
This function does not allow a new/fresh certificate registra-
tion. If an Int turns malicious at any time before the expiration
time ′exp′ of its certificate, the DM revokes the certificate by
invoking the RevokeCertificate(idInt) contract function.

C. Stage 3: Enrollment of IoT device

The steps executed in enrollment of IoT device are elabo-
rated as follows:

Step 1. An IoT device, say D1 verifies the authenticity
of Int and DM before it sends its consent to enroll under
DM . For this purpose, DM prepares enroll IoT device
message msgenroll and the corresponding signature σ3 =
DS(msgenroll, pr kDM ). It sends msgenroll and σ3 to Int.
Int forwards these parameters along with CertInt to D1.

Step 2. D1 verifies if the count of its DMs is less than a
predefined threshold by checking countDM < threshold. It
maintains countDM locally. If the condition is tested false, D1
aborts the procedure to prevent too many DMs from control-
ling it. Else, D1 queries h(CertInt) and pu kDM from miner
by calling Query() method with suitable parameters idInt
and b addrDM respectively. This call to Query() does not
incur a blockchain transaction. With the parameters received
from miner, D1 verifies the authenticity of Int and DM by
checking computed h(CertInt) == queried h(CertInt) &&
DS(σ3, pu kDM ) == msgenroll. If the verification succeeds,
D1 sends its consent message msgconsent and encrypted

identity C = E(uuidD1∥suuidD1, pu kDM ) to DM . We
chose to use universally unique identifiers for identifying the
IoT devices globally since they are unique with almost zero
probability of getting duplicated.

Step 3. DM decrypts C using pr kDM and obtains
uuidD1. Subsequently, it enrolls D1 by initiating a blockchain
transaction that invokes EnrollIoTDevice(uuidD1) contract
function. If this transaction is completed successfully, uuidD1

will be stored in the blockchain. Also, DM inserts suuidD1

into the list of enrolled devices maintained and managed
locally. The preceding function enables IoT devices to get
enrolled under multiple DMs.

Step 4 (Optional). At any point of time, if a DM sees
an IoT device (say D1) under its control, turning malicious,
DM disenrolls D1 and revokes all the capabilities created
for D1 by invoking DisenrollIoTDevice(uuidD1) contract
function. This information can be broadcasted to all other
DMs so that those DMs which have enrolled this malicious
D1 can do disenrollment and revocation of all of its capabili-
ties by invoking the same function. These steps are illustrated
in Fig. 4.

D. Stage 4: Registration of device certificate

The steps carried out in the registration of device certificate
stage are explained below:

Step 1. As the initial step, D1 sends certificate registration
request to DM . Subsequently, DM decides the expiration
time ′exp′ for the device (D1) certificate and sends it to
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1

D1 Int Contract DM Miner

Prepares msgenroll, σ3 =
DS(msgenroll, pr_kDM)

msgenroll, σ3

CertInt,msgenroll,
σ3

Checks
countDM <
threshold

Query(idInt),Query(b_addrDM)

Checks computed
h(CertInt) ==
queried h(CertInt)
&&
DS(σ3, pu_kDM) ==
msgenroll

Prepares C =
E(uuidD1∥suuidD1,
pu_kDM)

msgconsent,C

Decrypts C using
D(C,pr_kDM)

EnrollIoTDevice(uuidD1)

Inserts suuidD1 into
its local list of enrolled
devices

DisenrollIoTDevice(uuidD1)
∗

Fig. 4: Enrollment of IoT device.

D1. This ′exp′ usually is shorter than the ′exp′ for Int
since the scope of device certificate is less than that of
interface certificate. D1 generates cryptographically strong
pseudo random number ′rnd′ using CSPRNG() function.
It computes registration id ′rid′ by performing bitwise XOR
of suuidD1 with ′rnd′. Subsequently, D1 prepares authen-
ticate device message msgauth and the respective signature
σ4 = DS(msgauth, pr kD1). Besides, D1 prepares self-
signed X.509 certificate CertD1 = (rid∥pu kD1∥exp∥σ4)
and encrypts it as in C = E(CertD1∥rnd, pu kDM ). D1
sends msgauth and C to DM through Int.

Step 2. DM decrypts C using pr kDM , obtains CertD1

and then pu kD1. Next, DM computes suuidD1 by per-
forming bitwise XOR of ′rid′ with ′rnd′. DM checks if
D1 is enrolled using (suuidD1). Only if this verification
succeeds, DM validates the signature of D1 by check-
ing DS(σ4, pu kD1) == msgauth. It also checks the in-
tegrity of ′exp′. After successful validation, DM computes
h(CertD1) and registers the certificate for D1 by invok-
ing RegisterCertificate(rid, h(CertD1)) contract function.
This function does not allow further registrations on the same
′rid′. D1 is required to register certificate again, once ′exp′

of its certificate is reached.

Step 3 (Optional). If DM finds D1 turning malicious at
any time before the expiration time ′exp′, D1’s certificate
is revoked by invoking RevokeCertificate(rid) contract
function. Following this, DM takes all the necessary steps
for disenrollment and cascading disenrollment (disenrollment
by the other DMs) of D1. The above steps are outlined in

Fig. 5.

E. Stage 5: Authentication

Suppose D1 wants to access a particular resource of D2.
This is permitted only after successful mutual authentication
between D1 and D2. The essential steps in mutual authenti-
cation are detailed below:

Step 1. D1 sends CertD1 to D2. Following this, D2 queries
h(CertD1) from the miner by calling Query(rid) method.
D2 validates the certificate presented by D1 by checking if
computed h(CertD1) == queried h(CertD1). If the veri-
fication succeeds, D2 stores ′rid′, h(CertD1),

′ exp′ into the
list of trusted devices. This list is maintained and managed
locally by D2. D1 follows the aforementioned procedure to
store ′rid′, h(CertD2),

′ exp′ for D2 into its list of trusted
devices. This step (Step 1.) is performed once per certificate
registration for a device.

Step 2. D1 sends CertD1, T, σ5 to D2. D2 verifies if
DS(σ5, pu kD1) == T and |T − T ∗| ≤ ∆T where T ∗

is the reception time and ∆T is the maximum transmission
delay. If so, it extracts ′rid′ from CertD1 and checks if this
is present in the list of trusted devices. If present, D2 checks
if computed h(CertD1) == stored h(CertD1) and ′exp′ is
greater than the current time. If the condition evaluates to
true, D1 is authenticated to D2. Subsequently, D2 dispatches
CertD2, T, σ6 to D1. D1 checks if DS(σ6, pu kD2) == T
and |T − T ∗| ≤ ∆T . If yes, D1 acquires ′rid′ from CertD2,
then verifies if this is existent in the list. If yes, D1 verifies if
computed h(CertD2) == stored h(CertD2) and the current
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Fig. 5: Registration of device certificate.

time does not exceed ′exp′. If the condition is tested true,
D2 is authenticated to D1. D1 and D2 notify DM of this
mutual authentication by sending the desired messages to DM
through Int. Thus, D1 and D2 are mutually authenticated to
one another. The steps in mutual authentication are represented
in Fig. 6.

F. Stage 6: Access control

The steps in the access control stage are explained below:
Step 1. Suppose D1(uuidD1) requests D2 access over

resource ′r′. Resources are identified by their names. D2
decides the context-awareness parameter ′ctxt′ and access
rights AR. Since the resource ′r′ is most likely a file,
AR ∈ {null, read, write, {read,write}}. ′ctxt′ can be
time or location. D2 encrypts these parameters as in C =
E(ctxt∥AR, pu kDM ). D2 dispatches C, uuidD1, r to DM .

Step 2. DM decrypts C using pr kDM . DM
decides ′exp′ & ′rnd′ for the capability token to
be generated. Then, it computes capability for D1
viz., CapD1 = h(uuidD1, r, ctxt, AR, exp, rnd).
DM initiates a blockchain transaction to trigger
AddCapability(cid, uuidD1, CapD1∥exp) contract function
to add this capability in the blockchain. Also, DM sends
cid, CapD1 to D1 so that D1 can present the capability token
to D2 when needed.

Step 3. When D1 presents cid, CapD1 to D2, D2 queries
the miner for D1’s capability by calling Query(cid) method.
It then verifies if presented CapD1 == queried CapD1. It
also checks if queried ′exp′ is greater than the current time.
If this condition is tested true, the capability token presented
is valid. Subsequently, D1 presents the requested access aR

to D2. D2 maintains and manages ′ctxt′ and AR for each
capability token locally. D2 validates the current context and
checks if aR ∈ AR. If true, the requested access is granted.

Step 4 (Optional). If DM encounters an IoT device
say D1 turning malicious in the access control stage at
any time before ′exp′, it revokes the capability token of
D1 by invoking RevokeCapability(cid) contract function.
Following this, D1 is expelled from the current session which
would require D1 to go through the authentication process
again. These steps are illustrated in Fig. 7.

Why would the industries adopt the proposed scheme?
In recent years, nearly, all industry sectors use IoT devices

in different applications. As the applications expand, the usage
increases and therefore, the IoT devices would rapidly grow
in number. Besides, security in these IoT applications is of
great concern to the industries. Therefore, the industries are
desirous of a robust access control scheme that scales well with
the rapidly increasing number of IoT devices. The industries
would adopt the proposed scheme since it fetches the following
advantages to access control in IoT.
• Fine-grained: In the system, the access token is generated

for a particular IoT device and resource. The token has
context-awareness and access rights fields. The context-
awareness field has information such as location or time
of the day. The device holding the token has to present it
at the time of access verification. The access to a specific
resource is determined based on the access rights and
context. Thus, access control in the proposed scheme is
fine-grained.

• Scalability: In the system, any resource-constrained
blockchain node can become a device manager. A device
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Fig. 6: Authentication.

manager controls one or more IoT devices. The manager
initiates only limited number of blockchain transactions
and performs only limited & lightweight offchain crypto-
graphic operations as a part of the access control process
for an IoT device. There are many such managers in
the system. Therefore, the scheme scales well with the
increasing number of IoT devices.

• Usability: Although blockchain technology is central to
the proposed scheme, the technology is not integrated
into the resource-constrained IoT devices. The IoT de-
vices neither store blockchain information nor validate
transactions. This makes the scheme usable in many IoT
scenarios.

• Interoperability: The interfaces translate CoAP messages
from IoT devices into blockchain intelligible JSON-RPC
messages and vice versa. The essential communications
between the IoT devices and blockchain network are
established by the interfaces. This makes the IoT devices
and blockchain network interoperable.

• Security: The IoT devices verify the authenticity of the

interfaces before any communication is made with the
blockchain network. Also, the IoT devices are authenti-
cated and access rights are verified before access to a
particular resource is granted. Moreover, data tampering
is prevented in the root of trust with the use of blockchain.
Blockchain has inherent tamper-proof property. Thus,
security is ensured in all the places in the proposed
scheme.

V. SECURITY ANALYSIS

In this section, the proposed scheme is carefully examined
for its resilience to conventional security attacks listed in the
classical threat models [12, 13] and additional standard attacks
in IoT environment. The security analysis by reasoning is
presented below.

Proposition 1. Proposed scheme is resistant to repudiation
attack.

Proof. D1 or D2 could not claim to have not performed an
action because DM keeps track of their actions. For instance,
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Fig. 7: Access control.

DM enrolls a device only after getting its consent. DM
could not claim to have not done an action since many of
its actions would initiate blockchain transactions to invoke
contract functions which are recorded in the blockchain. An
Int could not succeed in carrying out a repudiation attack
since its essential actions are followed up by DM . For
example, DM registers the certificate for an Int only after
receiving the request from it.

Proposition 2. Proposed scheme protects off-chain crypto-
graphic parameters from traceability attack.

Proof. An adversary could not trace an Int since
idInt, CertInt = {idInt∥pu kInt∥exp∥σ2} would be
different for different certificate registrations. D1 could not
be traced because uuidD1 and suuidD1 are different for
different enrollments. Universally unique identifiers have the
properties of being random and collision-resistant. Besides,
rid = suuidD1 ⊕ rnd,CertD1 = {rid∥pu kD1∥exp∥σ4}
would be different for different certificate registrations. An
adversary could not succeed in tracing D2 for the similar
reason.

Proposition 3. Proposed scheme is resistant to private key
compromise attack.

Proof. An attacker could not compromise pr kDM be-
cause DM keeps it secret. Besides, DM generates a new

key-pair (pr k′DM , pu k′DM ) at regular intervals. It up-
dates pu k′DM in the blockchain by invoking the con-
tract function UpdatePubKey(pu k′DM ). The private key
of Int could not be compromised since Int generates
a new key-pair (pr k′Int, pu k′Int) periodically. The re-
sultant certificate Cert′Int is updated in the blockchain
by DM through the invocation of contract function
UpdateCertificate(id, h(Cert′Int)). Similarly, the private
keys of the IoT devices could not be compromised because
fresh key-pairs are generated from time to time.

Proposition 4. Proposed scheme is resilient to information
disclosure attack.

Proof. No information could be revealed from
h(CertInt), h(CertD1), and h(CertD2) stored in the
blockchain since it is infeasible to find a collision for a
cryptographic hash in polynomial time. D1 could not disclose
any access control information viz., ′ctxt′, AR, and ′exp′

from CapD1 received from DM during capability-based
access control as CapD1 uses cryptographic hash function.

An Int could not divulge 1) any information about D1,
D2 from h(CertD1) and h(CertD2) queried from the miner
during certificate-based authentication because they are cryp-
tographic hashes, and 2) any access control information from
CapD1 obtained from DM since CapD1 uses cryptographic
hash function.
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Proposition 5. Proposed scheme is secure against imperson-
ation attack.

Proof. D1 or D2 could not be spoofed at the time of en-
rollment because the identities uuidD1, uuidD2 are sent to
DM in encrypted form. In the same manner, D1 or D2
could not be impersonated during certificate registration since
the registration identities ′rid′s are dispatched to DM in the
form of ciphertext. D1 or D2 could not be imitated during
certificate-based authentication by capturing the certificates
CertD1, CertD2 and resending them (replaying). This is
because the certificates are sent along with the timestamps and
digitally signed timestamps σ5, σ6 that ensure the timestamps
are not manipulated during transit. These timestamps prevent
replay attacks, thereby, intercepts impersonation attacks.

An Int could not be impersonated during certificate reg-
istration since idInt is sent to DM in encrypted form. A
DM would not be willing to impersonate another DM , since
it would have to endure the transaction costs incurred on
the blockchain transactions initiated in favour of the other
DM .

Proposition 6. Proposed scheme prevents DoS attack.

Proof. D1, D2 and Int could not become successful in con-
ducting single identity DoS attacks using their corresponding
identities uuidD1, uuidD2 and idInt. The scheme prevents
such attacks. On the other hand, a DM would not be willing to
conduct DoS attacks as it would need to endure the transaction
costs incurred on the initiated blockchain transactions.

Proposition 7. Proposed scheme intercepts collusion attack.

Proof. The DMs of an IoT device say, D1 could not succeed
in conducting a collusion attack on D1 because D1 verifies
enrollment under every DM . Moreover, D1 poses an upper
bound on the number of DMs with which it could enroll.
D1 maintains a local countDM variable to verify if the upper
bound is reached.

VI. RESULT ANALYSIS

In the proposed scheme, SCDN and DM bear the costs for
the blockchain transactions initiated for contract deployment
and contract operations respectively. As a result, initially, the
transaction costs for contract deployment and different contract
operations in the proposed scheme are studied in this section.
For this purpose, a Proof-of-Concept (PoC) implementation
is developed in Ethereum blockchain platform. The PoC is
deployed and tested in various Ethereum public testnets before
deployment in the Ethereum Mainnet [17]. First, it is tested
in the Remix testnet. Thereafter, the PoC is tested in the
recent Goerli [18] and Sepolia [19] testnets. The PoC is then
deployed in the mainnet to obtain real transaction costs for
contract deployment and operations in the scheme.

The proposed scheme is anticipated to scale reasonably well.
Therefore, secondly, the scalability of the proposed scheme
in different scenarios is evaluated. These different scenarios
require the use of different type and number of cryptographic
primitives. The cryptographic complexities of these primitives
are studied and used in scalability evaluation. Lastly, the

storage, computational, and communication overhead of the
proposed scheme are studied.

A. Proof-of-concept implementation

The purpose of this PoC implementation is to evaluate the
transaction costs for the contract deployment and contract
operations in the proposed scheme. The single smart contract
in the proposed scheme is implemented as two contracts in
PoC. The motive for two smart contracts is that the transaction
cost for the deployment of a single smart contract containing
all the required functions for access control exceeded the
default gas limit. When the transaction cost for a contract
deployment exceeds the default gas limit, it implies it is heavy
for the blockchain network. This has necessitated the break
down of a single contract into two smart contracts in PoC. The
first contract (Contract1) contains the definitions of functions
needed for handling the device managers, IoT devices and
access tokens. Whereas, the second contract (Contract2) holds
the definitions of functions to manage the certificates required
for verifying the legitimacy of IoT devices/interfaces. Thus,
Contract2 forms the basis for blockchain-based PKI in the
proposed scheme.

Algorithm 1: Enroll as device manager
Contract operation –“Op1”

function EnrollAsDeviceManager()
1 if deploy node = msg.sender then
2 ‘The smart contract deploy node cannot enroll as device manager’
3 return 0;
4 end
5 if devicemanager[msg.sender].isdevicemanager = true then
6 ‘The caller is already a device manager’
7 return 0;
8 end
9 devicemanager[msg.sender].isdevicemanager ← true;
/* Let b_addr be the blockchain address returned for

the enrolled device manager */
10 return b addr;

Algorithm 2: Enroll IoT device
Contract operation – “Op2”

function EnrollIoTDevice(uuid)
1 if devicemanager[msg.sender].isdevicemanager ̸= true then
2 ‘The caller has to be a device manager’
3 return 0;
4 end
/* The above steps verify if the caller is a device

manager */
5 for i = 1 to device[uuid].devicemanagers.length do
6 if device[uuid].devicemanagers[i] = msg.sender then
7 flag ← true;
8 break;
9 end

10 end
11 if flag = true then
12 ‘The device is already enrolled under this device manager’
13 return 0;
14 end
15 if device[uuid].isdevice ̸= true then
16 device[uuid].isdevice← true;
17 end
18 device[uuid].devicemanagers.push(msg.sender);
19 devicemanager devices[msg.sender].list devices.push(uuid);
20 return 1;

The data structures used in Contract1 and Contract2 are
depicted in Fig. 8. Mapping data structures are hash tables that
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Fig. 8: Data structures used in the smart contracts.

store information in the form of key-value pairs. Algorithms
1–9 are realization of the contract functions in the proposed
scheme. At PoC level, the algorithms 1–6 represent Con-
tract1 functions. Whereas, algorithms 7–9 represent Contract2
functions. These algorithms demonstrate that the contract
functions carry out necessary security validations to avoid
security loopholes at the system level. For instance, almost
every algorithm performs the security validation “if the caller
is a device manager” to ensure that no component in the
architecture (Fig. 1) other than the device manager is allowed
to invoke any of the smart contract functions.

Algorithm 3: Add capability
Contract operation – “Op3”

function AddCapability(cid, uuid, Cap)
/* Verifies if the caller is a device manager */

1 for i = 1 to device[uuid].devicemanagers.length do
2 if device[uuid].devicemanagers[i] = msg.sender then
3 flag1← true;
4 break;
5 end
6 end

/* Let #uuid be the id of the other device */
/* The above steps are repeated for #uuid. The flag variable is

flag2 */
7 if flag1 or flag2 ̸= true then
8 ‘The caller is not a manager of both the devices’
9 return 0;

10 end
11 devicemanager capabilities[msg.sender].capabilities[cid].Cap← Cap;
12 return 1;

As the first step of testing the PoC, the contracts are
deployed in Remix testnet under JavaScript VM (London)
environment. The transaction costs incurred in blockchain
transactions for contract deployment and different contract
operations are indicated in Fig. 9.

It can be observed that the costs (in gas) incurred in
deploying the contracts are within the default gas limit of
Remix viz., 3000000 gas. The cost for deploying Contract1
is significantly higher than that for Contract2, since Contract1
has more number of functions than Contract2. Had there been
a single contract managing all the operations, the cost of
deployment would have definitely surpassed the default gas

Algorithm 4: Disenroll device manager
Contract operation – “Op4”

function DisenrollDeviceManager()
/* Verifies if the caller is a device manager */

1 for i = 1 to devicemanager devices[msg.sender].list devices.length do
2 temp← devicemanager devices[msg.sender].list devices[i];
3 if device[temp].devicemanagers.length = 1 then
4 flag ← true;
5 break;
6 end
7 end
8 if flag = true then
9 ‘The device manager cannot disenroll as it is the only manager for a device’

10 return 0;
11 end
12 for i = 1 to devicemanager devices[msg.sender].list devices.length do
13 temp← devicemanager devices[msg.sender].list devices[i];
14 for j = 1 to device[temp].devicemanagers.length do
15 if device[temp].devicemanagers[j] = msg.sender then
16 delete device[temp].devicemanagers[j];
17 break;
18 end
19 end
20 end

/* Invalidate all the capabilities added by the device manager */
21 for i = 1 to devicemanager capabilityids[msg.sender].cids.length do
22 RevokeCapability(devicemanager capabilityids[msg.sender].cids[i]);
23 end
24 delete devicemanager devices[msg.sender].list devices;

/* Make the device manager a mere blockchain node */
25 devicemanager[msg.sender].isdevicemanager ← false;
26 return 1;

Algorithm 5: Disenroll IoT device
Contract operation – “Op5”

function DisenrollIoTDevice(uuid)
/* Verifies if the caller is a device manager */

1 for i = 1 to devicemanager devices[msg.sender].list devices.length do
2 if devicemanager devices[msg.sender].list devices[i] = uuid then
3 delete devicemanger devices[msg.sender].list devices[i];
4 break;
5 end
6 end
7 for i = 1 to device[uuid].devicemanagers.length do
8 if device[uuid].devicemanagers[i] = msg.sender then
9 delete device[uuid].devicemanagers[i];

10 break;
11 end
12 end
13 if device[uuid].devicemanagers.length = 0 then
14 device[uuid].isdevice← false;
15 end
16 return 1;
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limit of Remix. This justifies the need of having two contracts
in the PoC implementation.

Algorithm 6: Revoke capability
Contract operation – “Op6”

function RevokeCapability(cid)
/* Verifies if the caller is a device manager */

1 for i = 1 to devicemanager capabilityids[msg.sender].cids.length do
2 if devicemanager capabilityids[msg.sender].cids[i] = cid then
3 flag ← true;
4 break;
5 end
6 end
7 if flag ̸= true then
8 ‘The caller cannot revoke the capability since the caller has not worked on it’
9 return 0;

10 end
11 delete devicemanager capabilities[msg.sender].capabilities[cid];
12 return 1;

The contract functions presented in Algorithms 1–9 rep-
resent the different contract operations. It can be seen from
Fig. 9b that the transaction costs incurred in all the operations
are well within the default gas limit of Remix. The costs
are bearable by DM . The maximum cost is incurred in
“Enroll IoT device” operation whose corresponding function
EnrollIoTDevice(uuid) is presented in Algorithm 2.

Algorithm 7: Register certificate
Contract operation – “Op7”

function RegisterCertificate(id, h(Cert))
/* Verifies if the caller is a device manager */

1 if certificate[id] ̸= NULL then
2 ‘A certificate for the interface is already registered’
3 return 0;
4 end
5 certificate[id]← h(Cert);
6 cert manager[h(Cert)]← msg.sender;
/* Similar steps are followed to register certificate

for a device with registration id ′rid′
*/

7 return 1;

Algorithm 8: Update certificate
Contract operation – “Op8”

function UpdateCertificate(id, h(Cert′))
/* Verifies if the caller is a device manager */

1 if certificate[id] = NULL then
2 ‘A certificate is not yet registered for the interface’
3 return 0;
4 end
5 if cert manager[certificate[id]] ̸= msg.sender then
6 ‘The certificate can’t be updated by this manager’
7 return 0;
8 end
9 certificate[id]← h(Cert′);

10 cert manager[h(Cert′)]← msg.sender;
11 return 1;

It is worth noticing the costs incurred in the revocation
operations namely “Revoke capability” and “Revoke certifi-
cate” whose functions are presented in Algorithms 6 and 9.
It can be ascertained from Fig. 9b that the cost for “Revoke
capability” operation is less than that of all other operations of
Contract1. The cost for “Revoke certificate” operation is less
than 30000 gas which is considered trivial. Had the costs for
these operations been high, it would have lead to some serious
security threats. For instance, high costs incurred in “Revoke
capability” operation would allow a malicious IoT device gain

Algorithm 9: Revoke certificate
Contract operation – “Op9”

function RevokeCertificate(id)
/* Verifies if the caller is a device manager */

1 if cert manager[certificate[id]] ̸= msg.sender then
2 ‘The certificate can’t be revoked as the device manager has not worked

on it’
3 return 0;
4 end
5 cert manager[certificate[id]]← 0;
6 delete certificate[id];
7 return 1;

unauthorized access. While, that in “Revoke certificate” would
leave a malicious Int or IoT device as a legitimate one. Thus,
the proposed scheme ensures no security loopholes arising
from the revocation operations.

As the main testing phase, we deployed the smart con-
tracts in the possibly-stable Goerli and Sepolia testnets. The
ETH to work on these testnets are obtained from the testnet
faucets [20, 21]. The transaction costs (ETH) for different
contract operations in these testnets are shown in Fig. 9c, 9d.
The costs are significantly low in Sepolia testnet. This is due
to the low and constant base fee of 0.000000007 GWEI in
Sepolia testnet compared to the variable and comparatively
high base fee in Goerli testnet. The priority fee in both the
testnets was 2.5 GWEI.

After rigorous testing and “The Merge” upgrade [22], we
deployed PoC in Ethereum Mainnet to obtain the real and
latest figures for the transaction costs for contract deployment
and different contract operations in the scheme. We conducted
the evaluation on October 23, 2022. Fig. 10 presents the
transaction costs in ETH and USD. The priority fee in the
mainnet during observation was 2.5 GWEI. The ETH price
in the mainnet was $1313.19. The highest cost ($63.14) is
recorded for Contract1 deployment. Though the cost is high,
the contract is deployed only once. On the other hand, the costs
for the contract operations are less (sometimes significantly
less) than $3.00 which are fairly low transaction costs.

Table III provides a summary of transaction costs of dif-
ferent contract operations in Ethereum Mainnet, Goerli and
Sepolia testnets, and Remix testnet. The total transaction
cost of contract operations in Ethereum Mainnet is 0.057952
ETH ($76.05). Majority of the cost $67.5 ($63.14 + $4.36)
is incurred in one-time contract (Contract1 and Contract2)
deployment operations. Hence, the contract operations in the
proposed scheme incur only reasonable transaction costs in
Ethereum Mainnet. The total transaction cost in Sepolia testnet
is significantly less compared to the total cost in Goerli testnet
due to significantly low effective gas price (low base fee) in
Sepolia testnet. The total gas needed for the contract operations
in the scheme is 3862217.

As a part of cost evaluation, we conducted a study on the
frequency of use of smart contract functions in a typical use.
According to a survey by Deloitte [23], the average number of
IoT devices per US household in this year is 22. Another study
by Statista [24] claims that the average number of connected
devices per household in Australia in 2021 was 21. These
statistics are used to define the frequency of use of contract
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Fig. 9: (a) and (b): Transaction costs (gas) of contract deployments and operations in Remix testnet; (c) and (d): Transaction costs (ETH) of
contract deployments and operations in the recent Goerli and Sepolia testnets. The priority fee in these testnets was 2.5 GWEI.
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Fig. 10: (a) and (b): Transaction costs (ETH) of contract deployments and operations in Ethereum Mainnet after “The Merge”. The priority
fee in the mainnet was 2.5 GWEI. The ETH price in the mainnet on October 23, 2022 was $1313.19

TABLE III: Summary of transaction costs of different contract operations in Ethereum Mainnet, Goerli and Sepolia testnets, and Remix
testnet

Contract operation Ethereum Mainnet Ethereum Public Testnets Remix Testnet
Goerli Sepolia

(ETH) (USD) (ETH) (ETH) (Gas)
Contract1 deployment 0.048079 63.14 0.059005 0.006100 2508125
Contract2 deployment 0.003320 4.36 0.003399 0.001582 666058

Enroll as device manager (Op1) 0.000882 1.16 0.000962 0.000123 49290
Enroll IoT device (Op2) 0.002305 2.98 0.002904 0.000455 182091

Add capability (Op3) 0.001844 2.42 0.001551 0.000442 176652
Disenroll device manager (Op4) 0.000483 0.63 0.000609 0.000230 69364

Disenroll IoT device (Op5) 0.000292 0.38 0.000266 0.000114 48811
Revoke capability (Op6) 0.000269 0.35 0.000235 0.000102 40797
Register certificate (Op7) 0.000236 0.31 0.000296 0.000142 56651
Update certificate (Op8) 0.000145 0.19 0.000212 0.000092 36698
Revoke certificate (Op9) 0.000097 0.13 0.000145 0.000064 27680

Summation 0.057952 76.05 0.069584 0.009446 3862217
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Fig. 11: Throughput and latency of different cryptographic operations in Raspberry Pi 3.
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functions in typical use. Based on the statistics, we take 22
IoT devices, 2 device managers (so that just in case if one goes
offline, the other manager would be available to manage the
IoT devices), and 1 interface for typical use. The frequency of
use of “EnrollAsDeviceManager”, “EnrollIoTDevice”,
and “RegisterCertificate” would be 1 per device manager,
22 per device manager, and 23 (1 for the interface and 22 for
the devices) respectively as shown in Fig. 13. The frequency
of use of other contract functions would vary depending on
the requirements.

B. Study of scalability of the proposed scheme

In the proposed scheme, DM performs different crypto-
graphic operations at different levels. On the other hand, Int
performs different cryptographic operations during registration
of certificate for Int. It is essential to study the crypto-
graphic complexities of various cryptographic operations in
the respective hardware. As the first step of this study, the
cryptographic operations performed by DM and Int and the
necessary hardwares are identified. The different cryptographic
operations performed by DM are hash, private-key decrypt,
sign and verify. Whereas, the different cryptographic opera-
tions performed by Int include public-key encrypt, sign and

verify. Since DM is a lightweight device, the cryptographic
complexities of the corresponding operations are studied in
Raspberry Pi 3. The hardware requirement for Int is more than
desktop computers because Int has to serve more number of
IoT devices than DM . Hence, the cryptographic complexities
of the respective operations are studied in a workstation with
2 CPU cores.

To implement the cryptographic operations, Node.js library
“Crypto” is used. Crypto library [25] provides support for
most of the cryptographic operations and standards. How-
ever, it does not support ECC-based encryption and decryp-
tion. Therefore, the cryptographic standards used for hash,
public-key encrypt, private-key decrypt, sign and verify are
“SHA256”, “RSA 3072-bit encryption”, “RSA 3072-bit de-
cryption”, “ECDSA 256-bit sign” and “ECDSA 256-bit ver-
ify”. “RSA 3072-bit encryption” is used to achieve the security
level as that of “ECC 256-bit encryption”. However, using
RSA standard of this key size degrades the performance of the
scheme. Alternatively, the performance of the scheme can be
improved by choosing RSA standard of less key size. Express
module [26] is used to host a server at localhost in Raspberry
Pi 3 and workstation which expose the necessary endpoints
for the cryptographic operations. Autocannon module [27] is
used to compute the cryptographic complexities in Raspberry
Pi 3 and workstation in terms of throughput and latency.

The throughput and latency parameters of different cryp-
tographic operations in Raspberry Pi 3 and workstation are
presented in Fig. 11 and 12. For computation of the above
parameters using autocannon, the number of client connections
is set to 10 and duration is set to 30 seconds. It is evident from
Fig. 11 that, the throughput value is at its highest for hash
operation and is at its lowest for private-key decrypt operation.
Consequently, the latency values are the lowest and high-
est for hash and private-key decrypt operations respectively.
Sign and verify operations have reasonable throughput and
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TABLE IV: The number and type of cryptographic operations performed by the loaded entities in different scenarios.
Scenario Loaded entity Loading entity Process Cryptographic primitive

Hash Public-key encrypt Private-key decrypt Sign Verify
1 DM Int Register certificate 1 - 1 1 1
2 DM IoT device Register certificate 1 - 1 - 1
3 DM IoT device Add capability 1 - 1 - -
4 IoT device IoT device Authentication & access control 1 1 - - 1
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Fig. 14: Throughput, latency, and timeouts in a DM for varying number of Int or IoT devices requesting “Register certificate” operation.
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Fig. 15: Throughput, latency, and timeouts in a DM for varying number of IoT devices requesting “Add capability” operation.

latency values. It can be observed from Fig. 12 that, public-
key encrypt operation has the highest throughput and lowest
latency. As is usual, sign and verify operations have acceptable
throughput and latency values. The scalability feature of the
proposed scheme in different scenarios comprising different
cryptographic operations at these cryptographic complexities
is benchmarked.

DM and IoT device are loaded with cryptographic op-
erations due to requests from Int and IoT devices in dif-
ferent scenarios of the proposed scheme. Table IV presents
these details along with the type and number of operations
performed by the loaded entities. As seen from the table,
there are 4 different scenarios: 1) Load on a DM due to an
Int requesting “Register certificate” operation, 2) Load on a
DM due to an IoT device requesting “Register certificate”
operation, 3) Load on a DM due to an IoT device requesting
“Add capability” operation and 4) Load on an IoT device due
to another IoT device participating in authentication and access
control. For each scenario, the number of loading entities is
gradually increased and the scalability of the loaded entity
is investigated in terms of throughput, latency and timeouts.
These simulations are carried out in Raspberry Pi 3 hardware
since the loaded entity is either DM or IoT device. In
these simulations, “Crypto” library, Express and Autocannon
modules are used.

Fig. 14 presents the simulation results for “Scenarios 1
and 2”. Throughput appears to be 19 reqs/s up to 100 client

connections after which it drops. Latency appears to be con-
tinuously rising as the number of client connections increases.
Timeouts appear to have started when throughput has begun
to fall. Timeouts is as high as 15k when the number of client
connections is 5000. From these results, it is clear that a DM
can decently tolerate upto 50 Int or IoT device connections
in view of these scenarios.

Fig. 15 depicts the simulation results for “Scenario 3”.
Throughput stays constantly at 22 reqs/s up till 100 client
connections. Thereafter it descends. The trend of latency and
timeouts in this scenario is the same as the trend in Scenarios
1 and 2. A DM can graciously tolerate upto 50 IoT device
connections in this scenario. The simulation results for “Sce-
nario 4” are illustrated in Fig. 16. Throughput is 300 reqs/s or
above even up to 5000 client connections. This is because the
scenario has only public-key encryption whose cryptographic
complexity is less than that of sign, verify and private-key
decrypt operations. As is usual, latency increases with increase
in the number of client connections. The maximum timeouts
in this scenario is 9k which is comparatively less than the
maximum timeouts in other scenarios. In this scenario, an
IoT device can considerately support upto 500 IoT device
connections. The scalability of the proposed scheme can be
greatly improved by employing ECC 256-bit encryption using
Curve25519 instead of RSA 3072-bit encryption. At present,
libraries do not support ECC-based encryption.

As a part of the scalability study, the proposed scheme’s
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Fig. 16: Throughput, latency, and timeouts in an IoT device for varying number of IoT devices participating in authentication and access
control processes.

scalability for a typical use in Ethereum Mainnet is examined.
According to Etherscan, the number of blockchain transactions
processed per second in Ethereum Mainnet on an average is
12 [17]. The frequency of use of the smart control functions in
typical use is obtained from Fig. 13. The number of blockchain
transactions in a typical use would be 69 (1×2 + 22×2 + (1
+ 22)). It takes 6 seconds to process these transactions in the
Mainnet. The proposed scheme would scale reasonably well
for substantial number of IoT devices since an average of
1050K blockchain transactions are processed per day in the
Mainnet. It is less likely that delays would be introduced in
the Mainnet in typical use. However, if delays are introduced,
the proposed scheme prioritizes revocation operations (if any)
over the other contract operations to prevent possible malicious
activities in the scheme.

C. Study of different overhead in the proposed scheme

1) Storage overhead: All the blockchain transactions initi-
ated in the proposed scheme, after successful validation by
miners, are stored in the miners. Hence, it is essential to
study the storage overhead in miners. The storage overhead
stage-wise is presented in Fig. 17. The total storage overhead
in miners due to offline stages is 5. Whereas, the aggregate
overhead in miners owing to online stages is 1. The required
blockchain data is queried from the miner wherever possible
using Query() method instead of initiating blockchain trans-
actions. This ensures that the number of blockchain transac-
tions in the scheme is kept to a minimum. Consequently, the
storage overhead in the miners is less.
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Fig. 17: Storage overhead in miner.

2) Computational and communication overhead: The com-
putational and communication overhead of the proposed

scheme are studied in this section. Only the messages
exchanged in the online stages in the proposed scheme
are considered for the overhead study. Let TSIGN/V ER,
TENC/DEC , and TH denote the overhead to execute
ECC-based digital signing and verification, public-key en-
cryption and decryption using ECC, and hashing respec-
tively. The time complexities of ECC-based digital sign-
ing and verification (using Curve25519), public-key encryp-
tion & decryption using ECC (Curve25519), and hashing
(SHA256) for n − bits are deemed O(n). Hence, the
time complexity of the proposed scheme is O(n). The
number of messages exchanged in the proposed scheme
is 5 ({CertD1, T, σ5}, {CertD2, T, σ6}, C, CapD1, CapD1)
which is quite acceptable. The size of the longest mes-
sage exchanged {CertD1, T, σ5} or {CertD2, T, σ6} is 1616
(1000+104+512) bits. The requirement for a slightly higher
network bandwidth for the longest message is complemented
by the better security features of the proposed scheme.

D. Comparison of features

Table V presents the comparison of security features of
different schemes. It is evident from the table that the proposed
scheme has better security features compared to [4, 5] [9–11].
More specifically, it is secure against repudiation, traceability,
private-key compromise, information disclosure, imperson-
ation, DoS and collusion attacks. Thus, the proposed scheme
offers the necessary level of security. The schemes [6–8] do not
have most of the security features considered for comparison.

TABLE V: Comparison of security features of different schemes.
Security feature [4] [5] [6] [7] [8] [9] [10] [11] Proposed
(Resistance to)
Repudiation attack Yes Yes No No Yes Yes Yes Yes Yes
Traceability No No Yes Yes No Yes No No Yes
Private-key compromise attack Yes NA NA NA NA No No No Yes
Information disclosure attack No Yes No No No No Yes No Yes
Impersonation attack Yes Yes No No No Yes Yes Yes Yes
DoS attack Yes Yes No No Yes Yes Yes Yes Yes
Collusion attack No Yes No No No NA Yes NA Yes
* NA : Not Applicable.

Table VI shows the scalability comparison of the proposed
scheme with [6, 7]. It can be observed that the proposed
scheme’s throughput in the scenario “Access a resource of
an IoT device” is 300 requests/sec for up to 5000 client
connections in the simulation hardware raspberry pi 3. This
is quite comparable with the throughput of [6, 7] where the
experiments are conducted in a desktop computer with Intel
Core i7-950@3.07 GHz processor and 16GB of RAM.



18

TABLE VI: Comparison of scalability of the proposed scheme with
Novo’s [6, 7] work.

Scheme Simulation hardware Throughput
(requests/sec)

[6, 7] Desktop computer with Intel Core 400
i7 processor and 16GB of RAM

Proposed Raspberry Pi 3 300
* Scenario : “Access a resource of an IoT device”.

Client connections: 5000.

The comparison of the features namely scalability, usability,
and interoperability of various schemes are provided in Table
VII. It can be seen that the proposed scheme is scalable,
usable, and interoperable while maintaining the necessary level
of security.

TABLE VII: Comparison of the features of various schemes.
Feature [4] [5] [6] [7] [8] [9] [10] [11] Proposed
Scalability Yes Yes Yes Yes No ND No Yes Yes
Usability Yes No Yes Yes Yes Yes Yes No Yes
Interoperability No No Yes Yes No No Yes Yes Yes
* ND : Not Done.

Thus, the proposed scheme is better than the closely related
existing schemes.

VII. CONCLUSION

In this paper, a new blockchain-enabled authentication and
access control scheme for IoT is presented. The scheme
uses blockchain as the root-of-trust. The scheme stores the
necessary information for authentication and access control
in the blockchain. The scheme exhibits resilience to different
attack vectors in IoT namely repudiation, traceability, private-
key compromise, information disclosure, impersonation, DoS,
and collusion attacks. The experimental results indicate that
the transaction costs for all the blockchain transactions are well
within the recommended gas limit of 3000000 gas. Moreover,
the transaction costs of contract functions in Ethereum Main-
net are fairly less than $3. Scalability study demonstrates that
the scheme is appreciably scalable in all the different scenarios
considered. The storage overhead statistics indicate that the
number of blockchain transactions in the scheme is kept to
a minimum. The scheme’s computational and communication
overhead are fairly acceptable. Most of all, the scheme has
better features compared to the recent and closely related
existing schemes. One of the future enhancements would be
to monitor the device managers for any misbehaviour since
they possess many sensitive information in the scheme. The
smart contract deploy node, having the highest privilege and
trust, may monitor the device managers for any misbehaviour
and take necessary actions.
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