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Treatment of RA has been transformed by the introduction of 
therapeutics directed against soluble mediators (for example, 
tumor necrosis factor (TNF) inhibitors and IL6R blockers), 

immune cells (for example, B cells) and intracellular signaling path-
ways (Janus kinase inhibitors)1. However, approximately 40% of 
patients do not respond to individual agents while 5–20% are resis-
tant to all current medications2. The mechanisms of nonresponse are 
largely unknown and, unlike in other medical fields such as cancer 
where molecular pathology guides the use of targeted therapies3,4, 
biomarkers able to predict response to specific agents in RA are still 
lacking5. Because RA is highly heterogeneous, it is plausible that 
different pathways are active in individual patients6. For example, 
because approximately 50% of patients with RA display low/absent 
CD20+ B cells in diseased joint tissue (synovium)7, the target for the 
anti-CD20 rituximab monoclonal antibody, it has been postulated 
that the level of synovial B cells/B cell-related pathways would influ-
ence treatment response to rituximab. However, results from small 
observational studies provide inconsistent and inconclusive results8.

To address this hypothesis we carried out a biopsy-driven, random-
ized clinical trial in RA (R4RA)9 in which TNF-inhibitor-inadequate 
responders were randomized to either rituximab (anti-CD20 
monoclonal antibody) or tocilizumab (anti-IL6R monoclonal anti-
body) after stratification according to synovial B cell signatures. 
The trial results demonstrated that only 12% of patients with a low 
synovial B cell molecular signature responded to rituximab while 
50% responded to tocilizumab. In contrast, in patients with high 
synovial B cell lineage signature, the two drugs appeared compara-
bly effective.

Here, we investigated the mechanisms of response and nonre-
sponse to these two targeted biologics through deep histopathologi-
cal and molecular (RNA-sequencing (RNA-Seq)) characterization 
of synovial tissue at baseline, and longitudinally in post-treatment 
biopsies at 16 weeks. We identified specific signatures associated 
with therapeutic response and developed machine learning clas-
sifiers to predict treatment response. Additionally, we provide 
insights into the cellular and molecular pathways underpinning 
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multidrug resistance defining a refractory phenotype, characterized 
by a stromal/fibroblast signature. Finally, digital spatial profiling 
of synovial biopsies highlighted differences in gene expression in 
specific synovial regions with relevance to disease pathogenesis and  
treatment response.

Results
Histological and in silico cell lineages correlate with drug 
response. To assess the association of synovial immune cells with 
treatment response, we compared semiquantitative immunohisto-
chemistry (IHC) scores (Extended Data Fig. 1a,b) in pretreatment 
synovial biopsies of responders (n = 28 for rituximab, n = 37 for 
tocilizumab) and nonresponders (n = 54 and n = 42, respectively), 
showing no differences (Extended Data Fig. 1c). However, when 
patients were stratified according to previously described6,7 synovial 
histological patterns, also known as pathotypes (Fig. 1a), patients 
with a diffuse-myeloid pathotype, i.e. with myeloid lineage predom-
inance but low in B/plasma cells, displayed a significantly higher 
response to tocilizumab (13/16, 81%) versus rituximab (7/20, 35%) 
(P = 0.008, odds ratio (OR) = 7.53, 95% confidence interval (CI) 
1.4–55.7). In contrast, similar response rates between treatments 
were observed in patients with a lymphomyeloid pathotype, domi-
nated by lymphoid-lineage cells (T, B and plasma cells) in addition to 
myeloid cells, and a fibroid/pauci-immune pathotype, characterized 
by few immune cells and prevalent stromal cells. To further dissect 
synovial cell types, we applied an in silico deconvolution analysis 
(MCP-counter10; Fig. 1b), showing significantly higher CD8 T cells 
in responders to rituximab and higher macrophage-monocytes 
and myeloid dendritic cells (mDCs) in responders to tocilizumab 
(Fig. 1c). Moreover, when we stratified patients according to 
MCP-counter scores, patients poor in B cells showed significantly 
higher response rates to tocilizumab (Fig. 1d), consistent with the 
primary results of the trial9, while no difference was found in patients 
rich in B cells. In contrast, macrophage- and mDC-rich individuals 
showed higher response to tocilizumab (Fig. 1e). Combined scores 
(Fig. 1f) demonstrated that patients poor in B cells but rich in mac-
rophages/mDCs had a significantly higher response to tocilizumab 
(77% responders to tocilizumab versus 14% responders to ritux-
imab; P = 0.017, OR = 16.48, 95%CI 1.29–1,000.5). Furthermore, by 
analysis of disease activity over time, we found a statistically signifi-
cant interaction effect between treatments and time in patients who 
were B cell poor (P = 0.003), T cell poor (P = 0.022) (Fig. 1g), mDC 
rich (P = 0.029) (Fig. 1h) and B cell poor/macrophage/mDC rich 
(P = 0.006) (Fig. 1i). There were significantly lower disease activity 
scores (clinical disease activity index (CDAI)) at weeks 6, 12 and 16 
in patients treated with tocilizumab who were B cell poor and mac-
rophage/mDC rich (Fig. 1i) versus those treated with rituximab. 
Overall, these results point to myeloid cell infiltration in synovia as 

one of the key factors explaining the enhanced response to tocili-
zumab in patients with B cell-poor synovitis.

Unsupervised clustering defines treatment response diversity. 
Next, we used unsupervised analyses to explore the relationship 
of multiple genes/pathways with response to treatment. First, we 
applied principal component analysis (PCA) to identify underlying 
subgroup structures. PC1 and PC3 correlated with inflammatory 
cell infiltration in synovial biopsies, while they also associated with 
histological pathotypes primarily separating the lympho-myeloid 
and fibroid pathotypes (Extended Data Fig. 2a,b).

Unsupervised Monte Carlo consensus clustering (M3C)11 
showed 71% of rituximab responders (n = 24) in cluster 1 compared 
with only 29% (n = 10) in cluster 2 (P = 0.0004; Fig. 2a). Genes 
relevant for B cell biology were significantly higher in cluster 1 in 
patients treated with rituximab (Extended Data Figs. 2e and 3a). 
Cluster 1 was also linked with significant upregulation of the B cell 
gene module S136 from weighted gene correlation network analysis 
(WGCNA)6, together with upregulation of the proinflammatory M1 
macrophage module S39 and downregulation of the fibroblast mod-
ule S115 (Extended Data Fig. 2e).

Clustering of patients treated with tocilizumab was less dis-
tinctive, with 46% of responders (n = 21) in cluster 1 and 54% in 
cluster 2 (n = 25) (Fig. 2b). However, cluster 1 was significantly asso-
ciated with IL-6 pathway genes (Extended Data Figs. 2f and 3b), 
together with upregulation of B cell and M1 macrophage modules 
and downregulation of fibroblast modules. In keeping with the 
increase in immune cell-related modules in cluster 1 for both treat-
ments, semiquantitative IHC scores for synovial immune cells were 
significantly higher in cluster 1 (Extended Data Fig. 2g), indicating 
that immune cell infiltration is linked to gene expression in clus-
ter 1, as inferred by the loss of significance when adjusting differen-
tially expressed gene (DEG) analysis between consensus clusters 1 
and 2 for immune cell content using PC1 as a covariate (Extended 
Data Fig. 3c,d). The strong correlation of PC1 with histology mark-
ers and immune cell-related genes (Extended Data Fig. 3e) is prob-
ably linked to this effect.

Molecular signatures of treatment response. Next, we performed 
DEG analysis to identify genes associated with treatment response 
on all patients who at any point in the trial had received ritux-
imab or tocilizumab (as described in Methods and Supplementary  
Fig. 1). A total of 6,625 genes were significantly different (false dis-
covery rate (FDR) < 0.05) in rituximab responders compared with 
nonresponders (Fig. 2c and Supplementary Data 1), and 85 for 
tocilizumab (Fig. 2d and Supplementary Data 1). Genes upregulated 
in the synovial tissue of rituximab responders included members of 
the immunoglobulin (Ig) superfamily and leukocyte-related genes. 

Fig. 1 | Synovial histological markers at baseline associate with response to rituximab and tocilizumab. a, Classification into synovial pathotypes 
according to semiquantitative scores for CD3+ T cells, CD20+ B cells, CD68+ macrophages and CD138+ plasma cells, with representative examples 
from patients classified as lymphomyeloid (CD20≥2 and/or CD138≥2), diffuse-myeloid (CD68SL≥2, and CD20/CD138<2) or fibroid/pauci-immune 
(CD68SL/CD20/CD138<2). Right, 16-week CDAI 50% response in patients stratified by pathotype (n = 152). Bar plots showing the proportion of CDAI 
50% responders for rituximab (in blue) and tocilizumab (in yellow) within each pathotype, with corresponding exact numbers. Fisher's test, exact P values  
for P < 0.05. b, Approach to in silico deconvolution of synovial tissue using MCP-counter. c, MCP-counter scores for each cell type compared among  
CDAI 50% responders (R) and nonresponders (NR). Bar plots indicate nominal log10 P values for tocilizumab and –log10 P values for rituximab (two-sided 
Mann–Whitney test); dashed lines correspond to P = 0.05. Boxplots (right) show median and first and third quartiles, whiskers extending to the highest 
and lowest values. d–f, 16-week CDAI 50% response in patients stratified into B and T cell poor/rich (d) and macrophage/mDC poor/rich (e) according  
to median MCP-counter scores for individual cells (rich if above median, poor if below), or by combining B cell and macrophage/mDC scores from  
d,e (f). Exact P values shown when <0.05, two-sided Fisher's test comparing the proportions of responders to rituximab (in blue) and tocilizumab 
(in yellow). g–i, Longitudinal disease activity scores (CDAI), shown as mean ± s.d., for each month from baseline to 16 weeks for patients randomized 
to rituximab (in blue) or tocilizumab (in yellow) and classified as B and T cell poor/rich (g), macrophage/mDC poor/rich (h) and combined B cell/
macrophage poor/rich (i). Comparison of CDAI between the two medications at individual time points by two-sided Mann–Whitney test, exact P values for 
<0.05 (adjustment for multiple comparisons by FDR). P values for the drug × time interaction term (two-way repeated-measures analysis of covariance) 
are shown when <0.05. c–i, n = 133 patients with baseline RNA-seq. NK, natural killer cells. mDC, myeloid dendritic cells.
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Nonresponse to rituximab, on the other hand, was associated with 
complement genes, bone morphogenic proteins, fibroblast-related 
genes and several Hox genes. Interestingly, lymphocyte and Ig genes 
were also upregulated in the synovial tissue of tocilizumab respond-
ers. Both nonresponder groups showed upregulation of extracellu-
lar matrix genes, including integrin-binding sialoprotein, aggrecan 
and collagen, and genes linked to tissue remodeling, cell infiltra-
tion and cell–cell interaction. Following adjustment for immune cell 
infiltration by PC1, DEGs for rituximab remained significant and, 
in the case of tocilizumab, the number of identified DEGs increased 
(Extended Data Fig. 3f for rituximab and Extended Data Fig. 3g for 
tocilizumab; Supplementary Data1), suggesting that DEG analysis 
provides an additional dimension to the inflammatory cell infiltrate 
alone that differentiates responders from nonresponders. Of note, 
inclusion of covariates such as age, gender and ethnicity was not 
associated with major differences in the statistical significance of 
DEGs (Supplementary Data 1).

To investigate the functional role of the above genes, we applied 
quantitative set analysis for gene expression (QuSAGE) modular 
analysis12 using blood- and synovium-specific WGCNA modules 
(Fig. 2e,f)6,13. Antigen presentation, T and B cell-related modules 
and interferon signaling were significantly increased in rituximab 
responders, while Hox gene and fibroblast modules were increased 
in rituximab nonresponders (Fig. 2e).

Myeloid cell cytokine, peroxisome proliferator-activated receptor 
(PPAR) and metabolic pathways were upregulated in tocilizumab 
responders (Fig. 2f). Although none of the modules was signifi-
cantly modulated in nonresponders to tocilizumab, fibroblast mod-
ules were also detected in nonresponders to tocilizumab, suggesting 
the possible existence of a shared treatment-resistant signature.

Refractory disease is linked to a stromal/fibroblast signature. To 
further explore the hypothesis of a common refractory signature 
following treatment switch at 16 weeks (Supplementary Fig. 1), we 
compared patients in whom both rituximab and tocilizumab failed 
to induce response (multidrug resistant/refractory, n = 40 for histol-
ogy, n = 32 for RNA-seq) with (1) patients who responded exclu-
sively to rituximab after tocilizumab failure (pro-rituximab, n = 11 
for histology and n = 9 for RNA-seq) and (2) patients who responded 
exclusively to tocilizumab after rituximab failure (pro-tocilizumab, 
n = 13 for histology and n = 12 for RNA-seq) (Fig. 3a). We identified 
1,980 genes upregulated in both pro-rituximab and pro-tocilizumab 
patients, 175 exclusive to the pro-rituximab group and 306 exclusive 
to the pro-tocilizumab (Fig. 3b and Supplementary Data 2). Among 
genes upregulated in responders to both medications were lym-
phoid, myeloid and many cytokine genes (Fig. 3c,d). Chemokines 
and lymphocyte genes were upregulated in pro-rituximab patients, 

while lymphocyte and myeloid lineage genes were upregulated  
in pro-tocilizumab.

Modular analysis showed antigen presentation and dendritic, 
macrophage and plasma cell infiltration modules upregulated 
in responders to both biologics (Fig. 3e). Similarly, the CD8 and 
Tph T cell module was upregulated in each drug response group, 
with greater change for the rituximab responder group (proxim-
ity to pro-rituximab axis), while Toll-like receptor signaling and 
macrophage chemokine and cytokine signaling were significantly 
increased in pro-rituximab patients only. Modules for T cells, 
plasma cells and the TNF receptor superfamily gene were upregu-
lated in pro-tocilizumab patients only (Fig. 3e).

Notably, 1,277 significant genes were unique to multidrug- 
resistant/refractory patients (Fig. 3c,d and Supplementary Data 2), 
including fibroblast and extracellular matrix-encoding genes such 
as fibroblast growth factor (FGF), homeobox (HOX) and NOTCH 
family genes, together with multiple cell-adhesion-molecule- and 
collagen-encoding genes (Fig. 3e and Supplementary Data 3).

In line with molecular signatures, baseline histological scores for 
CD3+ T cells and CD79a+ B-cells and CD138+ plasma cells were sig-
nificantly lower in refractory patients (Fig. 3f). Additionally, in silico 
deconvolution showed significantly lower levels of CD8+ T cells, 
monocytes and mDCs and a trend towards increase in endothelial 
cells, neutrophils and fibroblasts in refractory patients (Fig. 3g).

To further characterize the association of synovial fibroblast 
genes with multidrug resistance, we complemented MCP-counter 
deconvolution by examining enrichment in synovium-specific 
fibroblast gene modules derived from RA synovial single-cell 
RNA-seq14. As shown in Fig. 3h, the signature for HLA-DRAhigh sub-
lining fibroblasts (SC-F2), a proinflammatory subset associated with 
leukocyte-rich synovial infiltration in RA, was significantly higher 
in responders (P = 0.027) as opposed to CD34+ sublining fibroblasts 
(SC-F1) and, in particular, to the newly described DKK3+ sublining 
fibroblasts (SC-F3), both increased in refractory patients (P = 0.036 
and 0.00055, respectively).

For orthogonal confirmation of these findings at the protein 
level, we used multiplex immunofluorescence to detect DKK3+ 
fibroblasts in the synovial lining and sublining of refractory patients 
(Fig. 3i and Extended Data Fig. 4).

Together, these results show that baseline histological and 
molecular signatures are associated with response to individual 
drugs, while nonresponse to multiple biologics is linked to a specific 
pretreatment signature associated with fibroblasts.

Digital spatial profiling of refractory RA. Because immune and 
stromal cells are known to exhibit positional identity relevant to 
the pathogenesis of RA15, we used digital spatial profiling (DSP) 

Fig. 3 | Identification of multidrug nonresponse (refractory) signature. a, Patient classification according to treatment switch (complete scheme 
shown in Supplementary Fig. 1): patients responding to rituximab (RTX) following tocilizumab (TOC) failure (pro-rituximab, blue), patients responding 
to tocilizumab following rituximab failure (pro-tocilizumab, yellow) and patients in whom both drugs failed sequentially (refractory, red). Numbers 
in brackets denote patients with available RNA-seq. b, Venn diagram showing the overlap of DEGs between patients classified as in a. c,d, Three-way 
DEG analysis on baseline synovial biopsies of patients classified as in a, with side (c) and top view (d). Significant differences in pro-rituximab (blue), 
pro-tocilizumab (yellow) and refractory (red) patients and significant genes overlapping in pro-rituximab and pro-tocilizumab patients (green) are color 
coded. Significance was internally estimated by the volcano3D package combining significance (q < 0.05) from both LRT and pairwise Wald test via 
DESeq2. e, Three-way QuSAGE radial plot showing differential WGCNA module expression in patients classified as above. f, Histological semiquantitative 
scores for immune cells in refractory patients (n = 40) and responders to one of any two medications (n = 24). Boxplots showing median and first and 
third quartiles. Two-way Mann–Whitney test, exact P values FDR adjusted for multiple comparisons. g, Deconvolution of immune cells using MCP-counter 
in patients classified as refractory or responders as in a. Boxplots showing median and first and third quartiles, dot-plots showing individual patients. 
Two-way Mann–Whitney test, exact P values FDR adjusted for multiple comparisons. h, Fibroblast single-cell subset enrichment scores in refractory 
patients (n = 32) or responders to either rituximab or tocilizumab (n = 21), as in a. Boxplots showing median and first and third quartiles, whiskers 
extending to the highest and lowest values. Exact P values are shown, two-sided Mann–Whitney test. i, Multiplex immunofluorescence in refractory 
and responder patients; nuclear staining (blue), CD45 (red), CD90 (green), DKK3 (yellow) (all top) and DKK3 single staining (yellow, bottom). *, 
DKK3+CD45+ lymphocytes; arrowheads, DKK3+CD90+ fibroblasts. A larger overview and individual stainings are provided in Extended Data Fig. 4. 
Representative images out of a total of three refractory and three responders. Scale bars, 50 μm. NS, not significant.
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to characterize the spatial positioning of cell signatures in asso-
ciation with treatment response/resistance. We employed GeoMx 
DSP (NanoString), which uses a set of protein lineage markers to 
define regions of interest (ROIs) that undergo whole-transcriptomic 
spatial RNA expression (Fig. 4a). First, we compared gene expres-
sion in responders and refractory patients across all ROIs: lining/
superficial sublining, deep sublining and lymphoid aggregates  
(Fig. 4b). Consistent with the above bulk RNA-seq modules and 

protein expression, multiple genes related to the DKK3+ fibro-
blast subset (PRELP, OGN, CAM1KD) were significantly higher in 
refractory patients (Fig. 4c). When looking at individual ROIs, we 
found specific genes differentially expressed in responders versus 
refractory patients in each synovial region. For example, the gene 
encoding for the fibroblast marker FAP16 was significantly upregu-
lated in the deep sublining of refractory patients, the gene for the 
osteoclast marker RANK (TNFRSR11A) was significantly higher in 

CD8A

CD8B

CD52

CD69

CD33

IL10

IL10RB

IL18

CCL8

CCL2

CD226

PDK1

FGFR1

NOTCH2

CCL28

IGF1R

SOX9

CAMK2G

BCL6

CXCR1

MAP3K4

Refractory

Pro-TOC

–log10P

8

6

4

2 

1.4
1.2
1.0
0.8

C
D

90
 D

K
K

3
C

D
45

 D
N

A

h

Responders

Refractory

SC-F1
CD34+ sublining

P = 0.036

SC-F2
HLA+ sublining

P = 0.027

SC-F3
DKK3+ sublining

P = 0.00055

SC-F4
CD55+ lining

P = 0.054

0 0.5 1.00 0.5 1.00 0.5 1.00 0.5 1.0

i Refractory

**
*

CD79a CD68SLCD68LCD3CD20 CD138
6.21 × 10

–2
1.72 × 10

–1
4.96 × 10

–2
2.30 × 10

–1
2.30 × 10

–1
1.22 × 10

–2
6.21 × 10

–2

0

2

4

6

8

0

5

10

15

0

1

2

3

4

S
em

iq
ua

nt
ita

tiv
e

IH
C

 s
co

re Refractory

Responder

Immune
score

Synovial
score
9.76 × 10

–2

f

Responder

T cell CD8 Cytotoxicity scoremDC

7

8

9

10

11

8

9

10

11

12

13

14

1.46 × 10
–1

5

6

7

8

9

4.15 × 10
–2

6

8

10

6

7

8

3

4

5

6

8

10

8

9

10

11

12

8

9

10

11

12

5

6

7

8

M
C

P
-c

ou
nt

er
 s

co
re

7.12 × 10
–1 4.15 × 10

–2 4.15 × 10
–2 7.85 × 10

–4

NK cells Neutrophil Endothelial cellB cell Monocyte Macrophage-
monocyte

1.96 × 10
–1 7.12 × 10

–1 4.15 × 10
–2 2.47 × 10

–2 1.41 × 10
–1

g

D
K

K
3

**
*

Refractory

Responder

T cell Fibroblast

e

d

ba

Refractory

Pro-RTX

Pro-TOC

0.2
0.4

0.6
0.8

1.0
1.2

S102 Myofibroblast

S114 Neutrophil degranulation

S116 Fibroblast_1_CD55
+

S185 Hox genes

S191 Chondrocyte differentiation

S194 Platelets

S200 Fibroblast_2a_THY1
+

S119 Mast_cells, neutrophil degranulation

S120 Plasma_cells

S126 Macrophage

S13 Plasma_cells, XBP1 signaling

S139 CD8 and Tph T_cells

S156 Dendritic_cells, 
MHC class I antigen presentation

S166 Macrophage, Toll-like receptor (TLR) signaling

S29 CD8_T_cells

S32 TNF receptor superfamily

S43 M1_macrophage, 
chemokines and cytokines

S91 NK and CD8_T_cells

Pro-TOC Pro-RTX

306 1,980 175

c

NS
Refractory

Pro-RTX

Pro-RTX

Pro-RTX and pro-TOC
Pro-TOC

Responder

Nonresponder

Nonresponder
R4RA

RTX n = 82 (68)

TOC n = 79 (65)

RTX n = 26 (21)

TOC n = 38 (32)

RTX-R, TOCNR n = 11 (9)

TOC-NR, RTXNR n = 15 (12)

RTX-NR, TOCNR n = 25 (20)

TOC-R, RTXNR n = 13 ( 12)

Pro-RTX

Refractory

Pro-TOC

Responder

16 weeks
CDAI 50%

nonresponders

Top view

  L
eu

ko
cy

te
 g

en
es

 Fibroblast genes
F

ibroblast genes

Refractory

Pro-RTX

Pro-TOC

0.2

0.4

0.6

0.8

1.0

1.2

1.4

CD3D

CD72

CD86

IL7

IL21R

FCGR3A
CD58

CD1E

CD79B

TNFSF12

FGF2

FGFRL1

HOXA13

NOTCH1

NOTCH3

COL11A2

HOXA2

Pro-RTX

Pro-TOC

2

4

6

8

–log
10

P

Refractory

Nature Medicine | VOL 28 | June 2022 | 1256–1268 | www.nature.com/naturemedicine 1261

http://www.nature.com/naturemedicine


Articles Nature Medicine

the lining/superficial sublining of responders and CD24 encoding a 
lymphocyte marker was significantly higher in the lymphoid aggre-
gates of responders (Fig. 4d).

Pre- and post-treatment histopathological and molecular anal-
yses. To explore the longitudinal effects of each drug on synovial 
immune cell infiltration and gene expression, we compared paired 
synovial samples at baseline and 16 weeks (rituximab, n = 41 for 
histology and n = 29 for RNA-seq; tocilizumab, n = 24 and n = 15, 
respectively) (Extended Data Fig. 5a and Extended Data Table 1). 
First, by histology, we showed a significant reduction in synovial 
CD20+ total B cells, CD79a+ B cells and CD138+ plasma cells in 
patients treated with rituximab, in line with the rituximab mecha-
nism of action targeting CD20+ B cells (Fig. 5a). Conversely, patients 
treated with tocilizumab showed a significant reduction in CD68+ 
sublining macrophages but not B-cells (Fig. 5a). Analysis of covari-
ance showed a significantly higher reduction of CD20+ and CD79a+ 
B cells in patients treated with rituximab, and a significantly higher 
reduction in CD68+ sublining macrophages in those treated with 
tocilizumab (Extended Data Fig. 5b).

Similar results were obtained when comparing MCP-counter 
immune cell signatures. Namely, patients treated with rituximab 
showed a significant reduction in B cells, T cells and monocytes/
macrophages while those treated with tocilizumab showed a  

significant reduction in monocytes/macrophages and T cells, but 
also in neutrophils and mDCs and, interestingly, an increase in 
fibroblast signature (Extended Data Fig. 5c). This suggests that both 
biologics have an effect on immune cells but that tocilizumab can 
potentially also affect stromal cells.

To further dissect these longitudinal molecular signatures, we 
developed an R package to fit negative binomial mixed-effects mod-
els at the individual gene level (general linear mixed-effects model 
(glmmSeq)), because mainstream RNA-seq analysis tools are unable 
to fit mixed-effects linear models (Methods).

Using glmmSeq to compare gene expression over time in paired 
synovial biopsies, 7,316 genes were significantly up- or downregulated 
by both drugs while 345 were differentially affected by either drug 
based on significance (FDR < 0.05) of the interaction term time × med-
ication (Fig. 5b and Supplementary Data 4a). Of note, MS4A1 (encod-
ing CD20), PAX5 and BLK were significantly downregulated in 
response to rituximab, consistent with B cell depletion mechanism 
and histology results (Fig. 5c), while tocilizumab induced a reduction 
in IL-6-related transcripts, also consistent with the IL6 acting mecha-
nism of tocilizumab, not the CD20 mechanism of rituximab.

When patients were stratified according to response, a signifi-
cant reduction in CD138 and CD79a plasmablasts/plasma cells was 
observed only in rituximab responders, while a significant reduc-
tion in CD68SL macrophages was observed only in responders to 
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Fig. 5 | Histological and molecular analysis of paired pre- and post-treatment synovial biopsies. a, Semiquantitative histological scores of synovial immune 
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when <0.05, two-sided Wilcoxon signed-rank test (paired) comparing baseline and 16 weeks, adjusted for multiple testing by FDR; n = 65 patients with 
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linear mixed-effects model. Genes in green show significant (FDR < 0.05) overall change in expression over time; those in blue/yellow show significantly 
differential change in expression over time between the two drugs based on significant (FDR < 0.05) interaction term time × medication (Methods). Genes 
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count data, with numbers as per the analysis above. d–f, Pathway analysis using a two-sided hypergeometric test to enrich downregulated genes between 
baseline and 16 weeks in patients treated with rituximab (d), responders and nonresponders to rituximab (e) and responders to tocilizumab (f). Dashed line 
indicates adjusted P = 0.05 (Bonferroni adjustment).
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tocilizumab (Extended Data Fig. 5d), indicating that reduction in 
B and synovial plasma cells and macrophages is associated with 
response to rituximab and tocilizumab, respectively.

The mixed-effects model allowed us to further examine various 
changes in gene expression following therapy between respond-
ers and nonresponders to each drug (Extended Data Fig. 5e–h). 
Rituximab had a general effect on 1,796 genes, with 349 show-
ing significant (FDR < 0.05) differential expression change over 
time between responders and nonresponders (Extended Data  
Fig. 5e and Supplementary Data 4b). Rituximab responders showed 
a greater decrease in SAA1 and SAA2 (serum amyloid proteins 1 
and 2), as well as greater decreases in Ig chain genes IGHV3-64D 
and IGKV1-13, suggesting that a drop in antibody-secreting B cells 
is associated with response to rituximab (Extended Data Fig. 5g). 
Chemokine-encoding CXCL11, the citrullination enzyme encod-
ing PADI2 (peptidyl-arginine-deiminase2) and the key Th17 and 
mucosal-associated invariant T (MAIT) cell transcriptional regu-
lator RORgamma (RORC) gene were also modulated in rituximab 
responders (Extended Data Fig. 5g).

Tocilizumab treatment resulted in modulation of 1,609 genes, 
with an additional 136 showing differential change in gene expres-
sion between responders and nonresponders (Extended Data  
Fig. 5f and Supplementary Data 4c). Reduction in pro-lymphoid 
follicle development genes encoding for lymphotoxin-A (LTA), 
complement receptor-2 (CR2), lymphoid-tissue-resident dendritic 
cell marker XCR117 and prolactin (CLEC17A), expressed on prolif-
erating germinal center B cells18, augured response to tocilizumab 
(Extended Data Fig. 5h).

To further investigate pathway modulation induced by treat-
ment, genes identified in the longitudinal mixed-effects model 
analysis were analyzed for Gene Ontology (GO)/pathway enrich-
ment. Rituximab treatment induced significant downregulation of 
B cell receptor pathways, as well as bone resorption and remodeling 
pathways (Fig. 5d). When stratifying patients according to response, 
responders to rituximab showed significant downregulation of T cell 
receptor complex, lymphocyte chemotaxis and migration, chemo-
kines and IL-1-related pathways (Fig. 5e), suggesting that rituximab 
response is linked to additional immunomodulation in addition 
to reduction in B cell-related pathways. Responders to tocilizumab 
showed significant decrease in humoral immune response, Ig, B cell 
and complement activation (Fig. 5f), in line with the known effect 
of IL-6 on B cell growth/differentiation.

In summary, longitudinal analyses of matched pre- and 
post-treatment biopsies indicate that specific biological changes are 
associated with response to individual treatments.

Machine learning models predict drug response and multidrug 
resistance. To establish the ability of synovial tissue gene expres-
sion in prediction of treatment response/resistance, we developed 
machine learning predictive models with the dataset partitioned for 
training and testing using ten-by-tenfold nested cross-validation, as 
detailed in Methods and schematically in Fig. 6a. Supplementary 
Table 1 shows the performance of models used to predict (1) ritux-
imab response, (2) tocilizumab response and (3) refractory state. 
Final models (Supplementary Table 2) were trained on the entire 
dataset to extract variable importance (Fig. 6a, bottom right and 
Extended Data Table 2).

As shown in Fig. 6b, the optimal predictive models included 
gene elastic net regression for rituximab and tocilizumab response, 
with 40 genes (AUC = 0.744) and 39 genes (AUC = 0.681), respec-
tively, and gradient-boosted machine (GBM) for refractory state, 
with 53 genes (AUC = 0.686) (Extended Data Fig. 6a). Notably, no 
clinical features were selected by the final models (Extended Data 
Table 2) and, in comparison with RNA-seq, predictive models built 
using clinical and histology parameters alone performed quite 
poorly (Extended Data Fig. 6b). AUC values in the omitted inner 

cross-validation folds were consistent with AUC results in the true 
test folds. Multiple genes were shared across models, with only 85 
required to build all three prediction models and 32 shared between 
at least one model (Extended Data Fig. 6a and Extended Data  
Table 2). Each model selected multiple genes of biological relevance 
to synovial tissue inflammatory and repair responses, as well as to 
bone and cartilage biology. Key prediction genes shared between 
all three models included genes encoding for: XCR1, a marker of 
DC1 migratory DCs;17 chemokine CXCL14; acute phase reactant 
SAA2; and IGHV7-4-1, probably reflecting tissue-resident plasma 
cells. The refractory state model, which contained the largest num-
ber of unique genes, included several linked to the fibroid pathotype 
such as TNFRSF11B, which encodes the osteoclast negative regula-
tor osteoprotegerin and the chondrocyte adhesion mediator CHAD 
(chondroadherin), but also the citrullination enzyme PAD4 encod-
ing gene PADI419, consistent with a role of persistent tissue destruc-
tion and remodeling in the refractory RA state.

Although the original clinical trial was not powered for these 
types of analyses, and larger cohorts will be required to further vali-
date the models and improve their predictive power, these results 
show that predictive models can harness molecular information 
from synovial biopsies at baseline before treatment and thus are of 
potential clinical utility for prediction of response to therapy.

Discussion
Our study provides an in-depth molecular and histological profiling 
of joint tissue from a biopsy-driven, randomized clinical trial in RA 
(R4RA)9, affording insights into the cellular and molecular pathways 
underpinning the diverse treatment response to two commonly 
used targeted biologic therapies directed against B cells (rituximab) 
and the IL-6 receptor (tocilizumab). Using both conventional his-
tology and in silico deconvolution, we observed that lymphoid cells 
were associated with response to rituximab while myeloid cells were 
associated with response to tocilizumab. Although the importance 
of synovial macrophages as a predictor of response to anti-TNF 
has been described20,21, here we report that within the synovial 
B cell-poor group, an enhanced response to tocilizumab is associ-
ated with the presence of myeloid cells. In regard to rituximab, pre-
vious small observational studies reported pretreatment synovial 
CD79a+ B cells22 and synovial molecular signatures23 as potential 
response predictors.

In this larger, randomized clinical trial cohort we confirmed 
some of these findings and, combining histological assessment with 
advanced molecular analyses, we identified genes and pathways 
linked to the cognate drug targets in association with response. For 
rituximab these were B cell genes, Igs, chemokines and leukocyte 
genes. Response to tocilizumab was associated with IL-6 pathway 
genes, but also with lymphocyte and immunoglobulin genes, which 
is not surprising since IL-6 is a well-known B cell growth factor24.

Modular analyses demonstrated how genes increased in ritux-
imab responders were functionally related to antigen presenta-
tion and lymphocyte activation, together with interferon signaling 
genes, in keeping with previous reports linking increased type I 
interferon with response to rituximab25,26. In tocilizumab respond-
ers, in line with the prominent role of myeloid cells identified by 
histopathology, the myeloid cell cytokine module was upregulated 
together with PPAR signaling and metabolic pathways.

In contrast, nonresponse to both drugs was defined by 
>1,000 genes and several shared pathways, including Hox, FGFs 
and ECM genes/modules. Critically, this shared nonresponse signa-
ture is linked to the fibroid pauci-immune pathotype characterized 
by scanty immune cell infiltrate with prevalence of stromal cells6,7, 
which we also reported as being associated with poor response to 
synthetic disease-modifying antirheumatic drugs (DMARDs)27 
and TNF inhibitors28. This supports the concept that the fibroid 
pauci-immune phenotype represents a refractory endotype, since 
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Fig. 6 | Predictive models using nested ten-by-ten-fold cross-validation for response to rituximab and tocilizumab. a, Machine learning pipeline utilized 
to predict CDAI 50% response to rituximab and/or tocilizumab using gene expression, clinical data and histological data as features (n = 133). Data 
processing (1) involved selection of protein-coding genes with the highest variance and removal of highly correlated genes. Data were split into ten inner 
and ten outer folds for building machine learning models (2). In models built using gene expression, RFE or univariate filtering was used to select the most 
important/predictive features for each model. Each model was evaluated on both the test set and the set omitted during cross-validation (3). Average 
tuned parameters from the outer folds were used to fit to the whole dataset to determine the importance of features selected for each model (4). b, Grid 
of plots showing optimal predictive models for different treatments (left, glmnet rituximab response prediction; middle, glmnet tocilizumab response 
prediction; right, GBM refractory response prediction) using gene expression and baseline clinical parameters as features. From top to bottom, plots show 
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in R4RA double nonresponder patients conventional synthetic 
DMARDs (csDMARDs) and TNF inhibitors had already failed, as 
per trial entry criteria, thus displaying resistance to three biologic 
therapies targeting distinct immunological pathways (TNF, CD20+ 
B cells and IL6R) and meeting the definition of multidrug resistant/
refractory RA2.

Because recent studies using single-cell RNA-seq (scRNA-seq) 
on RA synovium identified specific fibroblast subsets with critical 
roles in RA pathogenesis13,14,16,29, we applied modular analysis based 
on scRNA-seq fibroblast subsets14 and orthogonal validation by mul-
tiplex immunofluorescence, and identified an association between 
DKK3+ fibroblasts and refractoriness. DKK3 encodes Dickkopf3, a 
negative regulator of beta-catenin that has been shown to promote 
aggressive behaviour in cancer-associated fibroblasts30, although the 
exact function of DKK3+ fibroblasts in RA remains to be established31. 
Furthermore, DSP revealed specific upregulation of genes in the sub-
lining of refractory patients encoding for the fibroblast marker FAP, 
which has been linked with RA pathogenesis16, while other markers 
consistently modulated across all regions included CCL13 encod-
ing for the monocyte-attracting chemokine MCP-4, which has been 
shown to activate synovial fibroblasts32. Hence, stromal cells—and, 
in particular DKK3+ fibroblast genes—may be a new drug target that 
helps overcome the complex problem of refractoriness in RA.

Genes linked with response included increased expression in 
the synovial aggregates encoding for CD24, a B cell marker asso-
ciated with response to biologic treatment33. Also consistent with 
the capacity of biologic therapies to halt structural damage pro-
gression34, we identified increased expression of RANK transcripts 
(TNFRSF11A) in the lining/superficial sublining of responders, in 
line with the reported presence of osteoclast precursors in inflamed 
synovia35. Overall, these results suggest that the spatial organization 
of immune infiltrates is highly relevant for determinion of treat-
ment response/resistance, although additional work is needed to 
dissect the contribution of specific markers in individual synovial 
regions and their association with therapy response/resistance.

The longitudinal analysis of matched pre-/post-treatment syno-
vial biopsies enabled us to investigate drug effects on synovial 
pathology and gene expression. Rituximab reduced synovial CD20+ 
B cells in both responders and nonresponders but, notably, a clini-
cally relevant response required broader and deeper impacts on dif-
ferentiated CD79a+ plasmablasts and CD138+ plasma cells over and 
above CD20+ B cell depletion. These observations are in agreement 
with previous observational studies showing changes in plasma cells 
between responders and nonresponders to rituximab36. However, 
another study showed variable depletion of B cells and plasma cells 
and an unclear association with treatment response37, although the 
small sample size and biopsy analysis at different time points (4, 8, 
12 and 16 weeks) make it difficult to draw conclusions. In our study, 
because repeated synovial biopsy was performed at 16 weeks fol-
lowing one cycle of rituximab (2× 1-g infusion), it is plausible that a 
repeated biopsy at the time of the second infusion at 6 months (not 
available in sufficient numbers to be informative) could have detected 
a wider/deeper effect on B cell lineages linked to clinical response.

Following tocilizumab therapy, nonresponders were character-
ized by a failure to reduce sublining macrophages, which is consis-
tent with previous literature indicating macrophages as markers of 
treatment response20.

To assess the relationship of gene expression changes and treat-
ment response, we developed a pipeline for mixed-model analysis 
of RNA-seq data in repeat biopsies. This revealed patterns of change 
in gene expression not detectable by standard analytical pipelines, 
while interaction analysis allowed us to identify genes that were 
affected by each drug specifically. Biological differences in syno-
vial gene expression following treatment with rituximab or tocili-
zumab were consistent with the cognate treatment targets: B cell 
depletion and IL-6 receptor blockade, but also revealed unexpected  

differences such as differential changes in metalloproteinases. 
Interaction analysis showed that rituximab responders had a greater 
decrease in genes encoding for serum amyloid proteins, Ig chains, 
the citrullination enzyme PADI2 and transcriptional regulator 
RORgamma. In tocilizumab responders, a greater reduction in 
pro-lymphoid follicle development genes was observed in keeping 
with the important role of IL-6 as a B cell growth factor driving in situ 
ectopic lymphoid structure development within inflamed tissues38.

In translational terms, the importance of molecular studies is 
measured by their ability to enhance disease understanding, but also 
on their clinical impact39. Thus, to determine the predictive value of 
deep molecular characterization in foretelling treatment response, 
we applied a number of machine learning methodologies resulting 
in the selection of models effective at predicting treatment response 
as tested by nested cross-validation (AUC for rituximab = 0.744, 
tocilizumab = 0.681, refractoriness = 0.686). The purpose of testing 
multiple models was to determine whether nonlinear algorithms 
(least-squares support vector machine (SVM), penalized dis-
criminant analysis (PDA), mixture discriminant analysis (MDA), 
tree-based and so on) could outperform elastic net linear regres-
sion. In practice, for prediction of response to each drug individu-
ally, elastic net regression performed best. However, a GBM model 
was superior in predicting refractoriness, consistent with the notion 
that biological heterogeneity underlying refractoriness to multiple 
drugs might require a nonlinear algorithm for optimal prediction. 
Of relevance to future clinical practice, gene expression models 
were clearly superior to those built using clinical and histological 
data alone. Seropositivity, which has been weakly associated with 
response to rituximab40 was not included in the final models.

A known limitation of this study is the relatively modest sample 
size of the training data for each predictive model. However, the 
study was powered purely for the primary outcome of the origi-
nal clinical trial and numbers reflect the difficulty in conducting 
biopsy-driven randomized trials in RA. With the current sample 
size and case/biomarker ratio, statistical theory suggests that we 
are likely to be only part of the way up the learning curve41. The 
AUCs derived in this study would still be relatively low for direct 
application to clinical use without further validation and improve-
ment. Refining and reducing the number of genes in the models 
with validation in independent cohorts could improve the predic-
tion models, as could incorporation of information from single-cell 
studies and enhanced deconvolution methods. Another limitation 
with regard to interpretation of the longitudinal results is that the 
second biopsy at 16 weeks was an optional procedure and, thus, at 
risk of selection bias. Although there were no major baseline differ-
ences, patients who underwent repeated biopsy had lower response 
rates, which is expected because responders would have been less 
likely to consent to a second biopsy.

In conclusion, this study provides insights from analysis of dis-
eased tissue regarding the mechanisms driving treatment response 
heterogeneity in RA, and underscores the importance of integrating 
predictive molecular pathology signatures into clinical algorithms 
to optimize the usage of existing drugs. The identification of genes 
and cell types associated with multidrug resistance could aid the 
development of new drugs for refractory patients in whom current 
medications targeting classical immune pathways are not effective. 
We envisage that routine use of synovial biopsies could facilitate a 
patient-centered approach5 to the management of RA, thus moving 
away from the current trial-and-error drug prescribing towards an 
emergent era in which selection of the optimal drug is based on 
synovial biopsy gene signatures.
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Methods
Patients and intervention. A total of 164 patients aged 18 years or over, fulfilling 
the 2010 American College of Rheumatology/European Alliance of Associations 
for Rheumatology (EULAR) classification criteria for RA and who were eligible 
for treatment with rituximab therapy according to UK NICE guidelines—that 
is, failing or intolerant to csDMARD therapy and at least one biologic therapy 
(excluding trial IMPs), were recruited when fulfilling the trial inclusion/exclusion 
criteria (for the full study protocol and baseline patient characteristics see Humby 
et al.9). Briefly, patients underwent synovial biopsy of a clinically active joint at 
entry to the trial, performed according to the expertise of a local center as either an 
ultrasound-guided or arthroscopic procedure42 Following synovial biopsy, patients 
were randomized to receive rituximab as two 1,000-mg intravenous infusions 
2 weeks apart or intravenous tocilizumab at a dose of 8 mg kg−1 administered 
at 4-weekly intervals. Patients were followed up every 4 weeks throughout the 
48-week trial treatment period, during which RA disease activity measurements 
and safety data were collected. An optional repeated synovial biopsy of the same 
joint sampled at baseline was performed at 16 weeks (Supplementary Tables 3 
and 4). The study protocol has been published online (http://www.r4ra-nihr.
whri.qmul.ac.uk/docs/r4ra_protocol_version_9_30.10.2017_clean.pdf) and was 
registered on the ISRCTN database (no. ISRCTN97443826) and with EudraCT 
(no. 2012-002535-28). Patient demographics are reported in the original trial 
publication9. All patients provided written informed consent. Participants did not 
receive any compensation, except for reimbursement of travel expenses. The study 
was done in compliance with the Declaration of Helsinki, International Conference 
on Harmonization Guidelines for Good Clinical Practice and local country 
regulations. The protocol was approved by the institutional review board of each 
study center or relevant independent ethics committee (UK Medical Research 
and Ethics Committe, reference no. 12/WA/0307). The complete list of ethics 
committees to have approved the protocol is reported below.

UK ethics committee
•	 Wales REC 3 (formerly REC for Wales)

Local ethics committees at EU sites
•	 Comité d’Ethique Hospitalo-Facultaire
•	 Comissão de Ética para a Investigação Clínica
•	 Comitato Etico Interaziendale AOU ‘Maggiore della Carità’ di Novara, ASL BI, 

ASL NO, ASL VCO
•	 Commissie Medische Ethiek UZ KU Leuven/Onderzoek
•	 Comité Ético de Investigación Clínica del Hospital Clínic de Barcelona
•	 Comitato Etico, Fondazione IRCCS Policlinico San Matteo
•	 Regione Autonoma della Sardegna Azienda Ospedaliero Universitaria di 

Cagliari Comitato Etico Indipendente

Complete list of participating sites for data collection:
•	 Mile End Hospital and Whipps Cross Hospital, Bart’s Health NHS Trust, 

London, UK
•	 Cliniques Universitaires Saint Luc, Louvain, Belgium
•	 Santa Maria Hospital, Lisbon, Portugal
•	 Azienda ospedaliera Maggiore della Carità, Novara, Italy
•	 University Hospital of Wales, Cardiff and Vale University Health Board, 

Cardiff, UK
•	 Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation 

Trust, Newcastle upon Tyne, UK
•	 Southampton General Hospital, University Hospital Southampton NHS Foun-

dation Trust, Southampton, UK
•	 Basildon University Hospital, Mid and South Essex NHS Foundation Trust 

(formerly Basildon and Thurrock University Hospital NHS Foundation Trust), 
Basildon, UK

•	 Hospital Clínic de Barcelona, Barcelona, Spain
•	 Southend University Hospital, Mid and South Essex NHS Foundation Trust 

(formerly Southend University Hospital NHS Foundation Trust), Southend, UK
•	 Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
•	 Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
•	 Homerton University Hospital, Homerton University Hospital NHS Founda-

tion Trust, London, UK
•	 Nuffield Orthopaedic Hospital, Oxford University Hospitals NHS Foundation 

Trust, Oxford, UK
•	 Aintree University Hospital, Aintree University Hospital NHS Foundation 

Trust, Liverpool, UK
•	 Manchester Royal Infirmary, Manchester University NHS Foundation Trust, 

Manchester, UK
•	 Guy’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
•	 Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
•	 Universitair Ziekenhuis Leuven, Leuven, Belgium

Response criteria and treatment switch. The primary endpoint was defined 
as CDAI ≥ 50% improvement from baseline at 16 weeks9. CDAI is calculated by 
totaling the number of tender joints (0–28), the number of swollen joints (0–28), 

patient global health assessment on a 0–10 visuoanalogic scale and the care 
provider global health assessment on a 0–10 visual analog scale.

As shown in Supplementary Fig. 1, CDAI 50% nonresponders at 16 weeks 
were switched to the alternative biologic agent and their response was assessed 
at 16 weeks following the switch, as determined by CDAI 50% improvement. 
Including crossover patients, a total of 108 patients were treated with rituximab 
and 117 with tocilizumab. Of those treated with rituximab, 43 were defined 
responders (40%) while 53 responded to tocilizumab (45%). Among all 
responders, 11 responded to rituximab following tocilizumab failure and 
were classified as exclusive responders to rituximab (pro-rituximab), while 13 
responded to tocilizumab following rituximab failure and were thus classified as 
pro-tocilizumab. Patients in whom both drugs failed throughout the study were 
classified as multidrug resistant/refractory (n = 40).

Histological analysis. A minimum of six synovial biopsies were processed 
in an Excelsior tissue processor before being paraffin-embedded en masse at 
Queen Mary University of London Core Pathology department. Tissue sections 
(3–5 µm thickness) were stained with hematoxylin and eosin and IHC markers 
CD20 (B cells), CD138 (plasma cells), CD21 (follicular dendritic cells) and 
CD68 (macrophages) in an automated Ventana Autostainer machine. CD79A 
(B cells) and CD3 (T cells) staining was performed in-house on deparaffinized 
tissue following antigen retrieval (30 min at 95 °C), followed by peroxidase- and 
protein-blocking steps. Primary antibodies (CD79A (clone JCB117, Dako), 
CD3 (clone F7.238, Dako), CD20 (clone L26, Dako), CD68 (clone KP1, Dako) 
and CD138 (clone MI15, Dako)) were used for 60 min at room temperature. 
Visualization of antibody binding was achieved by 30-min incubation with Dako 
EnVisionTM+ before completion by the addition of 3,3′-diaminobenzidine 
(DAB) + substrate chromogen for 10 s, followed by counterstaining with 
hematoxylin. Following IHC staining, sections underwent semiquantitative scoring 
(0–4), by a minimum of two assessors, to determine levels of CD20+ and CD79a+ 
B cells, CD3+ T cells, CD138+ plasma cells and CD68+ lining (L) and sublining 
(SL) macrophages, adapted from a previously described score43 and recently 
validated for CD2044. Hematoxylin-and-eosin-stained slides also underwent 
evaluation to determine the level of synovitis according to the Krenn synovitis 
score (0–9)45. The sum of semiquantitative scores for Krenn synovitis score (0–9), 
CD20 (0–4), CD3 (0–4), CD138 (0–4) and CD68 (0–4) is reported as the immune 
score (0–25). Synovial biopsies were classified into synovial histological patterns, 
also known as pathotypes, according to the following criteria: (1) lymphomyeloid 
presence of grade 2–3 CD20+ aggregates, CD20 ≥2 and/or CD138 ≥2; (2) 
diffuse-myeloid CD68SL ≥2, CD20 ≤1 and/or CD3 ≥1 and CD138 ≤2; and (3) 
pauci-immune-fibroid CD68SL <2 and CD3, CD20 and CD138 <1.

RNA-seq and molecular classification/analysis. A minimum of six synovial 
samples per patient were immediately immersed in RNA-Later and RNA was 
extracted from tissue using one of two protocols: phenol/chloroform isolation 
and Zymo Direct-zol RNA MicroPrep–Total RNA/miRNA Extraction kit. In both 
methods, tissue was lysed in Trizol solution using a LabGen125 homogenizer. 
Briefly, for the phenol/chloroform extraction method, 1–10 mg of tissue was lysed 
and then sheared using a 21 G needle. The tissue lysate was then mixed vigorously 
with chloroform before centrifugation. The aqueous phase was removed and 
mixed with ice-cold isopropanol for 30 min. Following further centrifugation, 
the RNA pellet was washed in 70% ethanol before air-drying and resuspension 
in RNAse-free water. Samples extracted using Zymo Direct-zol Miniprep kits 
were processed as per the manufacturer’s instructions. Briefly, 1–10 mg of tissue 
lysate was run through the Zymo-Spin IC column. Columns were then washed 
using the appropriate kit wash buffers before RNA was eluted and resuspended 
in RNAse-free water. Quality control was carried out by quantifying samples 
via spectrophotometer readings on a Nanodrop ND2000C. RNA integrity was 
measured using Pico-chip technology on an Agilent 2100 Bioanalyzer to determine 
RNA integrity number. A total of 214 synovial tissue samples were available for 
RNA extraction and were subsequently sent for RNA-seq to Genewiz. RNA-seq 
libraries were prepared using the NEBNext Ultra RNA Library Prep kit for 
Illumina, following the manufacturer’s (NEB) instructions. Briefly, messenger 
RNAs were initially enriched with Oligo d(T) beads followed by limited PCR 
cycles. The sequencing library was validated on an Agilent TapeStation (Agilent 
Technologies) and quantified using a Qubit 2.0 Fluorometer (Invitrogen), as well as 
by quantitative PCR (KAPA Biosystems). The sequencing libraries were clustered 
on Illumina flowcells. Sequencing was performed on an Illumina HiSeq instrument 
according to the manufacturer’s instruction. Samples were sequenced using a 
2 × 150-base-pair (BP) paired-end configuration.

RNA-seq data processing. A total of 214 paired-end RNA-seq samples from 
50 million reads of 150-bp length were trimmed to remove the Illumina adapters 
using bbduk from the BBMap package v.37.93, with default parameters. Transcripts 
were then quantified using Salmon46 v.0.13.1 and an index generated from the 
Gencode release 29 transcriptome following the standard operating procedure. 
Tximport v.1.13.10 was used to aggregate transcript-level expression data to genes, 
then counts were subjected to variance-stabilizing transformation (VST) using 
the DESeq2 v.1.25.9 package47. Following RNA-seq quality control, 36 samples 
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were excluded due to poor mapping or RNA quality. Using unsupervised PCA 
and plotting the first five eigenvectors in pairs, one outlier was identified and 
removed from further analysis. Thus RNA-seq data from 133 patients were available 
for subsequent analysis at baseline, and from 44 patients for the follow-up time 
point. Baseline characteristics of patients with available RNA-seq are shown in 
Supplementary Table 5. The first six PCs did not associate with demographics, 
treatment and its associated response or clinical disease features such as disease 
activity or anticyclic citrullinated protein antibody status (Extended Data Fig. 2a,c,d).

Starting with length-scaled transcripts per million (TPM) counts derived using 
the R package tximport, Limma voom was used for normalization of data and 
calculation of weights for linear modeling48.

Cluster analysis. For cluster analysis, after removal of low-expressed genes, VST 
data were filtered using a coefficient of variation cutoff of >0.075 to select the 
22,256 (of 56,809) most variable genes . These genes were used for cluster analysis 
of all baseline patients (n = 133) using the M3C algorithm11 with partitioning 
around medoids clustering and 1,000 iterations. The lowest penalized cluster 
stability Index was used to select the number of clusters. After cluster assignment, 
patients were split into treatment groups using Pearson’s distance metric and 
complete linkage method, and plotted using the ComplexHeatmap package 
(v.2.2.0) in R. An χ2 test was applied to test significance between clusters and 
response to treatment based on the trial primary outcome measure (CDAI 50%) 
and, additionally, EULAR C-reactive protein (CRP) response (EULAR response) as 
another commonly used criterion.

Differential expression and modular analysis of RNA-seq data. Samples from 
all patients treated with either rituximab or tocilizumab throughout the trial 
were included in DEG analysis. This also comprised nonresponders who, as per 
trial protocol, were switched to the alternative medication at week 16, as shown 
in Supplementary Fig. 1. Neither responders nor nonresponders showed any 
significant differences in their baseline characteristics, including histological 
and molecular B cell status, gender or disease duration (Supplementary Table 6). 
Low-expressed genes were excluded from analysis, with the remaining 30,841 used 
for DEG analysis. This was based on negative binomial distribution via regression 
models of normalized count data using DESeq2, and a Wald test to compare 
variation between treatment response groups in synovium RNA-seq samples. Wald 
test-derived P values were FDR adjusted using Storey’s q-value, with a cutoff of 
q < 0.05 used to define significantly DEGs (Supplementary Data 1). Distributions 
of DEGs are illustrated in volcano plots, and DESeq2 outputs were used for further 
modular analysis with the Bioconductor package QuSAGE v.2.10.0. Gene modules 
from Li et al.12 and WGCNA modules were selected for gene set enrichment.

Deconvolution. MCP-counter10 was used to deconvolute synovial RNA-seq, with 
the package Immunedeconv. Following deconvolution, patients were classified 
into rich/poor according to the median value of the individual cell type (for 
example, B cell rich if above the median value of MCP B cells, poor if below). 
For the enrichment of four fibroblast subtypes (SC-F1: CD34+ sublining, SC-F2: 
HLA+ sublining, SC-F3: DKK3+ sublining and SC-F4: CD55+ lining), we used 
average expression of gene signatures obtained from differential gene expression 
analysis and known markers previously described by scRNA-seq14. Module 
scores for each subtype were calculated using the AddModuleScore function in 
the R package Seurat. The top five differentially expressed genes were considered 
subtype-specific gene sets and did not have genes in common. Wilcoxon testing 
was used for statistical assessment of module scores when comparing responders 
and nonresponders.

Crossover analysis of patients who underwent treatment switch. The 
drug-crossover analysis was performed on baseline RNA-seq samples of patients 
who underwent treatment switch (Fig. 3a). RNA-seq counts of protein-coding 
genes (n = 19,508) were used to perform a likelihood ratio test (LRT) that was 
calculated in comparison to a reduced model with the DESeq2 R package. 
Three-dimensional volcano plots and radial plots were generated using the 
volcano3D (v.1.0.3) package in R (Fig. 3c–e). QuSAGE was applied using 
WGCNA-derived gene modules, and radial plots were created using the volcano3D 
package with a P value significance threshold of <0.05 (Fig. 3e).

Multiplex immunofluorescence. Immunofluorescence staining was performed on 
3-µm, formalin-fixed, paraffin-embedded human sections obtained from synovial 
tissues of patients with RA. Tissue sections were deparaffinized in sequential 
changes of xylene and ethanol chambers before washing and placing in a preheated 
target retrieval solution (pH 6.0; Dako, no. S1699) in a pressure cooker for 15 min. 
Tissue sections were allowed to cool at room temperature (RT) before washing 
in Tris-buffered saline (TBS). Endogenous peroxidase and biotin activity were 
blocked with peroxidase (Dako, no. S2023) for 10 min at RT.

Antibody specifications used for immunofluorescence can be found in 
Supplementary Table 7. In brief, for CD90/CD45/DKK3 staining, protein block 
(Dako, no. X0909) was applied for 1 h, slides were stained with the first primary 
antibody (CD45; Dako, no. M0701, mouse IgG1), washed three times in TBS 
then incubated with Anti-Mouse Envision system horseradish peroxidase 

(HRP; Dako, no. K4001) for 30 min at RT. After three washes in TBS, the Cy5/
Alx647-conjugated Tyramide reagent (1:100; Thermofisher, no. B40958) was 
applied for 3 min. After three washes in TBS, antibody stripping was performed 
by placing slides in preheated target retrieval solution (pH 6.0; Dako, no. S1699) in 
a pressure cooker for 15 min. This process was repeated for one of two additional 
primary antibodies: CD90 (1:240; Abcam, no. 133350, rabbit) or DKK3 (1:150; 
Sigma-Aldrich, no. HPA011868, rabbit), followed by Anti-Rabbit Envision system 
HRP (Dako, no. K4003) and Alx488-conjugated Tyramide reagent for CD90 
(1:100; Thermofisher, no. B40953) or Alx555-conjugated Tyramide reagent for 
DKK3 (1:100; Thermofisher, no. B40955), with antibody stripping in between as 
described above.

DAPI (Thermofisher) nuclear counterstaining was applied for 10 min at RT and 
slides were then mounted with ProLong Gold Antifade reagent (Thermofisher).

Images were captured using a NanoZoomer S60 Digital slide scanner 
(Hamamatsu, no. C13210-01) at ×20 magnification at a resolution of 440 nm per 
pixel (DPI, no. 57727), with the following exposure times: CD45 alx647 Cy5, 16 ms; 
CD90 alx488 FITC, 32 ms; DKK3 alx555 TRITC, 24 ms; DAPI, 224 ms. Image 
analysis was performed using NDP.view 2 Software (Hamamatsu Photonics, no. 
U12388-01).

GeoMx DSP. Formalin-fixed, paraffin-embedded synovial tissue from 12 patients 
with RA, before treatment with rituximab or tocilizumab, was profiled using 
the GeoMx DSP platform as previously described49. Briefly, tissue morphology 
was visualized using fluorescent antibodies CD68-AF532 (clone KP1, Novus), 
CD20-DL594 (clone IGEL/773, Novus) and CD3-AF647 (clone UMAB54, 
Origene) and Syto13 (ThermoFisher).

For the NanoString GeoMx DSP WTA assay, slides were prepared following 
the automated Leica Bond RNA Slide Preparation Protocol (NanoString, no. 
MAN-10131-03). In situ hybridizations with the GeoMx Whole Transcriptome 
Atlas Panel (WTA, 18,677 genes) at 4-nM final concentration were done in Buffer R 
(NanoString). Morphology markers were prepared for four slides concurrently 
using Syto13 (DNA), CD20, CD3 and CD68 in Buffer W for a total volume of 
125 μl per slide. Slides incubated with 125 μl of morphology marker solution at RT 
for 1 h, then washed in SSC and loaded onto the NanoString DSP instrument.

On the DSP instrument each slide was scanned with a ×20 objective at scan 
parameters 60 ms FITC/525 nm, 200 ms Cy3/568 nm, 250 ms Texas Red/615 nm 
and 300 ms Cy5/666 nm.

The resulting immunofluorescent images were used to select six freeform 
polygon-shaped ROIs containing approximately 200 nuclei in CD68+ synovial 
tissue lining and superficial sublining, CD20–CD3– sublining and CD20+CD3+ 
lymphocyte aggregates.

After approval of ROIs, GeoMx DSP photocleaved the ultraviolet 
(UV)-cleavable barcoded linker of bound RNA probes and collected individual 
segmented areas into separate wells in a 96-well collection plate.

The dataset included 72 ROIs from 12 patients (four refractory and eight 
responder) across the three ROI types. An NTC water well was used for quality 
control checks.

DSP analysis. GeoMx WTA sequencing reads from NovaSeq6000 were compiled 
into FASTQ files corresponding to each ROI. FASTQ files were then converted to 
digital count conversion files using the NanoString GeoMx NGS DnD Pipeline. 
Out of 18,677 genes, 17,065 exceeded the lower level of quantitation (LOQ) in 
>10% of ROIs; genes that did not exceed LOQ were excluded from the analysis. 
For normalization, counts were divided by sample-specific size factors determined 
by the median ratio of gene counts relative to geometric mean per gene. The 
DESeq2 R package was used for this preprocessing step.

Differential expression analysis. We conducted differential expression analysis 
to compare responders and refractory patients using DESeq250. This analysis 
was done for all ROIs simultaneously (responders, n = 48; refractory, n = 24) 
but separately for each location in the synovial layer: CD68+ lining/superficial 
sublining (responders, n = 17; refractory, n = 8); CD20–CD3– deep sublining 
(responders, n = 21, refractory n = 12); and CD3+CD20+ lymphoid aggregates 
(responders, n = 10; refractory, n = 4). Since samples were collected from different 
locations, in the analysis of all samples we included location as a covariate 
(~location + response) to eliminate its influence on gene expression. The qvalue 
R package implementing Storey’s q-value method was used to correct for multiple 
testing effects, and a cutoff of q < 0.05 was used to define significantly DEGs.

Longitudinal mixed-effects model analysis. Longitudinal analysis of RNA-seq on 
paired synovial biopsies was performed by fitting a negative binomial distribution 
GLMM for each gene. Because the most widely used mainstream differential gene 
expression analysis tools—edgeR, DESeq247 and Limma voom48—are all unable 
to fit mixed-effects linear models, we developed the R package glmmSeq to fit 
negative binomial mixed-effects models at the individual gene level. glmmSeq 
uses the glmer function from the R package lme4 (v.1.1-25), with negative 
binomial family function from the MASS package (v.7.3-53). Models were fit 
using maximum-likelihood estimation by Laplace approximation and bound 
optimization by quadratic approximation. For analysis of the differential effects of 
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the two trial medications over time, the following model was fitted for each gene 
individually:

Yijg ∼ NB
(

μijg, αg
)

log
(

μijg

)

= oij + βg0 + βg1timeij + βg2medicationi + βg3timeijmedicationi + bgi

bgi ∼ N
(

0, σ2
gb

)

where Yijg is the longitudinal raw count of gene g in individual I at timepoint j, 
αg is the dispersion parameter for each gene, oij is an offset term scaled to the 
logarithm of the total library size for each sample, bgi are random effects between 
individual patients, and N and NB are the functions for normal distribution and 
negative binomial distribution, respectively. TPM counts were used as input, and 
only individuals with paired samples were included (88 samples, 44 individuals). 
The dispersion parameter for the negative binomial distribution for each gene was 
calculated using the DESeq2 function estimateDispersions. To reduce the problem 
of inflated model coefficients relating to zero counts, genes of low expression were 
removed using the Limma (v.3.44.3) function filterByExpr and zero counts were 
adjusted to a pseudo-count of 0.125, equivalent to the ‘prior count’ approach of 
edgeR and Voom48 whose internal defaults are 0.125 and 0.5, respectively. Statistical 
testing of the fitted model coefficients was performed using the Wald type 2 χ2 test 
from the car package (v.3.0-10). P values were FDR adjusted using Storey’s q-value, 
with a cutoff of FDR < 0.05 considered significant for each term in the model 
(Supplementary Data 4). Predictions were calculated for each fitted gene model 
based on the fitted linear model coefficients, and 95% CIs for the fixed effects 
of the fitted model were calculated from standard deviations of the predictions 
by extracting prediction variances as the diagonal from the variance–covariance 
matrix of the predictions XVX, where X represents the model matrix corresponding 
to the new data and V is the variance–covariance matrix of the model parameters. 
Similarly, for analysis of the difference between CDAI 50% responders and 
nonresponders following drug exposure for each medication, the following 
model was fitted for each drug cohort (58 samples, 29 individuals for rituximab; 
30 samples, 15 individuals for tocilizumab):

log
(

μijg

)

= oij + βg0 + βg1timeij + βg2responsei + βg3timeijresponsei + bgi

The R package glmmSeq is downloadable via CRAN and the source code is also 
available, from https://github.com/KatrionaGoldmann/glmmSeq. When compared 
against a Gaussian linear mixed-effects model on log count data, glmmSeq showed 
similar results with strong correlation between P values generated using either 
distribution (Supplementary Fig. 2a–c). Q–Q plots suggested that the negative 
binomial mixed model showed greater power in identification of significant effects 
(Supplementary Fig. 2d–f).

Longitudinal pathway analysis. Genes showing a significant change in the 
analysis described in the previous section were used for GO/pathway enrichment 
analysis by means of the clueGO (v.2.5.5) Cytoscape plug-in. To allow an 
automated enrichment process, clueGO REST-enabled features were used in R 
using the following GO/pathway repositories: BiologicalProcess-EBI-UniProt-GOA 
(11 February 2020), CellularComponent-EBI-UniProt-GOA (11 February 
2020), ImmuneSystemProcess-EBI-UniProt-GOA (11 February 2020), 
MolecularFunction-EBI-UniProt-GOA (11 February 2020), KEGG (27 February 
2019) and REACTOME (27 February 2019).

Building classifier models for prediction of rituximab and tocilizumab response 
and refractory status. Baseline gene expression and clinical and histological data 
were used as features for machine learning models built to predict CDAI 50% 
response to either rituximab or tocilizumab treatment at the primary endpoint 
(16 weeks) or refractory status, defined as nonresponse to both drugs at the 
secondary endpoint (post-treatment crossover, 24 weeks). An overview of the 
pipeline is shown in Fig. 6a.

Although the R4RA study was not powered for machine learning, 
information theory demonstrates that sparse models developed from large 
biomarker panels in which only a small percentage of biomarkers have nonzero 
effects can still demonstrate evidence of prediction with relatively modest sample 
size, although the small sample sizes in our study mean that the predictive 
models are likely to be only part of the way up the learning curve41. In the 
present study ~2% of the 1,500 biomarkers inputted into the modeling system 
have a nonzero effect. If the C-statistic of the optimal classifier is 0.83, a sample 
size equivalent to 0.05 events per variable (n = 83) would be required to learn a 
classifier that has expected information for discrimination equal to 25% of that 
obtained by the optimal classifier (equivalent to a C-statistic of 0.68) (see the 
online calculator, https://pmckeigue.shinyapps.io/sampsizeapp/)41. The model 
feature space was created using either clinical and histological parameters or 
clinical data with gene expression. Gene expression data underwent VST and 
were subset to protein-coding genes (using gencode gene annotation v.29) with 
the highest expression variance (top 10%). Highly correlated genes (r > 0.9) were 

removed using the findCorrelation function from the R package caret (v.6.0-86), 
leaving 1,438 genes. Clinical features included: baseline tender joint count (TJC), 
swollen joint count (SJC), age, gender, CDAI, erythrocyte sedimentation rate 
(ESR), CRP and disease activity score based on ESR and CRP (DAS28ESR and 
DAS28CRP, respectively). Histology features included CD3, CD68L, CD68SL, 
CD20 and CD138.

Following processing, data were split into 10 × 10 nested folds (Fig. 6a 
(2)). For models using gene expression features, filtering was performed using 
either RFE or univariate filtering from the caret package v.6.0. The number of 
features selected was chosen to maximize accuracy from 25, 30, 50 or 100. Model 
hyperparameters were tuned by inner tenfold cross-validation, with model 
accuracy determined in separate outer cross-validation folds to give an unbiased 
estimate of model accuracy.

Seven machine learning methodologies from the caret package were used to 
create the classifier models: elastic net (glmnet), random forest (RF), least-squares 
support vector machine (SVM) with radial basis function kernel (svmRadial), 
least-squares SVM with polynomial kernel (svmPoly), GBM, MDA and PDA. 
Models that failed to converge during training were excluded from evaluation. The 
purpose of testing multiple models was to determine whether nonlinear decision 
boundaries—as used by SVM, MDA, PDA and tree-based prediction algorithms 
such as GBM—could outperform penalized linear regression.

To evaluate model performance, receiver operating characteristic (ROC) curves 
were built using the plotROC R package v.2.2.1 to determine prediction accuracy in 
the outer fold test data and samples omitted for the inner fold. AUC was calculated 
to determine prediction performance. Tuning parameters for the final model 
were finalized as the mean over all ten outer folds. The final best model for each 
classification was fit to the entire dataset, exported and feature importance ranked.

Statistical analysis. For cross-sectional comparisons of continuous variables 
between two groups the Mann–Whitney U-test was used, whereas the Wilcoxon 
signed-rank test was used to assess the difference between groups with longitudinal 
paired data. More specific analyses of RNA-seq count data are detailed above in 
each relevant section. R v.4.0.0, or later, was used for all formal testing analyses.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study are 
available on an interactive web interface that allows direct data exploration (https://
r4ra.hpc.qmul.ac.uk/). A searchable interface is available to examine relationships 
between individual synovial gene transcript levels and histological and clinical 
parameters, and clinical response at 16 weeks. In addition, interactive versions of 
Figs. 3c and 5b and Extended Data Fig. 5e,f allow users to click on individual genes 
to see their expression and search for genes of interest. The website was constructed 
using R shiny server 1.5.16, with interactive plots generated with R plotly 4.9.3.
The datasets can be downloaded from https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-11611.
Other public datasets used for pathway analysis were sourced from the 
GO annotation (GOA) database (BiologicalProcess-EBI-UniProt-GOA 
(11 February 2020), CellularComponent-EBI-UniProt-GOA (11 February 
2020), ImmuneSystemProcess-EBI-UniProt-GOA (11 February2020), 
MolecularFunction-EBI-UniProt-GOA (11 February 2020)), KEGG  
and Reactome.

Code availability
Source code for all analyses written in R v.4.0.0 or later has been uploaded to 
Github and is available at https://github.com/EMR-bioinformatics/R4RA. The 
R package glmmSeq is downloadable via CRAN, and the source code is available 
from https://github.com/KatrionaGoldmann/glmmSeq. R objects for all classifiers 
are available in the supplementary material as Supplementary Data 5.
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Extended Data Fig. 1 | Histological analyses. a, Atlas of semi-quantitative synovial IHC scores for immune cells. b, Distribution of semiquantitative scores 
at baseline in all patients, individually shown in the y axis. The total on the x axis represents the sum of the individual scores (Immune score). c, Baseline 
semi-quantitative IHC scores, Krenn synovitis score (‘Synovial score’) and total Immune score in patients stratified according to 16 weeks CDAI50% 
response to rituximab (top) and tocilizumab (bottom). Two-sided Mann Whitney test. ns= p value >0.05. n = 161 patients. Boxplots showing median with 
first and third quartiles.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Articles Nature Medicine

Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Unsupervised Principal Component Analysis shows association primarily with cell types present and consequently also 
pathotype. a, Clinical features and their degree of association with Principal Components (PC) 1–10 with coloring indicating the –log(p) (left) and FDR 
corrected –log(q) value (right). RF, Rheumatoid Factor; CCP, anti-Cyclic Citrullinated Protein; CRP, C-Reactive Protein; ESR, Erythrocyte Sedimentation 
Rate; SJC, Swollen Joint Counts; TJC, Tender Joint Count. b, PC 1 and 3 gene expression variance with coloring by (b) pathotypes showing fibroid (blue), 
lymphoid (red), myeloid (pink) and ungraded (grey) patients. Ellipses indicate 80% confidence interval. c and d, PC1 and 2 colored by response to 
treatment. Patients allocated to treatment group rituximab are displayed in c and to tocilizumab in d, with non response colored in red, response to RTX 
in blue and response to TOC in gold. Ellipses shown for all PCs represent the 80% confidence interval. e, Differential expression of genes important 
for B-cells (MS4A1, CD79A, CD79B, PIK3CA, BTK and SYK) and Weighted Gene Correlation Network Analysis (WGCNA) cell modules (B-cells, M1 
macrophage cytokine signalling, Fibroblast 2a THY1+) in Rituximab treated patients (n = 68), according to the consensus clusters shown in (Fig. 2a). 
Boxplots show median with upper and lower hinges and whiskers extending to highest and lowest point, but at most 1.5x the interquartile range. p-values 
stated for Kruskal-Wallis test. f, IL-6 related genes (IL6R, IL6, IL6ST, JAK1, JAK2 and STAT3) and WGCNA cell modules expression in tocilizumab (Fig. 2b) 
treated patients (n = 65) based on consensus clusters. Boxplots as above. g, Boxplots showing median with upper and lower hinges for semiquantitative 
histological scores of CD3, CD20, CD68L, CD68SL, CD138 and CD79a for all patients (n = 133) split into consensuscluster 1 and consensuscluster 2. 
Kruskal-Wallis test p-values are shown.
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Extended Data Fig. 3 | Influence of immune cells on consensusclusters. a-d, Volcano plots showing differential gene expression analysis using DESeq2 
comparing consensuscluster 1 and 2 of patients treated with rituximab (left) or tocilizumab (right). While a and b were analyzed without covariates, 
c and d were adjusted for principal component (PC1). Comparison between groups were tested for significance using Wald test and multiple testing 
was corrected for with Storey’s q value (q < 0.05 = significant, shown in blue). Positive log2fold changes represent upregulation in consensuscluster 
2, negative log2fold changes represents upregulation in consensuscluster 1. e, Correlation plot highlighting relation between PC1, histology markers 
and genes involved in the mode of action of RTX and TOC. Positive correlation is shown in blue while red would indicate negative correlation. For all 
correlations without significance, the p-value is shown. f,g, Volcano plots of DEGs using DESeq2 comparing CDAI50% responders versus non responders 
to rituximab (f) and tocilizumab (g) after adjustment for principal component 1. Comparison between groups using Wald test and correcting for multiple 
testing Storey’s q value (q < 0.05 = significant, shown in blue). Positive values represent upregulation in responders and negative values downregulation 
compared to non-responders.
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Extended Data Fig. 4 | Immunofluorescence of DKK3 + fibroblasts. DKK3 + fibroblasts in refractory (left) and responder (right) patients (representative 
image out of 3 refractory and 3 responders). Immunofluorescence with DNA in blue, CD45 in red, CD90 in green and DKK3 in yellow. Lines at 0.250 mm 
in the overview (top panels) and 0.05 mm in the higher magnification (bottom panels).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Longitudinal analysis of paired pre- and post-treatment synovial biopsies. a, Schema showing an overview of longitudinal analysis 
of matched pre and post-treatment synovial biopsies, with number of samples for each medication (in brackets samples with available RNA-Seq).  
b, Semi-quantitative scores at baseline and 16 weeks in patients stratified according to treatment with rituximab (n = 41) or tocilizumab (n = 24). Mean 
± SEM. Exact p values from two-sided analysis of covariance testing the difference in the changes from baseline between treatments, with treatment as 
factor and baseline score as covariate. c, MCP-counter scores in baseline and 16 weeks samples. Scatterplots showing individual samples and boxplots 
showing median and first and third quartiles, whiskers extending to the highest and lowest values no further than 1.5*interquartile range. Two-sided 
Wilcoxon signed-rank test (paired), comparing baseline and 16 weeks, adjusted for multiple testing by false discovery rate. n = 29 for rituximab and n = 15 
for tocilizumab. d, Semi-quantitative scores of synovial immune cells at baseline and 16 weeks in patients treated with rituximab (n = 41) and tocilizumab 
(n = 24), stratified by CDAI50% response (NR = non responders, R = responders). Boxplots showing median and first and third quartiles. p values shown 
when <0.05, two sided Wilcoxon signed-rank test (paired) comparing baseline and 16 weeks, adjusted for multiple testing by false discovery rate. 
e,f, Longitudinal negative binomial mixed effects model on Rituximab (n = 29) and (f) Tocilizumab (n = 15) treated patients showing differential gene 
expression between responders and non-responders categorised by CDAI 50% response. Blue genes show greater absolute gene expression change in 
rituximab responders, yellow genes show greater absolute gene expression change in tocilizumab responders, while red genes showed greater absolute 
gene expression change in non-responders. g,h Scatter plots of representative genes with coloured points showing regression line of fitted negative 
binomial mixed effects model with error bars showing 95% confidence intervals (fixed effects) from analyses in e & f respectively. Grey points and lines 
show raw paired count data. n = 29 for rituximab and n = 15 for tocilizumab.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Venn diagram showing overlap in genes between machine learning models and comparison with models built using only clinical 
and histological variables. a, Venn diagram showing the overlap in genes selected as features in optimal predictive models for prediction of rituximab and 
tocilizumab response at week 16 and refractory state (failure to respond to both rituximab and tocilizumab). b, Grid of plots showing the optimal predictive 
models for different treatment when using clinical and histological variables only. From top to bottom plots show: ROC curves for the best model on the 
test data (from outer-fold) set; ROC curves on the left-out (from inner-fold) set; and the variable importance when fit to the whole data set.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Articles Nature Medicine

Extended Data Table 1 | Synovial histological analysis stratified according to treatment at baseline and 16 weeks
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Extended Data Table 2 | Genes included in prediction models
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