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Patients with rheumatoid arthritis (RA) receive highly targeted biologic therapies without previous knowledge of target expres-
sion levels in the diseased tissue. Approximately 40% of patients do not respond to individual biologic therapies and 5-20%
are refractory to all. In a biopsy-based, precision-medicine, randomized clinical trial in RA (R4RA; n =164), patients with low/
absent synovial B cell molecular signature had a lower response to rituximab (anti-CD20 monoclonal antibody) compared with
that to tocilizumab (anti-IL6R monoclonal antibody) although the exact mechanisms of response/nonresponse remain to be
established. Here, in-depth histological/molecular analyses of R4RA synovial biopsies identify humoral immune response gene
signatures associated with response to rituximab and tocilizumab, and a stromal/fibroblast signature in patients refractory to
all medications. Post-treatment changes in synovial gene expression and cell infiltration highlighted divergent effects of ritux-
imab and tocilizumab relating to differing response/nonresponse mechanisms. Using ten-by-tenfold nested cross-validation,
we developed machine learning algorithms predictive of response to rituximab (area under the curve (AUC) = 0.74), tocili-
zumab (AUC = 0.68) and, notably, multidrug resistance (AUC = 0.69). This study supports the notion that disease endotypes,
driven by diverse molecular pathology pathways in the diseased tissue, determine diverse clinical and treatment-response phe-
notypes. It also highlights the importance of integration of molecular pathology signatures into clinical algorithms to optimize
the future use of existing medications and inform the development of new drugs for refractory patients.

therapeutics directed against soluble mediators (for example,

tumor necrosis factor (TNF) inhibitors and IL6R blockers),
immune cells (for example, B cells) and intracellular signaling path-
ways (Janus kinase inhibitors)’. However, approximately 40% of
patients do not respond to individual agents while 5-20% are resis-
tant to all current medications”. The mechanisms of nonresponse are
largely unknown and, unlike in other medical fields such as cancer
where molecular pathology guides the use of targeted therapies™,
biomarkers able to predict response to specific agents in RA are still
lacking’. Because RA is highly heterogeneous, it is plausible that
different pathways are active in individual patients®. For example,
because approximately 50% of patients with RA display low/absent
CD20" Bcells in diseased joint tissue (synovium)’, the target for the
anti-CD20 rituximab monoclonal antibody, it has been postulated
that the level of synovial B cells/B cell-related pathways would influ-
ence treatment response to rituximab. However, results from small
observational studies provide inconsistent and inconclusive results®.

| reatment of RA has been transformed by the introduction of

Toaddressthishypothesiswe carried outabiopsy-driven, random-
ized clinical trial in RA (R4RA)’ in which TNF-inhibitor-inadequate
responders were randomized to either rituximab (anti-CD20
monoclonal antibody) or tocilizumab (anti-IL6R monoclonal anti-
body) after stratification according to synovial Bcell signatures.
The trial results demonstrated that only 12% of patients with a low
synovial Bcell molecular signature responded to rituximab while
50% responded to tocilizumab. In contrast, in patients with high
synovial B cell lineage signature, the two drugs appeared compara-
bly effective.

Here, we investigated the mechanisms of response and nonre-
sponse to these two targeted biologics through deep histopathologi-
cal and molecular (RNA-sequencing (RNA-Seq)) characterization
of synovial tissue at baseline, and longitudinally in post-treatment
biopsies at 16 weeks. We identified specific signatures associated
with therapeutic response and developed machine learning clas-
sifiers to predict treatment response. Additionally, we provide
insights into the cellular and molecular pathways underpinning
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multidrug resistance defining a refractory phenotype, characterized
by a stromal/fibroblast signature. Finally, digital spatial profiling
of synovial biopsies highlighted differences in gene expression in
specific synovial regions with relevance to disease pathogenesis and
treatment response.

Results

Histological and in silico cell lineages correlate with drug
response. To assess the association of synovial immune cells with
treatment response, we compared semiquantitative immunohisto-
chemistry (IHC) scores (Extended Data Fig. 1a,b) in pretreatment
synovial biopsies of responders (n=28 for rituximab, n=37 for
tocilizumab) and nonresponders (n=>54 and n =42, respectively),
showing no differences (Extended Data Fig. 1c). However, when
patients were stratified according to previously described®’” synovial
histological patterns, also known as pathotypes (Fig. 1a), patients
with a diffuse-myeloid pathotype, i.e. with myeloid lineage predom-
inance but low in B/plasma cells, displayed a significantly higher
response to tocilizumab (13/16, 81%) versus rituximab (7/20, 35%)
(P=0.008, odds ratio (OR)=7.53, 95% confidence interval (CI)
1.4-55.7). In contrast, similar response rates between treatments
were observed in patients with a lymphomyeloid pathotype, domi-
nated by lymphoid-lineage cells (T, B and plasma cells) in addition to
myeloid cells, and a fibroid/pauci-immune pathotype, characterized
by few immune cells and prevalent stromal cells. To further dissect
synovial cell types, we applied an in silico deconvolution analysis
(MCP-counter'’; Fig. 1b), showing significantly higher CD8 T cells
in responders to rituximab and higher macrophage-monocytes
and myeloid dendritic cells (mDCs) in responders to tocilizumab
(Fig. 1c). Moreover, when we stratified patients according to
MCP-counter scores, patients poor in Bcells showed significantly
higher response rates to tocilizumab (Fig. 1d), consistent with the
primary results of the trial’, while no difference was found in patients
rich in Bcells. In contrast, macrophage- and mDC-rich individuals
showed higher response to tocilizumab (Fig. 1e). Combined scores
(Fig. 1f) demonstrated that patients poor in B cells but rich in mac-
rophages/mDCs had a significantly higher response to tocilizumab
(77% responders to tocilizumab versus 14% responders to ritux-
imab; P=0.017, OR=16.48, 95%CI 1.29-1,000.5). Furthermore, by
analysis of disease activity over time, we found a statistically signifi-
cant interaction effect between treatments and time in patients who
were B cell poor (P=0.003), T cell poor (P=0.022) (Fig. 1g), mDC
rich (P=0.029) (Fig. 1h) and Bcell poor/macrophage/mDC rich
(P=0.006) (Fig. 1i). There were significantly lower disease activity
scores (clinical disease activity index (CDAI)) at weeks 6, 12 and 16
in patients treated with tocilizumab who were B cell poor and mac-
rophage/mDC rich (Fig. 1i) versus those treated with rituximab.
Overall, these results point to myeloid cell infiltration in synovia as

one of the key factors explaining the enhanced response to tocili-
zumab in patients with B cell-poor synovitis.

Unsupervised clustering defines treatment response diversity.
Next, we used unsupervised analyses to explore the relationship
of multiple genes/pathways with response to treatment. First, we
applied principal component analysis (PCA) to identify underlying
subgroup structures. PC1 and PC3 correlated with inflammatory
cell infiltration in synovial biopsies, while they also associated with
histological pathotypes primarily separating the lympho-myeloid
and fibroid pathotypes (Extended Data Fig. 2a,b).

Unsupervised Monte Carlo consensus clustering (M3C)"
showed 71% of rituximab responders (n=24) in cluster 1 compared
with only 29% (n=10) in cluster2 (P=0.0004; Fig. 2a). Genes
relevant for Bcell biology were significantly higher in cluster1 in
patients treated with rituximab (Extended Data Figs. 2e and 3a).
Cluster 1 was also linked with significant upregulation of the B cell
gene module S136 from weighted gene correlation network analysis
(WGCNA), together with upregulation of the proinflammatory M1
macrophage module S39 and downregulation of the fibroblast mod-
ule S115 (Extended Data Fig. 2e).

Clustering of patients treated with tocilizumab was less dis-
tinctive, with 46% of responders (n=21) in cluster1 and 54% in
cluster 2 (n=25) (Fig. 2b). However, cluster 1 was significantly asso-
ciated with IL-6 pathway genes (Extended Data Figs. 2f and 3b),
together with upregulation of Bcell and M1 macrophage modules
and downregulation of fibroblast modules. In keeping with the
increase in immune cell-related modules in cluster 1 for both treat-
ments, semiquantitative IHC scores for synovial immune cells were
significantly higher in cluster 1 (Extended Data Fig. 2g), indicating
that immune cell infiltration is linked to gene expression in clus-
ter 1, as inferred by the loss of significance when adjusting differen-
tially expressed gene (DEG) analysis between consensus clusters 1
and 2 for immune cell content using PC1 as a covariate (Extended
Data Fig. 3¢,d). The strong correlation of PC1 with histology mark-
ers and immune cell-related genes (Extended Data Fig. 3e) is prob-
ably linked to this effect.

Molecular signatures of treatment response. Next, we performed
DEG analysis to identify genes associated with treatment response
on all patients who at any point in the trial had received ritux-
imab or tocilizumab (as described in Methods and Supplementary
Fig. 1). A total of 6,625 genes were significantly different (false dis-
covery rate (FDR) <0.05) in rituximab responders compared with
nonresponders (Fig. 2c and Supplementary Data 1), and 85 for
tocilizumab (Fig. 2d and Supplementary Data 1). Genes upregulated
in the synovial tissue of rituximab responders included members of
the immunoglobulin (Ig) superfamily and leukocyte-related genes.

>
>

Fig. 1| Synovial histological markers at baseline associate with response to rituximab and tocilizumab. a, Classification into synovial pathotypes
according to semiquantitative scores for CD3*T cells, CD20* B cells, CD68* macrophages and CD138* plasma cells, with representative examples

from patients classified as lymphomyeloid (CD20>2 and/or CD138>2), diffuse-myeloid (CD68SL>2, and CD20/CD138<2) or fibroid/pauci-immune
(CD68SL/CD20/CD138<2). Right, 16-week CDAI 50% response in patients stratified by pathotype (n=152). Bar plots showing the proportion of CDAI
50% responders for rituximab (in blue) and tocilizumab (in yellow) within each pathotype, with corresponding exact numbers. Fisher's test, exact Pvalues
for P<0.05. b, Approach to in silico deconvolution of synovial tissue using MCP-counter. ¢, MCP-counter scores for each cell type compared among

CDAI 50% responders (R) and nonresponders (NR). Bar plots indicate nominal log,, Pvalues for tocilizumab and -log,, P values for rituximab (two-sided
Mann-Whitney test); dashed lines correspond to P=0.05. Boxplots (right) show median and first and third quartiles, whiskers extending to the highest
and lowest values. d-f, 16-week CDAI 50% response in patients stratified into B and T cell poor/rich (d) and macrophage/mDC poor/rich (e) according

to median MCP-counter scores for individual cells (rich if above median, poor if below), or by combining B cell and macrophage/mDC scores from

d.e (f). Exact P values shown when <0.05, two-sided Fisher's test comparing the proportions of responders to rituximab (in blue) and tocilizumab

(in yellow). g-i, Longitudinal disease activity scores (CDAI), shown as mean + s.d., for each month from baseline to 16 weeks for patients randomized

to rituximab (in blue) or tocilizumab (in yellow) and classified as B and T cell poor/rich (g), macrophage/mDC pootr/rich (h) and combined Bcell/
macrophage poor/rich (i). Comparison of CDAI between the two medications at individual time points by two-sided Mann-Whitney test, exact Pvalues for
<0.05 (adjustment for multiple comparisons by FDR). Pvalues for the drug x time interaction term (two-way repeated-measures analysis of covariance)
are shown when <0.05. ¢-i, n=133 patients with baseline RNA-seq. NK, natural killer cells. mDC, myeloid dendritic cells.
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Fig. 2 | Molecular signatures of response and nonresponse to rituximab and tocilizumab. a,b, Monte Carlo reference-based consensus clustering of the
22,256 most variable genes identified a high-inflammatory-consensus cluster 1 (blue) and low-inflammatory cluster 2 (yellow). Heatmaps were produced
for patients treated with rituximab (n=68, a) and tocilizumab (n=65, b) using Pearson'’s distance metric and the complete linkage method using the
ComplexHeatmap package in R. Upper tracks show consensus cluster, cell type (B cell rich/poor), the overall pathotype, CDAI 50% response, EULAR
response and histological scores for CD20, CD138, CD68L, CD68SL and CD3. ¢,d, Volcano plots of DEGs using DESeq2 comparing CDAI 50% responders
versus nonresponders to rituximab (c) and tocilizumab (d). Comparison between groups using Wald's test and correcting for multiple testing, Storey's
g-value (g < 0.05 significant, shown in blue). Positive and negative values represent upregulation and downregulation, respectively, in responders and
nonresponders. e,f, Modular analysis applying QuSAGE to responders versus nonresponders to rituximab (e) and tocilizumab (f); log, fold changes of
responders (positive values) and nonresponders (negative values) are plotted for blood microarray-based modules'?, with WGCNA modules summarized
in one plot and dots color coded for their g-value.
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Nonresponse to rituximab, on the other hand, was associated with
complement genes, bone morphogenic proteins, fibroblast-related
genes and several Hox genes. Interestingly, lymphocyte and Ig genes
were also upregulated in the synovial tissue of tocilizumab respond-
ers. Both nonresponder groups showed upregulation of extracellu-
lar matrix genes, including integrin-binding sialoprotein, aggrecan
and collagen, and genes linked to tissue remodeling, cell infiltra-
tion and cell-cell interaction. Following adjustment for immune cell
infiltration by PC1, DEGs for rituximab remained significant and,
in the case of tocilizumab, the number of identified DEGs increased
(Extended Data Fig. 3f for rituximab and Extended Data Fig. 3g for
tocilizumab; Supplementary Datal), suggesting that DEG analysis
provides an additional dimension to the inflammatory cell infiltrate
alone that differentiates responders from nonresponders. Of note,
inclusion of covariates such as age, gender and ethnicity was not
associated with major differences in the statistical significance of
DEGs (Supplementary Data 1).

To investigate the functional role of the above genes, we applied
quantitative set analysis for gene expression (QuSAGE) modular
analysis'? using blood- and synovium-specific WGCNA modules
(Fig. 2e,f)*". Antigen presentation, T and B cell-related modules
and interferon signaling were significantly increased in rituximab
responders, while Hox gene and fibroblast modules were increased
in rituximab nonresponders (Fig. 2e).

Myeloid cell cytokine, peroxisome proliferator-activated receptor
(PPAR) and metabolic pathways were upregulated in tocilizumab
responders (Fig. 2f). Although none of the modules was signifi-
cantly modulated in nonresponders to tocilizumab, fibroblast mod-
ules were also detected in nonresponders to tocilizumab, suggesting
the possible existence of a shared treatment-resistant signature.

Refractory disease is linked to a stromal/fibroblast signature. To
further explore the hypothesis of a common refractory signature
following treatment switch at 16 weeks (Supplementary Fig. 1), we
compared patients in whom both rituximab and tocilizumab failed
to induce response (multidrug resistant/refractory, n =40 for histol-
ogy, n=32 for RNA-seq) with (1) patients who responded exclu-
sively to rituximab after tocilizumab failure (pro-rituximab, n=11
for histology and n =9 for RNA-seq) and (2) patients who responded
exclusively to tocilizumab after rituximab failure (pro-tocilizumab,
n=13 for histology and n =12 for RNA-seq) (Fig. 3a). We identified
1,980 genes upregulated in both pro-rituximab and pro-tocilizumab
patients, 175 exclusive to the pro-rituximab group and 306 exclusive
to the pro-tocilizumab (Fig. 3b and Supplementary Data 2). Among
genes upregulated in responders to both medications were lym-
phoid, myeloid and many cytokine genes (Fig. 3c,d). Chemokines
and lymphocyte genes were upregulated in pro-rituximab patients,

while lymphocyte and myeloid lineage genes were upregulated
in pro-tocilizumab.

Modular analysis showed antigen presentation and dendritic,
macrophage and plasma cell infiltration modules upregulated
in responders to both biologics (Fig. 3e). Similarly, the CD8 and
Tph T cell module was upregulated in each drug response group,
with greater change for the rituximab responder group (proxim-
ity to pro-rituximab axis), while Toll-like receptor signaling and
macrophage chemokine and cytokine signaling were significantly
increased in pro-rituximab patients only. Modules for T cells,
plasma cells and the TNF receptor superfamily gene were upregu-
lated in pro-tocilizumab patients only (Fig. 3e).

Notably, 1,277significant genes were unique to multidrug-
resistant/refractory patients (Fig. 3c,d and Supplementary Data 2),
including fibroblast and extracellular matrix-encoding genes such
as fibroblast growth factor (FGF), homeobox (HOX) and NOTCH
family genes, together with multiple cell-adhesion-molecule- and
collagen-encoding genes (Fig. 3e and Supplementary Data 3).

In line with molecular signatures, baseline histological scores for
CD3* T cells and CD79a* B-cells and CD138* plasma cells were sig-
nificantly lower in refractory patients (Fig. 3f). Additionally, in silico
deconvolution showed significantly lower levels of CD8" T cells,
monocytes and mDCs and a trend towards increase in endothelial
cells, neutrophils and fibroblasts in refractory patients (Fig. 3g).

To further characterize the association of synovial fibroblast
genes with multidrug resistance, we complemented MCP-counter
deconvolution by examining enrichment in synovium-specific
fibroblast gene modules derived from RA synovial single-cell
RNA-seq'". As shown in Fig. 3h, the signature for HLA-DRA"#h sub-
lining fibroblasts (SC-F2), a proinflammatory subset associated with
leukocyte-rich synovial infiltration in RA, was significantly higher
in responders (P=0.027) as opposed to CD34* sublining fibroblasts
(SC-F1) and, in particular, to the newly described DKK3* sublining
fibroblasts (SC-F3), both increased in refractory patients (P=0.036
and 0.00055, respectively).

For orthogonal confirmation of these findings at the protein
level, we used multiplex immunofluorescence to detect DKK3*
fibroblasts in the synovial lining and sublining of refractory patients
(Fig. 3i and Extended Data Fig. 4).

Together, these results show that baseline histological and
molecular signatures are associated with response to individual
drugs, while nonresponse to multiple biologics is linked to a specific
pretreatment signature associated with fibroblasts.

Digital spatial profiling of refractory RA. Because immune and
stromal cells are known to exhibit positional identity relevant to
the pathogenesis of RA", we used digital spatial profiling (DSP)

>
>

Fig. 3 | Identification of multidrug nonresponse (refractory) signature. a, Patient classification according to treatment switch (complete scheme

shown in Supplementary Fig. 1): patients responding to rituximab (RTX) following tocilizumab (TOC) failure (pro-rituximab, blue), patients responding

to tocilizumab following rituximab failure (pro-tocilizumab, yellow) and patients in whom both drugs failed sequentially (refractory, red). Numbers

in brackets denote patients with available RNA-seq. b, Venn diagram showing the overlap of DEGs between patients classified as in a. ¢,d, Three-way

DEG analysis on baseline synovial biopsies of patients classified as in a, with side (¢) and top view (d). Significant differences in pro-rituximab (blue),
pro-tocilizumab (yellow) and refractory (red) patients and significant genes overlapping in pro-rituximab and pro-tocilizumab patients (green) are color
coded. Significance was internally estimated by the volcano3D package combining significance (g <0.05) from both LRT and pairwise Wald test via
DESeq?2. e, Three-way QuSAGE radial plot showing differential WGCNA module expression in patients classified as above. f, Histological semiquantitative
scores for immune cells in refractory patients (n=40) and responders to one of any two medications (n=24). Boxplots showing median and first and
third quartiles. Two-way Mann-Whitney test, exact Pvalues FDR adjusted for multiple comparisons. g, Deconvolution of immune cells using MCP-counter
in patients classified as refractory or responders as in a. Boxplots showing median and first and third quartiles, dot-plots showing individual patients.
Two-way Mann-Whitney test, exact Pvalues FDR adjusted for multiple comparisons. h, Fibroblast single-cell subset enrichment scores in refractory
patients (n=32) or responders to either rituximab or tocilizumab (n=21), as in a. Boxplots showing median and first and third quartiles, whiskers
extending to the highest and lowest values. Exact Pvalues are shown, two-sided Mann-Whitney test. i, Multiplex immunofluorescence in refractory

and responder patients; nuclear staining (blue), CD45 (red), CD90 (green), DKK3 (yellow) (all top) and DKK3 single staining (yellow, bottom). *,
DKK3+CD45* lymphocytes; arrowheads, DKK3*CD90+* fibroblasts. A larger overview and individual stainings are provided in Extended Data Fig. 4.
Representative images out of a total of three refractory and three responders. Scale bars, 50 pm. NS, not significant.
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to characterize the spatial positioning of cell signatures in asso-
ciation with treatment response/resistance. We employed GeoMx
DSP (NanoString), which uses a set of protein lineage markers to
define regions of interest (ROIs) that undergo whole-transcriptomic
spatial RNA expression (Fig. 4a). First, we compared gene expres-
sion in responders and refractory patients across all ROIs: lining/
superficial sublining, deep sublining and lymphoid aggregates
(Fig. 4b). Consistent with the above bulk RNA-seq modules and
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Fig. 4 | DSP of refractory RA. a, Scheme showing the approach to DSP, including selection of ROls: CD68*lining and superficial sublining, CD20-CD3-

deep sublining and CD3+*CD20* lymphoid aggregates. b, MA plot showing mean expression (log,) on the xaxis and fold change on the y axis comparing
responders and refractory patients across all ROls. Genes significantly upregulated (FDR<0.05) in responders are shown in blue (top), and those
upregulated in refractory in red (bottom); in grey, genes with FDR> 0.05; Pvalues were calculated using a negative binomial linear model applied to count
data using DESeq2 (Wald test) and were FDR adjusted n=12 patients, six ROls per patient. ¢, Example of individual genes differentially expressed in
refractory (red) or responders (green). Scatterplots showing individual ROls, boxplots showing median and first and third quartiles. FDR-adjusted Pvalues
calculated as in b are shown for differentially expressed genes between refractory and responder individuals; n=12 patients (4 responders to rituximab, 4
responders to tocilizimab and 4 refractory). d, Examples of individual genes differentially expressed in refractory (red) or responders (green) in different
ROls. Scatterplots showing individual ROls (n=12 patients, six ROls per patient), boxplots showing median and first and third quartiles. FDR-adjusted
Pvalues calculated as in b are shown for differentially expressed genes between refractory and responder individuals. L, lining/superficial sublining; SL, deep

sublining; A, lymphoid aggregates (as shown in a).

the lining/superficial sublining of responders and CD24 encoding a
lymphocyte marker was significantly higher in the lymphoid aggre-
gates of responders (Fig. 4d).

Pre- and post-treatment histopathological and molecular anal-
yses. To explore the longitudinal effects of each drug on synovial
immune cell infiltration and gene expression, we compared paired
synovial samples at baseline and 16 weeks (rituximab, n=41 for
histology and n=29 for RNA-seq; tocilizumab, n=24 and n=15,
respectively) (Extended Data Fig. 5a and Extended Data Table 1).
First, by histology, we showed a significant reduction in synovial
CD20* total Bcells, CD79a* Bcells and CD138" plasma cells in
patients treated with rituximab, in line with the rituximab mecha-
nism of action targeting CD20* B cells (Fig. 5a). Conversely, patients
treated with tocilizumab showed a significant reduction in CD68*
sublining macrophages but not B-cells (Fig. 5a). Analysis of covari-
ance showed a significantly higher reduction of CD20* and CD79a*
Bcells in patients treated with rituximab, and a significantly higher
reduction in CD68" sublining macrophages in those treated with
tocilizumab (Extended Data Fig. 5b).

Similar results were obtained when comparing MCP-counter
immune cell signatures. Namely, patients treated with rituximab
showed a significant reduction in Bcells, T cells and monocytes/
macrophages while those treated with tocilizumab showed a
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significant reduction in monocytes/macrophages and T cells, but
also in neutrophils and mDCs and, interestingly, an increase in
fibroblast signature (Extended Data Fig. 5¢). This suggests that both
biologics have an effect on immune cells but that tocilizumab can
potentially also affect stromal cells.

To further dissect these longitudinal molecular signatures, we
developed an R package to fit negative binomial mixed-effects mod-
els at the individual gene level (general linear mixed-effects model
(glmmSeq)), because mainstream RNA-seq analysis tools are unable
to fit mixed-effects linear models (Methods).

Using glmmSeq to compare gene expression over time in paired
synovial biopsies, 7,316 genes were significantly up- or downregulated
by both drugs while 345 were differentially affected by either drug
based on significance (FDR < 0.05) of the interaction term time x med-
ication (Fig. 5b and Supplementary Data 4a). Of note, MS4A1 (encod-
ing CD20), PAX5 and BLK were significantly downregulated in
response to rituximab, consistent with Bcell depletion mechanism
and histology results (Fig. 5¢), while tocilizumab induced a reduction
in IL-6-related transcripts, also consistent with the IL6 acting mecha-
nism of tocilizumab, not the CD20 mechanism of rituximab.

When patients were stratified according to response, a signifi-
cant reduction in CD138 and CD79a plasmablasts/plasma cells was
observed only in rituximab responders, while a significant reduc-
tion in CD68SL macrophages was observed only in responders to
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Fig. 5 | Histological and molecular analysis of paired pre- and post-treatment synovial biopsies. a, Semiquantitative histological scores of synovial immune
cells at baseline and 16 weeks in patients treated with rituximab and tocilizumab. Boxplots showing median and first and third quartiles. Pvalues shown
when <0.05, two-sided Wilcoxon signed-rank test (paired) comparing baseline and 16 weeks, adjusted for multiple testing by FDR; n= 65 patients with
matched baseline and 16-week samples (41randomized to rituximab, 24 to tocilizumab). b, Scatter plots comparing longitudinal gene expression changes
between drugs over 16 weeks of treatment in 88 paired biopsies from 44 patients following treatment with rituximab (n=29) or tocilizumab (n=15).

log, fold change in expression following rituximab or tocilizumab is represented on the x and y axis, respectively. Genes equally affected by each drug lie
along the line of identity. Fold change and statistical analysis of longitudinal differential gene expression were calculated by negative binomial general

linear mixed-effects model. Genes in green show significant (FDR < 0.05) overall change in expression over time; those in blue/yellow show significantly
differential change in expression over time between the two drugs based on significant (FDR < 0.05) interaction term time x medication (Methods). Genes
with greater absolute fold change following rituximab or tocilizumab are shown in blue and yellow, respectively. ¢, Scatter plots for selected genes with
colored points showing regression line of fitted mixed-effects model, with error bars showing 95% Cls (fixed effects). Gray points and lines show raw paired
count data, with numbers as per the analysis above. d-f, Pathway analysis using a two-sided hypergeometric test to enrich downregulated genes between
baseline and 16 weeks in patients treated with rituximab (d), responders and nonresponders to rituximab (e) and responders to tocilizumab (f). Dashed line

indicates adjusted P=0.05 (Bonferroni adjustment).
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tocilizumab (Extended Data Fig. 5d), indicating that reduction in
B and synovial plasma cells and macrophages is associated with
response to rituximab and tocilizumab, respectively.

The mixed-effects model allowed us to further examine various
changes in gene expression following therapy between respond-
ers and nonresponders to each drug (Extended Data Fig. 5e-h).
Rituximab had a general effect on 1,796 genes, with 349 show-
ing significant (FDR<0.05) differential expression change over
time between responders and nonresponders (Extended Data
Fig. 5e and Supplementary Data 4b). Rituximab responders showed
a greater decrease in SAAI and SAA2 (serum amyloid proteins 1
and 2), as well as greater decreases in Ig chain genes IGHV3-64D
and IGKV1-13, suggesting that a drop in antibody-secreting B cells
is associated with response to rituximab (Extended Data Fig. 5g).
Chemokine-encoding CXCLI11, the citrullination enzyme encod-
ing PADI2 (peptidyl-arginine-deiminase2) and the key Th17 and
mucosal-associated invariantT (MAIT) cell transcriptional regu-
lator RORgamma (RORC) gene were also modulated in rituximab
responders (Extended Data Fig. 5g).

Tocilizumab treatment resulted in modulation of 1,609 genes,
with an additional 136 showing differential change in gene expres-
sion between responders and nonresponders (Extended Data
Fig. 5f and Supplementary Data 4c). Reduction in pro-lymphoid
follicle development genes encoding for lymphotoxin-A (LTA),
complement receptor-2 (CR2), lymphoid-tissue-resident dendritic
cell marker XCRI'” and prolactin (CLECI7A), expressed on prolif-
erating germinal center Bcells', augured response to tocilizumab
(Extended Data Fig. 5h).

To further investigate pathway modulation induced by treat-
ment, genes identified in the longitudinal mixed-effects model
analysis were analyzed for Gene Ontology (GO)/pathway enrich-
ment. Rituximab treatment induced significant downregulation of
B cell receptor pathways, as well as bone resorption and remodeling
pathways (Fig. 5d). When stratifying patients according to response,
responders to rituximab showed significant downregulation of T cell
receptor complex, lymphocyte chemotaxis and migration, chemo-
kines and IL-1-related pathways (Fig. 5¢), suggesting that rituximab
response is linked to additional immunomodulation in addition
to reduction in B cell-related pathways. Responders to tocilizumab
showed significant decrease in humoral immune response, Ig, B cell
and complement activation (Fig. 5f), in line with the known effect
of IL-6 on B cell growth/differentiation.

In summary, longitudinal analyses of matched pre- and
post-treatment biopsies indicate that specific biological changes are
associated with response to individual treatments.

Machine learning models predict drug response and multidrug
resistance. To establish the ability of synovial tissue gene expres-
sion in prediction of treatment response/resistance, we developed
machine learning predictive models with the dataset partitioned for
training and testing using ten-by-tenfold nested cross-validation, as
detailed in Methods and schematically in Fig. 6a. Supplementary
Table 1 shows the performance of models used to predict (1) ritux-
imab response, (2) tocilizumab response and (3) refractory state.
Final models (Supplementary Table 2) were trained on the entire
dataset to extract variable importance (Fig. 6a, bottom right and
Extended Data Table 2).

As shown in Fig. 6b, the optimal predictive models included
gene elastic net regression for rituximab and tocilizumab response,
with 40 genes (AUC=0.744) and 39 genes (AUC=0.681), respec-
tively, and gradient-boosted machine (GBM) for refractory state,
with 53 genes (AUC=0.686) (Extended Data Fig. 6a). Notably, no
clinical features were selected by the final models (Extended Data
Table 2) and, in comparison with RNA-seq, predictive models built
using clinical and histology parameters alone performed quite
poorly (Extended Data Fig. 6b). AUC values in the omitted inner
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cross-validation folds were consistent with AUC results in the true
test folds. Multiple genes were shared across models, with only 85
required to build all three prediction models and 32 shared between
at least one model (Extended Data Fig. 6a and Extended Data
Table 2). Each model selected multiple genes of biological relevance
to synovial tissue inflammatory and repair responses, as well as to
bone and cartilage biology. Key prediction genes shared between
all three models included genes encoding for: XCR1, a marker of
DC1 migratory DCs;'” chemokine CXCL14; acute phase reactant
SAA2; and IGHV7-4-1, probably reflecting tissue-resident plasma
cells. The refractory state model, which contained the largest num-
ber of unique genes, included several linked to the fibroid pathotype
such as TNFRSF11B, which encodes the osteoclast negative regula-
tor osteoprotegerin and the chondrocyte adhesion mediator CHAD
(chondroadherin), but also the citrullination enzyme PAD4 encod-
ing gene PADI4", consistent with a role of persistent tissue destruc-
tion and remodeling in the refractory RA state.

Although the original clinical trial was not powered for these
types of analyses, and larger cohorts will be required to further vali-
date the models and improve their predictive power, these results
show that predictive models can harness molecular information
from synovial biopsies at baseline before treatment and thus are of
potential clinical utility for prediction of response to therapy.

Discussion

Our study provides an in-depth molecular and histological profiling
of joint tissue from a biopsy-driven, randomized clinical trial in RA
(R4RA)’, affording insights into the cellular and molecular pathways
underpinning the diverse treatment response to two commonly
used targeted biologic therapies directed against B cells (rituximab)
and the IL-6 receptor (tocilizumab). Using both conventional his-
tology and in silico deconvolution, we observed that lymphoid cells
were associated with response to rituximab while myeloid cells were
associated with response to tocilizumab. Although the importance
of synovial macrophages as a predictor of response to anti-TNF
has been described”””', here we report that within the synovial
B cell-poor group, an enhanced response to tocilizumab is associ-
ated with the presence of myeloid cells. In regard to rituximab, pre-
vious small observational studies reported pretreatment synovial
CD79a* Becells” and synovial molecular signatures® as potential
response predictors.

In this larger, randomized clinical trial cohort we confirmed
some of these findings and, combining histological assessment with
advanced molecular analyses, we identified genes and pathways
linked to the cognate drug targets in association with response. For
rituximab these were Bcell genes, Igs, chemokines and leukocyte
genes. Response to tocilizumab was associated with IL-6 pathway
genes, but also with lymphocyte and immunoglobulin genes, which
is not surprising since IL-6 is a well-known B cell growth factor*.

Modular analyses demonstrated how genes increased in ritux-
imab responders were functionally related to antigen presenta-
tion and lymphocyte activation, together with interferon signaling
genes, in keeping with previous reports linking increased typel
interferon with response to rituximab**°. In tocilizumab respond-
ers, in line with the prominent role of myeloid cells identified by
histopathology, the myeloid cell cytokine module was upregulated
together with PPAR signaling and metabolic pathways.

In contrast, nonresponse to both drugs was defined by
>1,000genes and several shared pathways, including Hox, FGFs
and ECM genes/modules. Critically, this shared nonresponse signa-
ture is linked to the fibroid pauci-immune pathotype characterized
by scanty immune cell infiltrate with prevalence of stromal cells®’,
which we also reported as being associated with poor response to
synthetic disease-modifying antirheumatic drugs (DMARDs)”
and TNF inhibitors*. This supports the concept that the fibroid
pauci-immune phenotype represents a refractory endotype, since
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in R4RA double nonresponder patients conventional synthetic
DMARDs (csDMARDs) and TNF inhibitors had already failed, as
per trial entry criteria, thus displaying resistance to three biologic
therapies targeting distinct immunological pathways (TNE, CD20*
B cells and IL6R) and meeting the definition of multidrug resistant/
refractory RA’.

Because recent studies using single-cell RNA-seq (scRNA-seq)
on RA synovium identified specific fibroblast subsets with critical
roles in RA pathogenesis'*'*'?, we applied modular analysis based
on scRNA-seq fibroblast subsets'* and orthogonal validation by mul-
tiplex immunofluorescence, and identified an association between
DKK3* fibroblasts and refractoriness. DKK3 encodes Dickkopf3, a
negative regulator of beta-catenin that has been shown to promote
aggressive behaviour in cancer-associated fibroblasts™, although the
exact function of DKK3* fibroblasts in RA remains to be established™".
Furthermore, DSP revealed specific upregulation of genes in the sub-
lining of refractory patients encoding for the fibroblast marker FAP,
which has been linked with RA pathogenesis'®, while other markers
consistently modulated across all regions included CCL13 encod-
ing for the monocyte-attracting chemokine MCP-4, which has been
shown to activate synovial fibroblasts™. Hence, stromal cells—and,
in particular DKK3* fibroblast genes—may be a new drug target that
helps overcome the complex problem of refractoriness in RA.

Genes linked with response included increased expression in
the synovial aggregates encoding for CD24, a Bcell marker asso-
ciated with response to biologic treatment®. Also consistent with
the capacity of biologic therapies to halt structural damage pro-
gression™, we identified increased expression of RANK transcripts
(TNFRSF11A) in the lining/superficial sublining of responders, in
line with the reported presence of osteoclast precursors in inflamed
synovia®. Overall, these results suggest that the spatial organization
of immune infiltrates is highly relevant for determinion of treat-
ment response/resistance, although additional work is needed to
dissect the contribution of specific markers in individual synovial
regions and their association with therapy response/resistance.

The longitudinal analysis of matched pre-/post-treatment syno-
vial biopsies enabled us to investigate drug effects on synovial
pathology and gene expression. Rituximab reduced synovial CD20*
Beells in both responders and nonresponders but, notably, a clini-
cally relevant response required broader and deeper impacts on dif-
ferentiated CD79a* plasmablasts and CD138* plasma cells over and
above CD20" Bcell depletion. These observations are in agreement
with previous observational studies showing changes in plasma cells
between responders and nonresponders to rituximab®. However,
another study showed variable depletion of Bcells and plasma cells
and an unclear association with treatment response”, although the
small sample size and biopsy analysis at different time points (4, 8,
12 and 16 weeks) make it difficult to draw conclusions. In our study,
because repeated synovial biopsy was performed at 16 weeks fol-
lowing one cycle of rituximab (2x 1-g infusion), it is plausible that a
repeated biopsy at the time of the second infusion at 6 months (not
available in sufficient numbers to be informative) could have detected
a wider/deeper effect on B cell lineages linked to clinical response.

Following tocilizumab therapy, nonresponders were character-
ized by a failure to reduce sublining macrophages, which is consis-
tent with previous literature indicating macrophages as markers of
treatment response”’.

To assess the relationship of gene expression changes and treat-
ment response, we developed a pipeline for mixed-model analysis
of RNA-seq data in repeat biopsies. This revealed patterns of change
in gene expression not detectable by standard analytical pipelines,
while interaction analysis allowed us to identify genes that were
affected by each drug specifically. Biological differences in syno-
vial gene expression following treatment with rituximab or tocili-
zumab were consistent with the cognate treatment targets: B cell
depletion and IL-6 receptor blockade, but also revealed unexpected
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differences such as differential changes in metalloproteinases.
Interaction analysis showed that rituximab responders had a greater
decrease in genes encoding for serum amyloid proteins, Ig chains,
the citrullination enzyme PADI2 and transcriptional regulator
RORgamma. In tocilizumab responders, a greater reduction in
pro-lymphoid follicle development genes was observed in keeping
with the important role of IL-6 as a B cell growth factor driving in situ
ectopic lymphoid structure development within inflamed tissues®.

In translational terms, the importance of molecular studies is
measured by their ability to enhance disease understanding, but also
on their clinical impact®. Thus, to determine the predictive value of
deep molecular characterization in foretelling treatment response,
we applied a number of machine learning methodologies resulting
in the selection of models effective at predicting treatment response
as tested by nested cross-validation (AUC for rituximab=0.744,
tocilizumab =0.681, refractoriness =0.686). The purpose of testing
multiple models was to determine whether nonlinear algorithms
(least-squares support vector machine (SVM), penalized dis-
criminant analysis (PDA), mixture discriminant analysis (MDA),
tree-based and so on) could outperform elastic net linear regres-
sion. In practice, for prediction of response to each drug individu-
ally, elastic net regression performed best. However, a GBM model
was superior in predicting refractoriness, consistent with the notion
that biological heterogeneity underlying refractoriness to multiple
drugs might require a nonlinear algorithm for optimal prediction.
Of relevance to future clinical practice, gene expression models
were clearly superior to those built using clinical and histological
data alone. Seropositivity, which has been weakly associated with
response to rituximab*’ was not included in the final models.

A known limitation of this study is the relatively modest sample
size of the training data for each predictive model. However, the
study was powered purely for the primary outcome of the origi-
nal clinical trial and numbers reflect the difficulty in conducting
biopsy-driven randomized trials in RA. With the current sample
size and case/biomarker ratio, statistical theory suggests that we
are likely to be only part of the way up the learning curve*'. The
AUCs derived in this study would still be relatively low for direct
application to clinical use without further validation and improve-
ment. Refining and reducing the number of genes in the models
with validation in independent cohorts could improve the predic-
tion models, as could incorporation of information from single-cell
studies and enhanced deconvolution methods. Another limitation
with regard to interpretation of the longitudinal results is that the
second biopsy at 16 weeks was an optional procedure and, thus, at
risk of selection bias. Although there were no major baseline differ-
ences, patients who underwent repeated biopsy had lower response
rates, which is expected because responders would have been less
likely to consent to a second biopsy.

In conclusion, this study provides insights from analysis of dis-
eased tissue regarding the mechanisms driving treatment response
heterogeneity in RA, and underscores the importance of integrating
predictive molecular pathology signatures into clinical algorithms
to optimize the usage of existing drugs. The identification of genes
and cell types associated with multidrug resistance could aid the
development of new drugs for refractory patients in whom current
medications targeting classical immune pathways are not effective.
We envisage that routine use of synovial biopsies could facilitate a
patient-centered approach® to the management of RA, thus moving
away from the current trial-and-error drug prescribing towards an
emergent era in which selection of the optimal drug is based on
synovial biopsy gene signatures.
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Methods

Patients and intervention. A total of 164 patients aged 18 years or over, fulfilling
the 2010 American College of Rheumatology/European Alliance of Associations
for Rheumatology (EULAR) classification criteria for RA and who were eligible
for treatment with rituximab therapy according to UK NICE guidelines—that

is, failing or intolerant to csDMARD therapy and at least one biologic therapy
(excluding trial IMPs), were recruited when fulfilling the trial inclusion/exclusion
criteria (for the full study protocol and baseline patient characteristics see Humby
et al.”). Briefly, patients underwent synovial biopsy of a clinically active joint at
entry to the trial, performed according to the expertise of a local center as either an
ultrasound-guided or arthroscopic procedure*’ Following synovial biopsy, patients
were randomized to receive rituximab as two 1,000-mg intravenous infusions

2 weeks apart or intravenous tocilizumab at a dose of 8 mgkg~' administered

at 4-weekly intervals. Patients were followed up every 4 weeks throughout the
48-week trial treatment period, during which RA disease activity measurements
and safety data were collected. An optional repeated synovial biopsy of the same
joint sampled at baseline was performed at 16 weeks (Supplementary Tables 3

and 4). The study protocol has been published online (http://www.r4ra-nihr.
whri.gmul.ac.uk/docs/r4ra_protocol_version_9_30.10.2017_clean.pdf) and was
registered on the ISRCTN database (no. ISRCTN97443826) and with EudraCT
(no. 2012-002535-28). Patient demographics are reported in the original trial
publication’. All patients provided written informed consent. Participants did not
receive any compensation, except for reimbursement of travel expenses. The study
was done in compliance with the Declaration of Helsinki, International Conference
on Harmonization Guidelines for Good Clinical Practice and local country
regulations. The protocol was approved by the institutional review board of each
study center or relevant independent ethics committee (UK Medical Research

and Ethics Committe, reference no. 12/WA/0307). The complete list of ethics
committees to have approved the protocol is reported below.

UK ethics committee
o Wales REC 3 (formerly REC for Wales)

Local ethics committees at EU sites

o Comité d’Ethique Hospitalo-Facultaire

. Comissio de Etica para a Investigagio Clinica

«  Comitato Etico Interaziendale AOU ‘Maggiore della Caritd di Novara, ASL BI,
ASL NO, ASL VCO

o Commissie Medische Ethiek UZ KU Leuven/Onderzoek

. Comité Etico de Investigacién Clinica del Hospital Clinic de Barcelona

«  Comitato Etico, Fondazione IRCCS Policlinico San Matteo

«  Regione Autonoma della Sardegna Azienda Ospedaliero Universitaria di
Cagliari Comitato Etico Indipendente

Complete list of participating sites for data collection:

«  Mile End Hospital and Whipps Cross Hospital, Bart’s Health NHS Trust,
London, UK

o Cliniques Universitaires Saint Luc, Louvain, Belgium

«  Santa Maria Hospital, Lisbon, Portugal

o  Azienda ospedaliera Maggiore della Carita, Novara, Italy

o University Hospital of Wales, Cardiff and Vale University Health Board,
Cardiff, UK

«  Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation
Trust, Newcastle upon Tyne, UK

o Southampton General Hospital, University Hospital Southampton NHS Foun-
dation Trust, Southampton, UK

«  Basildon University Hospital, Mid and South Essex NHS Foundation Trust
(formerly Basildon and Thurrock University Hospital NHS Foundation Trust),
Basildon, UK

o Hospital Clinic de Barcelona, Barcelona, Spain

o  Southend University Hospital, Mid and South Essex NHS Foundation Trust
(formerly Southend University Hospital NHS Foundation Trust), Southend, UK

o Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK

o Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy

«  Homerton University Hospital, Homerton University Hospital NHS Founda-
tion Trust, London, UK

«  Nuffield Orthopaedic Hospital, Oxford University Hospitals NHS Foundation
Trust, Oxford, UK

o Aintree University Hospital, Aintree University Hospital NHS Foundation
Trust, Liverpool, UK

«  Manchester Royal Infirmary, Manchester University NHS Foundation Trust,
Manchester, UK

o Guy’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK

«  Fondazione L.R.C.C.S. Policlinico San Matteo, Pavia, Italy

o Universitair Ziekenhuis Leuven, Leuven, Belgium

Response criteria and treatment switch. The primary endpoint was defined
as CDAI > 50% improvement from baseline at 16 weeks’. CDAI is calculated by

totaling the number of tender joints (0-28), the number of swollen joints (0-28),

NATURE MEDICINE | www.nature.com/naturemedicine

patient global health assessment on a 0-10 visuoanalogic scale and the care
provider global health assessment on a 0-10 visual analog scale.

As shown in Supplementary Fig. 1, CDAI 50% nonresponders at 16 weeks
were switched to the alternative biologic agent and their response was assessed
at 16 weeks following the switch, as determined by CDAI 50% improvement.
Including crossover patients, a total of 108 patients were treated with rituximab
and 117 with tocilizumab. Of those treated with rituximab, 43 were defined
responders (40%) while 53 responded to tocilizumab (45%). Among all
responders, 11 responded to rituximab following tocilizumab failure and
were classified as exclusive responders to rituximab (pro-rituximab), while 13
responded to tocilizumab following rituximab failure and were thus classified as
pro-tocilizumab. Patients in whom both drugs failed throughout the study were
classified as multidrug resistant/refractory (n=40).

Histological analysis. A minimum of six synovial biopsies were processed

in an Excelsior tissue processor before being paraffin-embedded en masse at
Queen Mary University of London Core Pathology department. Tissue sections
(3-5um thickness) were stained with hematoxylin and eosin and IHC markers
CD20 (Bcells), CD138 (plasma cells), CD21 (follicular dendritic cells) and

CD68 (macrophages) in an automated Ventana Autostainer machine. CD79A

(B cells) and CD3 (T cells) staining was performed in-house on deparaffinized
tissue following antigen retrieval (30 min at 95 °C), followed by peroxidase- and
protein-blocking steps. Primary antibodies (CD79A (clone JCB117, Dako),

CD3 (clone F7.238, Dako), CD20 (clone L26, Dako), CD68 (clone KP1, Dako)
and CD138 (clone MI15, Dako)) were used for 60 min at room temperature.
Visualization of antibody binding was achieved by 30-min incubation with Dako
EnVisionTM+ before completion by the addition of 3,3’-diaminobenzidine
(DAB) + substrate chromogen for 105, followed by counterstaining with
hematoxylin. Following IHC staining, sections underwent semiquantitative scoring
(0-4), by a minimum of two assessors, to determine levels of CD20* and CD79a*
Bcells, CD3* T cells, CD138* plasma cells and CD68* lining (L) and sublining
(SL) macrophages, adapted from a previously described score® and recently
validated for CD20*. Hematoxylin-and-eosin-stained slides also underwent
evaluation to determine the level of synovitis according to the Krenn synovitis
score (0-9)*. The sum of semiquantitative scores for Krenn synovitis score (0-9),
CD20 (0-4), CD3 (0-4), CD138 (0-4) and CD68 (0-4) is reported as the immune
score (0-25). Synovial biopsies were classified into synovial histological patterns,
also known as pathotypes, according to the following criteria: (1) lymphomyeloid
presence of grade 2-3 CD20* aggregates, CD20 >2 and/or CD138 >2; (2)
diffuse-myeloid CD68SL >2, CD20 <1 and/or CD3 >1 and CD138 <2; and (3)
pauci-immune-fibroid CD68SL <2 and CD3, CD20 and CD138<1.

RNA-seq and molecular classification/analysis. A minimum of six synovial
samples per patient were immediately immersed in RNA-Later and RNA was
extracted from tissue using one of two protocols: phenol/chloroform isolation

and Zymo Direct-zol RNA MicroPrep—Total RNA/miRNA Extraction kit. In both
methods, tissue was lysed in Trizol solution using a LabGen125 homogenizer.
Briefly, for the phenol/chloroform extraction method, 1-10mg of tissue was lysed
and then sheared using a 21 G needle. The tissue lysate was then mixed vigorously
with chloroform before centrifugation. The aqueous phase was removed and
mixed with ice-cold isopropanol for 30 min. Following further centrifugation,

the RNA pellet was washed in 70% ethanol before air-drying and resuspension

in RNAse-free water. Samples extracted using Zymo Direct-zol Miniprep kits

were processed as per the manufacturer’s instructions. Briefly, 1-10 mg of tissue
lysate was run through the Zymo-Spin IC column. Columns were then washed
using the appropriate kit wash buffers before RNA was eluted and resuspended

in RNAse-free water. Quality control was carried out by quantifying samples

via spectrophotometer readings on a Nanodrop ND2000C. RNA integrity was
measured using Pico-chip technology on an Agilent 2100 Bioanalyzer to determine
RNA integrity number. A total of 214 synovial tissue samples were available for
RNA extraction and were subsequently sent for RNA-seq to Genewiz. RNA-seq
libraries were prepared using the NEBNext Ultra RNA Library Prep kit for
Illumina, following the manufacturer’s (NEB) instructions. Briefly, messenger
RNAs were initially enriched with Oligo d(T) beads followed by limited PCR
cycles. The sequencing library was validated on an Agilent TapeStation (Agilent
Technologies) and quantified using a Qubit 2.0 Fluorometer (Invitrogen), as well as
by quantitative PCR (KAPA Biosystems). The sequencing libraries were clustered
on Illumina flowcells. Sequencing was performed on an Illumina HiSeq instrument
according to the manufacturer’s instruction. Samples were sequenced using a

2% 150-base-pair (BP) paired-end configuration.

RNA-seq data processing. A total of 214 paired-end RNA-seq samples from

50 million reads of 150-bp length were trimmed to remove the Illumina adapters
using bbduk from the BBMap package v.37.93, with default parameters. Transcripts
were then quantified using Salmon'® v.0.13.1 and an index generated from the
Gencode release 29 transcriptome following the standard operating procedure.
Tximport v.1.13.10 was used to aggregate transcript-level expression data to genes,
then counts were subjected to variance-stabilizing transformation (VST) using

the DESeq2 v.1.25.9 package”. Following RNA-seq quality control, 36 samples
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were excluded due to poor mapping or RNA quality. Using unsupervised PCA

and plotting the first five eigenvectors in pairs, one outlier was identified and
removed from further analysis. Thus RNA-seq data from 133 patients were available
for subsequent analysis at baseline, and from 44 patients for the follow-up time
point. Baseline characteristics of patients with available RNA-seq are shown in
Supplementary Table 5. The first six PCs did not associate with demographics,
treatment and its associated response or clinical disease features such as disease

activity or anticyclic citrullinated protein antibody status (Extended Data Fig. 2a,c,d).

Starting with length-scaled transcripts per million (TPM) counts derived using
the R package tximport, Limma voom was used for normalization of data and
calculation of weights for linear modeling*.

Cluster analysis. For cluster analysis, after removal of low-expressed genes, VST
data were filtered using a coefficient of variation cutoff of >0.075 to select the
22,256 (of 56,809) most variable genes . These genes were used for cluster analysis
of all baseline patients (7= 133) using the M3C algorithm' with partitioning
around medoids clustering and 1,000 iterations. The lowest penalized cluster
stability Index was used to select the number of clusters. After cluster assignment,
patients were split into treatment groups using Pearson’s distance metric and
complete linkage method, and plotted using the ComplexHeatmap package
(v.2.2.0) in R. An y* test was applied to test significance between clusters and
response to treatment based on the trial primary outcome measure (CDAI 50%)
and, additionally, EULAR C-reactive protein (CRP) response (EULAR response) as
another commonly used criterion.

Differential expression and modular analysis of RNA-seq data. Samples from

all patients treated with either rituximab or tocilizumab throughout the trial

were included in DEG analysis. This also comprised nonresponders who, as per
trial protocol, were switched to the alternative medication at week 16, as shown

in Supplementary Fig. 1. Neither responders nor nonresponders showed any
significant differences in their baseline characteristics, including histological

and molecular B cell status, gender or disease duration (Supplementary Table 6).
Low-expressed genes were excluded from analysis, with the remaining 30,841 used
for DEG analysis. This was based on negative binomial distribution via regression
models of normalized count data using DESeq2, and a Wald test to compare
variation between treatment response groups in synovium RNA-seq samples. Wald
test-derived Pvalues were FDR adjusted using Storey’s g-value, with a cutoff of
q<0.05 used to define significantly DEGs (Supplementary Data 1). Distributions
of DEGs are illustrated in volcano plots, and DESeq2 outputs were used for further
modular analysis with the Bioconductor package QuSAGE v.2.10.0. Gene modules
from Li et al.”? and WGCNA modules were selected for gene set enrichment.
Deconvolution. MCP-counter' was used to deconvolute synovial RNA-seq, with
the package Immunedeconv. Following deconvolution, patients were classified
into rich/poor according to the median value of the individual cell type (for
example, B cell rich if above the median value of MCP B cells, poor if below).

For the enrichment of four fibroblast subtypes (SC-F1: CD34* sublining, SC-F2:
HLA* sublining, SC-F3: DKK3* sublining and SC-F4: CD55* lining), we used
average expression of gene signatures obtained from differential gene expression
analysis and known markers previously described by scRNA-seq'*. Module
scores for each subtype were calculated using the AddModuleScore function in
the R package Seurat. The top five differentially expressed genes were considered
subtype-specific gene sets and did not have genes in common. Wilcoxon testing
was used for statistical assessment of module scores when comparing responders
and nonresponders.

Crossover analysis of patients who underwent treatment switch. The
drug-crossover analysis was performed on baseline RNA-seq samples of patients
who underwent treatment switch (Fig. 3a). RNA-seq counts of protein-coding
genes (n=19,508) were used to perform a likelihood ratio test (LRT) that was
calculated in comparison to a reduced model with the DESeq2 R package.
Three-dimensional volcano plots and radial plots were generated using the
volcano3D (v.1.0.3) package in R (Fig. 3c—¢). QuSAGE was applied using
WGCNA-derived gene modules, and radial plots were created using the volcano3D
package with a Pvalue significance threshold of <0.05 (Fig. 3e).

Multiplex immunofluorescence. Inmunofluorescence staining was performed on
3-um, formalin-fixed, paraffin-embedded human sections obtained from synovial
tissues of patients with RA. Tissue sections were deparaffinized in sequential
changes of xylene and ethanol chambers before washing and placing in a preheated
target retrieval solution (pH 6.0; Dako, no. S1699) in a pressure cooker for 15 min.
Tissue sections were allowed to cool at room temperature (RT) before washing

in Tris-buffered saline (TBS). Endogenous peroxidase and biotin activity were
blocked with peroxidase (Dako, no. $2023) for 10 min at RT.

Antibody specifications used for immunofluorescence can be found in
Supplementary Table 7. In brief, for CD90/CD45/DKK3 staining, protein block
(Dako, no. X0909) was applied for 1h, slides were stained with the first primary
antibody (CD45; Dako, no. M0701, mouse IgG1), washed three times in TBS
then incubated with Anti-Mouse Envision system horseradish peroxidase

(HRP; Dako, no. K4001) for 30 min at RT. After three washes in TBS, the Cy5/
Alx647-conjugated Tyramide reagent (1:100; Thermofisher, no. B40958) was
applied for 3 min. After three washes in TBS, antibody stripping was performed
by placing slides in preheated target retrieval solution (pH 6.0; Dako, no. $1699) in
a pressure cooker for 15min. This process was repeated for one of two additional
primary antibodies: CD90 (1:240; Abcam, no. 133350, rabbit) or DKK3 (1:150;
Sigma-Aldrich, no. HPA011868, rabbit), followed by Anti-Rabbit Envision system
HRP (Dako, no. K4003) and Alx488-conjugated Tyramide reagent for CD90
(1:100; Thermofisher, no. B40953) or Alx555-conjugated Tyramide reagent for
DKK3 (1:100; Thermofisher, no. B40955), with antibody stripping in between as
described above.

DAPI (Thermofisher) nuclear counterstaining was applied for 10 min at RT and
slides were then mounted with ProLong Gold Antifade reagent (Thermofisher).

Images were captured using a NanoZoomer S60 Digital slide scanner
(Hamamatsu, no. C13210-01) at X20 magnification at a resolution of 440 nm per
pixel (DPI, no. 57727), with the following exposure times: CD45 alx647 Cy5, 16 ms;
CD90 alx488 FITC, 32 ms; DKK3 alx555 TRITC, 24 ms; DAPI, 224 ms. Image
analysis was performed using NDP.view 2 Software (Hamamatsu Photonics, no.
U12388-01).

GeoMx DSP. Formalin-fixed, paraffin-embedded synovial tissue from 12 patients
with RA, before treatment with rituximab or tocilizumab, was profiled using

the GeoMx DSP platform as previously described”. Briefly, tissue morphology
was visualized using fluorescent antibodies CD68-AF532 (clone KP1, Novus),
CD20-DL594 (clone IGEL/773, Novus) and CD3-AF647 (clone UMAB54,
Origene) and Syto13 (ThermoFisher).

For the NanoString GeoMx DSP WTA assay, slides were prepared following
the automated Leica Bond RNA Slide Preparation Protocol (NanoString, no.
MAN-10131-03). In situ hybridizations with the GeoMx Whole Transcriptome
Atlas Panel (WTA, 18,677 genes) at 4-nM final concentration were done in Buffer R
(NanoString). Morphology markers were prepared for four slides concurrently
using Syto13 (DNA), CD20, CD3 and CD68 in Buffer W for a total volume of
125 pl perslide. Slides incubated with 125 pl of morphology marker solution at RT
for 1h, then washed in SSC and loaded onto the NanoString DSP instrument.

On the DSP instrument each slide was scanned with a X20 objective at scan
parameters 60 ms FITC/525nm, 200 ms Cy3/568 nm, 250 ms Texas Red/615nm
and 300 ms Cy5/666 nm.

The resulting immunofluorescent images were used to select six freeform
polygon-shaped ROIs containing approximately 200 nuclei in CD68* synovial
tissue lining and superficial sublining, CD20-CD3- sublining and CD20*CD3*
lymphocyte aggregates.

After approval of ROIs, GeoMx DSP photocleaved the ultraviolet
(UV)-cleavable barcoded linker of bound RNA probes and collected individual
segmented areas into separate wells in a 96-well collection plate.

The dataset included 72 ROIs from 12 patients (four refractory and eight
responder) across the three ROI types. An NTC water well was used for quality
control checks.

DSP analysis. GeoMx WTA sequencing reads from NovaSeq6000 were compiled
into FASTQ files corresponding to each ROIL FASTQ files were then converted to
digital count conversion files using the NanoString GeoMx NGS DnD Pipeline.
Out of 18,677 genes, 17,065 exceeded the lower level of quantitation (LOQ) in
>10% of ROIs; genes that did not exceed LOQ were excluded from the analysis.
For normalization, counts were divided by sample-specific size factors determined
by the median ratio of gene counts relative to geometric mean per gene. The
DESeq2 R package was used for this preprocessing step.

Differential expression analysis. We conducted differential expression analysis
to compare responders and refractory patients using DESeq2°. This analysis

was done for all ROIs simultaneously (responders, n =48; refractory, n=24)

but separately for each location in the synovial layer: CD68* lining/superficial
sublining (responders, n=17; refractory, n=8); CD20-CD3" deep sublining
(responders, n =21, refractory n=12); and CD3*CD20* lymphoid aggregates
(responders, n=10; refractory, n=4). Since samples were collected from different
locations, in the analysis of all samples we included location as a covariate
(~location + response) to eliminate its influence on gene expression. The gvalue
Rpackage implementing Storey’s g-value method was used to correct for multiple
testing effects, and a cutoff of g < 0.05 was used to define significantly DEGs.

Longitudinal mixed-effects model analysis. Longitudinal analysis of RNA-seq on
paired synovial biopsies was performed by fitting a negative binomial distribution
GLMM for each gene. Because the most widely used mainstream differential gene
expression analysis tools—edgeR, DESeq2* and Limma voom**—are all unable

to fit mixed-effects linear models, we developed the R package glmmSeq to fit
negative binomial mixed-effects models at the individual gene level. glmmSeq
uses the glmer function from the R package Ime4 (v.1.1-25), with negative
binomial family function from the MASS package (v.7.3-53). Models were fit
using maximum-likelihood estimation by Laplace approximation and bound
optimization by quadratic approximation. For analysis of the differential effects of
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the two trial medications over time, the following model was fitted for each gene
individually:
Yijg ~ NB (”ijg’ ag)
log (,uijg) = o5 + ﬂgo + ﬂgltimeij + ﬂgzmedicationi + ﬁg3time;j medication; + bg
bgi ~ N (O, Oéb)

where Y}, is the longitudinal raw count of gene g in individual I at timepoint j,

a, is the dispersion parameter for each gene, o, is an offset term scaled to the
logarithm of the total library size for each sample, b are random effects between
individual patients, and N and NB are the functions for normal distribution and
negative binomial distribution, respectively. TPM counts were used as input, and
only individuals with paired samples were included (88 samples, 44 individuals).
The dispersion parameter for the negative binomial distribution for each gene was
calculated using the DESeq2 function estimateDispersions. To reduce the problem
of inflated model coefficients relating to zero counts, genes of low expression were
removed using the Limma (v.3.44.3) function filterByExpr and zero counts were
adjusted to a pseudo-count of 0.125, equivalent to the ‘prior count” approach of
edgeR and Voom whose internal defaults are 0.125 and 0.5, respectively. Statistical
testing of the fitted model coefficients was performed using the Wald type 2 y* test
from the car package (v.3.0-10). Pvalues were FDR adjusted using Storey’s g-value,
with a cutoff of FDR < 0.05 considered significant for each term in the model
(Supplementary Data 4). Predictions were calculated for each fitted gene model
based on the fitted linear model coefficients, and 95% ClIs for the fixed effects

of the fitted model were calculated from standard deviations of the predictions

by extracting prediction variances as the diagonal from the variance-covariance
matrix of the predictions XVX, where X represents the model matrix corresponding
to the new data and V is the variance-covariance matrix of the model parameters.
Similarly, for analysis of the difference between CDAI 50% responders and
nonresponders following drug exposure for each medication, the following

model was fitted for each drug cohort (58 samples, 29 individuals for rituximab;

30 samples, 15 individuals for tocilizumab):

log (,uijg> = 0ij + By + Py time;; + B, response; + fstimejresponse; + by;

The R package glmmSeq is downloadable via CRAN and the source code is also
available, from https://github.com/KatrionaGoldmann/glmmSeq. When compared
against a Gaussian linear mixed-effects model on log count data, glmmSeq showed
similar results with strong correlation between Pvalues generated using either
distribution (Supplementary Fig. 2a—c). Q-Q plots suggested that the negative
binomial mixed model showed greater power in identification of significant effects
(Supplementary Fig. 2d-f).

Longitudinal pathway analysis. Genes showing a significant change in the
analysis described in the previous section were used for GO/pathway enrichment
analysis by means of the clueGO (v.2.5.5) Cytoscape plug-in. To allow an
automated enrichment process, clueGO REST-enabled features were used in R
using the following GO/pathway repositories: BiologicalProcess-EBI-UniProt-GOA
(11 February 2020), CellularComponent-EBI-UniProt-GOA (11 February

2020), ImmuneSystemProcess-EBI-UniProt-GOA (11 February 2020),
MolecularFunction-EBI-UniProt-GOA (11 February 2020), KEGG (27 February
2019) and REACTOME (27 February 2019).

Building classifier models for prediction of rituximab and tocilizumab response
and refractory status. Baseline gene expression and clinical and histological data
were used as features for machine learning models built to predict CDAI 50%
response to either rituximab or tocilizumab treatment at the primary endpoint

(16 weeks) or refractory status, defined as nonresponse to both drugs at the
secondary endpoint (post-treatment crossover, 24 weeks). An overview of the
pipeline is shown in Fig. 6a.

Although the R4RA study was not powered for machine learning,
information theory demonstrates that sparse models developed from large
biomarker panels in which only a small percentage of biomarkers have nonzero
effects can still demonstrate evidence of prediction with relatively modest sample
size, although the small sample sizes in our study mean that the predictive
models are likely to be only part of the way up the learning curve’'. In the
present study ~2% of the 1,500 biomarkers inputted into the modeling system
have a nonzero effect. If the C-statistic of the optimal classifier is 0.83, a sample
size equivalent to 0.05 events per variable (n=83) would be required to learn a
classifier that has expected information for discrimination equal to 25% of that
obtained by the optimal classifier (equivalent to a C-statistic of 0.68) (see the
online calculator, https://pmckeigue.shinyapps.io/sampsizeapp/)*. The model
feature space was created using either clinical and histological parameters or
clinical data with gene expression. Gene expression data underwent VST and
were subset to protein-coding genes (using gencode gene annotation v.29) with
the highest expression variance (top 10%). Highly correlated genes (r>0.9) were

NATURE MEDICINE | www.nature.com/naturemedicine

removed using the findCorrelation function from the R package caret (v.6.0-86),
leaving 1,438 genes. Clinical features included: baseline tender joint count (TJC),
swollen joint count (SJC), age, gender, CDAI, erythrocyte sedimentation rate
(ESR), CRP and disease activity score based on ESR and CRP (DAS28ESR and
DAS28CRP, respectively). Histology features included CD3, CD68L, CD68SL,
CD20 and CD138.

Following processing, data were split into 10X 10 nested folds (Fig. 6a
(2)). For models using gene expression features, filtering was performed using
either RFE or univariate filtering from the caret package v.6.0. The number of
features selected was chosen to maximize accuracy from 25, 30, 50 or 100. Model
hyperparameters were tuned by inner tenfold cross-validation, with model
accuracy determined in separate outer cross-validation folds to give an unbiased
estimate of model accuracy.

Seven machine learning methodologies from the caret package were used to
create the classifier models: elastic net (glmnet), random forest (RF), least-squares
support vector machine (SVM) with radial basis function kernel (svmRadial),
least-squares SVM with polynomial kernel (svmPoly), GBM, MDA and PDA.
Models that failed to converge during training were excluded from evaluation. The
purpose of testing multiple models was to determine whether nonlinear decision
boundaries—as used by SVM, MDA, PDA and tree-based prediction algorithms
such as GBM—could outperform penalized linear regression.

To evaluate model performance, receiver operating characteristic (ROC) curves
were built using the plotROC R package v.2.2.1 to determine prediction accuracy in
the outer fold test data and samples omitted for the inner fold. AUC was calculated
to determine prediction performance. Tuning parameters for the final model
were finalized as the mean over all ten outer folds. The final best model for each
classification was fit to the entire dataset, exported and feature importance ranked.

Statistical analysis. For cross-sectional comparisons of continuous variables
between two groups the Mann-Whitney U-test was used, whereas the Wilcoxon
signed-rank test was used to assess the difference between groups with longitudinal
paired data. More specific analyses of RNA-seq count data are detailed above in
each relevant section. Rv.4.0.0, or later, was used for all formal testing analyses.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The datasets generated during and/or analyzed during the current study are
available on an interactive web interface that allows direct data exploration (https://
r4ra.hpc.qmul.ac.uk/). A searchable interface is available to examine relationships
between individual synovial gene transcript levels and histological and clinical
parameters, and clinical response at 16 weeks. In addition, interactive versions of
Figs. 3c and 5b and Extended Data Fig. 5e,f allow users to click on individual genes
to see their expression and search for genes of interest. The website was constructed
using Rshiny server 1.5.16, with interactive plots generated with R plotly 4.9.3.

The datasets can be downloaded from https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-11611.

Other public datasets used for pathway analysis were sourced from the

GO annotation (GOA) database (BiologicalProcess-EBI-UniProt-GOA

(11 February 2020), CellularComponent-EBI-UniProt-GOA (11 February

2020), ImmuneSystemProcess-EBI-UniProt-GOA (11 February2020),
MolecularFunction-EBI-UniProt-GOA (11 February 2020)), KEGG

and Reactome.

Code availability

Source code for all analyses written in Rv.4.0.0 or later has been uploaded to
Github and is available at https://github.com/EMR-bioinformatics/R4RA. The
Rpackage glmmSeq is downloadable via CRAN, and the source code is available
from https://github.com/KatrionaGoldmann/glmmSeq. R objects for all classifiers
are available in the supplementary material as Supplementary Data 5.
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Extended Data Fig. 1| Histological analyses. a, Atlas of semi-quantitative synovial IHC scores for immune cells. b, Distribution of semiquantitative scores
at baseline in all patients, individually shown in the y axis. The total on the x axis represents the sum of the individual scores (Immune score). ¢, Baseline
semi-quantitative IHC scores, Krenn synovitis score (‘Synovial score’) and total Immune score in patients stratified according to 16 weeks CDAI50%
response to rituximab (top) and tocilizumab (bottom). Two-sided Mann Whitney test. ns= p value >0.05. n=161 patients. Boxplots showing median with
first and third quartiles.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Unsupervised Principal Component Analysis shows association primarily with cell types present and consequently also
pathotype. a, Clinical features and their degree of association with Principal Components (PC) 1-10 with coloring indicating the -log(p) (left) and FDR
corrected -log(q) value (right). RF, Rheumatoid Factor; CCP, anti-Cyclic Citrullinated Protein; CRP, C-Reactive Protein; ESR, Erythrocyte Sedimentation
Rate; SJC, Swollen Joint Counts; TJC, Tender Joint Count. b, PC 1and 3 gene expression variance with coloring by (b) pathotypes showing fibroid (blue),
lymphoid (red), myeloid (pink) and ungraded (grey) patients. Ellipses indicate 80% confidence interval. c and d, PC1 and 2 colored by response to
treatment. Patients allocated to treatment group rituximab are displayed in ¢ and to tocilizumab in d, with non response colored in red, response to RTX
in blue and response to TOC in gold. Ellipses shown for all PCs represent the 80% confidence interval. e, Differential expression of genes important

for B-cells (MS4A1, CD79A, CD79B, PIK3CA, BTK and SYK) and Weighted Gene Correlation Network Analysis (WGCNA) cell modules (B-cells, M1
macrophage cytokine signalling, Fibroblast 2a THY1+) in Rituximab treated patients (n=68), according to the consensus clusters shown in (Fig. 2a).
Boxplots show median with upper and lower hinges and whiskers extending to highest and lowest point, but at most 1.5x the interquartile range. p-values
stated for Kruskal-Wallis test. f, IL-6 related genes (IL6R, IL6, IL6ST, JAK1, JAK2 and STAT3) and WGCNA cell modules expression in tocilizumab (Fig. 2b)
treated patients (n=65) based on consensus clusters. Boxplots as above. g, Boxplots showing median with upper and lower hinges for semiquantitative
histological scores of CD3, CD20, CD68L, CD68SL, CD138 and CD79a for all patients (n=133) split into consensuscluster 1and consensuscluster 2.
Kruskal-Wallis test p-values are shown.
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Extended Data Fig. 3 | Influence of immune cells on consensusclusters. a-d, Volcano plots showing differential gene expression analysis using DESeq2
comparing consensuscluster 1and 2 of patients treated with rituximab (left) or tocilizumab (right). While a and b were analyzed without covariates,

c and d were adjusted for principal component (PC1). Comparison between groups were tested for significance using Wald test and multiple testing

was corrected for with Storey's q value (q < 0.05 = significant, shown in blue). Positive log2fold changes represent upregulation in consensuscluster

2, negative log2fold changes represents upregulation in consensuscluster 1. e, Correlation plot highlighting relation between PC1, histology markers

and genes involved in the mode of action of RTX and TOC. Positive correlation is shown in blue while red would indicate negative correlation. For all
correlations without significance, the p-value is shown. f,g, Volcano plots of DEGs using DESeq2 comparing CDAI50% responders versus non responders
to rituximab (f) and tocilizumab (g) after adjustment for principal component 1. Comparison between groups using Wald test and correcting for multiple
testing Storey's g value (g < 0.05 = significant, shown in blue). Positive values represent upregulation in responders and negative values downregulation

compared to non-responders.
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Extended Data Fig. 4 | Inmunofluorescence of DKK3 + fibroblasts. DKK3 + fibroblasts in refractory (left) and responder (right) patients (representative
image out of 3 refractory and 3 responders). Immunofluorescence with DNA in blue, CD45 in red, CD90 in green and DKK3 in yellow. Lines at 0.250 mm
in the overview (top panels) and 0.05mm in the higher magnification (bottom panels).
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Extended Data Fig. 5 | Longitudinal analysis of paired pre- and post-treatment synovial biopsies. a, Schema showing an overview of longitudinal analysis
of matched pre and post-treatment synovial biopsies, with number of samples for each medication (in brackets samples with available RNA-Seq).

b, Semi-quantitative scores at baseline and 16 weeks in patients stratified according to treatment with rituximab (n=41) or tocilizumab (n=24). Mean

+ SEM. Exact p values from two-sided analysis of covariance testing the difference in the changes from baseline between treatments, with treatment as
factor and baseline score as covariate. ¢, MCP-counter scores in baseline and 16 weeks samples. Scatterplots showing individual samples and boxplots
showing median and first and third quartiles, whiskers extending to the highest and lowest values no further than 1.5%interquartile range. Two-sided
Wilcoxon signed-rank test (paired), comparing baseline and 16 weeks, adjusted for multiple testing by false discovery rate. n=29 for rituximab and n=15
for tocilizumab. d, Semi-quantitative scores of synovial immune cells at baseline and 16 weeks in patients treated with rituximab (n=41) and tocilizumab
(n=24), stratified by CDAI50% response (NR=non responders, R=responders). Boxplots showing median and first and third quartiles. p values shown
when <0.05, two sided Wilcoxon signed-rank test (paired) comparing baseline and 16 weeks, adjusted for multiple testing by false discovery rate.

e,f, Longitudinal negative binomial mixed effects model on Rituximab (n=29) and (f) Tocilizumab (n=15) treated patients showing differential gene
expression between responders and non-responders categorised by CDAI 50% response. Blue genes show greater absolute gene expression change in
rituximab responders, yellow genes show greater absolute gene expression change in tocilizumab responders, while red genes showed greater absolute
gene expression change in non-responders. g,h Scatter plots of representative genes with coloured points showing regression line of fitted negative
binomial mixed effects model with error bars showing 95% confidence intervals (fixed effects) from analyses in e & f respectively. Grey points and lines
show raw paired count data. n=29 for rituximab and n=15 for tocilizumab.
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Extended Data Fig. 6 | Venn diagram showing overlap in genes between machine learning models and comparison with models built using only clinical
and histological variables. a, Venn diagram showing the overlap in genes selected as features in optimal predictive models for prediction of rituximab and
tocilizumab response at week 16 and refractory state (failure to respond to both rituximab and tocilizumab). b, Grid of plots showing the optimal predictive
models for different treatment when using clinical and histological variables only. From top to bottom plots show: ROC curves for the best model on the
test data (from outer-fold) set; ROC curves on the left-out (from inner-fold) set; and the variable importance when fit to the whole data set.
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Extended Data Table 1| Synovial histological analysis stratified according to treatment at baseline and 16 weeks

Unpaired analysis

(all patients) Paired analysis

RTX TOC

. . Treatment
Baseline biopsyt N=41 N=24 effect
RTX TOC Baseline Week 16 Absolute Baseline Week 16 Absolute Least Squares
N=82 N=79 Change Change mean difference
(%) (%) (95% ClI)
CD20 1.62(1.3) 1.5(1.4) 1.88(1.4) 0.35 -1.531f 1.67(1.3) 1.33(1.3) -0.34 1.02
(0.8) (-81%) (-20%) (0.52t01.52) §
CD79a 1.54(1.3) 16(1.4) 1.77(14) 09(1.1) -0.871f 1.54(1.3) 1.47(1.2) -0.07 0.55
(-49%) (-5%) (0.04 to 1.06) §
CD138 1.43 (1.3) 1.42 1.68 (1.3) 0.92 -0.76 § 158 (1.4) 1.25(1.1) -0.33 0.36
(1.4) (1.1) (-45%) (-21%) (-0.16 to 0.88)
CD3 1.43 (1.1) 1.47 1.63 (1.1) 1.52 -0.11 1.58 (1.1) 1.42(1.2) -0.16 -0.08
(1.2) (1.2) (-7%) (-10%) (-0.64 to 0.49)
CD68L 111 (1) 1.201.1) 1.2 (1) 1.07 -0.13 1.46 (1.1) 1.38 (1.1) -0.08 0.2
(0.9) (-11%) (-5%) (-0.27 to 0.66)
cDé6s8sSL  1.67 (1) 1.75 1.88(0.8) 1.3(0.6) -0.58% 1.92(1) 0.88(0.7) -1.04% -0.43
(1.1) (-31%) (-54%) (-0.78 t0 -0.08) §
KRENN 3.99 (2.6) 3.88 4.63 (2.5) 3.23(2) -1.41f 4.38(2.8) 3.46(2.4) -0.92 0.32
(2.9) (-30%) (-21%) (-0.69 to 1.32)

Data shown as mean (SD)

1 No significant difference between treatments was observed for the presented values (tested through two-sided Mann-Whitney U
test)

I P<0.05 and 1t P<0.001 for the within group change from baseline (paired two-sided Wilcoxon test comparing baseline values with
values at 16 weeks within the same patients).

§ P<0.05 for the comparison with Non-Responders of the change from baseline (two-sided analysis of covariance testing the
difference in the changes from baseline between treatments, with treatment as factor and baseline score as covariate)
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Extended Data Table 2 | Genes included in prediction models

Rituximab glmnet model (n=40) Tocilizumab glmnet model (n=39) Refractory gbm model (n=53)
Feature Coefficient Feature Coefficient Feature Variable Importance
(Intercept) 5.69552748514019 (Intercept) 3.19206338881876 AC012184.2 100

-1.14422451710699 SHC3 -0.9506727622579 CDC20 95.170309
XCR1 0.707646472410568 XCR1 0.578326859075367 AC093525.2 91.1936567
TCN1 -0.615553984416957 DLX4 -0.50234602022184 PLEKHG6 80.6373628
DLX4 -0.571510321110929 MYH6 0.46094658448335 IGHV7.4.1 71.8433933
PLEKHG6 0.527512530643293 TCN1 -0.456920260918449 DLX4 69.8401658
COLGALT2 -0.472620749955377 PLEKHG6 0.427037407745866 NTN1 68.5874463
ERICH3 0.46239002320414 AP001781.2 -0.417605293286337 HIST2H2AA3 67.3421999
MLXIPL 0.458721563519343 MucCe -0.407666690289899 TCN1 59.6729884
MucCe -0.449465080536624 AC009336.2 -0.378114134820332 TPSD1 56.9723361
TBC1D3 -0.359645303258524 CD36 0.2934594229732 CHAD 40.4923247
MYH6 0.324916436550054 NPIPA3 -0.276730935859407 CcCL4L2 40.3108964
CXCL14 0.323334930763297 CXCL14 0.253600742881538 AC005943.1 39.9582397
AC009336.2 -0.315393851334059 §S8C5D 0.242430940923604 WIF1 37.3430992
RELN -0.30488559410969 SLC18A2 -0.228144109941232 BIVM.ERCC5 33.8054518
NPIPA3 -0.269537360348985 COLGALT2 -0.224532967030711 XCR1 30.4080062

AC093525.2 0.268288560974878 AC093525.2 0.213706341997978 LGALS2 30.298866
MESP1 -0.202179911650989 GALNT15 -0.200582450371679 ITGA2B 27.8794875
RARRES2 -0.16790405402562 AC005943.1 -0.197723791485862 EMILIN3 27.4241367
NKX3.2 0.165979616442918 HOXD11 0.194447138627062 RSPO2 26.8782545
BAIAP3 -0.16413512537954 SAA2 0.182599250631781 Muce 25.3948024
FNDC1 0.163965372051913 PTGER3 0.15632600337877 SEPT5.GP1BB 25.3534314
WIF1 -0.159387109214322 DEFA1B -0.146279294560321 FAM69C 23.5779241
DEFA1B -0.150372719933663 AC068547.1 0.145935148601559 G0Ss2 23.1608071
HIST2H2AA3 0.130572263650011 MESP1 -0.131997293633455 RASD1 22.7461011
CXCL2 0.115562086959268 FAM180A 0.113575095405195 CXCL14 22.3433041
SAA2 0.113295160116801 IGHV7.4.1 -0.0900936298428141 CD36 20.2433455
AC068547.1 0.09337884547986 TuBB1 -0.0893558785018349 SCD 19.8377483
CDON 0.0930572126320649 SCARA3 0.0869103787770354 SAA2 19.4933826

IGHV7.4.1 -0.0930059340722994 HIST2H2AA3 0.0854244671359916 EDIL3 19.339758
DKK3 0.0473023857512596 Muc? -0.0795882677919899 AL139300.1 15.1353174
NOG -0.0465591623520516 COL5A1 0.0748161658468337 FNDC1 13.5151599
PI16 0.0424489735581677 VMO1 0.0725050837746321 PRRG3 12.7607755
Cé6orf58 -0.0326895582286158 PTPRZ1 -0.0661662057756412 AC068547.1 12.0432585
KCNIP2 0.0286380156880927 CDC20 0.0387446378854994 $100B 11.2721038
EIF3CL 0.0220297355878577 NKX3.2 0.0386994986365735 AP001781.2 9.67421296
ITGA10 0.0182583671914648 AC135068.9 0.0288645878412412 PTPRZ1 9.19786521
MAL2 0.0155992022370852 KCNIP2 0.0267040670856395 MUM1L1 8.64265619
MDFI 0.0132095898262461 MDFI 0.0185364578535105 MYH6 8.46167437
STAC3 -0.0107996915197592 FNDC1 0.0120831560470461 PTGER3 8.45271951
FIBIN -0.0045866623469339 TUBB1 8.42487731
LEFTY2 7.66024555
SHC3 7.42457667
ITGA10 7.11717593
PPP1R1A 7.04592859
PADI4 6.26573819
AL121900.2 6.18965004
SLC18A2 6.05162276
DUSP2 5.38142396
TNFRSF11B 4.80264477

COL11A2 4.6298342

COLGALT2 4.6152816
PDE4C 4.02934052
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

X] A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

XX X

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

OXX O OO0 000F%
X

X OO X

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection RNA-Seq: FastQC files were generated on an lllumina HiSeq instrument (performed by Genewiz (South Plainfield, NJ, USA)) and FASTQC files
were returned. Transcript quantification using Salmon (version 0.13.1), index generation from Gencode release 29 transcriptome (gencode
gene annotation v29) https://www.gencodegenes.org/human/release_29.html, Tximport (version 1.13.10), variance stabilizing transformation
(VST) using the DESeq2 (version 1.25.9)

DSP:GeoMx WTA sequencing reads from NovaSeq6000 was compiled into FASTQ files corresponding to each ROI. FASTQ files were converted
to Digital Count Conversion (DCC) files using the NanoString GeoMx NGS DnD (DnD 1.0) Pipeline.

Data analysis Power calculations: edgeR (version 3.32.1), RNASeqPower (version 1.34.0)
RNA-Seq data and PCA analysis: DESeq2 (version 1.25.9), edgeR (version 3.32.1), limma (version 3.44.3), PCAtools (version 4.1)
Cluster analysis: edgeR (version 3.32.1), ComplexHeatmap (version 2.2.0), M3C (version 1.12.0), corrplot (version 0.90), DESeq?2 (version
1.25.9), qvalue (version 2.22.0)
Differential expression and modular analysis: DESeq2 (version 1.25.9), edgeR (version 3.32.1), Limma (version 3.44.3), tmod (version 0.46.2),
QUSAGE version 2.10.0, volcano3D (version1.0.3) https://cran.r-project.org/web/packages/volcano3D/index.html, gvalue (version 2.22.0),
SummarizedExperiment (version 1.20.0)
Deconvolution: MCP counter (https://github.com/ebecht/MCPcounter), Seurat (version 3.2.0) Cross-over analysis: DESeq2 (version 1.25.9),
volcano3D (version 1.0.3)
DSP analysis: DESeq2 R package (version 1.25.9) GeoMx NGS Pipeline (DND 1.0), gvalue (version 2.26.0), glmmSeq (version 0.1.0, https://
cloud.r-project.org/web/packages/glmmSeq/index.html
), IHW (version 1.22)
Longitudinal mixed effects models analysis: Ime4 (version 1.1-25), DESeq2 (version 1.25.9), Limma (version 3.44.3), car package (version
3.0-10), glmmSeq https://cloud.r-project.org/web/packages/glmmSeq/index.html
Longitudinal pathway analysis: cytoscape (version 3.7.2.), clueGO (version 2.5.5) GO/pathway repositories: BiologicalProcess-EBI-UniProt-GOA
(11.02.2020), CellularComponent-EBI-UniProt-GOA (11.02.2020), ImmuneSystemProcess-EBI-UniProt-GOA (11.02.2020), MolecularFunction-
EBI-UniProt-GOA (11.02.2020), KEGG (27.02.2019), REACTOME (27.02.2019)
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Classifier models for predictions: caret (version 6.0-86), plotROC (version 2.2.1), glmnet (version 4.1-3), gbm (version 2.1.8), xgboost (version
1.5.0.2)
Web interface: R shiny server 1.5.16, R plotly 4.9.3, volcano3D (version 1.2.0)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The datasets generated during and/or analysed during the current study are available on an interactive web interface that allows direct data exploration (https://
rdra.hpc.gmul.ac.uk/) A searchable interface is available to examine relationships between individual synovial gene transcript levels and histological and clinical
parameters, and clinical response at 16 weeks. In addition, interactive versions of figures 3c, 5b and Extended Data Figure 5e and f allow users to click on individual
genes to see their expression and search for genes of interest. The website was constructed using R shiny server 1.5.16 with interactive plots generated using R
plotly 4.9.3.

The datasets can be downloaded from https://doi.org/10.6084/m?9.figshare.19336679.

Other public datasets used for pathway analysis come from the Gene Ontology Annotation (GOA) database (BiologicalProcess-EBI-UniProt-GOA (11.02.2020),
CellularComponent-EBI-UniProt-GOA (11.02.2020), ImmuneSystemProcess-EBI-UniProt-GOA (11.02.2020), MolecularFunction-EBI-UniProt-GOA (11.02.2020).),
KEGG and Reactome.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size According to the power calculation of the R4RA trial, a sample size of 82 B-cell-poor patients was assessed to provide 90% power to detect a
35% difference (assuming 55% response rate to Tocilizumab and 20% in Rituximab determined in previously conducted pilot study) in the
proportion of patients who were deemed as responders by the primary endpoint (improvement in CDAI score of at least 50% at week 16).
After estimating that 10% of biopsy samples would be ungradable and assuming a 5% dropout rate, a total of 160 patients would be required
to recruit 82 patients who were B-cell poor.
n=161 synovial samples were available at baseline and n=65 at 16 weeks. For molecular analyses (RNAsequencing), following quality control,
as detailed below, n= 133 samples were available at baseline and 44 at 16 weeks.

Data exclusions  All the analyses presented herein were done in the intention-to-treat population. 164 patients were randomised but 3 patients did not receive
the study drug, so were excluded from the intention-to-treat population. All baseline (n=161) and 16 weeks (n=65) synovial samples were
sent for RNAsequencing. Following RNA-Seq quality control 36 samples were excluded due to poor mapping or RNA quality. Using
unsupervised principal component analysis (PCA) and plotting the first 5 eigenvectors in pairs one outlier was identified and removed from
further analysis. Thus 133 patients had RNA-Seq data available for subsequent analysis at baseline and 44 patients for the follow-up time point

Replication For all patients, a minimum of 6 synovial samples were assessed by histology and a minimum of 6 samples were pooled for RNA extraction
and RNA-sequencing, in order to limit sampling error and ensure that individual samples were representative of the whole synovial tissue, in
line with EULAR and OMERACT consensus statement on minimal requirements for synovial biopsy analysis (https://doi.org/10.1186/
s13075-018-1762-1). Semi-quantitative scores were performed on Immunohistochemical stainings of 3 cutting levels. To build classifier
models for the prediction of treatment response (machine learning), due to the restricted sample size and the lack of a replication cohort, the
dataset was split using 10x10-fold nested cross-validation. Sample sizes and replicates, where applicable, are indicated in the figure legends.

Randomization At week O, patients were randomly assigned (1:1) in block sizes of six and four to the rituximab group or the tocilizumab group stratified into
four blocks according to histological classification of baseline synovial biopsy (B-cell poor, B-cell rich, germinal centre positive, or unknown)
and by site (Queen Mary University London, London, UK vs all other sites) using an interactive web response system. More details on
randomization are available in the publication reporting the primary trial results (Humby et al, Lancet 2021)

Blinding Investigators and patients were blinded to the synovial pathotype, however the Ethics Committee advised against double-blinding the trial

because it would be impractical and extremely inconvenient for patients. Since tocilizumab is given as monthly infusion, compared with
rituximab, given every 6 months, blinding would have required all patients to have monthly infusions.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
X Antibodies XI|[] chip-seq
Eukaryotic cell lines D Flow cytometry
Palaeontology and archaeology IZI |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Dual use research of concern

Antibodies

Antibodies used For Immunohistochemistry, the following antibodies were used: CD79A (1:50 dilution, clone JCB117, catalogue number M7050, Lot
number 41258342, 20057210, Agilent/Dako), CD3 (1:80 dilution, clone F7.238, catalogue number M7254, lot numbers 00086836,
20025164, Agilent/ Dako), CD20 (1:50 dilution, clone L26, catalogue number M0755, lot number 20023763 Agilent/Dako), CD68
(1:50 dilution, clone KP1, catalogue number M0814, lot numbers 00090015, 20025502, 20025503, 20025501, Agilent/Dako) and
CD138 (1:50 dilution, clone MI15, catalogue number M7228, lot numbers 200033789, 20028635 Agilent/ Dako).

For multiplex immunofluorescence, the following antibodies have been used (more details in Supplementary table S7):

Anti-DKK3 Rabbit polycolonal Ab supplier Sigma-Aldrich Cat no:HPA011868, stock concentration 0.20mg/ml used in Dilution of 1:150.
Dako Envision System-HRP labelled polymer anti-rabbit cat no:4003(ready to use) applied as secondary antibody.

Alexafluor555 tyramide by Invitrogen cat no:B40955 diluted as 1:100 used as detection reagent.

CD45 Mouse IgG1 antibody by Dako, stock con:375mg/L, cat no:M0701 diluted as 1:50. Whereas, Dako Envision System-HRP,
labelled polymer anti-mouse (ready to use) cat no:4001 used as secondary antibody.

Invitrogen Alexafluor647 cat no:B40958 used as in dilution 1:100.

CD90 Rabbit antibody by Abcam cat no:133350, stock concentration: 0.122mg/ml used in dilution as 1:240.Whereas, Dako Envision
System-HRP, labelled polymer anti rabbit cat no:4003(ready to use) applied as secondary Ab.

Invitrogen Alexafluor488 cat no:B40953 used in dilution as 1:100.

DAPI, Dihydrochloride cat no:cabiochem?268298 applied in dilution of 1:1000.

For GeoMx analysis, the following antibodies were used:

CD68-AF532 (clone KP-1, Novus, Cat#: NBP2-76575AF532, Lot MF-261), Dilution 1:100.
CD20-DL594 (clone IGEL/773, Novus, Cat# NBP2-47840DL594, Lot MF-550), Dilution 1:100.
CD3-AF647 (clone UMABS4, Origene, Cat#UMO000488F, Lot MF-659), Dilution 1:100.
Syto13 (NanoString, Cat# GMX-MORPH-NUC-12), Dilution 1:25.

Validation All DAKO antibodies have been validated by the producer for in vitro diagnostic in human pathology, as detailed:
CD20 has been validated In normal lymphoid tissue, where it labels germinal centre cells, mantle zone lymphocytes, and scattered
interfollicular lymphocytes, but not T cells, histiocytes and plasma cells. No labeling was observed in epidermis, sebaceous glands,
hair follicles and eccrine glands in the skin, follicular epithelium in the thyroid, pneumocytes and bronchial epithelium of the lung,
and a large number of other normal non-lymphoid tissues tested.
https://www.agilent.com/cs/library/packageinsert/public/SSM0O755CEEFG_03.pdf

CD68 has been validated on normal peripheral blood and tissue resident monocytes, macrophages, Kupffer cells. Tissues tested
include lung, liver, bone marrow, brain and kidney. Abnormal tissues tested included acute myeloid leukaemia cells and neoplasms of
myeloid derivation, which showed strong and high levels (20/20) of labelling respectively. Negative controls included 100% of 22 T-
cell lymphomas and 12 CD30+ anaplastic large-cell ymphomas were unlabelled. Some weak staining can be observed in FDCs in
dermatopathic lymphoadenopathy and 1% plasma cell hyperplasias.
https://www.agilent.com/cs/library/packageinsert/public/SSM0814CEEFG_02.pdf

CD3 was validated on thymus, tonsil, lymph node resident cells, which showed strongly labelled cells in the medulla and cortex of the
thymus and interfollicular areas of the other tissue types. Abnormal tissue testing included T-cell lymphomas and non-Hodgkin’s
lymphomas showing 41/52 cases and 100% of cases labelled, respectively. Negative control stains included 0/37 positive cases of
different B-cell lymphomas.

https://www.agilent.com/cs/library/packageinsert/public/SSM7254CEEFG_02.pdf

CD138 staining was tested in bone marrow cells from multiple myeloma patients, all plasma cell types are labelled including reticular,
polymorphous, asynchronous and basic plasma cells. Negative control staining included peripheral blood leucocytes from normal
blood which showed <5% of cells stained positive.

https://www.agilent.com/cs/library/packageinsert/public/SSM7228CEEFG_02.pdf

CD79a was validated in peripheral and immature B-cell lines and showed no staining. However, staining is observed in B cells from
embedded tissue sections. In normal tissue plasma cells are strongly labelled whilst in tonsillar tissue Germinal centre B-cells are
highly labelled. In abnormal tissue 100% of 331 different B-cell neoplasms were labelled. As a negative control one study examined
98 different T-cell and non-lymphoid neoplasms and showed no positive staining. However, some precaution is needed as 2 separate
studies showed positive staining in 10% of T-cell neoplasms/ T-lymphoblastic leukemia/lymphoma cases and a high level of staining in
blast cells.
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https://www.agilent.com/cs/library/packageinsert/public/SSM7050CEEFG_02.pdf

All antibodies have been further optimized for use in synovia by testing several dilutions and using isotype controls. The synovial
CD20 staining/score has been also validated as described in Rivellese F, et al. Arthritis Rheumatol. 2020. (https://doi.org/10.1002/
art.41184).

Antibodies used for immunofluorescence are commercially available and have been validated by the producer for use in
immunofluorescence. In addition:

DKK3 has undergone enhanced validation by the Human Protein Atlas (HPA) project (https://www.proteinatlas.org/
ENSG00000050165-DKK3/antibody).

CD90 has been used in synovia (Stephenson et al Nat Commun. 2018; 9: 791.).

Human research participants

Policy information about studies involving human research participants

Population characteristics Patients aged 18 years or over, fulfilling 2010 ACR/EULAR classification criteria for Rheumatoid Arthritis who were eligible for
treatment with rituximab therapy according to UK NICE guidelines, i.e. failing or intolerant to csDMARD therapy and at least
one biologic therapy (excluding trial IMPs). Complete patient baseline characteristics are available in the manuscript
describing the study results (Humby et al, Lancet 2021, DOI:https://doi.org/10.1016/50140-6736(20)32341-2).
Characteristics tested as covariates in differential gene expression analysis were:
age: for all RNA-Seq patients in years 55.1 (standard deviation 13.3), rituximab treated RNA-Seq patients 54.7y (13.7 SD),
tocilizumab treated RNA-Seq patients 55.6 (13.0 SD)
gender: in percentage of male 18% (all), 24% (RTX) and 12% (TOC)
ethnicity: for all RNA-Seq patients 10% African, 7% Asian, 78% Caucasian, 5% other; RTX 15% African, 6% Asian, 72%
Caucasian, 7% other; TOC 5% African, 8% Asian, 85% Caucasian, 3% other
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Recruitment As above + inclusion/exclusion criteria, as detailed in the study protocol, available here: www.r4ra-nihr.whri.gmul.ac.uk/
docs/r4ra_protocol_version_9 30.10.2017_clean.pdf. Patients were approached by their rheumatologist regarding
participation in the trial during routine visits to outpatients clinics. Patients were given a patient information sheet and
allowed sufficient time to discuss and consider their participation in the trial (at least 24 hours) prior to informed consent
being taken. Participants did not receive any compensation, except for reimbursement of travel expenses.

Ethics oversight MREC reference: 12/WA/0307 (https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-
summaries/r4-ra/). The ethics protocol has been approved by the following centres:
UK Ethics Committee
e Wales REC 3 (formerly “REC for Wales”)
Local Ethics Committees in EU sites
e Comité d’Ethique Hospitalo-Facultaire
« Comiss3o de Etica para a Investigagdo Clinica (CEIC)
e Comitato Etico Interaziendale AOU "Maggiore della Carita" di Novara, ASL BI, ASL NO, ASL VCO
* Commissie Medische Ethiek UZ KU Leuven/Onderzoek
« Comité Etico de Investigacién Clinica del Hospital Clinic de Barcelona
* Comitato Etico, Fondazione IRCCS Policlinico San Matteo
* Regione Autonoma della Sardegna Azienda Ospedaliero Universitaria di Cagliari Comitato Etico Indipendente

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  ISRCTN97443826 and EudraCT 2012-002535-28
Study protocol www.rdra-nihr.whri.gmul.ac.uk/docs/r4ra_protocol_version_9_30.10.2017_clean.pdf

Data collection Clinical data was collected between Feb 28, 2013, and Jan 17, 2019 during study visits within the Rheumatology departments of
participating sites. Participating sites were located at 19 hospitals in Europe (UK, Italy, Belgium, Portugal, and Spain). Please see the
complete list of partecipating sites below:

* Mile End Hospital and Whipps Cross Hospital, Bart’s Health NHS Trust, London, UK

« Cliniques Universitaires Saint Luc, Louvain, Belgium

* Santa Maria Hospital, Lisbon, Portugal

» Azienda ospedaliera Maggiore della Carita, Novara, Italy

» University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, UK

* Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK

* Southampton General Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK

e Basildon University Hospital, Mid and South Essex NHS Foundation Trust (formerly Basildon and Thurrock University Hospital NHS
Foundation Trust), Basildon, UK

» Hospital Clinic de Barcelona, Barcelona, Spain

* Southend University Hospital, Mid and South Essex NHS Foundation Trust (formerly Southend University Hospital NHS Foundation
Trust), Southend, UK




Outcomes

» Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK

» Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy

* Homerton University Hospital, Homerton University Hospital NHS Foundation Trust, London, UK
» Nuffield Orthopaedic Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK

* Aintree University Hospital, Aintree University Hospital NHS Foundation Trust, Liverpool, UK

* Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK

* Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK

» Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy

» Universitair Ziekenhuis Leuven, Leuven, Belgium

The primary outcome of the R4RA trial was defined as a binary outcome of treatment response using CDAI (Clinical disease activity
Index) at 16 weeks after baseline. A responder was defined as CDAI improvement of greater than or equal to 50% from the baseline;
a non-responder is defined as less than 50% improvement from baseline. The improvement is calculated as baseline CDAI (CDAI at
week 0) minus CDAI at week 16. Secondary endpoints were defined using CDAI (CDAI MTR- CDAIl improvement>50% and CDAI<10.1,
CDAI<10.1) and DAS28 score (EULAR criteria, DAS28<3.2, DAS<2.6).

For more details on primary and secondary outcomes, please see the main publication (Humby et al, Lancet 2021, DOI:https://
doi.org/10.1016/50140-6736(20)32341-2)
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