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Abstract

The financial crisis of 2007-2009, which brought the entire system at the brink

of collapse, renewed efforts to guard against financial instability. A key pil-

lar of the post-crisis regulatory toolkit is ‘stress testing’. Stress tests provide

a forward-looking examination of firms’ potential losses during severely ad-

verse conditions. And enable timely action to recapitalise those firms who

experience capital shortfalls in such crisis scenarios. Today’s regulatory stress

tests do not heed the key lesson of the financial crisis: amplifications in the

networked financial system must be taken into account to be able to assess

systemic risk. Because of this, these tests are unable to assess systemic risk

and ergo to address it – defeating their raison d’être.

The overarching research question in this thesis is whether new building blocks

– expressing the heterogeneity of institutions, contracts, markets, constraints

and behaviour in the interconnected financial system – can be supplied for

system-wide stress tests to better capture the endogenous amplification of

shocks in order to improve the assessment of systemic risk and the evaluation

of prudential policies to address financial fragility.

The cornerstone of my thesis is the development of a generic network-based

method, comprised of these five building blocks (i.e. institutions, contracts,

markets, constraints and behaviour), for system-wide stress testing – which

has gained traction from leading central banks, including the Bank of England

and the European Central Bank. Using this method, I implement two data-

driven models to address some of the most salient financial stability questions

of today. First, we ask how the regulatory buffer size and its usability under

Basel III affect systemic risk? We find that financial resilience decreases if

regulatory buffers are seen to be less usable by banks. If regulatory buffers

are not treated as usable, then regulatory buffers de facto act as capital re-

quirements. In such case, if an adverse shock threatens an institution to

breach its capital buffers constraints, it is forced to delever, which tends to



have a destabilising effect on the financial markets. We show that the size of

usable regulatory buffers that is required to maintain stability is underesti-

mated if the interaction between exposure loss contagion, funding contagion,

overlapping portfolio contagion and margin call contagion is not taken into

account. Second, we inquire what the systemic implications are of the bail-in

design to resolve systemically important banks? First of all, we find that

the bail-in design tremendously matters for whether bail-ins can be credibly

executed in system-wide financial crises and cases of large systemically impor-

tant bank failures, without significantly exacerbating financial distress. Our

results demonstrate that an early bail-in, strong recapitalisation and fair dis-

tribution of equity compensation by means of debt-to-equity conversion rates

makes bail-in a feasible option on the table for idiosyncratic cases of bank

failure and limits – but not eliminates – contagion in cases of system-wide

distress. We further show that excluding run-prone, short-term debt from the

application of the bail-in tool, increasing the requirements on loss absorbing

debt and providing investors with certainty about the bail-in design lowers

contagion in system-wide crises to manageable levels. Our findings highlight

that while well-designed bail-ins could be credibly administered in system-

wide crises, it is not clear that the current bail-in design is in the regime of

stability. Altogether, the methods and findings of this thesis emphasise the

promise that system-wide stress tests hold for regulators to efficaciously as-

sess systemic risk and calibrate prudential policies constituting the financial

architecture.
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Chapter 1

Introduction

Ben S. Bernanke served as Chairman of the Federal Reserve (Fed) from 2006 to 2014. He

presided over steering the economy of the United States and arguably the wider world

economy through the Great Recession that took place between 2007-2009. He wrote the

following passage in his memoirs titled ‘The Courage to Act’: ‘Seen from the vantage

point of early 2007, the economy’s good performance, combined with the relatively small

size of the subprime mortgage market and what appeared to be a healthy banking system,

led me and others at the Fed to conclude that subprime problems – though certainly a

major concern for affected communities and the housing sector generally – were unlikely

to cause major economic damage. But we failed to anticipate that problems in the sub-

prime mortgage market could trigger an old-fashioned financial panic, albeit in a new,

unfamiliar guise (Bernanke (2015)).” We calculated that ‘even if subprime mortgages de-

faulted at extraordinarly high rates, [. . . ], the resulting financial losses would be smaller

than those from a single bad day in global stockmarkets (Bernanke (2015)).’ We came to

realise that the “ultimate economic costs of the panic far outweighed the magnitude of

the trigger” (Bernanke (2015)), like it had done in the 1907 Panic. Bernanke addressed

the need to account for endogeneous amplifications to comprehend systemic risk in the

financial system.

The overarching research question in this thesis is whether new building blocks

– expressing the heterogeneity of institutions, contracts, markets, constraints

and behaviour in the interconnected financial system – can be supplied for

system-wide stress tests to better capture the endogeneous amplification of

shocks in order to improve the assessment of systemic risk and the evaluation

of prudential policies to address financial fragility.

A few additional statements about the nature of the 2007-2009 crisis and recently-

introduced stress tests will be made, before elaborating on the novel methods that will
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be developed and applied in the chapters of this thesis.

The new financial crisis (2007-2009) revived the old understanding that exogenous shocks

can be endogenously amplified by the financial system to give widespread financial tur-

moil. Brunnermeier & Pedersen (2009) are the first to document the prevailing contagion

mechanisms through which this amplification took place in the last crisis. First, bor-

rowing institutions – such as banks – are exposed to two ‘liquidity spirals’. Both asset

losses and funding shocks cause distressed sales of assets, so-called ‘fire sales’, resulting

in a decline in asset prices. This erodes an institution’s capital buffers, prompting a fur-

ther round of distressed sales and further tightening of lending. Second, institutions may

start ‘hoarding liquidity’ when they become anxious about their future access to capital

markets. Such funding withdrawals may take place irrespective of the creditworthiness of

borrowers. Though such behaviour might be rational from an institution’s perspective, it

is destabilising from the perspective of the system as a whole: it imposes funding shocks

upon counterparties, who may in turn be prompted to liquidate assets at fire-sale prices

to meet their repayment obligation. Third, runs on financial institutions – typically on

those who are considered to be the ‘slowest antelopes in the herd’ (Blinder (2013)) so

that these lose access to market funding – can further cause capital to collapse. Finally,

defaulted institutions can afflict exposure losses upon counterparties, which can – if these

losses causes counterparties to default in turn – trigger a domino chain of further expo-

sure losses in the networked financial system.

The experience of the crisis and its lessons into the amplification mechanisms that made

it so calamitous, ‘exposed a significant lack of information as well as data gaps on key fi-

nancial sector vulnerabilities relevant for financial stability analysis’ (FSB (2009b)). The

Financial Stability Board (FSB), an international body that monitors the resilience of

the global financial system and makes recommendations to improve it, recommended in

2009 that ‘quantitative tools and indicators to (better) monitor and assess the build-up

of macroprudential risks in the financial system’ be developed (FSB (2009a)).

The prime tool that emerged as part of the post-crisis regulatory toolkit to assess and

address systemic risk is a ‘stress test’. Though the International Monetary Fund (IMF)

had conducted early forms of stress tests since 1999, under the so-called Financial Sec-

tor Assessment Program (FSAP), to analyse the resilience of a country’s financial sector

(IMF (2019)). It is only since 2009 that stress tests have become institutionalised by most

major jurisdictions (as an annual or bi-annual exercise). The first such stress test was

the Supervisory Capital Assessment Program (SCAP) conducted by the Federal Reserve
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System in 2009. It was designed to assess whether the largest financial institutions in the

United States had sufficient capital buffers to withstand the financial market turbulence

and impending recession ensuing from the financial crisis. Just as later stress tests would

do, it assessed the banking system’s ability to survive through a ‘what-if’ exogeneous

scenario of ‘severely adverse’ nature and compared this situation against a ‘baseline’ sce-

nario. Greenwood et al. (2017) note that ‘the severely adverse scenario contemplated in

the SCAP was actually a fair representation of the reality at the time, in the depths of

the financial crisis.’ It essentially marked-to-market the assets of banks inducing banks

to reflect expected losses in reported equity capital. This ensured that the banks received

regulatory pressure to recognise the full reality of their solvency problems and take steps

to enlarge their capital buffers. Ben S. Bernanke describes the introduction of the SCAP

stress test as a turning point in the crisis:

‘In retrospect, the SCAP stands out for me as one of the critical turning points in the

financial crisis. It provided anxious investors with something they craved: credible in-

formation about prospective losses at banks. Supervisors’ public disclosure of the stress

test results helped restore confidence in the banking system and enabled its successful

recapitalization’ (Bernanke (2013))

Since SCAP, the United States, the European Union (EU) and the United Kingdom

– among others – have set in a place an (bi-) annual stress testing exercise in which

systemically-important financial institutions are required to participate. These are called

the Dodd-Frank Act stress test (taking place as part of the Comprehensive Capital Anal-

ysis and Review (CCAR)), the European Banking Authority (EBA) stress test and the

Bank of England (BoE) stress test, respectively.

Though the newer stress tests have brought many benefits, such as impelling banks to

holistically assess their risk rather than doing so department-by-department in a disag-

gregated way, some have argued that their value does not reach their potential. Instead,

their performance appears far less than their powerful promise. For instance, Glasserman

et al. (2015) show that stress test outcomes have become more predictable over time. This

is problematic because it means the informational value stress tests provide is largely lost,

which undercuts their purpose as an early detector of potential capital shortfalls. One

potential reason stress tests have become more predictable is that stress tests are easy to

game (Sarin & Summers (2020, forthcoming in Handbook of Financial Stress Testing)).

Bulow & Klemperer (2013) point out that both the numerator and denominator of bank

equity ratios are subject to manipulation. Banks not only have the ability to game the
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stress tests, it is also in their interest to do so. Banks that suffer too large losses under

the adverse scenario must raise capital or retain dividends. Those who suffer too small

losses, on the other hand, are seen as too conservative by regulators. So, it is best to

manipulate stress outcomes in such a way that the capital ratio under an adverse scenario

is in the middle of the herd, avoiding regulatory scrutiny either way.

This is, however, not the biggest shortcoming of stress tests, undercutting their potential

as a powerful monitoring and intervention tool to preserve financial stability. Today’s reg-

ulatory stress tests do not heed the key lesson of the financial crisis, as clearly narrated by

Bernanke (2015) and Brunnermeier & Pedersen (2009): amplifications in the networked

financial system must be taken into account to be able to assess systemic risk – where

systemic risk refers to the risk of a breakdown of the entire financial system in response

to (a potentially small) shock.1 This means that these so-called ‘microprudential’ stress

tests are unable to assess systemic risk and ergo to address it – defeating their raison

d’être. Instead, microprudential stress tests evaluate the resilience of individual institu-

tion to specific shocks, assuming these institutions live on independent islands barring

the spread of any contagion via their interconnections. Some regulators argue that mi-

croprudential stress tests ‘indirectly’ capture contagious amplifications by ensuring that

the adverse scenario is severe enough so as to also capture not just initial shocks, such

as the subprime collapse, but also higher-order shocks ones. We, in Chapter 3, invalidate

this argument. We show that two identical adverse shock scenarios with two identical

first-order loss impacts applied to two different financial systems can result in widely dif-

ferent system-wide losses for each system, depending on the shock-amplifying tendency

of that financial system. Therefore, the outcome of the microprudential stress test, which

only captures first-order losses, is not informative on systemic risk. This result shows

that ‘macroprudential’ stress tests, also called system-wide stress tests – which assess the

resilience of the networked financial system as a whole – are not superfluous. They are

essential.

Outside of the regulatory perimeter, researchers have been exploring network methods

to assess systemic risk, which do incorporate contagious amplifications. The ‘financial

networks and systemic risk’ field has started to flourish in the aftermath of the 2007-2009

financial crisis. At first, these models typically captured a single contagion mechanism,

such as exposure loss contagion (see e.g. Upper & Worms (2004), E Santos et al. (2010))

1A widely adopted, more elaborate, definition of systemic risk is provided by the FSB, IMF and Bank
of International Settlements. They define it as ‘a risk of disruption to financial services that is caused
by an impairment of all or parts of the financial system and has the potential to have serious negative
consequences for the real economy’ (FSB (2009c)).
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or overlapping portfolio contagion (also called fire sale contagion; see e.g. Caccioli et al.

(2014, 2015), Duarte & Eisenbach (2015), Greenwood et al. (2015), Cont & Schaan-

ning (2017)), and they primarily focused on post-default domino effects. Increasingly,

these models encapsulate how multiple contagion mechanisms, such as those described

by Markus Brunnermeier (Brunnermeier & Pedersen (2009)), interact and amplify one

another – not only post-failure, but also in prior, institutions may act in individually

rational, though systemically destabilising ways to avoid default (Caccioli et al. (2013),

Kok & Montagna (2013), Poledna et al. (2015), Hüser & Kok (2019), Wiersema et al.

(2019)).

Early-day macroprudential stress tests developed by central banks have sought to in-

corporate these financial stability models to explore their usefulness, as we discuss in

Chapter 2. Although some of these macroprudential stress tests inform policy, none has

yet been employed by regulators to: (1) systemically assess systemic risk; (2) identify vul-

nerabilities; and (3) calibrate policies, whereas their microprudential counterparts have

been. Indubitably, there are politically-motivated and data-related reasons that have

thus far impeded the entrance of macroprudential stress tests onto the grand stage of

macroprudential policymaking.

A scientific reason exists too. According to Anderson et al. (2018), regulators are ‘search-

ing for robust and implementable frameworks’ to conduct macroprudential stress tests,

which would both assess systemic risk and evaluate policies. Financial stability mod-

els so far have been largely inapplicable to serve as models underpinning a prospective

regulatory system-wide stress test – which could be conducted on an annual basis. In-

dicated reasons (Anderson et al. (2018)) include, for instance, that they are too narrow

in scope: focusing only on one contagion mechanism rather than interacting contagion

mechanisms, on one type of institution (a bank) rather than the different type of financial

institutions that operate in the financial network, and/or on one regulatory constraint

rather than the swathe of regulatory policies that apply. Another reasons is that they are

not generic enough. Journal-focused models are often tailored to address one research

question, thereby losing their general applicability to assess systemic risk in any financial

system.

The lack of serious regulatory use of system-wide stress tests is a lost opportunity. System-

wide stress tests models are singularly capable of evaluating the system-wide effects of

microprudential policies (i.e. policies focusing on the robustness of individual institu-

tions) and calibrating macroprudential policies (i.e. policies aiming for system-wide re-
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silience). Microprudential stress tests cannot serve as a substitute for macroprudential

stress tests to perform these tasks. Aymanns et al. (2016) have shown that well-intended

microprudential policies, such as the Basel II capital regulation, can lead to unstable

macroprudential outcomes. The Basel II capital regulation puts a cap on the amount of

leverage a bank can attain, dependent on the amount of risk – measured by the value-

at-risk (VaR) – it faces. From an individual microprudential perspective such regulation

makes perfect sense. However, from a system-wide perspective this policy is destabilising.

Under the Basel II rules, a bank’s leverage constraint tightens when its VaR increases.

Because a decrease in asset prices causes both the leverage and the VaR to rise, declines

in asset prices may force disorderly asset sales to delever to comply with the Basel II

leverage limit. This triggers a positive feedback loop where selling prompts more selling,

which further tightens the Basel II leverage constraint – leading to widespread instabil-

ity. Such pitfalls can be avoided were system-wide stress tests wielded to evaluate the

systemic implications of prudential policies.

This thesis develops a generic2 framework for system-wide stress testing –

suitable for assessing systemic risk and evaluating policies.

Building on the framework, several novel models are implemented that are

tailored to answer two highly relevant policy questions:

1. How does regulatory buffer size and usability affect systemic risk?

2. What are the systemic implications of the bail-in design?

The first two questions address the stability impact of two pillars of the post-crisis regu-

latory design: Basel III and new resolution regime. In addition to a review of the stress

test application of financial stability models, each question is addressed in a separate

chapter of this thesis. For each research question, in the remainder of this introduction

we will discuss: (a) the motivation for studying the question; (b) the method we drew on;

(c) our main findings; (d) the contribution to the literature; and (e) the implications of

our research. Herein, we will also draw some comparisons between the research methods

and findings of each chapter.

Financial Stability Models and Their Application in Stress Tests

This chapter reviews heterogeneous agent models of financial stability and their appli-

cation in stress tests. In contrast to the mainstream approach, which relies heavily on

the rational expectations assumption and focuses on situations where it is possible to

2A stress test framework is said to be generic if it is able to coherently host a suit of different stress
testing models, based on different data, and focussing on different policy questions.
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compute an equilibrium, this approach typically uses stylised behavioural assumptions

and relies more on simulation. This makes it possible to include more actors and more

realistic institutional constraints, and to explain phenomena that are driven by out of

equilibrium behaviour, such as clustered volatility and fat tails. We argue that traditional

equilibrium models and agent-based models are complements rather than substitutes, and

review how the interaction between these two approaches has enriched our understanding

of systemic financial risk. We also review the network aspects of systemic risk, including

models for three key channels of contagion: counterparty loss, overlapping portfolios and

funding liquidity. We provide an overview of applications to microprudential and macro-

prudential stress testing.

Foundations of System-Wide Stress Testing

In a highly connected financial system, seemingly localised shocks can be propagated

and amplified to take on systemic importance. However widely recognised, this reality is

not yet reflected in the design of financial stress tests; notwithstanding the substantial

progress that has been made, stress testing frameworks lack the holistic quality required

to coherently combine multiple interacting contagion and amplification mechanisms as

well as the behavioural responses of heterogeneous financial institutions to shocks. This

raises the concern that current stress test results may provide false comfort to regulators,

markets, and the public at large.

We propose a structural framework for the development of system-wide financial stress

tests with multiple interacting contagion, amplification channels and heterogeneous fi-

nancial institutions. This framework conceptualises financial systems through the lens

of five building blocks: financial institutions, contracts, markets, constraints, and be-

haviour. These blocks can be flexibly implemented to form a dynamic multiplex network

using the accompanying simulation engine and software library (the ‘Economic Simula-

tion Library’, or ESL’). Using this framework, we implement a system-wide stress test

for the European financial system that incorporates amplification risks associated with

default contagion, price-mediated contagion via asset sales, funding contagion, and liq-

uidity stress via margin calls. We apply this stress test model to data provided by S&P

Global Market Intelligence, the ECB Statistical Warehouse, the 2018 European Banking

Authority (EBA) stress test results, allowing us to initialise balance sheets of European

banks and non-banks. In line with Ha laj & Kok (2013), Kok & Montagna (2013), we

reconstruct the interbank, secured funding and common asset holding networks, which

interconnect these institutions. We compare our findings to the European Banking Au-

thority’s stress test from 2018 and find that our system-wide approach reveals hidden

weaknesses in the resilience of the financial system: we find unambiguously that shocks
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are amplified by the interaction of heterogeneous agents and multiple contagion mecha-

nisms. While current microprudential stress tests remain valuable, our findings suggest

that they should be complemented by system-wide stress tests when evaluating financial

stability and calibrating the size and designing the ‘usability’ of capital buffers.

Critically, we find that the willingness of banks to draw on their capital buffers to

absorb losses – which we term the ’usability’ of capital buffers – significantly affects the

shock-amplifying tendency of a financial system. The actions banks take to avoid using

their buffers in response to an adverse shock, which could for example be motivated by

a desire to avoid regulatory restrictions on dividend payments, can generate pro-cyclical

dynamics that substantially increase system-wide losses. In light of this result, regulators

should evaluate how the design and enforcement of regulatory buffers may affect their ‘us-

ability’ in times of financial stress, and be mindful of the financial stability implications

of buffers that produce behavioural effects similar to those of regulatory requirements

(Goodhart et al. (2008), Goodhart (2013)).

To the best of our knowledge, we are the first to propose a generic framework for

system-wide stress testing with heterogeneous financial institutions. The multi-layered

network model, which we implement using this structural framework, contributes to a

growing body of systemic risk literature that captures multiple mechanisms with which

shocks can be endogenously amplified (see e.g. Caccioli et al. (2013), Kok & Montagna

(2013), Poledna et al. (2015), Hüser & Kok (2019), Wiersema et al. (2019)). In contrast

to previous proposals, our model also captures liquidity stress via margin calls – on top

of exposure loss contagion, overlapping portfolio contagion and funding contagion.

Our findings quantitively examine the systemic impact of the ‘usability’ of Basel

III regulatory buffers. While the system-wide consequences of the ‘usability’ of buffers

have, hitherto, been merely qualitatively conceptualised, for instance by Goodhart et al.

(2008), Goodhart (2013). Up to now, quantitative network models of financial stability

have wrongly taken each portion of the bank’s capital pile to be equally usable or not

usable (see e.g. Battiston et al. (n.d.), Caccioli et al. (2013), Greenwood et al. (2015)).

This ignores that capital below the minimum capital requirements is typically less usable

than the capital that comprises regulatory buffers, and it fails to recognise that banks

may consider their capital pile in excess of the regulatory buffers to be more usable than

their capital stack constituting the regulatory buffer.

Systemic Implications of the Bail-In Design

The 2007-2008 financial crisis forced governments to choose between the unattractive

alternatives of bailing out a systemically important bank (SIBs) or having it fail in a

system-wide disruptive manner (Bernanke (2017)). Bail-in has been put forward as the
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primary tool to resolve a failing bank, which would end the ‘too-big-to-fail’ problem

by letting stakeholders shoulder the losses, while minimising the calamitous impact of

a bank’s failure on the financial system and the economy in general (e.g. FSB (2013),

Chennells & Wingfield (2015), BoE (2017a)). Though the aptness of bail-in has been

evinced in cases of relatively minor idiosyncratic bank failures, its efficacy in maintaining

stability in cases of large bank failures and episodes of system-wide crises remains to be

practically tested.

This paper investigates the stability implications of the bail-in design, for all these

cases. We do so by developing a multi-layered network model of the European financial

system, which extends Farmer et al. (2020) described in Chapter 3. It captures the perti-

nent endogenous-amplification mechanisms: exposure loss contagion, overlapping portfo-

lio contagion, funding contagion, bail-inable debt revaluations, and bail-inable debt runs.

We apply this stress test model to data provided by S&P Global Market Intelligence,

the ECB Statistical Warehouse, the 2018 European Banking Authority (EBA) stress test

results, allowing us to initialise balance sheets of European banks and non-banks, as well

as decompose banks’ liabilities in seniority classes. In line with Ha laj & Kok (2013),

Kok & Montagna (2013), we reconstruct the bank debt and common asset holding net-

works, which interconnect these institutions. The loss absorbing requirements, which set

a minimum on the amount of long-term loss-absorbing debt that banks should issue (and

cannot be cross-held by banks), further inform the calibration of the maturity profile and

non-bank holdings of bail-inable debt.

Our results reveal that stability hinges on a set of ‘primary’ and ‘secondary’ bail-in

parameters, including the failure threshold, recapitalisation target, debt-to-equity conver-

sion rate, loss absorption requirements, debt exclusions and bail-in-design certainty. We

show that bail-in usually works when relatively small European SIBs idiosyncratically fail

regardless of the elected bail-in parameters – consistent with previous experience (WBG

(2017)). However, we find that bailing-in banks in a system-wide crisis may heftily exac-

erbate financial fragility when bail-in policy parameters are set ‘badly’; and we observe

that ill-designed bail-ins may induce widespread contagion, if large European D-SIBs id-

iosyncratically fail. Strikingly, we observe a phase shift from an unstable to stable system,

if resolution authorities do choose ‘good’ bail-in parameters. Instability remains curbed

even if systemic effects cause multiple banks to be bailed-in amid pervasive distress. Our

evidence fortunately suggests that the pivot for stability is in the hands of policymakers.

It also suggests, however, that the current policy parameters might be in the regime of

instability.

Our contribution adds to the nascent network literature on the systemic effects of bail-

in. Klimek et al. (2015) employ an agent-based network model to evaluate the economic
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and financial ramifications of bail-in, and they compare its performance against other

resolution mechanisms. Hüser et al. (2017) evaluate the systemic implications of bail-in

in the European Union, drawing on a calibrated multi-layered network model to bank

debt and equity cross-holdings. These papers neither investigate the systemic impact

of the bail-in design, nor include multiple contagion mechanisms and non-banks in their

analyses. Instead they take the bail-in design as is and merely explore the repercussions

of exposure loss contagion. By ignoring multiple interaction contagion mechanisms, they

risk underestimating the systemic footprint of the bail-in design. It is worth noting that

though bail-in has been designed with systemic considerations in mind,3 it is not enough

to assert its suitability on a system-wide scale. As Aymanns et al. (2016) have shown in

the case of the Basel II leverage requirements, well-intended microprudential regulation

may undermine financial resilience when systemic feedbacks are taken into account. This

makes the investigation of the stability implications of the bail-in design in a networked

financial system a necessary gap to fill.

Organisation of thesis

The remainder of this thesis presents each of the papers we just discussed in a separate

chapter. Chapter 5 concludes.

3See: Directive 2014/59/EU of the European Parliament and of the Council.
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Chapter 2

Models of Financial Stability and
Their Application in Stress Tests

2.1 Summary

We review heterogeneous agent models of financial stability and their application in

stress tests. In contrast to the mainstream approach, which relies heavily on the ratio-

nal expectations assumption and focuses on situations where it is possible to compute

an equilibrium, this approach typically uses stylized behavioral assumptions and relies

more on simulation. This makes it possible to include more actors and more realistic

institutional constraints, and to explain phenomena that are driven by out of equilibrium

behavior, such as clustered volatility and fat tails. We argue that traditional equilibrium

models and agent-based models are complements rather than substitutes, and review how

the interaction between these two approaches has enriched our understanding of systemic

financial risk. After presenting a brief summary of key terminology, we review models for

leverage and endogenous risk dynamics. We then review the network aspects of systemic

risk, including models for the three main channels of contagion: counterparty loss, over-

lapping portfolios and funding liquidity. Finally, we give an overview of applications to

stress testing, including both microprudential and macroprudential stress tests.

Authors of Paper - Christoph Aymanns, J. Doyne Farmer, Alissa M. Kleinnijenhuis
(first author) & Thom Wetzer. The full paper is found in Aymanns et al. (2018).

2.2 Introduction

The financial system is a classic example of a complex system. It consists of many diverse

actors, including banks, mutual funds, hedge funds, insurance companies, pension funds

and shadow banks. All of them interact with each other, as well as interacting directly

with the real economy (which is undeniably a complex system in and of itself). The

financial crisis of 2008 provided a perfect example of an emergent phenomenon, which is
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the hallmark of a complex system.

While the causes of the 2008 turmoil remain controversial, the crisis has made everyone

aware of the complex nature of the interactions and feedback loops in the economy, and it

has driven an explosive amount of research attempting to better understand the financial

system from a systemic point of view. It has also underlined the policy relevance of the

complex systems approach. Systemic risk occurs when the decisions of individuals, which

might be prudent if considered in isolation, combine to create risks at the level of the

whole system that may be qualitatively different from the simple combination of their

individual risks. By its very nature systemic risk is an emergent phenomenon that comes

about due to the nonlinear interaction of individual agents. To understand systemic risk,

we need to understand the collective dynamics of the system that gives rise to it.

In this paper, we review financial stability models, which aim to capture these dynamics,

and their application in (regulatory) stress tests. Stress tests subject financial institu-

tions, or the system as a whole, to an adverse, coherent, and plausible crisis scenario

to assess systemic risk and evaluate prudential policies. To the best of our knowledge,

we are the first to discuss how financial stability models are applied in stress tests, as

well as contrast the two key types of applied models: equilibrium and agent-based models.

First, we briefly compare two basic approaches to elucidating the underlying mechanisms

driving financial stability: traditional equilibrium models and agent-based models. The

mainstream approach has been to focus on situations where it is possible to compute

an equilibrium. This generally requires making very strong simplifications, e.g. studying

only a few actors and interactions at a time. The equilibrium approach has been useful to

clarify some of the key mechanisms driving financial instabilities and financial contagion,

but it comes at the expense of simplifications that limit the realism of the conclusions.

There is also a concern that, particularly during a crisis, the assumptions of rationality

and equilibrium are too strong.

The alternative approach abandons equilibrium and rationality and replaces them

with behavioral assumptions. This approach often relies on simulation, which has the

advantage that it is easier to study more complicated situations, e.g. with more actors

and more realistic institutional constraints. It also makes it possible to study multiple

channels of interaction; even though research in this direction is still in its early stages,

it is clear that this plays an important role.1

1We note that both equilibrium models and agent-based models use analytical as well as simulation-
based methods. Agent-based based models more frequently rely on simulation-based methods, since
the heterogeneity and institutional detail that these models typically capture makes analytical solutions
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The use of behavioral assumptions as an alternative to utility maximization is con-

troversial. Unlike utility, actions, on which behavioral assumptions are based, have the

advantage of being directly observable, and in many cases the degree to which they are

followed can be confirmed empirically. The disadvantage of this approach is that behavior

may be context dependent, and as a result, such models typically fail the Lucas critique.

We will show examples here where models based on behavioral assumptions are nonethe-

less very useful because they make it possible to directly investigate the consequences of

a given set of behaviors. We will show examples where it leads to simple models that

make clear predictions, at the same time that it can potentially be extended to complex

real-world situations.

This review will focus primarily on the simulation approach, though we will attempt

to discuss key influences and interactions with the more traditional equilibrium approach.

Our view is that the two approaches are complements rather than substitutes. The most

appropriate approach depends on the context and the goals of the modeling exercise. We

predict that the simulation approach will become increasingly important with time, for

several reasons. One is that this approach can be easier to bring to the data, and data

is becoming more readily available. Many central banks are beginning to collect compre-

hensive data sets that make it possible to monitor the key parts of the financial system.

This makes it easier to test the realism of behavioral assumptions, making such models

less ad hoc. With such models it is potentially feasible to match the models to the data in

a literal, one-to-one manner. This has not yet been done, but it is on the horizon, and if

successful such models may become valuable tools for assessing and monitoring financial

stability, and for policy testing. In addition, computational power is always improving.

This is a new area of pursuit and the computational techniques and software are rapidly

improving.

Second, we examine key models of financial contagion due to interconnectedness, which

are applied in stress tests. Since the actors in the financial system are highly intercon-

nected, network dynamics plays a key role in determining financial stability. The dis-

tress of one institution can propagate to other institutions, a process that is often called

contagion, based on the analogy to disease. We discuss multiple channels of contagion,

including counterparty risk, funding risk, and common assets holdings. Counterparty risk

is caused by the web of bilateral contracts, which make one institution’s assets another’s

liabilities. When a borrower is unable to pay, the lender’s balance sheet is affected, and

the resulting financial distress may in turn be transmitted to other parties, causing them

unfeasible. Given that equilibrium models more often investigate simplified set-ups with representative
sectors, an analytical solution is in many cases viable.
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to come under stress or default. Funding risk occurs when a lender comes under stress,

which may create problems for parties that routinely borrow from this lender because

loans that they would normally expect to receive fail to be extended. Institutions are also

connected in many indirect ways, e.g. by common asset holdings, also called overlapping

portfolios. If an institution comes under stress and sells assets, this depresses prices,

which can cause further selling, etc. There are of course other channels of contagion,

such as common information, that can affect expectations and interact with the more

mechanical channels described above.

These channels of contagion cause nonlinear interactions that can create positive feed-

back loops that amplify external shocks or even generate purely endogenous dynamics,

such as booms and busts. Nonlinear feedback loops can also be amplified by behavioral

and institutional constraints and by bounded rationality (often in the context of incom-

plete information and learning).

Finally, we study how the financial stability models discussed above are applied stress

tests, and give examples of such stress tests. We start by discussing microprudential

stress tests, which, as we point out, do not incorporate financial stability models of con-

tagion at all. Instead, microprudential stress tests typically focus on evaluating the direct

impact of a crisis scenario on the solvency of individual institutions, who are treated to be

unlinked ; thereby, failing to consider the higher-order contagion dynamics that may arise

in the interconnected financial system as a consequence of this initial shock. We continue

to study macroprudential stress tests, whose distinctive feature is that they evaluate the

resilience of the system as a whole, as well as the institutions in it, leveraging on financial

stability models that allow for contagion. We dissect a number of macroprudential stress

test to highlight the use of contagion models.

The remainder of this paper is organized as follows: In Section 2.3 we briefly contrast

and compare traditional equilibrium models with agent-based models. In Section 2.4 we

introduce the dynamical systems perspective on the financial system that will underlie

many of the models of financial stability that we discuss in subsequent sections. In Section

2.5 we discuss models of financial contagion due to interconnectedness. Sections 2.6 to 2.8

consider various different stress tests. In particular, Section 2.6 gives a brief conceptual

overview of stress tests; Section 2.7 introduces and critically evaluates standard, micro-

prudential stress tests; Section 2.8 discusses examples of macroprudential stress tests and

how to bring them to data; finally Section 2.9 concludes.
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2.3 Two Approaches to Modeling Systemic Risk

As mentioned in the introduction, traditionally finance has focused on modeling systemic

risk in highly stylized models that are analytically tractable. These efforts have improved

our understanding of a wide range of phenomena related to systemic risk ranging from

bank runs (Diamond & Dybvig (1983), Morris & Shin (2001)), credit cycles (Kiyotaki &

Moore (1997), Brunnermeier & Sannikov (2014)), balance sheet (Allen & Gale (2000))

and information contagion (Acharya & Yorulmazer (2008)) over fire sales (Shleifer &

Vishny (1992)), to the feedback between market and funding liquidity (Brunnermeier &

Pedersen (2009)). A comprehensive review that does justice to this literature is beyond

the scope of this paper. However, we would like to make a few observations in regard to

the traditional modeling approach and contrast it with the agent-based approach.

Traditional models place great emphasis on the incentives and information structure of

agents in a financial market. Given those, agents behave strategically, taking into account

their beliefs about the state of the world, and other agents’ strategies. The objects of

interest are then the game theoretic equilibria of this interaction. This allows for studying

the effects of properties such as asymmetric information, uncertainty or moral hazard on

the stability of the financial system. While these models provide valuable qualitative

insights, they are typically only tractable in very stylized settings. Models are usually

restricted to a small number or a continuum of agents, a few time periods and a drastically

simplified institutional and market set up. This can make it difficult to draw quantitative

conclusions from such models.

Agent-based models typically place less emphasis on incentives and information, and

instead focus on how the dynamic interactions of behaviorally simple agents can lead to

complex aggregate phenomena, such as financial crises, and how outcomes are shaped by

the structure of this interaction and the heterogeneity of agents. From this perspective,

the key drivers of systemic risk are the amplification of dynamic instabilities and contagion

processes in financial markets. Complicated strategic interactions and incentives are often

ignored in favor of simple, empirically motivated behavioral rules and a more realistic

institutional and market set up. Since these models can easily be simulated numerically,

they can in principle be scaled to a large number of agents and, if appropriately calibrated,

can yield quantitative insights.

Two common criticisms leveled against heterogeneous agent-based models are that

they often lack of strategic interactions and do not provide sufficiently robust results with

respect to parameter choices. The first criticism is fair and, in many cases, highlights an

important shortcoming of this approach. Hard-wired behavioral rules need to be carefully

calibrated against real data, and even when they are, they can fail in new situations
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where the behavior of agents may change. For computer simulations to be credible, their

parameters need to be calibrated and the sensitivity of outcomes to those parameters

needs to be understood. The latter in particular is more challenging in computational

models than in tractable analytical models. Agent-based models of financial systems

that a system’s capture heterogeneity often require more granular data to initialise and

calibrate the models. This is becoming less of an obstacle, now that increasingly more

big and granular datasets are being collected by central banks.

In our view, what is not fair is to regard computer simulations as inherently inferior

to analytic results. Analytic models have the benefit of the relative ease with which they

can be used to understand the concepts driving structural cause-and-effect relationships.

But many aspects of the economic world are not simple, and in most realistic situations

computer simulations are the only possibility. Good practice is to make code freely

available and well documented, so that results are easily reproducible.

Traditional and heterogeneous agent-based models are complements rather than sub-

stitutes. Some heterogeneous agent-based models already use myopic optimization, and

in the future the line between the two may become increasingly blurred.2 As meth-

ods such as computational game theory or multi-agent reinforcement learning mature, it

may become possible to increasingly introduce strategic interactions into computational

heterogeneous agent-based models. Furthermore, as computational resources and large

volumes of data on the financial system become more accessible, parameter exploration

and calibration should become increasingly feasible. Therefore, we are optimistic that,

provided technology progresses as expected,3 in the future heterogeneous agent-based

models will be able to overcome some of the shortcomings discussed above. And as we

demonstrate here, they have already led to important new results in this field, that were

not obtainable via analytic methods.

2.4 A View of the Financial System

At a high level, it is useful to think of the financial system as a dynamical system that

consists of a collection of institutions that interact via centralized and bilateral markets.

An institution can be represented by its balance sheet, i.e. its assets and liabilities,

together with a set of decision rules that it deploys to control the state of its balance

sheet in order to achieve a certain goal. Within this framework, a market can be thought

2 In fact, this is already the case in the literature on financial and economic networks, see for example
Goyal (2018).

3 It seems unlikely that scientists’ ability to analytically solve models will improve as quickly as
numerical techniques and heterogeneous agent-based simulations, which benefit from rapid improvements
in hardware and software.
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of as a mechanism that takes actions from institutions as inputs and changes the state

of their balance sheets based on its internal dynamics. Anyone wishing to construct an

agent model of the financial system therefore has to answer three fundamental questions:

(i) what comprises the institutions’ balance sheets, (ii) what determines their actions

conditional on the state of the world, and (iii) how do markets respond to these actions?

In the following, we will sketch the balance sheet of a generic leveraged investor, which

will serve as the fundamental building block of the models of financial stability that we

will discuss in this review. We will also briefly touch on (ii) and (iii) when discussing

the important channels through which leveraged investors interact. In the subsequent

sections we will then discuss concrete models of financial stability that fall within this

general framework.

2.4.1 Balance sheet composition

When developing a model of a financial system, it is useful to distinguish between two

types of agents which we refer to as “active” and “passive” agents. Active agents are

the objects of interest and their internal state and interactions are carefully modeled.

Passive agents represent parts of the financial system that interact with active agents

but are not the focus of the model, and are therefore typically represented by simple

stochastic processes. For the remainder of this review, consider a financial system that

consists of a set B of active leveraged investors and a set of passive agents which will

remain unspecified for now. We are particularly interested in systemic risk that is driven

by borrowing, and thus we focus on agents that use leverage (defined as purchasing assets

with borrowed funds). However, the setup below is sufficiently general to accommodate

unleveraged investors as a special case with leverage equal to one.

Leveraged investors need not be homogeneous and may differ, among other aspects,

in their balance sheet composition, strategies or counterparties. In practice, a leveraged

investor might be a bank or a leveraged hedge fund and other active investors might

include unleveraged mutual funds. Passive agents could be depositors, noise traders,

fund investors that generate investment flows or banks that lend to hedge funds. The

choice of active vs. passive investors of course varies from model to model.

The balance sheet of an investor i ∈ B is composed of assets Ai, liabilities Li and

equity Ei, such that Ai = Li + Ei. The investor’s leverage is simply the ratio of assets

to equity λi = Ai/Ei. It is useful to decompose the investor’s assets into three classes:

bilateral contracts ABi between investors, such as loans or derivative exposures; traded

securities ASi , such as stocks; and external assets ARi , whose value is assumed exogenous.

Throughout this review, we assume that the value ASi of traded securities is marked to

17



market.4 That is, the value of a traded security on the investor’s balance sheet will be

determined by its current market price. Of course we must have that Ai = ABi +ASi +ARi .

Each asset class can be further decomposed into individual loan contracts, stock holdings

and so on.

The investor’s liabilities can be decomposed in a similar fashion. For now, let us

decompose the investor’s liabilities simply into bilateral contracts LBi between investors,

such as loans or derivative exposures, and external liabilities LRi which can be assumed

exogenous. In the case of a bank, these external liabilities might be deposits. Again

we must have that Li = LBi + LRi , and bilateral liabilities can be further decomposed

into individual bilateral contracts. Bilateral assets and liabilities might be secured, such

as repurchase agreements, or unsecured such as interbank loans. Naturally, bilateral

liabilities are just the flip side of bilateral assets such that summing over all investors we

must have
∑

iA
B
i =

∑
i L

B
i .

2.4.2 Balance sheet dynamics

Of all the factors that affect the dynamics of the investors’ balance sheets, three are of

particular importance for financial stability: leverage, liquidity and interconnectedness.

Below, we discuss each factor in turn.

Leverage: Leverage amplifies returns, both positive and negative. Therefore, investors

typically face a leverage constraint to limit the investors’ risk.5 However, at the level

of the financial system, binding leverage constraints can lead to substantial instabilities.

On short time scales, a leveraged investor may be forced to sell into falling markets when

she exceeds her leverage constraint. Her sales will in turn depress prices further as we

explain in the next paragraph on market liquidity. Leverage constraints can thus lead to

an unstable feedback loop between falling prices and forced sales. On longer time scales

dynamic leverage constraints that depend on backward looking risk estimates can lead

to entirely endogenous volatility – so called leverage cycles.6

4 The term marked to market means that the value of assets is recomputed in every period based on
current market prices. This is in contrast to valuing assets based on an estimate of their fundamental
value.

5 This constraint may be imposed by a regulator, a counterparty or internal risk management.
6 Beyond leverage, investors may also face other constraints. Regulators have imposed restrictions

on the liquidity of assets that some investors may hold (with a preference for more liquid assets) and the
stability of their funding (with a preference for more long term funding). The effect of these constraints
on systemic risk is much less studied than the effect of leverage constraints. A priori however, one would
expect these constraints to improve stability. This is because of the absence of feedback loops similar to
the leverage-price feedback loop that drives forced sales.
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Liquidity: Broadly speaking, one can distinguish between two types of liquidity: mar-

ket liquidity and funding liquidity.

Market liquidity can be understood as the inverse to price impact. When market

liquidity is high, the market can absorb large sell orders without large changes in the

price. If markets were perfectly liquid it would always be possible to sell assets without

affecting prices and most forms of systemic risk would not exist.7 Leverage is dangerous

both because it directly increases risk, amplifying gains and losses proportionally, but also

because the market impact of liquidating a portfolio to achieve a certain leverage increases

with leverage. This point was stressed by Caccioli, Bouchaud & Farmer (2012), who

showed how, due to her own market impact, an investor with a large leveraged position

can easily drive herself bankrupt by liquidating her position. They showed that this can

be a serious problem even under normal market conditions, and recommended taking

market impact into account when valuing portfolios in order to reduce this problem. The

problem can become even worse if investors are forced to sell too quickly, inducing fire

sales in which a market is overloaded with sell orders, causing a dramatic decrease in

liquidity for sellers.8 Fire sales can be induced when investors hit leverage constraints,

forcing them to sell, which in turn causes leverage constraints to be more strongly broken,

inducing more selling.

Funding liquidity refers to the ease with which investors can borrow to fund their

balance sheets. When funding liquidity is high, investors can easily roll over their existing

liabilities by borrowing again, or even expand their balance sheets. In times of crises,

funding liquidity can drop dramatically. If investors rely on short term liabilities they

may be forced to liquidate a large part of their assets to pay back their liabilities. This

forced sale can trigger fire sales by other investors.

Interconnectedness: Investors are connected via their balance sheets and so are not

isolated agents. Connections can result from direct exposures due to bilateral loan con-

tracts, or from indirect exposures due to investments into the same assets. Intercon-

nectedness together with feedback loops resulting from binding leverage constraints and

endogenous liquidity can lead to financial contagion. In analogy to epidemiology, financial

contagion refers to the process by which “distress” may spread from one investor to an-

other, where distress can be broadly understood as an investor becoming uncomfortably

close to insolvency or illiquidity. Typically financial contagion arises when, via some mech-

anism or channel, a distressed investor’s actions negatively affect some subset of other

7 Prices would of course still change to reflect the arrival of new information.
8 There is always market impact from buying or selling. The term “fire sales” technically means

selling under stress, but often means simply a case where the sale of assets is forced (even when markets
remain orderly). See the discussion in Section 5.3.
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investors. This subset of investors is said to be connected to the distressed investor. A

simple example of such connections are the bilateral liabilities between investors. Taken

together, the set of all such connections form a network over which financial contagion

can spread. For an in-depth review of financial networks see Iori & Mantegna (2018).

The aim of the subsequent section is to discuss models of financial contagion as they

form the scientific bedrock of the stress testing models that will be discussed in Sections

2.6 and beyond. While liquidity is of great importance, we will only discuss it implicitly in

Section 2.5, rather than dedicating a separate section to it. This is because, unfortunately,

there are currently only few dedicated models on this topic, see Bookstaber & Paddrik

(2015) for an example. We will not be able to provide a complete overview of the agent-

based modelling literature devoted to various aspects of financial stability. Important

topics that we will not be able to discuss include the role of heterogeneous expectations

or time scales in the dynamics of financial markets, see for example Hommes (2006),

LeBaron (2006) for early surveys and Dieci & He (2018) for a recent overview.

2.5 Contagion in Financial Networks

2.5.1 Financial linkages and channels of contagion

A channel of contagion is a mechanism by which distress can spread from one financial

institution to another. Often the channel of contagion is such that distress can only

spread from one institution to a subset of all institutions in the system. These suscepti-

ble institutions are said to be linked to the stressed institution. The set of all links then

forms a financial network associated with the channel of contagion.9 Depending on the

channel, links in this network may arise directly from bilateral contracts between banks,

such as loans, or indirectly via the markets in which the banks operate. In the literature,

one typically distinguishes between three key channels of contagion: counterparty loss,

overlapping portfolios and funding liquidity contagion.10 Counterparty loss and overlap-

ping portfolio contagion affect the value of the assets on the investors’ balance sheet while

funding liquidity contagion affects the availability of funding for the investors’ balance

sheets. In the following we will first introduce the investor’s balance sheet relevant for this

section. We will then give a brief overview of the channels of contagion before discussing

each in more detail.

9 See Iori & Mantegna (2018) for a review of financial networks.
10 Information contagion (cf. Acharya & Yorulmazer (2008)) is another channel of contagion but

won’t be discussed in this section.
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Balance sheet: Throughout this chapter we will consider a set B of leveraged investors

(banks for short) whose assets can be decomposed into three classes: bilateral interbank

contracts ABi , traded securities ASi that are marked to market and external, unmodeled

assets ARi . Furthermore bank liabilities can be decomposed into bilateral interbank con-

tracts LBi , and external, unmodeled liabilities LRi such that Li = LBi + LRi . Note that

bilateral interbank contract need not be loans, they can also be derivative contracts for

example. For simplicity however, we will think of bilateral interbank contracts as loans

for the remainder of this section.

Counterparty loss: Suppose bank i has lent an amount C to bank j such that ABi =

LBj = C. Now suppose the value of bank j’s external assets ARj drops due to an exogenous

shock. As a result the probability of default of bank j is likely to increase, which will

affect the value of the claim ABi that bank i holds on bank j. If bank i’s interbank assets

are marked to market, a change in bank j’s probability of default will affect the market

value of ABi . In the worst case, if bank j defaults, bank i will only recover some fraction

r ≤ 1 of its initial claim ABi . If the loss of bank i exceeds its equity, i.e. (1− r)ABi > Ei,

bank i will default as well.11 Now, how can this lead to financial contagion? To elaborate

on the above stylised example, suppose that bank i in turn borrowed an amount C from

another bank k such that ABk = LBi = C.12 In this scenario, it can be plausibly argued

that an increase in the probability of default of j increases the probability of default of i

which in turn increases the probability of default of k. If all banks mark their books to

market, an initial shock to j can therefore end up affecting the value of the claim that

bank k holds on bank i. Again, in the extreme scenario, the default of bank j may cause

bank i to default which may cause bank k to default. This is the essence of counterparty

loss contagion. Naturally, in a real financial system the structure of interbank liabilities

will be much more complex than in the stylised example outlined above. However, the

conceptual insights carry over: the financial network associated with the counterparty

loss contagion channel is the network induced by the set of interbank liabilities.

Overlapping portfolios: The overlapping portfolio channel is slightly more subtle.

Suppose bank i and bank j have both invested an amount C in the same security l such

that ASil = ASjl = C, where we have introduced the additional index to reference the

security.13 Now, suppose the value of bank j’s external assets ARj drops due to some

11 In reality, this scenario is excluded due to regulatory large exposure limits which require that
ABi < Ei.

12 We assume that the contract between i and j as well as i and k has the same notional purely for
expositional simplicity and all conceptual insights carry over for heterogenous notionals.

13 Again, we assume that both banks invest the same amount purely of expositional simplicity.
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exogenous shock. How will bank j respond to this loss? In the extreme case, when the

exogenous shock causes bank j’s bankruptcy (Ei < 0), the bank will liquidate its entire

investment in the security in a fire sale. However, even if the bank does not go bankrupt,

it may wish to liquidate some of its investment. This can occur for example when the

bank faces a leverage constraint. Bank j’s selling is likely to have price impact. As a

result, the market value of ASil will fall. If bank i also faces a leverage constraint, or even

goes bankrupt following the fall in prices, it will liquidate part of its securities portfolio

in response. How will this lead to contagion? Suppose that bank i also has invested an

amount C into another security m and that another bank k has also invested into the

same security, such that ASim = ASkm = C. If bank i liquidates across its entire portfolio,

it will sell some of security m following a fall in the price of security l. The resulting price

impact will then affect the balance sheet of bank k which was not connected to bank j

via an interbank contract or a shared security. This is the essence of overlapping portfolio

contagion. Banks are linked by the securities that they co-own and the fact that they

liquidate with market impact across their entire portfolios. Empirical evidence from the

2007 Quant meltdown for this contagion channel has been provided in Khandani & Lo

(2011).

Funding liquidity contagion often occurs when a lender is stressed, and so often

occurs in conjunction with overlapping portfolio contagion and counterparty loss con-

tagion. To see this, let us reconsider the scenario we discussed for counterparty loss

contagion. Suppose bank i has lent an amount C to bank j such that ABi = LBj = C.

As before, suppose the value of bank j’s external assets ARj drops due to some exogenous

shock and as a result, the probability of default of bank j increases. Now, suppose that

every T periods bank i can decide whether to roll over its loan to bank j. Further assume

that bank i is bank j’s only source of interbank funding and LRj is fixed. Given bank

j’s increased default probability, bank i may choose not to roll over the loan at the next

opportunity. Ignoring interest payments, if bank i does not roll over the loan, bank j

will have to deliver an amount C to bank i. In the simplest case, bank j may choose

not to roll over its own loans to other banks which in turn may decide against rolling

over their loans. This is the essence of funding liquidity contagion. As for counterparty

loss contagion, the associated financial network is induced by the set of interbank loans.

Empirical evidence on the fragility of funding markets during the past financial crisis has

been provided for example by Afonso et al. (2011), Iyer & Peydro (2011). In a further

complication, bank j may also choose to liquidate part of its securities portfolio in order

to pay back its loan. Funding liquidity contagion can therefore lead to fire sales and

overlapping portfolio contagion and vice versa. This interdependence of contagion chan-
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nels makes the funding liquidity and overlapping portfolio contagion processes the most

challenging from a modeling perspective.

In the remainder of this section, we will discuss models for counterparty loss, overlap-

ping portfolio and funding liquidity contagion, as well as models for the interaction of all

three contagion channels.

2.5.2 Counterparty loss contagion

Let P denote the matrix of nominal interbank liabilities such that banks hold interbank

assets ABi =
∑

j P
T
ij , where T denotes the matrix transpose. In addition, banks hold

external assets ARi which can be liquidated at no cost. Banks have interbank liabilities

LBi =
∑

j Pij only. Assume all interbank liabilities mature at the same time and have the

same seniority. We further assume that all banks are solvent initially. There is only one

time period. At the end of that period all liabilities mature, external assets are liquidated

and banks pay back their loans if possible. Now suppose banks are subject to a shock

si ≥ 0 to the value of their external assets such that ÂRi = ARi − si. Given an exogenous

shock, we can ask a number of questions. First, which loan payments are feasible given

the exogenous shock? Second, which banks will default on their liabilities? And finally,

how do the answers to the first two questions depend on the structure of the interbank

liabilities P? There is a large literature that studies counterparty loss contagion in a set

up similar to the above, including Eisenberg & Noe (2001), Gai & Kapadia (2010), May

& Arinaminpathy (2010), Elliott et al. (2014), Acemoglu et al. (2015), Battiston et al.

(n.d.), Amini et al. (2013) and Capponi et al. (2015). In the following, we will briefly

introduce the seminal contribution by Eisenberg & Noe (2001), who provide a solution

to the first two questions. We will then consider a number of extensions of Eisenberg &

Noe (2001) and alternative approaches to addressing the above questions.

Define the relative nominal interbank liabilities matrix as Πij = Pij/L
B
i for LBi > 0

and Πij = 0 otherwise. The relative liabilities matrix corresponds to the adjacency matrix

of the weighted, directed network G of interbank liabilities. Let p = (p1, . . . , pN) denote

the vector of total payments made by the banks when their liabilities mature, where

N = |B|. Naturally, a bank pays at most what it owes in total, i.e. pi ≤ LBi . However, it

may default and pay less if the value of its external assets plus the payments it receives

from its debtors is less than what it owes. The individual payments that bank i makes

are given by Πijpi since by assumption all liabilities have equal seniority. The vector of

payments, also known as the clearing vector, that satisfies these constraints is the solution

to the following fixed point equation

pi = min{LBi , ÂRi +
∑
j

ΠT
ijpj}. (2.1)
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Eisenberg & Noe (2001) show that such a fixed point always exists. In addition, if within

each strongly connected component of G there exists at least one bank with ÂRi > 0,

Eisenberg & Noe (2001) show that the fixed point is unique.14 In other words, there

exists a unique way in which losses incurred due to the adverse shock {si} are distributed

in the financial system via the interbank liabilities matrix. The clearing vector and the

set of defaulting banks can be found easily numerically by iterating the fixed point map

in Eq. (2.1). As the map is iterated, more and more banks may default, resulting in a

default cascade propagating through the financial network.

It is important to note that in this set up losses are only redistributed and the system is

conservative – contagion acts as a distribution mechanism but does not, in the aggregate,

lead to any further losses to bank shareholders beyond the initial shock. To see this,

define the equity of bank i prior to the exogenous shock as Ei = ABi + ARi − LBi and

after the exogenous shock as Êi = ÂBi (p) +ARi − si − L̂Bi (p). Note that post-shock both

bank i’s assets and liabilities depend on the clearing vector p. Taking the difference

and summing over all banks we obtain
∑

iEi − Êi =
∑

iA
R
i − (ARi − si) =

∑
i si since∑

iA
B
i =

∑
i L

B
i and

∑
i Â

B
i (p) =

∑
i L̂

B
i (p). Also note that, while bank shareholder

losses are not amplified, losses to the total value of bank assets are amplified due to

indirect losses, i.e. losses not stemming from the initial exogenous shock but due to

revaluation of interbank loans. This can be seen by taking the difference between pre-

and post-shock total assets in the system. The total pre-shock assets of bank i are

Ai = ABi +ARi and its total post-shock assets are Âi = ÂBi (p)+ARi −si, then
∑

iAi−Âi =∑
iA

B
i − ÂBi (p) + si ≥

∑
i si. Some authors argue that this total asset loss can be

useful measure of systemic impact of the exogenous shock, see Glasserman & Young

(2015). Finally, note that the mechanism of finding a clearing vector ignores any potential

frictions in the financial system and ensures that the maximal payment is made given the

exogenous shocks. Several authors have argued that this is too optimistic and assume

instead that once a default has occurred, some additional bankruptcy costs are incurred,

see for example Rogers & Veraart (2013) and Cont et al. (2010).1516 In this case, aggregate

bank shareholder losses may be larger than the aggregate exogenous shock. Further

shortcomings of the Eisenberg and Noe model include the lack of heterogeneous seniorities

or maturities and the lack of the possibility of strategic default.

14 In a strongly connected component of a directed graph there exists a directed path from each
node in the component to each other node in the component. The strongly connected component is the
maximal set of nodes for which this condition holds.

15 Such bankruptcy cost might for example capture the cost of forced liquidation of the banks external
assets.

16Papers that do not assume bankruptcy costs are essentially treating the system as if were conser-
vative: losses to one party are gains to the other, but there is no deadweight loss that ravages welfare.
Hence, the fail to capture the negative externalities imposed by the banking system on society.
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Figure 2.1: Expected number of defaults as a function of diversification in Elliott et al. (2014).

The extent of the default cascade triggered by an exogenous shock depends on the

structure of the financial network induced by the matrix of interbank liabilities P . One

key property of the financial network is the average degree of a bank, i.e. the number

of other banks it lends to. A well-known result is that, as banks’ interbank lending

ABi becomes more diversified over B, i.e. the average degree increases, the expected

number of defaulting banks first increases and then decreases, see Fig. 2.1. If banks

lend only to a very small number of other banks, the network is not fully connected.

Instead, it consists of several small and disjoint components. A default in a particular

component cannot spread to other components, hence limiting the size of the default

cascade. As banks become more diversified, the network will become fully connected

and default cascades can spread across the entire network. As banks diversify further,

the size of the individual loans between banks declines to the point that the default of

any one counterparty becomes negligible for a given bank. Thus default cascades become

unlikely. However, if they do occur, they will be very large. This is often referred to as the

“robust-yet fragile” property of financial networks and has been observed for specifications

of the financial network and the default cascade mechanism, see for example Elliott et al.

(2014), Gai & Kapadia (2010), Battiston et al. (n.d.) or Amini et al. (2013). However,

not only the average of the network’s degree distribution is important for the system’s

stability. Caccioli, Catanach & Farmer (2012) show that if the degree distribution is very

heterogeneous, i.e. there are a few banks that lend to many banks while most only lend to

a few, the system is more resilient to contagion triggered by the failure of a random bank,

but more fragile with respect to contagion triggered by the failure of highly connected

nodes. In addition, Capponi et al. (2015) show that the level of concentration of the

liability matrix, as defined by a majorization order, can qualitatively change the system’s

loss profile.

The models and solution methods discussed above tend to be simple to remain

tractable and usually reduce to finding a fixed point.17 However, these equilibrium models

17 Gai & Kapadia (2010) for example make similarly restrictive assumptions on the structure of bank
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often form useful starting points for heterogeneous agent models that try to incorporate

additional dynamic effects and more realism into the counterparty loss contagion process.

See for example Georg (2013) where the effect of a central bank on the extent of default

cascades is studied.

Finally, note that it is widely believed that large default cascades are quite unlikely

for reasonable assumptions about the distribution of the exogenous shock and nominal

interbank liabilities matrix, see for example Glasserman & Young (2015). For larger

cascades to occur, default costs or additional contagion channels are necessary. Never-

theless, the existence of a counterparty loss contagion channel is important in practice

as it affects the decisions of agents, for example in the way they form lending relation-

ships. In other words, while default cascades are unlikely to occur in reality, they form

an “off-equilibrium” path that shapes reality, see Elliott et al. (2014).

2.5.3 Overlapping portfolio contagion

In the following we will formally discuss the mechanics of overlapping portfolio contagion.

To this end, consider again our set of banks B. There is an illiquid asset whose value is

exogenous and a set of securities S, with M = |S|, traded by banks at discrete points in

time t ∈ N. Let pt = (p1t, . . . , pMt) denote the vector of prices of the securities and let

the matrix St ∈ RN×M denote the securities ownership of all banks at time t. Thus Sijt

is the position that bank i holds in security j at time t. The assets of bank i are then

given by Ait = Sit · pt + ARi , where ARi is the bank’s illiquid asset holding. Let Eit and

λit = Ait/Eit denote bank i’s equity and leverage, respectively. There are no interbank

assets or liabilities.

As mentioned above, overlapping portfolio contagion occurs when one bank is forced

to sell and the resulting price impact forces other banks with similar asset holdings to sell.

What might force banks to sell? In an extreme scenario, a bank might have to liquidate its

portfolio if it becomes insolvent, i.e. Eit < 0. But even before becoming insolvent, a bank

might be forced to liquidate part of its portfolio if it violates a leverage constraint λ.18

Both of these were considered by Caccioli et al. (2014) and by Cont & Schaanning (2017).

In fact Caccioli et al. (2014) showed that such pre-emptive liquidations only make the

problem worse due to increasing the pressure on assets that are already stressed. (This

is closely related to the problem that liquidation can in and of itself cause default as

balance sheets as Eisenberg & Noe (2001). In addition several technical assumptions on the structure of
the matrix of liabilities are necessary to solve for the fixed point of non-defaulted banks via a branching
process approximation.

18 Other “constraints” might also lead to forced sales and overlapping portfolio contagion. For exam-
ple, investor redemptions that depend on past performance, as in Thurner & Poledna (2013), can force
a fund to liquidate which may result in an overlapping portfolio contagion similar to the one induced by
leverage constraints.
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studied by Caccioli, Bouchaud & Farmer (2012)). Other papers that discuss the effects

of overlapping portfolios include Duarte & Eisenbach (2015), Greenwood et al. (2015),

Cont & Wagalath (2016, 2013). An important early contribution to this topic is Cifuentes

et al. (2005).

Let us first discuss the simpler case where liquidation occurs only upon default. Sup-

pose bank i is subject to an exogenous shock si > 0 that reduces the value of its illiquid

assets to ÂRit = ARit − si. If si > Eit, the bank becomes insolvent and liquidates its entire

portfolio. Let Qjt =
∑

i∈It Sijt denote the total amount of security j that is liquidated

by banks in the set It of banks that became insolvent at time t. The sale of the securi-

ties is assumed to have market impact such that pjt+1 = pjt(1 + fj(Qjt)), where fj(·) is

the market impact function of security j. Caccioli et al. (2014) assume an exponential

form fj(x) = exp(−αjx) − 1, where x is volume liquidated and αj > 0 is chosen to be

inversely proportional to the total shares outstanding of security j. In the next period,

banks reevaluate their equity at the new securities prices. The change in equity is equal

to ∆Eit+1 =
∑

j Sijtpjtfj(Qjt) − si. Note that in this setting we hold Sijt fixed unless a

bank liquidates its entire portfolio. Thus, banks who share securities with the banks that

were liquidating in the previous period will suffer losses due to market impact. These

losses may be sufficiently large for additional banks to become insolvent. If this occurs,

contagion will spread and more banks will liquidate their portfolios, leading to further

losses. Over the course of this default cascade, banks may suffer losses that did not share

any common securities with the initially insolvent banks.

The evolution of the default cascade can be easily computed numerically by following

the procedure outlined above until no further banks default. Caccioli et al. (2014) also

show that the default cascade can be approximated by a branching process, provided

suitable assumptions are made about the network structure. For their computations,

Caccioli et al. (2014) assume that a given bank i invests into each security with a fixed

probability µB/M , where µB is the expected number of securities that a bank holds. The

bank distributes a fixed investment over all securities it holds. When µB/M is high, the

portfolios of banks will be highly overlapping, i.e. banks will share many securities in their

portfolios. Similar to the results for counterparty loss contagion, the authors find that as

banks become more diversified, that is µB increases while M is held fixed, the probability

of default (blue circles) first increases and then decreases, see Fig. 2.2. The intuition

for this result is again similar to the counterparty loss contagion case. If banks are not

diversified, their portfolios are not overlapping and price impact from portfolio liquidation

of one bank affects only a few banks. As banks become more diversified, their portfolios

become more overlapping and price impacts spreads throughout the set of banks leading

to large default cascades. Eventually, when they become sufficiently diversified, the losses
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Figure 2.2: Blue circles: probability of contagion. Red squares: conditional on a contagion, the fraction
of banks that fail (i.e. the extent of contagion). Taken from Caccioli et al. (2014).

resulting from a price change in an individual security become negligible and large default

cascades become unlikely. However, when they do occur, they encompass the entire set

of banks. Thus, here again the financial network displays the robust-yet fragile property.

Interestingly, the authors also show that for a fixed level of diversification, there exists a

critical bank leverage λit at which default cascades emerge. The intuition for this result

is that, when leverage is low, banks are stable and large shocks are required for default

to occur, as leverage grows banks become more susceptible to shocks and defaults occur

more easily.

As mentioned above, banks are likely to liquidate a part of their portfolio even before

bankruptcy, if an exogenous shock pushes them above their leverage constraint. This

is the setting studied in Cont & Schaanning (2017) and Caccioli et al. (2014). In this

case, the shocks for which banks start to liquidate as well as the amount liquidated

are both smaller than in the setting discussed above. If banks breach their leverage

constraint due to an exogenous shock si to the value of their illiquid assets, Cont &

Schaanning (2017) require that banks liquidate a fraction Γi of their entire portfolio such

that ((1− Γi)Sit · pt + ÂRit)/Eit = λ. The corresponding liquidated monetary amount for

a security j is then Qjt =
∑

i∈B ΓiSijtpjt. Again, the sale of the securities is assumed

to have market impact such that pjt+1 = pjt(1 + fj(Qjt)). In contrast to Caccioli et al.

(2014), the authors assume that the market impact function fj(x) is linear in x, where

x is the total monetary amount sold rather than the number of shares. Similar market

impact functions are used by Greenwood et al. (2015) and Duarte & Eisenbach (2015).

The shape and parameterization of the market impact function is crucial for the

practical usage of models of overlapping portfolio contagion. There is a large body of

market microstructure literature addressing this question. This literature begins with

Kyle (1985), who derived a linear impact function under strong assumptions. More

recent theoretical and empirical work indicates that under normal circumstances market
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impact is better approximated by a square root function Bouchaud et al. (2008).19 A

good example of an event in which firesales took place was the quant meltdown in August

2007. In this case, multiple participants were selling off assets at, often, discounted prices

(Cont & Wagalath (2013)).

Cont & Schaanning (2017) calibrate their model to realistic portfolio holdings and

market impact parameters and obtain quantitative estimates of the extent of losses due

to overlapping portfolio contagion. This provides a good starting point for more sophis-

ticated financial system stress tests that will be discussed in the following sections. The

models outlined above can be improved in many ways. Cont & Wagalath (2016) study

the effect of overlapping portfolios and fire sales on the correlations of securities in a

continuous time setting, where securities prices follow a stochastic process rather than

being assumed fixed up to the price impact from fire sales.

2.5.4 Funding liquidity contagion

Funding liquidity contagion has been much less studied than overlapping portfolio or

counterparty loss contagion. In the following we will briefly outline some of the consid-

erations that should enter a model of funding liquidity contagion.

In modeling funding liquidity contagion, it is useful to partion an investor’s funding

into long term funding as well as short term secured and unsecured funding. Only short

term funding should to be susceptible to funding liquidity contagion as long term fund-

ing cannot be withdrawn on the relevant time scales. The availability of secured and

unsecured short term funding may be restricted via two channels: a deleveraging channel

and a default anticipation channel. The deleveraging channel applies equally to secured

and unsecured funding: when a lender needs to deleverage, she can refuse to roll over

short term loans, which may in turn force the borrower to deleverage, resulting in a cas-

cade. This channel can be modeled using the same tools applied to overlapping portfolio

and counterparty loss contagion. A paper that studies this channel is Gai et al. (2011).

The default anticipation channel is different for secured and unsecured funding. In the

case of secured funding, a lender might withdraw funding if the quality of the collateral

decreases so that the original loan amount is nolonger adequately collateralized. In the

case of unsecured funding, a lender that questions the credit quality of one its borrow-

ers might anticipate the withdrawal of funding of other lenders to that borrower and

therefore withdraw her funding. This mechanism is similar to a bank run and therefore

should be modeled as a coordination game, see Diamond & Dybvig (1983) and Morris

& Shin (2001). This poses a challenge for heterogenous agent models and might explain

19 The market impact function takes the form kσ
√

∆V/V , where σ is volatility, ∆V is the size of the
trade, V is market trading volume and k is a constant of order one, whose value depends on the market.
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the relative scarcity of the literature on this topic. One notable exception that tries to

combine both mechanisms is Anand et al. (2015).

2.5.5 Interaction of contagion channels

So far we have focused on counterparty loss and overlapping portfolio contagion in isola-

tion. Of course, focusing on one channel in isolation only provides a partial view of the

system and thus ignores important interaction effects. Indeed, it has been shown by a

number of authors that the interaction of contagion channels can substantially amplify

the effect of each individual channel (e.g. Poledna et al. (2015), Caccioli et al. (2015),

Kok & Montagna (2013), Arinaminpathy et al. (2012). Although constructing models

with multiple contagion channels is difficult, some progress has been made.

Cifuentes et al. (2005) and Caccioli et al. (2015) study the interaction of counterparty

loss and overlapping portfolio contagion by combining variants of the contagion processes

outlined above into a comprehensive simulation model. In particular, using data from

the Austrian interbank system, Caccioli et al. (2015) show that the expected size of a

default cascade, conditional on a cascade occurring, can increase by orders of magnitude

if overlapping portfolio contagion occurs alongside counterparty loss contagion, rather

than in isolation.

In an equilibrium model Brunnermeier & Pedersen (2009) show that market liquidity

and funding liquidity can be tightly linked. In particular, consider a market in which

intermediaries trade a risky asset and use it as collateral for their secured short term

funding. A decline in the price of the risky asset can lead to an increase in the haircut

applied on the collateral. An increase in the haircut can be interpreted as a decrease

in funding liquidity and can force intermediaries to sell some of their assets. This in

turn can lead to a decrease in market liquidity of the asset. Aymanns et al. (2017) show

that a similar link between market and funding liquidity can also result from the local

structure of liquidity in over-the-counter markets (OTC). The authors show that, when

the markets for secured debt and the associated collateral are both OTC, the withdrawal

of an intermediary from the OTC markets can cause a liquidity contagion through the

networks formed by the two OTC markets. Similar to the Caccioli et al. (2015), the

authors show that under certain conditions the interaction of two contagion channels –

funding and collateral – can drastically amplify the resulting cascade.

Finally, Kok & Montagna (2013) construct a model that attempts to combine coun-

terparty loss, overlapping portfolio and funding liquidity contagion. Such comprehensive

stress testing models are the subject of the remainder of this chapter and will be discussed

in detail in the following sections.
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2.6 From Models to Policy: Stress Tests

2.6.1 What are stress tests?

The insights from the models discussed so far are increasingly used in the tools designed

to assess and monitor financial stability. After the crisis of 2008, maintaining financial

stability has become a core objective of most central banks.20 One example of such a tool,

which has become increasingly prominent over the past years, has been the stress test.21

Stress tests assess the resilience of (parts of) the financial system to crises (Siddique &

Hasan (2012), Scheule & Roesh (2008), Quagliariello (2009), Moretti et al. (2008)). The

central bank designs a hypothetical but plausible adverse scenario, such as a general

economic shock (e.g. a negative shock to house prices or GDP) or a financial shock (e.g.

a reduction in market liquidity, increased market volatility, or the collapse of a financial

institution). Using simulations, the central bank then evaluates how this shock – in the

event this scenario were to take place – would affect the resilience of the institution or

financial system it tests. Say, for example, that the central bank submits a bank to

a stress test. In this case, it would provide the bankers with a hypothetical adverse

scenario, and ask them to determine the effect this scenario would have on the bank’s

balance sheet. If a bank’s capital drops below a given threshold, it must raise additional

capital. Stress tests evaluate resilience to shocks and link that evaluation to a specific

policy consequence intended to enhance that resilience (e.g. raising capital). The process

also provides valuable information to regulators and market participants, and helps both

to better identify and evaluate risks in the financial system.

2.6.2 A brief history of stress test

Stress tests are a relatively novel part of the regulatory toolkit. The potential utility

of stress tests had been extensively discussed in the years preceding the financial crisis,

and were already used by the International Monetary Fund to evaluate the robustness

of countries’ financial systems. Banks already designed and conducted stress tests for

internal risk management under the Market Risk Amendment of the Basel I Capital

Accord, but it was only during the financial crisis that regulators introduced them on a

large scale and took a more proactive role in their design and conduct (Armour et al.

(2016)).

20For example, the mission statement of the US Federal Reserve (FED): ‘The Federal Reserve promotes
the stability of the financial system and seeks to minimize and contain systemic risks through active
monitoring and engagement in the U.S. and abroad’ https://www.bankofengland.co.uk.

21Timothy Geither, who played a key role in fighting that crisis as President of the New York Fed and
U.S. Secretary of the Treasury, has named his memories after the tool he helped introduce, see Geithner
(2014).
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In February 2009 the U.S. Treasury Department introduced the Supervisory Capital

Assessment Program (SCAP). This effort was led by Timothy Geither, at a time when

uncertainty about the capitalization of banks was still paramount (Schuermann (2014),

Geithner (2014)). Under the auspices of this program the Federal Reserve Board in-

troduced a stress test and required the 19 largest banks in the U.S. to apply it. The

immediate motivation was to determine how much capital a bank would need to ensure

its viability even under adverse scenarios, and relatedly, whether capital injections from

the U.S. tax payer were needed. A secondary motivation was to reduce uncertainty about

the financial health of these banks to calm markets and restore confidence in U.S. financial

markets (Anderson (2016), Tarullo (2016)).

In later years, SCAP was replaced by the Comprehensive Capital Analysis and Review

(CCAR) and the Dodd-Frank Act Stress Test (DFAST), which have been run on an

annual basis since 2011 and 2013, respectively (FED (2017b,a)). These early stress tests

gave investors, regulators and the public at large insight into previously opaque balance

sheets of banks. They have been credited with restoring trust in the financial sector

and thereby contributing to the return of normalcy in the financial markets (Bernanke

(2013)).

Across the Atlantic European authorities followed suit and introduced a stress test of

their own (EBA (2017a)). This resulted in the first EU stress tests in 2009, overseen by

the Committee of European Banking Supervisors (CEBS) (Acharya et al. (2014)). Due

to concerns about their credibility, the CEBS stress test was replaced in 2011 by stress

tests conducted by the European Banking Authority (EBA) (see Ong & Pazarbasioglu

(2014)). These have been maintained ever since (EBA (2017b)).

In 2014 the Bank of England also introduced stress tests in line with the American

example ((Ban (2014)). Around that time, stress tests became a widely used regulatory

tool in other countries too (Boss et al. (2007)). Now stress tests are regarded as a

cornerstone of the post-crisis regulatory and supervisory regime. Daniel Tarullo, who

served on the board of the U.S. Federal Reserve from 2009 to 2017 and was responsible

for the implementation of stress tests in the U.S., has hailed stress tests as ‘the single

most important advance in prudential regulation since the crisis’ (Tarullo (2014)).

Stress tests are not a uniform tool. They can take a variety of forms, which can be

helpfully classified along two dimensions. The first dimension concerns their object, or

the types of agent that the stress test covers; does the stress test only cover banks, or

non-banks as well? In the early days of stress testing, only banks were considered, but

now there is an increasing trend towards including non-banks. Given the composition of

the financial system in most advanced economies, and the importance of non-banks in

these financial systems, it is increasingly acknowledged that excluding non-banks from
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stress tests would leave regulators with a partial picture of financial stability risks in

their jurisdiction. In the United Kingdom, for example, almost half of the assets in the

financial system are held by non-banks (Burrows et al. (2015)), as is illustrated by a

stylized map of the UK financial system depicted in Figure 2.3.

Figure 2.3: Map of the UK financial system. Source: Burrows et al. (2015).

The second dimension concerns the scope of the stress test. Generally speaking, stress

tests can be used to evaluate the resilience of individual institutions (microprudential

stress tests), but could also assess the resilience of a larger group of financial institu-

tions or even of the financial system as a whole (macroprudential stress tests) (Cetina

et al. (2015), Bookstaber, Cetina, Feldberg, Flood & Glasserman (2014)). Methodologi-

cally speaking, the key difference is that macroprudential stress tests take the feedback

loops and interactions between (heterogeneous) financial institutions - as described in

section 2.5 of this chapter - into account, whereas the microprudential stress tests do not.

Perhaps more than any other financial stability tool, stress tests rely explicitly on the

models introduced so far. The following sections will cover micro- and macroprudential

stress tests in depth. In each instance, we will first review some representative stress tests

and subsequently conclude with an evaluation of their strengths and weaknesses.

2.7 Microprudential Stress Tests

2.7.1 Microprudential stress tests of banks

As noted, microprudential stress tests evaluate the resilience of an individual institution,

in this case a bank. Regulators subject the bank to an adverse scenario and evaluate
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whether a bank has sufficiently high capital buffers22 (and, in some cases, liquid assets23)

to withstand it.24 If this is not the case, regulators can require the bank to raise additional

capital (or liquidity) to enhance its buffers. The idea is that this will make the bank more

resilient, and by implication the resilience of the financial system as a whole.

Given this general approach, microprudential stress tests for banks tend to follow

three steps. First, the regulator designs the adverse scenario the bank is subjected to.

As noted, this scenario usually involves an economic and/or financial shock. In some

cases, the scenario consists of multiple (exogenous) shocks operating at the same time,

sometimes with specified ripple effects affecting other variables, which together create a

‘crisis narrative’ for the bank. The hypothetical scenario a bank is subjected to must

be adverse, plausible and coherent. That is, it cannot consist of a set of shocks that,

taken together, violate the relationships among variables historically observed or deemed

conceivable. Typically, the exogenous shocks affect a set of macro-variables (such as

equity prices, house prices, unemployment rate or GDP) as well as financial variables

(such as interest rates and credit spreads).

Second, the effect of this scenario on the bank’s balance sheet is determined25. This

determination primarily relates to the effect of the scenario on the bank’s capital (and

liquidity) buffer, usually expressed as a ratio of capital (liquidity) buffers to assets,26 and

profits. This calculation is based on an evaluation of how the shocks change the values of

the assets and liabilities on the bank’s balance sheet, as well as on the bank’s expected

income. Value changes on the balance sheet materialize either through a re-evaluation

of the market value (if the asset or liability is marked-to-market), or through a credit

shock re-evaluation. These effects are captured by market risk models and credit risk

22The simplest measure of a capital buffer is that of a bank’s net assets – the value of its assets minus
its liability. This represents a buffer that protects the bank against bankruptcy when its assets decline
in value. In most models described earlier in this chapter, this buffer corresponds to a bank’s equity.
When describing whether a bank has a sufficiently high buffer, the term ‘capital adequacy’ is commonly
used. For a more comprehensive overview, see Armour et al. (2016), Chapter 14.

23A liquidity buffer is intended to ensure that, when liquidity risk of the type discussed in section 2.4.2
materialize, a bank has sufficient liquid assets to meet demands for cash withdrawals. Although micro-
prudential liquidity stress tests for banks have been developed, they are currently not yet widely used
for regulatory purposes. Hence, we will focus on microprudential capital stress tests here.

24Note that this capital buffer is an example of a regulatory leverage constraint as introduced in
section 2.4.2.

25Depending on the regulatory regime, this determination is made either by the regulator or by banks
themselves.

26 When capital ratios are computed as capital over total (unweighted) assets, this amounts to the
inverse of the leverage ratio. Regulators typically use a more complex measure of the capital buffer to
account for the fact that some assets are riskier than others. Suppose a bank holds two assets with the
same value, but one (asset Y) is riskier than the other (asset X). When regulators take the riskiness of
these assets into account, to meet regulatory requirements the bank would have to hold a higher capital
buffer for asset Y than for asset X, corresponding to their relative riskiness. This process is referred to as
‘risk-weighting’, and the resulting capital buffer is commonly expressed relative to ‘risk-weighted assets’
(RWA).
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models (such as those described in Siddique & Hasan (2012), Scheule & Roesh (2008),

Quagliariello (2009), Moretti et al. (2008)). Credit losses for specific assets or asset classes

are commonly computed by multiplying the probability of default (PD), the exposure at

default (EaD), and the loss given default (LGD). Estimating these variables is therefore

key to the credit risk component of stress testing (Foglia (2008)). Value changes to the

expected income stream result largely from shocks that affect income on particular assets

or asset classes, such as interest rate shocks. This determination matters in the context

of the stress test because such income can, in the form of retained earnings, feed-back

into capital buffers.27 Usually, these microprudential stress test models therefore equate

the post-stress regulatory capital buffer to the sum of post-stress retained earning plus

regulatory capital28 over the post-stress (risk-weighted29) assets.

Third, once the bank’s post-stress capital buffer has been determined, regulators

compare it to a hurdle rate. This hurdle rate is usually set at such a level that, when

passing it, the bank would withstand the hypothetical scenario without being at risk of

bankruptcy. Consequently, if the bank does not meet this hurdle rate, it fails the stress

test and is said to be ‘undercapitalized’ (that is, its capital buffer is insufficient). When

that happens, the regulator commonly has the authority to require the bank to raise

extra capital to increase its buffer, so as to leave it better prepared for adverse scenarios.

Microprudential stress tests are thus used as a tool to recapitalize undercapitalized banks,

thereby reducing their leverage and increasing their resilience.

Given the importance of non-bank financial institutions to the financial system30,

it was only a matter of time before the scope of microprudential stress tests would be

extended beyond banks. The rationale for doing so is similar to the one that applies to

banks: regulators want to understand the resilience of non-bank financial institutions,

and where they find fragility they want to be able to amend it. So far, at least three

types of non-bank financial institutions are subjected to stress tests: insurers, pension

funds and central clearing parties (CCPs).

27 This is true unless part of this income is being paid to shareholders as dividends, which stress tests
commonly assume not to be the case.

28 If the scenario results in a loss to the bank’s equity and lowers its income, the capital buffer drops
(ceteris paribus).

29 In most cases the model also updates the assets’ risk-weights to reflect that the adverse scenario has
altered the riskiness of the asset (class). For an overview of the methodologies commonly used by banks,
see: Capgemini (2014). The ‘standard’ approach as proposed by regulators is set out in BIS (2015)

30See e.g. FSB (2015a), ECB (2015), Burrows et al. (2015), Pozsar et al. (2010), Pozsar & Singh
(2011), Mehrling et al. (2013), Pozsar (2013)
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2.7.2 Strengths and weaknesses of current microprudential stress
tests

Microprudential stress tests are valuable from at least three perspectives. First, they

give market participants more insight into the opaque balance sheets of the financial in-

stitutions being evaluated (Bookstaber, Cetina, Feldberg, Flood & Glasserman (2014)).

Opacity coupled with asymmetric information can, especially in times of financial dis-

tress, lead to a loss of confidence (Diamond & Dybvig (1983), Brunnermeier (2008)). If

the type and quality of a financial institution’s assets and liabilities are unclear, out-

siders may conceivably fear the worst and, for example, pull back their funding.31 Such

responses feed speculative runs which can turn into self-fulfilling prophecies and, ulti-

mately, (further) destabilize the financial system at the worst possible time (He & Xiong

(2012), Diamond & Dybvig (1983), Martin et al. (2014), Copeland et al. (2014)). Credibly

executed microprudential stress tests provide insight into an institution’s balance sheet,

can signal confidence about the institution’s ability to withstand severe stress, and create

a separating equilibrium that allows solid banks to avoid runs (Ong & Pazarbasioglu

(2014), Bernanke (2013)).32

Second, microprudential stress tests help financial institutions to improve their own

risk-management. By forcing them to assess their resilience to a variety of novel scenarios,

stress tests require banks to take a holistic look at their own risk-management practices

(Bookstaber, Cetina, Feldberg, Flood & Glasserman (2014)). As a consequence, more

banks are now also engaged in serious internal stress tests (Wackerbeck et al. (2016)).

Third, microprudential stress tests have proven to be an effective mechanism to re-

capitalize banks (Armour et al. (2016)). In the EU, the stress tests have forced banks

to raise their capital by 260 billion euros from 2011 to 2016 (Arnold & Jenkins (2016)),

and in the US the risk-weighted regulatory ratio of the banks that took part in the stress

test went up from 5,6 procent at the end of 2008 to 11,3 at the end of 2012 (Bernanke

(2013)). Against a backdrop of frequent questions about the adequacy of banks’ capital

buffers33, in part due to the gaming of risk weights (Behn et al. (2016), Fender et al.

(2015), Groendahl (2015)), many regulators have welcomed the role that stress tests have

played to enhance the resilience of banks. Even if microprudential stress tests are not,

strictly speaking, designed to assess and evaluate systemic risk, their role in raising cap-

ital adequacy standards can have the effect of enhancing resilience (Greenwood et al.

(2015)).

31The general economic principle at play is that of asymmetric information causing market failures,
see: Akerlof (1970)

32Weaker banks, however, may be exposed by the stress test. But regulators would learn this infor-
mation first, giving them an opportunity to intervene before the information reaches the market.

33See, for example, Admati & Hellwig (2014).
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Despite their strengths in specific areas, the current microprudential stress tests have

been criticized on at least four grounds. First, and most importantly from the perspective

of this chapter, microprudential stress tests ignore the fact that economies are complex

systems (as noted in section 2.2) and therefore are ill-suited to capture systemic risk. As

discussed in section 2.5 of this chapter, systemic risk materializes due to interconnections

between heterogeneous agents (for example due to overlapping portfolios and funding

liquidity contagion). By considering institutions in isolation, microprudential stress tests

(largely34) ignore the interconnections and interaction between financial institutions that

serve to propagate and amplify distress caused by the initial shock resulting from the

adverse scenario. Empirical research suggests that this approach substantially underesti-

mates the losses from adverse scenarios (Bookstaber, Paddrik & Tivnan (2014), also see

section 2.4). Bernanke (2015), for example, notes that the majority of the losses in the

last financial crisis can be traced back to such interactions as opposed to the initial shock

emerging from credit losses in subprime mortgage loans.

Second, microprudential stress tests tend to impose an unrealistically large initial

shock. Because regulators are aware of the fact that a microprudential modelling strategy

does not capture the higher order losses on the balance sheets of individual financial

institutions, they use a more severe initial scenario that causes direct losses to compensate

for that. To generate a sufficiently large initial shock, the scenario tends to depart quite

strongly from reality. Often, the initial scenario posits a substantial increase in the

unemployment rate as well as a sharp drop in GDP.35 In reality, however, it is uncommon

for these conditions to precede a financial crisis, so the stress test might be testing for

the wrong type of scenario.36 Imposing an unrealistic shock – and excluding higher-order

effects – can also affect the outcome of the stress test in unexpected ways. In particular,

while stress tests with large initial shocks might get the overall losses right, they might

fail to accurately capture the distribution of losses across institutions, which ultimately

determines which banks survive and which do not. For an investigation of this issue, see

for example Cont & Schaanning (2017).

Third, the value of the information produced by microprudential stress tests is in-

creasingly being questioned. The outcomes of stress tests have converged (Glasserman

et al. (2015)), perhaps because banks seem increasingly able to ‘train to the test’. This

has left some to wonder what the information produced by the stress tests is actually

worth (Hirtle et al. (2016)), and others to conclude that the value of such information has

34In some cases a proxy for such contagious effects is included in the microprudential stress test, but
this is rare.

35See, for example, FED (2016), BoE (2016), ESRB (2016).
36Instead, exogenous shocks such as declining house prices or stock markets precede financial crises.

These are commonly also part of the initial scenario.
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declined over time (Candelon & Sy (2015)). Such concerns have been further fuelled by

the apparent willingness of some regulators to allow banks to pass the test on the basis

of dubious assumptions.37

Finally, the stress tests are commonly calibrated to the losses incurred during the last

financial crisis, raising questions about their relevance in relation to current, let alone

future, scenarios – not least because the financial system constantly changes.

2.8 Macroprudential Stress Tests

Because the financial system is a complex system (see section 2.2), the whole is differ-

ent from the sum of its parts (Anderson et al. (1972), Farmer (2012), Battiston et al.

(2016)). In other words, measures focused on the health of individual institutions (as

microprudential stress tests would prescribe) will not necessarily guarantee the health of

the financial system as a whole. In fact, such measures might destabilize the system. To

understand the system as a whole - and, by implication, systemic risk - stress tests have

to account for feedback loops and non-linearities.

The inability of microprudential stress tests to appropriately account for systemic risk

has prompted the development of a specific type of stress tests focused on this goal; the

macroprudential stress test. Macroprudential stress tests aim to assess the resilience of

a whole sector, or even the whole financial system, rather than that of one particular

institution. To do so, they extend the microprudential stress test by including contagion

effects between interconnected financial institutions that can arise following the initial

adverse scenario. This means that the regulators must not only assess the effect of

the initial shocks on the individual balance sheets, but must capture how the balance

sheets are interlinked (see section 2.5). They should also address what consequences

such interlinkages have for the potential of financial distress to propagate throughout the

system. The contagion models discussed in section 2.5 can help inform regulators on how

to model these higher order spill-over effects.

In this section, we focus on discussing two macroprudential models for banks, and

examining one that combines banks and non-banks. We also briefly touch on recently

developed system-wide stress testing models. The first two models, the Bank of England’s

‘Risk Assessment Model of Systemic Institutions’ (RAMSI) and the Bank of Canada’s

‘MacroFinancial Risk Assessment Framework’ (MFRAF), have been used in stress tests.

37Deutsche bank, which has seen its share price fall significantly in 2016 on fears that it could face a
US fine of up to USD 14bn, was given special treatment by the European Central Bank in the 2016 EBA
stress tests, so that it could use the result of the stress test as evidence of it’s healthy finances (Noonan
et al. (2016)).
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The last model, U.S. Office of Financial Research’s (OFR’s) ‘Agent-Based Model for

Financial Vulnerabilities’ (ABMFV), has not.

The ABMFV and the RAMSI are examples of cases where heterogeneous agent models

have been applied to macroprudential stress tests.38 The MFRAF is an example of

another (neoclassical) approach.

After introducing these three models, their differences and similarities are outlined.

The section ends with a discussion of the strengths and weaknesses of these macropru-

dential stress tests.

2.8.1 Examples of macroprudential stress tests

RAMSI stress test of the Bank of England

The Bank of England has pioneered the development and use of a macroprudential bank-

ing stress test, called the RAMSI model. Though he model has been phased-out, we

discuss this model to showcase the strengths and weaknesses of one of the earliest sys-

temic stress test models that leverages models of contagion. The model evaluates how

adverse shocks transmit through the balance sheets of banks and can cause further conta-

gion effects (Burrows et al. (2012)). It is based on earlier research that has been conducted

by Bank of England researchers and others (Aikman et al. (2009), Kapadia et al. (2013),

Alessandri et al. (2009)).

The RAMSI stress test begins as a microprudential stress test. Subsequently, possible

feedback effects within the banking system are considered. If the initial shocks have

caused a bank to fall below its regulatory capital ratio, or have caused the bank to be

shut off of all unsecured funding39 markets, the bank respectively suffers an insolvency

or illiquidity default. Subsequently, the default causes two interbank contagion effects:

common asset holding contagion and interbank contagion. The combined effect of the

marked-to-market losses and the credit losses can cause other banks to default through

insolvency or illiquidity by being shut out of the funding market. If this happens, the

loop is repeated. If this does not happen, each bank’s net operating expenses are invested

in assets such that the bank targets its regulatory risk-weighted target ratio. The credit

losses persist, but the marked-to-market losses are assumed to disappear as each asset

38Indeed, these models combine the contagion models discussed in section 2.5
39This causes funding liquidity contagion. The bank is shut off of all unsecured funding based on

a rating system. Based on the shocked balance sheets and profit and losses (PL), the credit score for
the bank is computed, which the authors assume affects the funding cost of the bank and its ability to
access the long-term and short-term funding market. This credit score takes into account liquidity and
solvency characteristics of the bank’s balance sheet, but also system-wide market distress. If its credit
score is above a certain threshold, the bank is shut out of the unsecured funding markets altogether
(both long-term and short-term) and is assumed to default.
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price returns to its fundamental value. Then, the next time step starts, and the process

can be repeated, starting with a balance sheet that includes the credit losses incurred in

the previous time step.

Thus, the RAMSI stress test turns a microprudential foundation into a macropruden-

tial model by including interbank contagion effects via common asset holdings, interbank

losses and funding liquidity contagion. Figure 2.4 summarizes what happens at each step

of the RAMSI model.

Figure 2.4: Description of the RAMSI stress test of the Bank of England. Source: Aikman
et al. (2009)

MFRAF stress test of the Bank of Canada

Contrary to the RAMSI model, the Bank of Canada’s MacroFinancial Risk Assessment

Framework (MFRAF) is at its core not a heterogeneous agent model, but a global games

model, such as those described in Morris & Shin (2001). In the way it sets up funding

runs (i.e. as a global coordination game) it is similar to the seminal model of Diamond

& Dybvig (1983) (discussed in section 2.5). It captures three sources of risk that banks

face (Anand et al. (2014), ?), BoC (2012)): solvency, liquidity, and spill-over risk (see

Figure 2.5).

Figure 2.5: Description of the MFRAF stress test of the Canada. Source: Anand et al.
(2014).
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The MFRAF stress test has been applied to the Financial Sector Stability Assessment

(FSAP) of the Canadian financial sector conducted by the International Monetary Fund

(IMF) in 2014 (IMF (2014)). The 2014 FSAP stress test, which considers the direct

effects of adverse shocks on the solvency of banks, is microprudential. When extending it

to capture system-wide effects (i.e. liquidity effects and spill-over effects) using MFRAF,

overall losses to the capital of the Canadian banks rose with 20 percent. This again

shows that microprudential stress tests significantly underestimate system-wide losses.

We will now discuss the theoretical underpinnings of the MFRAF stress tests, which

builds on research at the Bank of Canada and elsewhere (Anand, Gauthier & Souissi

2015, Gauthier, Lehar & Souissi 2012, Gauthier, Souissi, Liu et al. 2014).

The theoretical model that underpins the MFRAF stress test is described in Anand

et al. (2015) and will be discussed here.40 The model captures how solvency risks, funding

liquidity risks, and market risks of banks are intertwined. In essence, this works as follows:

a coordination failure between a bank’s creditors and adverse selection in the secondary

market for the bank’s assets interact, leading to a vicious cycle that can drive otherwise

solvent banks to illiquidity. Investors’ pessimism over the quality of a bank’s assets

reduces the bank’s access to liquidity, which exacerbates the incidence of runs by creditors.

This, in turn, makes investors more pessimistic, driving down other banks’ access to

liquidity. The model does not capture interbank contagion upon default, although this

is captured in MFRAF (IMF (2014)).

The key components of the model according to the evolution of the model over time

is summarized in Figure 2.6.

Figure 2.6: Time steps in theoretical model of MFRAF stress test of the Bank of Canada.
Source: Anand et al. (2015).

ABM for Financial Vulnerabilities

40The degree to which the theoretical model of Anand et al. (2015) is in unaltered form translated
into the MFRAF stress tests is not made explicit in the IMF (2014) documentation of the MFRAF stress
test.
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The final system-wide stress testing model that will be discussed, the Agent-Based Model

(ABM) for Financial Vulnerabilities (Bookstaber, Paddrik & Tivnan (2014))4142, captures

similar contagion mechanisms as MFRAF, but it does so using a different methodology.

The model is designed to investigate the vulnerability of the financial system to asset-

and funding-based firesales that can lead to common asset holding contagion.

The financial system is modelled as a combination of banks that act as intermediaries

between the cash provider (a representative agent for various types of funds) and the

ultimate investors (i.e. the hedge funds). Hedge funds can receive funding from banks

for long positions in return for collateral. Banks, in turn, receive funding from the

cash provider in return for collateral. Funding and collateral therefore flow in opposite

directions, as is illustrated in Figure 2.7.

Figure 2.7: Map of the financial system and its flows, as considered in the ABM for
Financial Vulnerabilities. Source: OFR (2014).

The role of the cash provider c in the model is to provide secured funding to banks.43

Although the cash provider is not actively modelled, it can take two actions. First, it

can set the haircut (this can force the hedge fund to engage in fire sales), and second

it can pull funding from the banks (this may lead the bank to contribute to pre-default

contagion or default).

Hedge funds have a balance sheet that consists of cash and tradable assets on the

asset side, and secured loans and equity (and possibly short positions) on the liability

side. A hedge fund funds its long positions in assets using funding from banks in the form

41The model was developed by researchers who at the time worked at the U.S. Office of Financial
Research.

42A further discussion of some agent-based models of the financial crisis and stress testing can be
found in Bookstaber & Kirman (2018).

43The cash provider is a representative agent that represents financial institutions that typically
provide funding to banks, such as asset managers, pension funds, insurance companies, and security
lenders, but most importantly, money market funds.
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of repurchase contracts (often referred to as repos).44 When funding themselves this way,

hedge funds receive cash in return for collateral they pledge to the bank. Although the

hedge fund does not face a regulatory leverage constraint, it faces an implicit leverage

constraint based on the haircut it receives on its collateral. The haircut determines how

much equity a hedge fund needs for a given amount of repo funding. If the haircuts on

all types of collateral (i.e. on all types of assets that can be pledged as collateral) is

the same, and assuming that the bank passes on the haircut it receives from the cash

provider, the maximum leverage λ̄jt of the hedge fund j at time t is given by λ̄jt = 1
hcjt

. If

the leverage of the hedge fund exceeds the maximum leverage45, the hedge fund is forced

to de-lever. It will do so by fire selling assets. This can cause marked-to-market losses

for other banks or hedge funds who hold the same assets.

The banks act as an intermediary between buyers and sellers of securities and between

lenders and borrowers of funding.46 On the whole, the bank can contribute to financial

distress pre-default and post-default in various ways. Pre-default, the bank may have to

fire sell assets or to pull funding from the hedge fund (which consequently may also have

to engage in firesales) in order to raise cash, de-lever, or pay back funding to the cash

provider (if the cash provider pulled its funding). In addition, by passing on an increased

haircut to the hedge fund, it can trigger a hedge fund to engage in firesales. Post-default,

the bank contributes to exposure losses and further firesale losses.

Recent developments in macroprudential stress testing

Though, we have focussed on comparing three models: RAMSI, ABMFV and MFRAF,

other relevant macroprudential stress tests exist. Here, we will discuss relevant systemic

44In a repo, one party sells an asset to another party at one price at the start of the transaction
and commits to repurchase the fungible assets from the second party at a different price at a future
date. If the seller defaults during the life of the repo, the buyer (as the new owner) can sell the
asset to a third party to offset his losses. The asset therefore acts as collateral and mitigates the
credit risk that the buyer has on the seller. Although assets are sold outright at the start of a
repo, the commitment of the seller to buy back the fungible assets in the future means that the
buyer has only temporary use of those assets, while the seller has only temporary use of the cash
proceeds of the sale. Thus, although repo is structured legally as a sale and repurchase of securities,
it behaves economically like a collateralized loan or secured deposit. For an overview, see: https://

www.icmagroup.org/Regulatory-Policy-and-Market-Practice/repo-and-collateral-markets/

icma-ercc-publications/frequently-asked-questions-on-repo/1-what-is-a-repo/.
45A hedge fund’s leverage can exceed the maximum due to asset prices depreciations (as a consequence

of firesales, for example) or increases in the haircut (due to the cash provider’s downward assessment of
the bank’s solvency and/or liquidity). If the hedge fund is forced to de-lever, it will attempt to go back
to a ‘buffer leverage’ level, which is below the maximum leverage value.

46 In its role, it facilitates maturity, liquidity, and risk transformations. The banks have various desks
that play a role in these processes: the prime broker, the finance desk, the trading desk, the derivatives
desk, and the treasury. The various equations associated with the functioning of the bank dealer and its
various subdesks can be found in Bookstaber, Paddrik & Tivnan (2014).
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stress test models that have recently been developed.

Baranova et al. (2017), from the BoE, study market liquidity in the corporate bond mar-

ket by modelling broker-dealers, hedge funds and (unlevered) fund managers. This stress

test focusses on simulating common asset holding contagion; it does not model any of

the other contagion mechanisms that have been identified in the financial stability liter-

ature. Baranova et al. (2017) show that unlevered non-banks, such as mutual funds, may

be the a source of distress, by acting procyclicaly in response to distress. Importantly,

they demonstrate that continued financial resilience, in such case, depends on the abil-

ity of intermediaries, such as market makers, to buy, when some institutions, specfically

funds, are forced to sell. They also show the role that hedge funds can play in buttressing

financial stability, by buying under-priced assets, which puts a floor under asset prices

and offers market liquidity by acting as a buyer when others are (forced) sellers. Overall,

Baranova et al. (2017) improve upon earlier stress tests, such as RAMSI, ABMFV and

MFRAF, by modelling and highlighting how the different types of financial institutions

may contribute to or quench distress depending on their incentives, resources, and bind-

ing constraints.

Rather than simulating stress dynamics in a network model, as Baranova et al. (2017)

do, Aikman et al. (2019), also from the BoE, put forward a general equilibrium model to

conduct system-wide stress tests of the market-based-finance sector. At the centre of this

model is a set of representative agents, which represent the core financial sectors: dealers,

open-ended investment funds, hedge funds, and long-term investors, such as insurance

companies and pension funds. By focussing on representative sectors, their model is

silent about within-sector heterogeneity, which is an important omission. Their model

incorporates two key contagion channels, and their interaction, that are emphasised in

the literature: overlapping portfolio contagion and margin-call contagion. In their model,

the interaction between agents’ solvency and liquidity constraints can prompt fire sales

by one agent that can create falls in market prices, reducing the asset value of other

agents, which in turn may prompt them to sell. They also focus on the repo market, in

which they consider that cash-providers could either pull short-term funding or increase

haircuts, forcing those reliant on repo funding to deleverage, including by fire selling as-

sets or reducing their own provision of repo. A similar type of contagion in the model can

also take place via derivatives markets via margin calls. This general equilibrium stress

test explores how tipping points from stability to instability may depend on the size of

the adverse shock and distance to institutions’ constraints, among others. In many ways,

this model is the equilibrium version of the ABMFV, likewise focusing on the interaction
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between overlapping portfolio and margin-call contagion. Unlike the ABMFV, they in-

clude open-ended investment funds.

Dees & Henry (2017), from the ECB, have developed STAMPe: Stress-Test Analytics

for Macroprudential Purposes in the euro area. Dees & Henry (2017) offer a host of

modular, macroprudential stress testing tools. Importantly, STAMPe may be used as a

macroprudential extension to a microprudential stress test, as in the case of MFRAF. Two

financial stability models are incorporated in STAMPe’s stress test toolkit: overlapping

portfolio contagion and interbank contagion. STAMPe also integrates liquidity and

solvency stress, and it allows for dynamic balance sheet adjustments of institutions in

response to an adverse scenario. Other than all the other stress tests we have discussed in

this section, it encompasses – in a stylised form – feedbacks between the financial system

and the real economy.

2.8.2 Comparing and evaluating macroprudential stress tests:
five building blocks

To comprehensively design, study and evaluate macroprudential stress tests, we introduce

a general framework consisting of five building blocks that allow us to break down each

stress test in discrete components: (1) types of financial institutions (agents), (2) financial

contracts, (3) markets, (4) constraints, and (5) behavior.47 This framework also offers an

analytically coherent way to combine the various heterogeneous agent models discussed in

section 2.5 in order to capture their interactions (see section 2.5.5). With such a frame-

work one can capture critical features48 necessary to be able to capture systemic risk.

This section covers these five building blocks and compares the three macroprudential

stress tests discussed above49 as we go along (these findings are summarized in table 2.1).

We will see that these stress tests implement each building block with varying degrees of

fidelity to the real world.

47With these five building blocks, many relevant features of a financial system can be captured by
initialising bespoke implementations for each building block. Once financial institutions and financial con-
tracts are defined, a multi-layered network can be initialized. When, subsequently, markets, constraints
and behavior are chosen, the dynamics of system can be studied. For a more elaborate description of
how these building blocks can be used to develop a generic nesting model for system-wide stress tests,
see: Farmer et al. (2020).

48E.g. all relevant contagion channels and sectors.
49See section 2.8.1, section 2.8.1, and section 2.8.1.
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Table 2.1: Comparison between the three macroprudential stress tests (RAMSI, MFRAF,
ABMFV) regarding the (system-wide stress test) building blocks: (1) financial institu-
tions; (2) financial contracts; (3) markets; (4) constraints; and (5) behavior. Note that
rc, cc, mc stand for regulatory, contractual and market-based constraints respectively.
Remark that MFRAF captures unsecured interbank loans, counterparty loss contagion
and a leverage constraint, the theoretical model of Anand et al. (2015) does not. We list
the behavior that impacts the state of the system.

RAMSI MFRAV ABMFV
(1) Financial institutions:

Banks X X X
Creditors (exogeneous) X X X
Hedge funds - - X

(2a) Financial contracts:

Traded securities X X X
Unsecured interbank loans X X -
Unsecured term deposits - X -
Secured interbank loans (repos) - - X

(2b) Channels of contagion:

Overlapping portfolios X X X
Counterparty loss X X -
Funding liquidity X X X
Margin spirals - - X

(3) Modeled markets:

Traded securities X X X

(4) Constraints:

Leverage constraints (rc) X X X
Liability payment obligations (cc) X X X
Margin call obligations (cc) - - X
Funding run (mc) X X X

(5) Behavior:

Pre-default
- no action (banks) X X -
- action (banks, hedge funds) - - • control leverage

• meet contractual obligations
• maximize profits

- exogenous action (creditor run) X X X
Post-default
- Default procedure • fire sales • fire sales (of collateral) • fire sales (implicit)

• exposure losses

Financial institutions

Financial institutions are at the heart of any financial stability analysis and form a key

component of macroprudential stress tests. In most models they are represented by bal-

ance sheets filled out with a collection of financial contracts that are unique to that

institution. Moreover, each institution comes with its own set of constraints and behav-

ioral rules. By endowing an institution with its unique collection of financial contracts,
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combination of constraints, and behavioral rules, various types of heterogeneous finan-

cial institutions (e.g. banks, insurance companies, hedge funds, unlevered funds, central

clearing parties) can be characterized. This allows for the inclusion of the many types

of financial institutions that need to be studied to capture the dynamics of a financial

system under stress.

None of the macroprudential models discussed in this chapter capture all relevant

financial institutions, which limits their claim to be a truly ‘system-wide’ macroprudential

stress test. Specifically, the RAMSI and MFRAF model only capture the banking system,

and though the ABMFV also considers non-banks it only covers a subset (hedge funds

and cash providers).50

Financial contracts: interlinkages and associated contagion channels

Contracts sit on the balance sheet of each institution, but because contracts are between

institutions, they also stipulate the interconnections between institutions. Taking institu-

tions as the nodes in the network the contracts define the edges of the network. (Common

asset holdings also define connections, though a more accurate approach is to treat these

as bipartite networks). Contagion dynamics, such as those described in section 2.5, op-

erate over these financial contracts to jump from institution to institution. It is therefore

important to ensure that the models representing these contracts capture the features

that create the interconnections between institutions (e.g. contractual counterparties)

and enable contagion (e.g. valuation method, contractual obligations).

The three macroprudential stress tests capture these three contractual characteristics

for a subset of contracts (leaving out some relevant contractual types), but do study how

the contagion dynamics operating over them can interact. Specifically, models capture the

interaction between contagion channels discussed in section 2.5: common asset holding

contagion, counterparty loss contagion, and funding liquidity contagion. The ABMFV

also captures ‘collateral contagion’.51

50Each model also considers exogenous creditors. The balance sheets of exogeneous agents is not
explicitly modelled. As such exogenous agents cannot default. When exogenous creditors withdraw a
loan, the cash exists the system.

51‘Collateral contagion’ refers to the contagious spill-overs that can arise from margin calls associated
to repo contracts (e.g. secured funding contracts). Institutions receive a margin call when the asset
collateral value drops (or haircuts increase) so that it is not enough to cover the loan amount. If
institutions are not able to meet the margin call they may be forced to engage in fire sales. Collateral
contagion is especially relevant as it interacts with common asset holding contagion. Indeed, price falls
due to fire sales can trigger collateral contagion.
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Markets

In most models (as in reality), markets are the places where asset prices are determined,

as well as the place where new contracts are agreed upon and existing ones modified or

terminated. It is their role in the price formation process and the provision of liquidity

that makes the modelling of markets particularly relevant to macroprudential stress tests.

Markets are diverse in their institutional characteristics; they can be bilateral (such as

the interbank loan market), exchange-based (like the stock market), intermediated (like

a dealer-based market for, say, corporate bonds), or centrally cleared (i.e. by a CCP).

Typically, there is a specific market for each financial contract on the balance sheet of an

institution.

However, although each of our three macroprudential models consider multiple types

of contractual linkages, they only model one market: the market for common asset

holdings.52 Moreover, although all three models consider a bilateral funding market for

(un)secured funding, they do not consider a bilateral funding market for these contracts.

Therefore, when an (un)secured loan is not rolled over, institutions have no opportunity

to seek funding elsewhere. That potentially causes these models to overestimate financial

distress.

Because financial stability critically depends on price formation and the ability of

institutions to forge contractual links (or break them), it is important to model the

markets that exist for each type of contract (and do so with sufficient realism).53 An

understudied challenge is thus to determine whether and how the dynamics in a given

market contribute to financial (in)stability, and to reflect that in stress testing models.

This is complicated, because ideally it would require an understanding of the supply and

demand functions for each market. 54

Constraints

Financial institutions typically face four types of constraints: regulatory constraints,

contractual constraints, market-based constraints, and internal risk limits. Regulatory

52The modelling of price formation is approached differently in the three models. In the case of the
RAMSI and MFRAF model a price impact function is used. The MFRAF model updates prices based
on the investors’ believes about the quality of the assets.

53E.g. Baranova et al. (2017) show for the case of corporate bond markets that market liquidity (and
common asset holding contagion) critically depends on the ability of intermediaries to make markets.

54To capture price formation (or counterparties for a bilateral contract), the model must produce
well-balanced supply and demand as observed in normal times and allow for imbalances in times of
distress.
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constraints are constraints set by the regulator. Most regulatory constraints are specific

to a type of institution; banks face different regulatory constraints than insurers, for

example. The models capture a subset of the regulatory constraints that banks face55

and do not capture the regulatory constraints that non-banks confront. As has been

discussed in that section, insurers face a Solvency II constraint, pension funds face a

coverage ratio, and CCPs must fulfil default fund requirements..

Contractual constraints arise out of contractual obligations. Because, as noted be-

fore, each financial institution holds a unique collection of contracts, the contractual

constraints of each institution are unique too. Each model covers repayment obligations,

because they capture (un)secured funding contracts. The ABMFV also considers margin

call obligations as part of the secured funding contracts. Because each of the macropru-

dential stress tests discussed above only captures a subset of the relevant contracts, the

contractual constraints they capture are incomplete as well. Banks, for example, typically

hold derivatives contracts (e.g. credit default swaps) that can give liquidity shocks that

may foster pre- or post-default contagion.

Market-based constraints (commonly referred to as ‘market discipline’) are those that

are enforced by market participants. Sometimes, market participants set higher standards

than regulators do; a bank might, for example, be cut off from funding markets because

its leverage is judged to be too high, even though it still meets the regulatory leverage

requirements. In this case, the market constraint could be formalized as a leverage

constraint that is stricter than the regulatory leverage constraint. The most relevant

market-based constraint, which entails that creditors run if the liquidity and/or solvency

characteristics of a bank are sufficiently negative, is captured by all three models. 57

Finally, internal risk limits are set by the financial institutions themselves, as part of

their risk-management practices. An example could be a value-at-risk (VaR) constraint

on a portfolio.58

Taken together, these constraints (and their various interactions) can drive an insti-

tution’s behavior, especially under stress. First, institutions may act in a precautionary

manner to avoid breaching constraints in order to avoid defaults. These actions, which

55The RAMSI model and the ABMFV consider one regulatory constraint for banks, an (unweighted)
leverage ratio and a risk-weighted leverage ratio respectively. The theoretical model of Anand et al.
(2015) that underpins the MFRAF stress test does not consider a regulatory leverage constraint.56

Banks default when they no longer meet their minimum (risk-weighted) leverage constraint. The models
do not capture other regulatory constraints of banks that may affect financial stability, such as liquidity
constraints (e.g. the liquidity coverage ratio) for banks.

57The models consider the creditors to be exogenous to the system. A more realistic approach would
be to make these creditors endogenous to the system. That way, cash does not leave the system but ends
up in an institution’s pockets.

58None of the macroprudential models discussed here consider internal risk limits.

49



are often prudent for each institution separately, may contribute to pre-default conta-

gion (e.g. firesales in order to meet payment obligations). Second, institutions may fail

to avoid breaching a constraint and default, which then leads to post-default contagion

(e.g. due to exposure losses). Given their vital role in driving interactions under stressed

conditions, it is important to consider whether the constraints included in a given stress

test model represent those most relevant to the description of the system or sector that

is being studied. More specifically, for any given institution the nature of its contribution

to contagion will be critically determined by the set of constraints it faces. In sum, a

failure to consider the relevant constraints makes it unlikely that the stress test model will

correctly identify which channels of contagion operate and which institution are affected

(Cetina et al. (2015)).

Behavior

Behavior drives the dynamics of the financial system and the evolution of the multi-

layered network representation thereof. It therefore critically affects the inherent sta-

bility of the financial system and can be an important driver of contagion. behavior of

institutions is typically not known and must thus be reasonably estimated.

Institutions can affect the state of the system when they default (i.e. post-default) or

when they are still alive (i.e. pre-default). When institutions are alive they act for two

reasons: to fulfil objectives (e.g. seek profits) and to avoid default.59 When institutions

default either through insolvency (i.e. breaching regulatory constraints) or illiquidity (i.e.

when an institution does not meets its contractual obligations) they also affect the system.

Through these pre- and post-default actions institutions can contribute to contagion.60

The three macroprudential stress testing models capture the critical drivers of financial

stability dynamics to various degrees. The ABMFV most realistically simulates a financial

market and its (contagious) dynamics. It captures that institutions can contribute to

‘pre-default contagion’ when they aim to avoid default61, but can also contribute to

‘post-default contagion’ once they have defaulted62. In addition, the ABMFV captures

59Note that many financial stability models (see section 2.5 ) abstract away from profit-seeking behav-
ior. This may be a reasonably abstraction because in times of distress behavior is typically mostly driven
by the wish to avoid default. However, by doing so, these models might overestimate contagion. As in
crises times, the institutions who are not under pressure (e.g. do not experience binding constraints) can
stabilize the market.

60Or act as a stabilizer.
61E.g. institutions who must meet the contractual obligation to repay a loan, may engage in fire sales

to do so.
62To capture the contagion consequences that may ensue following a default, the relevant aspects of

a default procedure must be modelled. For example, models must not only capture one contagion effect
(e.g. exposure loss contagion), but all relevant contagion effects (e.g. including common asset holding
contagion, etc.).
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normal-time behavior, presumably to ensure that contagion is not overestimated (e.g.

some may be willing to buy when others are forced to sell). The MFRAF and the

Aikman et al. (2009), Alessandri et al. (2009) versions of the RAMSI model63 assume

that institutions are largely passive: they do not act until they default (only when they

do default, institutions affect the system). Barring any defaults, these models thus only

capture dynamics to a limited extent. By not capturing pre-default contagion, these may

significantly underestimate losses (see e.g. Bardoscia et al. (2017)). Table 2.1 summarizes

the implementation of behavior in the three macroprudential stress testing models.

2.8.3 Strengths and weaknesses of the current macroprudential
stress tests

Macroprudential stress tests are strongly complementary to microprudential stress tests,

because they allow regulators to assess the resilience of the financial system as a whole

(or a larger subset of it) rather than that of individual financial institutions. The current

macroprudential stress tests have three related strengths.

First, they provide insights into the interlinkages between financial institutions, map-

ping out how financial shocks transmit through individual balance sheets and affect other

institutions. The data-driven methodology to establish the model setup (as well as the

subsequent calibration) provide a promising avenue for future stress tests, but also for

further data-driven research into the structure of the financial system (Aikman et al.

(2009)).

Second, they capture the interactions between various financial institutions and con-

tagion channels that can drive distress, and therefore capture (some of) the feedback

effects that characterize the complex nature of the financial system (see section 2.5).

Especially the ABM for Financial Vulnerabilities makes an important contribution by

including heterogeneous financial institutions, which is key to allow for emergent phe-

nomena (Bookstaber (2017)).

Third, in addition to capturing solvency risk, or separately investigating solvency

and liquidity risk, the current macroprudential stress tests capture funding liquidity risk

and the interactions between solvency and liquidity (the interaction between contagion

channels has been discussed in section 2.5.5). The RAMSI model, for example, not

only considers defaults through insolvency, but also through illiquidity, and takes their

interaction into account. In case of the MFRAF, a particular strength is that market

risk and funding liquidity are endogenously determined. Market risk is based on the

degree of adverse selection. Because of asymmetric information, investors offer banks a

pooling price for their assets. The pooling price (and hence the market liquidity) lowers

63The Kapadia et al. (2013) version of the RAMSI model does capture pre-default contagion.
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if investors become more pessimistic and the quality of the assets is lower. Funding

liquidity risk is determined as a function of the bank’s credit and market losses (based on

general market confidence, and thus as a function of information contagion), its funding

composition and maturity profile, and concerns that creditors may have over its future

solvency.

Despite these strengths, there is substantial scope for improvement. First, most

macroprudential stress tests only cover banks and their creditors, and therefore fail to

capture interactions with non-banks that make up a substantial part of the financial

system. Non-banks have played an important role in amplifying distress to the bank-

ing sector during the 2007-2009 financial crisis (Bernanke 2015). Therefore, failing to

capture non-banks does not just exclude many institutions from the analysis, but also

leaves regulators less well-equipped to understand the resilience of the subset of financial

institutions they do study. The ABM for Financial Vulnerabilities is an exception, since

it does include multiple types of financial institutions, but contrary to the RAMSI and

the MFRAF models it is not used as a regulatory stress test.

Second, and relatedly, most macroprudential stress tests capture only a few types of

interconnections, even though it is clear that the multiplicity of channels and intercon-

nections between financial institutions plays a critical role in spreading distress (Brun-

nermeier 2008) (see also section 2.5.5). Notable examples of such contractual linkages

include securitized products and credit default swaps.

Third, most current macroprudential stress tests only capture post-default contagion.

However, in financial crises pre-default contagion is rampant, often resulting from actions

that are prudent from a firm-specific risk-management perspective, but destabilizing from

a system-wide perspective. A bank, for example, might engage in precautionary de-

leveraging to avoid insolvency (i.e. breaking a leverage constraint), which can add to

further negative price spirals. Not capturing such dynamics implies that the total size of

contagion, as well as the timing of contagion, is misunderstood.

These three areas of improvement essentially come down to the same point: the

current macroprudential stress tests insufficiently capture the diversity of agents and

interactions that make up the financial system, and therefore do not do justice to the

complex nature of the financial system (or, for that matter, to the insights of the het-

erogeneous agent model literature, see section 2.5). One of the important challenges is

to devise a modelling strategy that can capture these various effects, and the ABM for

Financial Vulnerabilities offers a promising start; the model could easily be extended to

capture more types of financial institutions (e.g. central clearing parties, pension funds),

financial contracts (e.g. derivative contracts, securitized products), and constraints that

drive behavior under stressed circumstances (Cetina et al. (2015), Farmer et al. (2020)).
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Finally, macroprudential stress tests must be more data-driven64 and more carefully

calibrated to be credible. So suitably designed system-wide stress tests are enabled to

become more credible as regulators collect better (contract-level) data.

2.9 Conclusion

Computational agent-based models provide a useful complement to more traditional equi-

librium based methods. They have already been shown to be essential for understanding

the dynamics of systemic risk and for investigating the network properties of the financial

system. Their role is likely to become even more important in the future, as increasingly

comprehensive fine-grained data becomes available, making it possible to carefully cal-

ibrate such models so that they can yield more quantitative conclusions. Due to the

inherent complexity of the financial system, and in particular its nonlinear feedback

loops, analytic methods are unlikely to be sufficient.

We expect that computational and simulation methods will soon begin to go beyond

hard wired behavioral rules and move increasingly toward myopic optimization. Models of

boundedly rational heterogeneous agents, who learn and adapt their behavior in response

to observed market realizations and newly adopted policies, withstand the Lucas critique.

Behavioral economists have documented more and more situations in which people are

not fully rational, emphasizing the obvious point that realistic behavior lies somewhere

between full rationality and zero intelligence. Computational models offer the possibility

of implementing realistic levels of strategic behavior, while allowing one to model the

complex institutional structure of the financial system. We think that computational

models will play an expanding role for understanding financial stability and systemic

risk.

64This depends on data availability.

53



Chapter 3

Foundations of System-Wide Stress
Testing

3.1 Summary

We propose a framework for the development of system-wide financial stress tests with

multiple interacting contagion, amplification channels and heterogeneous financial insti-

tutions. This framework conceptualises financial systems through the lens of five build-

ing blocks - financial institutions, contracts, markets, constraints, and behaviour. These

blocks can be flexibly implemented to form a dynamic multiplex network using the ac-

companying simulation engine and software library (the ‘Economic Simulation Library’,

or ‘ESL’).

Using this framework, we implement a system-wide stress test model for the Euro-

pean financial system that incorporates amplification risks associated with default con-

tagion, price-mediated contagion via asset sales, funding contagion, and liquidity stress

via margin calls. We apply this stress test model to data provided by S&P Global Mar-

ket Intelligence, the ECB Statistical Warehouse, the 2018 European Banking Authority

(EBA) stress test results, allowing us to initialise balance sheets of European banks and

non-banks. In line with Ha laj & Kok (2013), Kok & Montagna (2013), we reconstruct

the interbank, secured funding and common asset holding networks, which interconnect

these institutions.

Our results evince that system-wide stress tests are necessary complements to micro-

prudential stress tests: for a given outcome of a microprudential stress test, which only

focusses on the first-order losses, the financial system, when higher-order losses are taken

into account, can be either stable or unstable depending on the financial architecture.

Hence, the outcome of the microprudential stress test does not give insight into systemic

risk: macroprudential stress tests are required. Specifically, we show this in the context

of the 2018 European Banking Authority (EBA) stress test. Given the 2018 EBA stress
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test outcome, we find that the European financial system may be stable or not depending

on the resolution regime, usability and size of regulatory buffers, among others. Next,

we demonstrate that financial resilience decreases if regulatory buffers are seen to be less

usable by banks. If regulatory buffers are not treated as usable, then regulatory buffers de

facto act as capital requirements. In such case, if an adverse shock threatens an institu-

tion to breach its capital buffers constraints, it is forced to delever, which tends to have a

destabilising effect on the financial markets. We reveal that the size of usable regulatory

buffers that is required to maintain stability is underestimated if the interaction between

exposure loss contagion, funding contagion, overlapping portfolio contagion and margin

call contagion is not taken into account.

In sum, while current microprudential stress tests remain valuable, our findings sug-

gest that they should be complemented by system-wide stress tests when evaluating

financial stability and calibrating capital buffers.1

Authors of Paper - J. Doyne Farmer & Alissa M. Kleinnijenhuis (first author), Paul
Nahai-Willamson (Bank of England) & Thom Wetzer. The paper will be available here:
Farmer et al. (2020).

3.2 Introduction

In a highly connected financial system, seemingly local shocks can be amplified and

propagated to take on systemic importance. The salience of this observation is power-

fully illustrated in Brunnermeier’s review of the dynamics of the global financial crisis

(Brunnermeier et al. (2009)). Problems that started in the real economy with increas-

ing sub-prime mortgage defaults quickly spread throughout the financial system through

various amplification channels. Asset price falls on mortgage-backed securities prompted

margin calls that put pressure on hedge funds, leading to a round of correlated selling

that further depressed prices and impaired market liquidity (Gorton & Metrick (2012).

Banks’ common exposures to these assets put further pressure on their solvency, leading

to the wholesale funding run on Lehman Brothers (Copeland et al. (2014). Its subsequent

default triggered solvency contagion to hedge funds, banks and money market funds as

well as a freeze in interbank markets. Given these dynamics, the challenge for regulators

is to constantly evaluate these risks to the resilience of individual institutions and the

1We thank David Aikman, Christoph Aymanns, Luca Enriques, Co-Pierre Georg, Anne-Caroline
Hüser, Esti Kemp, Alan D. Morrison, James Paulin, Anton Pichler, Maarten Scholl, Garbrand Wiersema,
and participants at (internal) seminars at the Bank of England, European Central Bank, Institute for
New Economic Thinking at the Oxford Martin School, Oxford-Man Institute of Quantitative Finance,
South African Reserve Bank, University of Cape Town, Office of Financial Research and Bank of Mexico.
We dedicate this paper to Rafa Baptista Ochoa (in memoriam), who made invaluable contributions at
the early stages of this project. The usual disclaimers apply.
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financial system as a whole. In doing so, they must understand the various financial insti-

tutions involved, their interconnections, and their interactions under stress from multiple

contagion mechanisms.

In this paper, we address those challenges and propose a generic framework for the de-

velopment of system-wide financial stress tests with multiple interacting contagion and

amplification channels as well as heterogeneous financial institutions. This framework

conceptualises financial systems through the lens of five building blocks - financial in-

stitutions, contracts, markets, constraints, and behaviour. These blocks can be flexibly

implemented to form a dynamic multiplex network using the accompanying software en-

gine and library (the ‘Economic Simulation Library’, or ‘ESL’). Depending on the needs

of regulators and researchers and the data they have access to, this framework (and

the software that implements it) supports both stylised stress testing models as well as

large-scale, data-driven models that map out the financial system with a high degree of

verisimilitude.2

Using this framework, we implement a system-wide stress test model for the European

financial system. This stress test model captures the solvency-liquidity nexus, incorpo-

rates four interacting amplification channels3, and takes account of the heterogeneity of

the financial institutions4. To evaluate the complementary value of this system-wide ap-

proach, we implement our stress-testing model as a ‘macroprudential layer’ on top of the

regular micro-prudential European Banking Authority (EBA) stress test from 2018 and

compare the stress test results.

This comparison yields three findings, which are robust to extensive sensitivity and ro-

bustness checks.5 First, depending on shock-amplifying6 capacity of the financial system,

the system may be stable or unstable for a given microprudential stress test outcome.

This strongly suggests that there is a complementary role for system-wide stress tests

when evaluating financial stability: system-wide stress tests can elucidate how the same

2This software package, as well as accompanying documentation, sample implementations, and ro-
bustness checks, is freely accessible at: https://github.com/ox-inet-resilience/resilience.

3We include amplification associated with default contagion, price-mediated contagion via asset sales,
funding contagion, and liquidity stress via margin calls.

4We limit ourselves to three classes of financial institutions - banks, asset managers, and hedge funds
- and allow for heterogeneity within these classes.

5Our findings are robust to a range of modelling assumptions for institutional behaviour, the severity
of the initial shock to the financial system, the price impacts of asset sales, and the number of contagion
channels in operation. Our robustness and sensitivity checks are outlined in detail in Appendix A.3.

6We speak of amplification of exogenous shocks if the systemic risk measure including endogenous
shocks is higher than without.
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set of initial shocks may be endogenously amplified to starkly different degrees depending

on the characteristics of different financial systems. We find, for example, that for the

same microprudential stress test outcome of E = 0% a financial system can be highly

fragile (systemic risk approximately equal to E ≈ 90%)7 or relatively resilient (E ≈ 10%)

depending on assumptions for the efficacy of resolution regime for banks.

In obtaining this result, we show that the outcome of a system-wide stress test will differ

depending on the (interacting) contagion channels that are taken into account. We con-

firm the result that interacting contagion channels can produce significantly higher rates

of bank failure (by as much as 300%) than suggested by the sum of failures when they

act in isolation (Caccioli et al. (2013), Kok & Montagna (2013), Poledna et al. (2015),

Hüser & Kok (2019), Wiersema et al. (2019)). Our model can serve as a tool to evaluate,

under different market conditions and for different financial systems, which set of am-

plification mechanisms is most destabilising. For example, we show that when markets

for institutions’ tradable assets are liquid, solvency contagion risk is the most significant

mechanism, whereas when markets are less liquid price-mediated contagion via asset sales

becomes more dominant and amplifies the risks associated with other channels. We also

show that the inclusion of heterogeneous financial institutions, and in particular non-

banks, changes the magnitude of systemic risk.

Our second finding is that the willingness of banks to draw on their capital buffers to

absorb losses - which we term the ‘usability’ of capital buffers - significantly affects the

shock-amplifying tendency of a financial system. The actions banks take to avoid using

their buffers in response to an adverse shock, which could for example be motivated by

a desire to avoid regulatory restrictions on dividend payments, can generate pro-cyclical

dynamics that substantially increase system-wide losses. In light of this result, regulators

should evaluate how the design and enforcement of regulatory buffers may affect their ‘us-

ability’ in times of financial stress, and be mindful of the financial stability implications

of buffers that produce behavioural effects similar to those of regulatory requirements

(Goodhart et al. (2008), Goodhart (2013)).

Finally, we find that microprudential stress tests may underestimate the (usable) regu-

latory buffer that is required to ensure the resilience of individual institutions and the

financial system as a whole. Currently, regulators mostly use microprudential stress

tests to calibrate the discretionary time-varying capital requirements under Pillar II of

7In line with Gai & Kapadia (2010), Gai et al. (2011), Paulin et al. (2018), we measure systemic risk
E by the average fraction of defaults in a systemic event.
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the Basel capital adequacy framework and, in the United Kingdom, the countercyclical

capital buffer. Our finding suggest that system-wide stress tests can meaningfully com-

plement microprudential stress tests when calibrating capital buffers.

Based on the method’s foundations, credible system-wide stress test models can be built

to crown the macroprudential toolkit – as the only tool that explicitly captures en-

dogenous dynamics critical to systemic risk (Danielsson & Shin (2003)). This opens up

avenues to propel system-wide stress tests from the verge to the heart of macroprudential

policymaking, complementing other policy tools. Furthermore, the framework supports

flexibly tailoring of system-wide stress test models to answer specific policy and research

questions. The European financial system model presented here and the bail-in stress

test described in our companion paper (Goodhart et al. (2020) presented in Chapter 4)

are cases in point.

The paper proceeds as follows. Section 3.3 specifies our contribution to the literature.

Section 3.4 sets out the foundations of our generic framework for system-wide stress tests,

and in Section 3.5 we use this framework to develop the model for the system-wide stress

test of the European financial system. Section 4.7 presents the results of the experiments

we ran on the our system-wide stress test, and we discuss the policy implications of these

findings in Section 3.7.

3.3 Relevant Literature

3.3.1 Modelling System-Wide Stress Dynamics

We are by no means the first to attempt tackling the challenge of developing system-wide

stress testing models (for an overview, see Aymanns et al. (2018)). Central banks have

been at the vanguard (Burrows et al. (2012), Fique (2017), Kok & Montagna (2013),

Dees & Henry (2017), Aikman et al. (2019)), and have been joined by academics (e.g.

Cont & Schaanning (2017)). However important these contributions may be, they do not

propose a generic approach to modelling system-wide dynamics. On that front, we make

three contributions.

First, we outline a generic framework that allows for the systematic modelling of

interacting contagion mechanisms. We distinguish two modes of contagion - node and

contract amplification (see Section 3.4.2) - which we use to study four specific contagion

mechanisms (Section 3.5.2): overlapping portfolio contagion, exposure loss contagion,

funding contagion, and collateral contagion (via margin calls). Existing literature tends

to cover subsets of these (interacting) contagion mechanisms using modelling approaches
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that cannot be easily generalised to include other contagion channels. For example,

Kok & Montagna (2013) consider the first three contagion mechanisms, Caccioli et al.

(2013) and Hüser & Kok (2019) explore the first two, Poledna et al. (2015) investigate

funding contagion for different contracts, and Brunnermeier & Pedersen (2009) consider

the interaction of funding and market liquidity (a form of collateral contagion). Because

the interaction of contagion mechanisms may amplify systemic risk (see e.g. Kok &

Montagna (2013)), this modelling innovation has practical value for those looking to

evaluate the resilience of the financial system.

Our second contribution is of a similar nature. Our generic framework allows for the

joint modelling of heterogeneous financial institutions. That heterogeneity means that we

can account not only for differences between various types of institutions (e.g. banks and

non-banks), but also for differences within these groups (e.g. account for differences be-

tween banks). As we outline in Section 3.4.1, we do so by characterising each institutions

on the basis of the contracts (or, if the data is not so granular, contractual types) that

each institution has on its balance sheets, the constraints (contractual, regulatory, or oth-

erwise) it is subject to, and the behavioural assumptions we adopt. Because institutions

in our generic framework can be distinguished along these dimensions, the framework can

host stress testing models that reflect the heterogeneity of behavioural objectives, con-

straints and balance sheet resources that characterises the financial system (Danielsson

& Shin (2003)).

Given the important interactions and interdependencies between banks and non-banks

in modern finance (see e.g. Burrows et al. (2015), ECB (2017), Pozsar & Singh (2011)),

capturing the heterogeneity of financial institutions is central to the success of system-

wide stress tests. As bank/non-bank linkages continue to become more significant (e.g.

BIS (2019)), the importance of this modelling innovation to regulators is likely to grow.

This is especially true because the capacity of existing models to capture heterogeneity

remains, however, limited (Halaj (2018), Baranova et al. (2017)).

Our third modelling contribution relates to the modelling of multiple interacting con-

straints arising from regulation and contracts. It is clear that such constraints can drive

behaviour in times of financial stress (see e.g. Greenwood et al. (2015), Duarte & Eisen-

bach (2015), Aymanns et al. (2016), Caccioli et al. (2014)) and, moreover, that financial

institutions face an increasingly complex plethora of interacting and overlapping regula-

tory constraints (see e.g. Armour et al. (2016)). Despite that reality, existing contagion

models typically model either the leverage ratio8 or the risk-weighted capital ratio (see

e.g. Kok & Montagna (2013), Cifuentes et al. (2005)), and they rarely implement the

8Most consider leverage targeting (e.g. Greenwood et al. (2015), Duarte & Eisenbach (2015)), where
the buffer and target de facto coincide, some consider a distinct buffer and target for the leverage
constraint (Cont & Schaanning (2017), Bookstaber, Paddrik & Tivnan (2014)).
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Basel III liquidity constraints (see e.g. De Haan & van den End (2013), Aldasoro et al.

(2017)). Where models only consider one constraint, they usually also consider one com-

mon rule or ‘pecking order’ to determine the actions that institutions take in response to

shocks (e.g. proportional liquidation of assets as done by Greenwood et al. (2015)), or

liquidation of the most-liquid assets first as in Halaj (2018))). A recent paper by Coen

et al. (2019) is a notable exception: the authors model banks’ decisions to sell tradable

assets in response to solvency and liquidity shocks by optimizing asset sales to minimise

losses while meeting three regulatory constraints (i.e. the leverage ratio, risk-weighted

capital ratio and liquidity coverage ratio).

In our generic framework, we propose an approach to modelling multiple interacting

constraints that can, again, be easily generalised. For each regulatory ratio, we propose

that the institution sets a self-imposed buffer value. Once it reaches this buffer value, the

institution acts to either comply with a regulatory buffer standard or to move towards a

self-chosen target value (see Section 3.5.3). This approach is consistent with the empirical

findings of Adrian & Shin (2010) and has intuitive appeal. In line with the approach

in Coen et al. (2019), we also employ different pecking orders for institutions’ actions

depending on the constraint that binds. This approach reflects the reality that not all

constraints can be (effectively) adhered to by taking the same set of actions. For instance,

the pecking orders for the leverage ratio and risk-weighted capital ratio should be different,

because liquidating non-cash, zero risk-weighted assets can reduce the leverage ratio but

will not improve the risk-weighted capital ratio.

3.3.2 Stress Tests and Prudential Regulation

The development of a generic framework allows us to develop a system-wide stress test

of the European financial system.9 Using this system-wide stress test, we run a number

of experiments that yield three main takeaways for policymakers.

First, we find that system-wide stress tests are necessary complements to micropru-

dential stress tests. A large body of literature has shown that systemic risk may be

underestimated if non-linear contagion effects that may amplify initial shocks are not

considered (see e.g. Cont & Schaanning (2017)). Moreover, various authors have applied

a ‘macroprudential overlay’ to regulatory microprudential stress test (see e.g. Burrows

et al. (2012), Dees & Henry (2017), Paddrik et al. (2016), Paddrik & Young (2017)).

However, we are the first to systematically compare the system-wide (including interact-

ing contagion channels and heterogeneous agents) and microprudential stress test results

9We stress that this model implementation by no means exhausts the options offered by the generic
framework. We have developed this system-wide stress test model purely with a view to showcase the
generic framework and to study important policy questions.
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for different (scaled) regulatory stress test scenarios. We confirm unambiguously that

interacting contagion channels can produce significantly higher rates of bank failure (by

as much as 300%) than suggested by the sum of failures when they act in isolation. This

suggests that microprudential stress tests alone will overstate resilience and give false

comfort to regulators, financial markets, and the public at large.

Second, we contribute to the literature on the design of regulatory capital require-

ments. Existing literature recognises that capital requirements may lead to pro-cyclical

responses if they cause financial institutions to act in ways that are individually ratio-

nal but collectively destabilising – for example by deleveraging during crises BIS (2008),

Aymanns et al. (2016). Regulators replaced strict capital and liquidity requirements by

buffers – which institutions can (temporarily) draw on without breaching their regula-

tory obligations – so that institutions can absorb shocks and refrain from taking pro-

cyclical actions (BIS (2008, 2009, 2013), Drehmann et al. (2010)). Goodhart et al. (2008)

and Goodhart (2013) have emphasised that these buffers should be usable: ‘required liq-

uidity is not true, usable liquidity. Nor might I add, is required minimum capital fully

usable capital from the point of view of a bank’. We show, in a system-wide setting, how

such usability affects the resilience of the financial system.

Third, we show that the calibration of these buffers should be based not only on micro-

prudential stress tests, but also on system-wide stress tests. In discussing the calibration

of the capital (or liquidity) frameworks, the existing literature does not differentiate be-

tween requirements and buffers, and also does not consider how usability of capital (or

liquidity) would affect resilience (e.g. Battiston et al. (n.d.), Greenwood et al. (2015),

Cont & Schaanning (2017), Duarte & Eisenbach (2015)). Aymanns & Farmer (2015) show

that higher capital requirements may be destabilising. Using the ability of the generic

framework to capture pre-default contagion that arises from interacting contagion mech-

anisms, we show that the size of regulatory buffers required to maintain financial stability

will be underestimated if microprudential stress tests are used for calibration.

3.4 A Framework for System-Wide Stress Tests with

Heterogeneous Institutions

In this section, we outline a generic framework for system-wide stress tests with hetero-

geneous agents. At the core of our framework are five building blocks that we use to

represent financial systems. We start with financial institutions and their balance sheets,

which are populated by financial contracts that connect them. Together, these two build-

ing blocks - when implemented at a level of granularity that corresponds to the available

data and the needs of the modeller - create a multiplex network, with a separate layer for
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Table 3.1: Shows the time evolution of the multi-layered network in a system-wide stress
test consisting of five building blocks (highlighted in italics). The adverse stress scenario is
applied once at time t0. The (contagious) endogenous dynamics are iteratively generated
in discrete-event simulation by repeating the substeps tx,1, tx,2 and tx,3 in a timestep tx.
The inner time steps represent a series of rounds, which take an infinitesimal amount of
time and are therefore said to occur in an instant. Once, the substeps are completed,
the outer time step increases from tx to tx+1 through fixed-increment time progression,
repeating the substeps for another round as long as the stopping condition has not been
satisfied.

Time step
t0 Initial, adverse scenario

tx,1
Impact on
market

Impact on balance sheets
Affects contractual obligations
Affects the valuation of contracts

tx,2 Observations
Contractual obligations
Variables relative to their regulatory, market or internal-risk constraints
Performance relative to other objectives, such as profit objectives (if any)

tx,3
Behavioural
Actions

Honour contractual obligations
Move away from regulatory, market or internal constraints
Execute strategy to meet other objectives, such as profit objectives (if any)

Next time step
If the system has not stabilised and if the maximum number of simulation time steps, T S,
has not been exceeded, increase the timestep counter, x, to x = x+ 1 (x=1 initially)
and repeat the three substeps per time step t: tx,1, tx,2, tx,3. Else, stop the stress test.

each contractual type, that represents the financial system. Studying the topology of this

network can already yield valuable insight about systemic risk (see e.g. Battiston et al.

(2012)), but to be able to also study the dynamics operating on that network we add

three more building blocks: the markets in which contracts are traded, the constraints -

whether arising from contractual obligations, market pressure, or regulatory requirements

- that institutions are subjected to, and the behavioural assumptions that stipulate how,

in the decision-space left by the constraints, each institution will act. Table 3.1 sets out

the various steps based around which the static network evolves. This static and dynamic

representation of the financial system is operationalised using a newly built simulation

engine that can host large-scale data-driven models.

Section 3.4.1 outlines the five building blocks used to represent financial systems in

greater detail. In Section 3.4.2, we discuss the endogenous (amplifying) dynamics that

can arise in this generic framework, and how we conceptualise them. We conclude by

highlighting some important design principles of the software that we developed to host

these stress-test models in Section 3.4.3.

3.4.1 Five Building Blocks to Represent Financial Systems

Our generic framework uses five building blocks to represent financial systems and to,

subsequently, study the systemic risk that is endogenously created by heterogeneous

financial institutions, as called for by Danielsson & Shin (2003). We discuss these five
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building block in turn.

Financial Institutions & Financial Contracts We represent financial institutions

at a representative or individual level to reflect the importance of institutional and sec-

toral heterogeneity. Each institution has a unique balance sheet that is composed of a

collection of financial contracts (assets and liabilities), rather than merely a list of aggre-

gate values per asset class or aggregate exposures to a specific counterparty. Our generic

framework allows us to model each individual contract and include information on (1)

the parties to the contract, (2) the contract’s value, ‘valuation function’ (under the ap-

plicable accounting regime), and the inputs to that valuation function10, and (3) the set

of (contingent) liquidity obligations, including the contract’s ‘liquidity function’ and its

inputs.11

By modelling financial institutions and their contracts in this way, we achieve at least

two valuable results. First, we allow for significant heterogeneity between institutions,

because institutions are characterised - in the model as in real life - by the institution-

specific collection of financial contracts it holds. Second, we can construct the network

of interconnections between financial institutions, both in a static and dynamic sense.

The information on counterparties enables the software to create edges between different

institutions (nodes) in the financial network, which gives us the static network. More-

over, when studying the dynamic network, the contract-specific information coupled with

basic accounting12 makes it possible to update contract valuations and balance sheet vari-

ables following initial or endogenous shocks, and allows to model the liquidity pressures

that institutions may face due to margin calls or decisions by creditors not to roll over

funding.13

The level of granularity that can be adopted in a specific model implementation will

largely depend on the granularity of the data on which the model can be calibrated.

Since the financial crisis, the mandate for regulators to gather contract-specific data has

increased (see e.g. Abad et al. (2016)). However, in case such data is not available, the

10This tells us how the price of the contract is determined, the contractual maturity and whether a
contract is secured or not, etc.

11For example, the valuation function of tradable assets takes the market price as an input, and multi-
plies this by the unit of assets held to determine the balance sheet value of the asset (see equation 3.5.2).
Similarly, the collateral price is an input to the ‘liquidity function’ of repurchase agreements: margin calls
are determined based on the difference between the notional of the repo and the haircutted collateral
price times the units of the collateral placed (see equation 3.8).

12Our generic framework supports various accounting standards, which are made available in the
online repository of the Economic Simulation Library.

13In Section 3.4.2 we discuss why understanding the set of valuation and liquidity shocks that an
institution faces at each point in time is important to understand contagion and its spread via the
network of financial contracts.
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second-best approach is to rely on network reconstruction methods to estimate contract-

level information from aggregate data. We discuss such methods in Appendix A.1.2.

Markets Contracts originate in financial markets, and it is there that their price is

determined by interacting market participants. Different types of contracts are traded

within distinct markets; equities, for example, are typically traded on exchanges, while

interbank contracts originate in interbank markets (Heider et al. (2009)). Each of these

markets has its own dynamics and characteristics, and the degree to which these are taken

into account depend on the modeller’s objective. Reduced-form price impact functions

may be sufficient to capture the impact of forced sales on asset prices, as is indeed com-

monly done (Duarte & Eisenbach (2015)), but more detailed modelling of order books

that process buy and sell orders from institutions to set prices may be needed when study-

ing price-formation and market liquidity in greater detail.14 In our generic framework,

every asset or contractual type can have its own associated market, so that users can

build in the appropriate market mechanism(s) for each asset or contract - in a level of

detail they consider optimal - and study the associated risks of those markets.

Constraints Institutional behaviour is governed by rules and constraints. As asset

values evolve, the financial network changes and/or exogenous shocks are applied, finan-

cial institutions update their balance sheets. In particular, institutions assess whether

they have breached, or are close to breaching, regulatory15, market16, or contractual17

constraints, or their internal risk limits18. These rules and constraints limit the time-

dependent set of actions available to each financial institution. They could include rules

for operating under normal times – for example optimising rules to determine portfolio

allocation, and internal risk limits that impact on trading behaviour – but most impor-

tantly will include constraints that drive behaviour in periods of stress.

14The market mechanism for the price formation of each type of contract is typically in the public
domain and can thus be modelled, or else can be usually reasonably estimated based on the standard
market mechanism for such a contract. While we can generally know the way a market functions –
for example exchange-trading via an order book, or intermediated by a dealer – to model the market
dynamics, we need to combine this with the behaviour of market participants. In dealer-intermediated
markets for example, the behaviour of the dealers in response to buy and sell orders is an important part
of the price-setting mechanism (see e.g. Baranova et al. (2017)).

15Examples of regulatory constraints include minimum leverage and risk-based capital ratios for banks
16Market-based constraints are implicit minima that the market sets on, for example, capital ratios,

for an institution to maintain access to market-based funding (Burrows et al. (2012), Bookstaber, Paddrik
& Tivnan (2014)). Such limits may be stricter than those imposed by regulators.

17Contractual constraints include obligations to exchange margin or to repay liabilities at maturity.
18Internal-risk limits are institution-specific limits, such as value-at-risk (VaR) limits (Berkowitz &

O’Brien (2002)), which are typically set by the risk managers of the institution.
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Importantly, these constraints can act both to trigger action during balance sheet

distress, and to limit institutions’ ability or appetite to take actions that could limit

distress and support market functioning. To take banks as an example: falling leverage

ratios may cause some banks to fire sell assets or reduce provision of client funding; and

the ability of other banks to step in to buy discounted assets or meet clients’ funding needs

(and so reduce systemic stress) could be restricted by their own regulatory constraints.

This is consistent with the observation that the state of balance sheet capacity within

and across sectors – and the degree of similarity between sectors in the constraints they

face – is likely to be a key determinant of systemic vulnerability to shocks.

The constraint that binds most drives behaviour. When constraints bind, the set of

actions that institutions can take becomes limited to those consistent with the behavioural

objective of not breaching binding constraints. Therefore, constraints add further het-

erogeneity to the stress testing framework. Regulatory constraints, for example, differ

between institution types, with banks facing different regulatory constraints than hedge

funds. Similarly, because institutions have different collections of contracts on their bal-

ance sheets, they will also face different contractual constraints. Which constraint binds

can differ from one institution to another, and can even be context-dependent19 – which

in turn affects firm-specific behaviour and ultimately system-level dynamics.

Behaviour Behaviour is central to understanding systemic risk; it is also the most

challenging aspect to pin down and model (Farmer & Lo (1999), Farmer (2002), Lo

(2017), Aymanns et al. (2018)). To fully capture the build-up and crystallisation of

systemic risk, ultimately an understanding of behaviour under both ‘normal times’ and

stressed times is important. Understanding how agents optimise their balance sheets

subject to the constraints described above to meet their business targets (for example,

to maximise return on equity or shareholder value), can give insights into the potential

impacts of policies on latent risk in the financial system. Also, understanding the types

of behaviour that institutions may forcibly display when under severe stress is key to

modelling the dynamics that could occur when risks start to crystallise.

Behaviour in our generic framework means making decisions on buying and selling

assets; and opening, continuing or terminating contractual relationships (for example

by choosing not to roll-over a funding relationship). Institutions can also choose not

to honour contractual commitments, with the potential outcome that they default. To

understand the propagation and amplification of stress, we particularly focus on how the

constraints that institutions face can limit their options and force certain behaviours.

19Regulators and contractual counterparties may, for example, loosen constraints in times of crisis
when they fear that rigid enforcement might lead to default, see e.g. Pistor (2013) and Awrey (2019).
We do not consider such dynamics here.
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These behaviours will be institution specific – but generally speaking, they will relate to

issues of solvency/profitability and/or liquidity.

To illustrate, consider how banks may take different actions when risk-based capital

ratios bind than when the leverage ratio binds. Consider a bank that has significant

trading activities, and a business extending secured funding to clients. Following a severe

shock:

1. If the risk-based ratio binds, the bank will need to deleverage in risk-weighted asset

space. Reducing the secured funding it extends to clients may achieve this to some

extent, but the collateralised nature of the exposure limits the risk-weighted assets

reduction that can be achieved. A more effective way can be to sell trading assets

with high risk-weights – assets that tend to be less liquid. In this case, the actions

of the bank may have an impact on market liquidity.

2. If on the other hand the leverage ratio binds, the bank can rapidly deleverage by

cutting its provision of secured funding to clients; or by reducing low risk-weighted

assets such as cash or government bonds. If the bank has surplus liquidity, the

latter option would cause no or limited spillovers to the rest of the financial system;

if it has to pull funding from its clients however, the bank may be forced to liquidate

assets to address the funding shortfall, again potentially leading to a market impact.

In reality, where multiple constraints are at play, some form of optimisation will be

required to meet all relevant constraints, and the decision-making becomes more complex.

Not only that, but institutions are likely to at least attempt to take into account the

impacts of their own actions and those of other financial market participants. While

our framework can support such optimisation in principle, implementing it in large-scale

system-wide stress testing models remains challenging.

For these reasons, understanding institutional behaviour is a key area for ongoing

research and model development. Behaviour also represents the biggest unknown we

face20; in principle, data on institutions’ balance sheets and constraints could be sourced,

and the mechanics of market functioning could be modelled. System-wide stress tests

build using our generic framework are, however, explicitly conditional on the behavioural

assumptions made. We therefore set up our framework explicitly to enable users to easily

explore the impacts of different assumptions on behaviour, giving them the flexibility to

investigate outcomes conditional on plausible assumptions, and their sensitivity to these

assumptions. Such sensitivity analyses can themselves convey valuable information, for

20That does not mean that these assumptions are completely uninformed: market surveys, for exam-
ple, can be helpful.
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example about the types of behaviour that are most destabilising and should therefore

be avoided.

3.4.2 Contagion and Amplification

In our model, a financial system as represented using the five building blocks can face

two types of contagion and amplification. The first, ‘node amplification’, takes place

within the nodes (financial institutions) of the financial network, whereas the second,

‘edge amplification’, takes place along the edges (financial contracts).

Amplification within nodes takes place when an incoming shock – whether that is

a valuation or a liquidity shock – is passed on to a new outgoing shock. How a shock

is passed on depends on the internal operation of the financial institution (the node),

specifically its behavioural response (subject to its set of constraints and available balance

sheet resources). Overlapping portfolio contagion due to asset sales is an example of node

amplification. A detailed treatment of node amplification can be found in Wiersema et al.

(2019).

Edge amplification, on the other hand, occurs when shocks to one type of contract

cause shocks to another type of contract. This mechanism is more mechanical in nature,

and can be captured by modelling how shocks to one contract may act as inputs to the

‘valuation function’ and ‘liquidity function’ of another contract. For example, valuation

shocks to tradable assets can lead to margin calls (liquidity shocks) on repurchase agree-

ments; and mortgage loan defaults can result in valuation shocks to mortgage-backed

securities. In Section 3.5.2, we implement this approach for a stress test of the European

financial system.

3.4.3 Key Design Choices for Simulation Software

To operationalise the approach outlined above, we have developed object-oriented mod-

elling software (a simulation engine and accompanying software library) that can support

modelling of the financial system with a potentially high degree of verisimilitude (for

example when using transaction-level data). Otherwise stated, by embedding the generic

framework in simulation software it becomes possible to take full advantage of rapid digi-

tisation and standardisation of regulatory and market data (see e.g. Judge & Berner

(2019)) to run advanced, data-driven system-wide stress testing models at scale.21

When designing the software, we have applied core concepts of sound software en-

gineering. This not only makes the software easier to use, but also ensures that our

21The fully documented simulation engine, and its accompanying software library, is available at
https://github.com/ox-inet-resilience/resilience. The contributors to this library are: Alissa
M. Kleinnijenhuis, Rudy Tanin and Rafa Baptista Ochoa.
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generic framework supports flexible and modular models whose operations are trans-

parent. Modularity means that the underlying code is divided into the building blocks

described above, which clarifies the structure of the stress testing model that is used. It

allows users to examine the full network, but also to examine various contagion channels

in isolation, or to only examine specific sectors or institutions. Flexibility means that

the building blocks that make up a specific model, as well as the modelling assumptions

more generally, can be easily adjusted. It also allows for implementation of models at

various levels of abstraction and realism, depending on what is most appropriate. It is

intended to be transparent; empowering the user to track the operations of the simulation

by producing (intermediate) outputs in readily understandable forms, in order to avoid

a ‘black box’ problem.22

A major challenge in implementing system-wide stress testing models is to capture

the concurrency of financial markets, with many different institutions acting simultane-

ously. Stress test models that are implemented using simulation-based software are often

sequential, which means that the order of computations becomes a key determinant of

the outcome of the stress test, thereby artificially skewing these results. One way to ad-

dress this problem is to randomly shuffle the order in which institutions act (see eg Fique

(2017)). Although this takes away systematic biases, it does not rid the simulation from

biases within a time-step. In a fire sale scenario, for example, institutions that happen

to be first in line could have a substantial advantage and may therefore appear more

resilient than they are in reality. An alternative approach, to use parallel computer code

to run system-wide stress tests, is unappealing because parallel code is error-prone.

We therefore propose a novel way to solve the problem of order dependence – which

we refer to as the ‘mailbox system’. Each institution has its own mailbox. Whenever an

institution acts (e.g. pulls funding, gives a margin call), the notification of that action

ends up in the ‘unread mailbox’ of the relevant counterparty (or counterparties). This

message will only be ‘read’ after every institution in a given time step has acted, at which

point the simulation engine will execute all these actions at once.23 Accordingly, actions

of institutions that affect markets (such as fire sales) will only be executed at the end of

the time step, even though notifications of undertaken actions will be collected during

22In addition, we have also followed the design principles of readability (the reader should be able
to read and understand the implementation in a short amount of time), performance (the code should
execute as fast as possible so long as this does not come at the cost of readability), and reproducability
(the reader should be able to run the simulations and obtain an identical outcome).

23Of course, it is theoretically possible to account for speed differentials between institutions by making
some institutions slower to send or open their messages, so that they would take multiple timesteps to
complete a task that other institutions can complete in one time step. The practical effect would be that
this institution responds more slowly to market developments. We do not explore this option here.
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the sequence of the acting institutions in each time step.24

To illustrate why a messaging-mailbox system is necessary and random shuffling is not

sufficient to achieve order independence, we ran comparative benchmark on our simple

stress test model which only consists of overlapping portfolio contagion.25 When we

use the random shuffling, we find that the standard deviation of the average extent of

systemic event E (see Appendix A.1.3) soon reaches a certain minimum amount that

cannot decrease no matter how high the number N of simulation runs is. The reason

that the systemic risk outcome is severely affected by which specific group of institutions

gain an artificial advantage in a specific time step, leaving clusters of outcomes due to

which a markedly positive standard deviation is maintained. On the other hand, when we

use the messaging-mailbox system, we find that the standard deviation of our systemic

risk measure E soon decays to zero, since in simultaneous version the same outcome is

the same in a simulation run n, regardless of the shuffle.

3.5 A System-Wide Stress Test Model for the Euro-

pean Financial System

Using our generic framework and simulation software, we implement a system-wide stress

testing model for the European financial system to study its contagion dynamics. This

model combines multiple interacting contagion mechanisms and constraints, and allows

us to assess how institutional behaviour under stress can amplify an initial adverse shock.

Moreover, we will use the stress-test model to study the usability and size of regulatory

capital buffers that is needed to mitigate systemic risk. The model showcases the power

of the generic framework. We stress, however, that this framework can be, and is in fact

designed to be, used to support different models that focus on different research or policy

questions and utilise different data types.

The stress test model includes three types of financial institutions: banks, asset man-

agers and hedge funds. Because we have relatively detailed institution-level data for

banks, we can model them at the institution-level. We model asset managers and hedge

funds using representative institutions, however, due to a lack of suitable data. The banks

in our model are directly connected via unsecured interbank lending and borrowing, and

are indirectly connected via common holdings of tradable assets. Asset managers and

hedge funds also hold these tradable assets, and hedge funds are also directly connected

24An alternative implementation of the messaging-mailbox system, which enables execution of in-
stitutions’ actions to be distributed across multiple CPUs, can be found in abcEconomics. See:
https://github.com/ab-ce/abce.

25See: https://github.com/ox-inet-resilience/firesale_stresstest/blob/master/other_

simulations/random_shuffling.py.
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with banks via repo funding. In this section, we discuss the setup of the model by out-

lining how to model (1) each type of institution, (2) the contracts they trade in, (3)

the various constraints they face, (4) the markets in which they trade, and (5) their be-

haviour. In Appendix A.1.2, we provide further information on the initialisation of the

model. We include a table of notation in Appendix B.2.

3.5.1 Financial Institutions and their Constraints

Banks We consider the most systemically important banks in the European Union

(those that took part in the 2018 stress test from European Banking Authority (EBA))

and initialise their heterogeneous balance sheets using end-2017 data obtained from S&P

Global Market Intelligence.26 The stylised balance sheet of banks i ∈ B, where B is the

set of banks, is depicted in Figure 4.1.

!", Other Assets

#", Reverse Repos

$", Interbank Assets

%", Tradable Assets

&", External Assets

'", Equity

(!", Other Liabilities

(#", Repos

)$", Interbank Liabilities

*", Deposits+", Cash 

Figure 3.1: Stylised balance sheet of a bank i ∈ B.

Figure 4.1 shows that the bank’s assets Ai are given by the sum of its cash Ci, external

assets Yi, tradable assets Ti, interbank assets Ii, reverse repos Ri, and other assets Oi. It

also shows that the bank’s liabilities Li are given by the sum of its deposits Di, interbank

liabilities Ĩi, repos R̃i, and other liabilities Õi. The bank’s book equity is defined by

Ei =: Ai − Li. Book equity is defined in the same way for other financial institutions.

Regulatory constraints Banks face a set of regulatory capital requirements and

buffer standards as well as liquidity buffer standards, which we will discuss in turn.

We calculate two key Basel III capital ratios for our banks: the risk-weighted common

tier I (CET1) capital ratio ρi and the leverage ratio λi. The risk-weighted capital ratio ρi

26Due to data limitations (e.g. missing fields), we exclude a handful of banks and end up with a total
of 42 banks.
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is given by a bank’s CET1 equity Ẽi over its risk-weighted assets Ωi (RWAs), where the

numerator is taken from data and the denominator is calculated by assigning risk weights

ωp to each asset type Aip (where p ∈ P and P is the set of assets) based on standard

Basel III risk weights.27 The leverage ratio is given by a bank’s Tier 1 capital ẼT1
i (equal

to the sum of CET1 equity Ẽi and additional tier I (AT1) capital ẼAT1
i ) over its leverage

exposure Âi, both taken from the data.28

Banks are required to meet the minimum CET1 capital ratios of 4.5% and minimum

leverage ratio requirements of 3%29 at all times:

ρi :=
Ẽi
Ωi

=
Ẽi∑

p∈P ωpAip
≥ ρM = 4.5%. (3.1)

and

λi :=
ẼT1
i

Âi
≥ λM = 3%. (3.2)

A main objective of capital requirements is to ensure that banks have sufficient gone-

concern loss absorbing capacity (Goodhart (2013)). Compliance with minimum capital

requirements is a condition for doing business; a bank that falls below a capital require-

ment is likely to be closed down by regulators (Armour et al. (2016)). Given this, and in

line with Kok & Montagna (2013), we assume that banks which breach minimum capital

requirements will fail and are either liquidated or resolved (see Section 3.5.3 for details).

In addition to captial requirements, banks are subject to several different regulatory

capital buffers, with the size of the combined buffer (CB) being heterogeneous across

banks. The combined buffer is intended to ensure that banks have sufficient going-concern

loss absorbing capacity to withstand a stress and can continue operating (Goodhart

(2013)). To achieve this goal, buffers should be ‘usable’ in the sense that banks can

absorb losses without failing or engaging in damaging or destabilising behaviour such as

fire sales.

We note that when regulatory buffers have an effect that is de facto equivalent to

requirements, they are not ‘usable’ from the point of view of the bank (Goodhart et al.

(2008)). In other words, the regulatory buffers for capital and liquidity are only true

27We use the standard Basel III risk-weights for all asset classes, except for the ‘other asset’ class
Oi, where we choose the risk-weight such that it acts as a balancing item to ensure that total RWAs Ωi
match the data.

28When modelling the impacts of stress on banks’ capital ratios, we assume that CET1 equity Ẽi falls
one-to-one with book equity Ei and that leverage exposure Âi falls one-to-one with book assets Ai. That
is to say, we assume a change in book equity or book assets leads to an equal change in CET1 equity or
leverage exposure, and ensure that the difference matches the data at the start of the stress test.

29We note that UK banks must meet a leverage ratio of 3.25%, with the leverage exposure measure
excluding central bank claims matched by deposits in the same currency and of identical or longer
maturity. For simplicity, we do not include these UK-specific requirements in this model
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buffers if a bank considers these to be ‘usable’, else the regulatory buffer acts as a re-

quirement. To illustrate this point, Goodhart et al. (2008) uses the metaphor of “the

weary traveler who arrives at the railway station late at night, and, to his delight, sees a

taxi there who could take him to his distant destination. He hails the taxi, but the taxi

driver replies that he cannot take him, since local bylaws require that there must always

be one taxi standing ready at the station”. Similarly, capital (liquidity) requirements are

not usable.

While authorities have made clear that buffers are intended to be usable,30 banks

may still seek to avoid using them for various reasons. A BIS review, for example, notes

that “only if supervisors allow banks to use buffers and banks do not resist their use, can

buffers work to protect banks against macroeconomic downturns and taxpayers against

bailouts. Supervisory discretion, excessive market discipline, and stigma attached to the

use of buffers are some of the hurdles that may undermine their effectiveness” (BCBS

(2016)). No empirical evidence exists yet, as to whether banks consider their regulatory

buffers to be usable in a system-wide crisis, since the Basel III buffers have only been

introduced since the last financial crisis of 2007-2008 and a new one has yet to occur.

Given these complications to draw on buffers, we investigate the impact that banks’

willingness to use these combined buffers (see Section 3.5.3 and 3.6.5), and the actions

they take to avoid having to use their buffers, has on systemic risk. In addition, for

some experiments we consider a counterfactual in which regulatory buffer standards are

larger (and assume that banks meet these buffers and hold correspondingly more capital

resources) in order to assess how having higher buffers would impact systemic risk.

Each bank in our system has two combined buffers: a combined CET1 capital buffer

ρCBi and a single leverage ratio buffer λCBi . These are composed of the buffer components

discussed below, and given by

ρCBi := ρCCoBi + ρCCyBi + max{ρGSIBi , ρDSIBi , ρSRi }; (3.3)

λCBi :=
1

2
ρG−SIBi . (3.4)

The aim of the capital conservation buffer (CCoB) ρCCoBi (set at 2.5%) is to promote

capital conservation in the banking sector (BIS (2009)). Its introduction was prompted

in part by the observation that many banks kept paying dividends during the financial

crisis (Greenwood et al. (2017)) despite questions about their financial health, which

30See e.g. Prudential Regulation Authority (2017), which explains that the parallel operation of the
risk-weighted capital and leverage regimes in the UK “creates a ‘usable’ buffer, which is the amount of
CET1 that a firm subject to both the risk-weighted capital and leverage regimes would currently be able
to lose before breaching a minimum going-concern requirement.”
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unnecessarily weakened their capital positions. Usage of the capital conservation buffer

leads to increasing restrictions on dividend payments and staff bonus payments but is

not forbidden; the buffer therefore attempts to create incentives for banks to maintain

or rebuild their capital positions when they can, but also to draw on that capital when

they must (Armour et al. (2016)).

The time-varying countercyclical capital buffer (CCyB) ρCCyBi is set by regulators with

the aim of counteracting procyclicality by building up a buffer in good times that can be

drawn upon in bad times (Drehmann et al. (2010), Armour et al. (2016)). BIS (2010)

recommend that the CCyB should be deployed when excess aggregate credit growth is

judged to be associated with a build-up of system-wide risk, in order to ensure that

the banking system has an additional capital buffer (on top of the capital conservation

buffer and other requirements) to protect it against future potential losses. To align

with Basel III the CCyB should vary between 0% and 2.5%, although national authority

have discretion to increase the buffers further if they deem it necessary to do so to

meet macroprudential objectives (Drehmann et al. (2010), BCBS (2011)). When risks

materialise and the banking system is under stress, regulators can cut the buffer to 0%.

On top of the CCoB and the CCyB, a bank may have to hold additional risk-weighted

buffers, including the globally systemically important bank (G-SIB) ρGSIBi ∈ [0%, 3.5%]

surcharge,31 the domestically important bank surcharge (D-SIB) ρD−SIBi ∈ [0%, 2%],32

and the systemic risk buffer ρSRi ≥ 1%.33 Furthermore, G-SIBs also face an unweighted

leverage buffer λCBi , set at 50% of its G-SIB surcharge (FSB (2017)).

Banks also face liquidity buffers. We monitor banks’ Liquidity Coverage Ratios

(LCRs), Λi.
34 The LCR encourages banks to maintain an adequate stock of unencum-

bered high-quality liquid assets (HQLA) Qi that can be converted easily and immediately

in private markets, relative to its net outflows Θi in a thirty-day period of distress (BIS

(2013), Gorton & Muir (2016)). BIS (2013) stipulates that net outflows Θi must be cal-

culated as a function of the stressed asset inflows ΘI
i and stressed liability outflows ΘO

i ,

subject to a cap on the recognition of inflows at 75% of outflows (see denominator in

31The intention of the globally systemically important bank surcharge ρG−SIBi is to limit negative
externalities imposed on the global financial system associated with the most globally systemic banking
institutions (BIS (2014)). The G-SIB surcharge ρG−SIBi applies to globally systemically important
institutions; other banks are given a G-SIB surcharge where ρG−SIBi = 0.

32The domestically systemically important bank surcharge is designed to address the negative ex-
ternalities that domestically important banks pose on the domestic financial system and economy (BIS
(2012, 2014)).

33The objective of the systemic risk buffer ρSRi is to prevent and mitigate long-term non-cyclical
systemic or macroprudential risks not covered by Regulation (EU) No 575/2013.

34Banks are also subject to a Net Stable Funding Ratio (NSFR). Because Cecchetti & Anil (2018)
show that the LCR and NSFR typically do not bind simultaneously, and because our focus is on short-
term contagion dynamics rather than longer-term funding risks (which are the focus of the NSFR), we
do not consider the NSFR.
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equation 3.5 below). The stressed asset inflows ΘI
i and liability outflows ΘO

i are com-

puted by assigning stressed inflow ω̃p and outflow rates ω̃l to assets Aip (for types p ∈ P)

and liabilities Lil (for types l ∈ L) with maturities below 30 days.

We set the HQLA Qi of bank i equal to its cash Ci and government bonds Tia and

apply inflow and outflow rates consistent with those specified under Basel III (see Ap-

pendix A.1.2). Under normal times, a bank is expected to have an LCR Λi that complies

with the LCR buffer standards ΛS = 100% (BIS (2013)):

Λi :=
Qi

Θi

=
Qi

ΘO
i −min{ΘI

i , 0.75 ·ΘO
i }
≥ ΛS = 100%. (3.5)

Asset Managers We extend our model to include four representative asset managers -

a bond fund, an equity fund, a mixed fund and an ‘other’ fund - initialised using 2017Q4

aggregate data from the ECB Statistical Data Warehouse. The stylised balance sheet of

an asset manager i ∈M, where M is the set of asset managers, is shown in Figure 3.2a.

The assets Ai of an asset manager consist of cash Ci, tradable assets Ti, and other assets

Oi. It has one form of representative liability Li and also has equity Ei consisting of σi

number of outstanding shares held by investors.

The critical constraint that (open-ended) asset managers face is that they must fulfil

redemption requests from investors. Empirical evidence shows that asset managers tend

to experience investment inflows or outflows (i.e. redemptions) based on their perfor-

mance as measured by net asset value (NAV) (see e.g. Coval & Stafford (2007), Baranova

et al. (2017)). In line with the empirical evidence of Coval & Stafford (2007), we assume

that the asset manager investors redeem shares proportional to the relative loss of their

NAV in our simulations. Asset managers have an obligation to pay back these shares at

their prevailing NAV - we set out how they do so in section 3.5.3.

Hedge Funds Finally, we add a number of representative hedge funds (H is the set of

hedge funds), which use repo funding from banks to fund their holdings of tradable assets.

Because we do not have detailed data on hedge funds, we introduce these institutions in a

stylised way. We assume that each hedge fund receives its repo funding from one bank, to

the extent that its balance sheet has a financial leverage λi (defined as book equity Ei over

assets Ai) of 43%35 (based on the FCA (2015) survey).36 A hedge fund’s asset holdings are

calibrated to data from the ECB Statistical Data Warehouse (see initialisation details in

Appendix A.1.2). The stylised balance sheet of a hedge fund is displayed in Figure 3.2b.

35Or, equivalently, 2.3 if leverage is defined as assets Ai over book equity Ei.
36 As explained in more detail in Appendix A.1.2, we do not consider synthetic leverage (that attained

by derivatives, for instance.
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(a) Stylised balance sheet of an asset manager
i ∈M.
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(b) Stylised balance sheet of a hedge fund i ∈
H.

Figure 3.2: Balance sheets of non-banks.

A hedge fund’s assets Ai are composed of cash Ci, tradable assets Ti, and other assets

Oi. Its liabilities Li are made up of repos R̃i and equity Ei.

Hedge funds must meet their contractual obligations – in this case to meet margin

calls and repay maturing funding. We also monitor their leverage ratios, and consider

how leverage targeting behaviour may impact systemic amplification risks.

3.5.2 Financial Contracts, Markets & Contagion Mechanisms

Our model includes a variety of financial contracts, which are in turn associated with a

number of contagion mechanisms that operate on the networks these contracts create.

We explicitly model: (i) tradable assets, Ti; (ii) interbank contracts, Ii and Ĩi; and (iii)

repurchase agreements, Ri and R̃i. We do not explicitly model other assets Oi and Õi,

external assets Yi, and deposits Di, though shocks can be applied to these assets and

liabilities.37

As discussed in Section 3.4, the generic framework allows us to model the market

associated with each contractual type. In our model, this would in imply (1) modelling

price formation in tradable asset markets, (2) modelling how the formation of new repo-

and interbank contracts takes place, and (3) modelling how their prices (e.g. their interest

rates) are set. Given our emphasis on capturing systemic amplification risk in a stress

37We do not model risks associated with derivatives contracts, largely due to the complexity involved
in modelling margin calls and changes in derivatives exposures without granular data on these derivatives
contracts. Because we omit derivatives models, our model captures neither liquidity flows associated with
margin calls nor the impact on banks’ solvency of deteriorating counterparty creditworthiness. Recent
work at the Bank of England has found that risks to non-bank financial institutions from dervatives mar-
gin calls are currently low (see ?), suggesting that including this missing channel would not significantly
impact on our results. By excluding derivatives, we may also miss losses (or gains) from derivatives posi-
tions hedging exposures. We also do not explicitly model the availability and cost of long-term unsecured
funding. While price increases and restrictions in the availability of long-term funding likely add to the
pressures on banks, the impact during the relatively short timescales we focus on (and within which the
other mechanisms we focus on in the model that operate) that is expected to play out would be limited.
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scenario, we take an approach consistent with the relevant literature (see e.g. Caccioli

et al. (2013), Kok & Montagna (2013), Gai et al. (2011)) and do not model contract

formation dynamics in the interbank and repo markets; the only markets we model are

those for tradable assets. By not allowing for the possibility that institutions that face

funding shocks may acquire new funding, our model could overestimate contagion risks

associated with such shocks.38

Tradable Assets and Markets The value of an institution’s tradable assets Ti is

given by

Ti =
∑
a∈A

Tia =
∑
a∈A

Ma∑
m=1

Tiam =
∑
a∈A

Ma∑
m=1

siampam, (3.6)

where Tia is the value of the tradable assets of institution i ∈ F of type a ∈ A, which

could be government bonds a1, corporate bonds a2, equities a3, or other tradable assets

a4. Tiam denotes the value of tradable asset m of type a ∈ A held by institution i ∈ F,

where m = 1, ...,Mα and Mα denotes the number of different types of assets of type α.

A tradable asset m could be an Italian 10-year government bond, for example. The price

of a tradable asset m of type a ∈ A is given by pam and the units held by institution

i ∈ F is given by siam.

In line with Cont & Schaanning (2017), Greenwood et al. (2015), we do not model the

counterparty (i.e. the issuer) and the cash-flows (e.g. dividends) associated to tradable

assets, but focus on the interconnections formed by institutions i ∈ F that hold an asset m

of type a ∈ A in common, to enable overlapping portfolio contagion (see Section 3.5.2).

The overlapping portfolio network is reconstructed using the random network method

employed in Kok & Montagna (2013) (see Appendix A.1.2).

Following the literature on contagion via asset sales (see e.g. Caccioli et al. (2015,

2014)), we take a simplified reduced-form approach to modelling the price impact of asset

sales.39 Empirical research, such as by Bouchaud (2010), suggests that the price impact

function is concave and is linear for small volumes of sales.

For simplicity, and given that the volume of sales at each time in our model is limited,

we assume that the price impact is linear (in line with Greenwood et al. (2015)). Given

this approach, the price at time t of asset m of type a ∈ A, ptam is given by

.ptam = ptoam max{1− βamf tam; 0}., (3.7)

38We can assess the importance of this assumption by exploiting the flexibility of the framework to
‘turn off’ funding contagion, which would be analogous to assuming that institutions can frictionlessly
source new funding in case they face withdrawals.

39A more advanced study of price dynamics could be facilitated by modelling the limit order book in
exchange-traded markets (Paulin et al. (2018)). Even though we do not model limit order books here,
our generic framework supports such modelling.
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and is capped so that it never falls below zero. In equation 3.7, f tam denotes the cumulative

fraction of net asset sales of asset m of type a ∈ A (relative to the market capitalisation)

up to time t and βtam is the asset’s price impact parameter. For instance, βam = 0, 1, 2

means that the price of tradable asset m of type a ∈ A falls by x = 0, 5, 10% if 5% of the

total market capitalisation has been sold.

Interbank Contracts In line with Amini et al. (2013), Ha laj & Kok (2013), the value of

the interbank assets Ii is given by the sum of the notional exposures to bank counterparties

that have not yet defaulted Iij1{j /∈ D}, where D is the set of defaulted banks. If a

counterparty j ∈ B has defaulted, the bank receives (1 − LGDj)Iij of cash Ci, where

LGDj is the loss given default (LGD). Interbank liabilities Ĩi are given by the sum of the

notional borrowing from other banks Iji, so Ĩi =
∑

j∈B Iji. We reconstruct the interbank

network using bank balance sheet data and the reconstruction method proposed by Ha laj

& Kok (2013) and employed by Kok & Montagna (2013). This method iteratively picks a

random pair of banks and assigns a random number from a uniform distribution between

0% and 20%, which determines what percentage of the bank’s residual interbank assets

is deposited in the other bank’s remaining interbank liabilities (truncated if larger). The

exposure between any pair of banks is capped at 20%, a choice that is motivated by the

Basel III large exposure limits (BCBS (2013)).40

Following Kok & Montagna (2013), we assume that interbank contracts are overnight

contracts (i.e. mature every day) and are automatically rolled over, unless they are

explicitly not rolled over, in which case the affected bank receives a liquidity shock. An

interbank contract may, for example, be withdrawn if a counterparty has liquidity needs

(Aymanns et al. (2018)) or engages in liquidity hoarding (Acharya & Skeie (2011), Heider

et al. (2009)). We only consider funding reductions to raise cash to meet contractual

obligations or regulatory constraints in the model, but it is also possible to incorporate

liquidity hoarding (see e.g. Wiersema et al. (2019) for a way to do so).

Repos and Reverse Repos Under a repurchase agreement, an institution j will sell a

tradable asset m of type a ∈ A to an institution i at a time t and repurchase the security

40We note that our results are averaged across N realised interbank and security network recon-
structions, and error bars show the standard deviation of the outcome as a result of these different
reconstructed networks. Of course, these error bars only reflect the standard deviation that is realised
with a particular network reconstruction method. If outcomes were not only averaged accross realised
networks using a particular reconstruction method, but also accross multiple reconstruction methods, re-
flecting that the ‘functional form’ of the network may be unknown, then the standard deviation could be
greater. The network structure matters: it is shown by several studies to significantly impact the prob-
ability and extent of contagion (see e.g. Gai & Kapadia (2010)). See Anand et al. (2017) for a horserace
of different network reconstruction methods, and see Gandy & Veraart (2017) for an alternative, Baysian
approach to reconstructing the interbank network.
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at a time T > t at pre-specified price. In effect, in this transaction institution j provides

a loan secured by assets (collateral) to a counterparty i. If institution i defaults during

the lifetime of the contract, bank j is legally entitled to take the received collateral and

may (fire) sell it to recover as much of the notional Rji (or more) as possible. To ensure

that enough cash can be recovered upon the sale of the collateral, collateral m of type

a ∈ A typically receives a haircut ham.

We assume that each individual repo contract is collateralised by one type of non-

cash collateral seijam (where seijam denotes that specific asset m of type a of institution i

is placed as collateral to institution j and hence remains for accounting purposes as an

encumbered ‘e’ asset on i’s balance sheet) – one of the tradable assets Ti – and that cash

collateral Ce
ij of institution i can be used to supplement this if necessary.41 We impose

the restriction that when an institution has used an amount of a particular asset to secure

repo funding, that asset is no longer available to the institution to liquidate until that repo

contract is terminated. As with interbank contracts, we assume that repo contracts are

overnight contracts that automatically roll over unless one of the counterparties explicitly

opts not to do so.

Whenever the price pam of the asset collateral seijam falls, the value of the collateral

after the haircut may no longer be sufficient to fully collateralise the repo loan Rji. In

such cases, the institution receives a margin call Mji to restore full collateralisation,

which it must meet either with more of the underlying asset or cash collateral. If it has

insufficient of either, it liquidates other asset types to obtain cash. The margin call M t
ji

from institution j ∈ F to institution i ∈ F is given by

M t
ji := Rt

ji − (1− htam)se,t−1
ijam p

t
am + Ce,t−1

ij (3.8)

=


> 0 i ∈ F must pledge M t

ji value of extra ‘haircutted collateral’ to j ∈ F;

= 0 no margin call;

< 0 j ∈ F must return |Mji| value of ‘haircutted collateral’ to i ∈ F.

The margin call obliges institution i ∈ F to place extra ‘unencumbered’ (u) asset collateral

suiam or cash collateral Cu
i

42 to make equality Rji = (1 − ham)seijampam + Ce
ij hold again.

An institution i can only meet a margin call with existing items on its balance sheet if it

41The superscript ‘e’ signifies that the posted collateral stays for accounting purposes on the balance
sheet of institution i, but is an ‘encumbered asset’ in the sense that it is no longer available to the
institution to sell while the repo contract is extant.

42We note that tradable assets siam be further broken down in that part which is unencumbered suiam
(can be liquidated as no counterparty has a claim on it) and the sum of the encumbered seijam collateral
posted to each counterparty j ∈ F. That is, siam = suiam +

∑
j∈F s

e
ijam. Likewise, cash can be split in

its unencumbered and encumbered part: Ci = Cui +
∑
j∈F C

e
ij .
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has sufficient unencumbered assets of the type suiam already placed in the repo contract

Rji, or if it has sufficient unencumbered liquid instruments Cu
i . Else, it needs to liquidate

unencumbered assets of other asset types (e.g. firesale tradable assets suiam > 0) to raise

sufficient cash Cu
i that can be placed as cash collateral. Since an institution i could have

multiple repo contracts Rji it may also face multiple margin calls at every time step t,

which its meets sequentially. The total value of the reverse repos of institution i ∈ F is

given by Ri =
∑

i∈F Rij and its total repo value is given by R̃i =
∑

i∈F Rji.

It is common that an institution i ∈ F is allowed to re-hypothecate collateral received

as part of its reverse repo Rij position by placing it in its own repo contract Rki, for a

j, k ∈ F. When an institution has offsetting reverse repo Rij and repo contracts Rki, its

position is called match book. In such case, the margin call associated with a reverse repo

contract is opposite to the margin call associated with a repo contract (i.e. Mij = −Mki).

As a consequence, the institution can just pass on the collateral it received in the reverse

repo contract Rij to the repo contract Rki, or the other way around. Hence, the institution

is not exposed to liquidity risk unless delays in the delivery of collateral occur (Gorton

& Muir (2016)), which we do not capture. In our model (see Section 3.5.1), we assume

that each bank i ∈ B in its role as an intermediary is largely matched book (as their

reverse repo Ri and R̃i given by data largely offset in size, see Appendix A.1.2), so are

little exposed to margin call risk, whereas each hedge fund j ∈ H is not matched book

and thus exposed to margin calls Mji.

In line with Bookstaber, Paddrik & Tivnan (2014), we assume that a bank provides

reverse repo funding to hedge funds (see details in Appendix A.1.2), and a bank itself

receives repo funding from an external financier that is not explicitly modelled. We set the

haircuts htam (see Section 3.5.2) for government bonds a1, corporate bonds a2, equities a3

and other tradable assets a4 respectively equal to hta1,m = 2%, hta2,m = 4%, hta3,m = 15%,

and hta4,m = 4% (such as mortgage-backed securities), in line with (BCBS (2004)) ∀t, for

m = 1, ...,Ma. Cash collateral does not receive a haircut. We could but do not consider

how haircuts may change (e.g. increase) over time t in periods of distress. The potentially

sharp increase in haircuts in financial crises has been empirically examined by Gorton &

Metrick (2009) and shown by Brunnermeier & Pedersen (2009) to be an additional driver

of margin calls-induced liquidations.

Contagion Mechanisms The contracts discussed above act as edges in a financial

network, and are the channels through which contagious shocks can be passed on or

amplified. We will discuss four, sometimes interacting, types of contagion that we model

explicitly.
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Exposure Loss Contagion Exposure loss contagion is a form of node amplification

(see Section 3.4.2). It occurs when liquidation following the default of bank j ∈ B leads

to further contagion, which are induced by the exposure losses incurred by each of its

interbank contract Iij counterparties i ∈ B. By default, we set the loss given default for all

banks equal to one hundred percent (i.e. LGDi = 100%, ∀i ∈ B), since Cont et al. (2010)

argue that over the short time period typically considered by a system-wide stress test

counterparties of a defaulted bank are unlikely to have a positive recovery. In traditional

models of exposure loss contagion, such as Amini et al. (2013), exposure losses can cause

a bank to default, thereby potentially setting in motion a chain of further defaults. In our

model, exposure losses may also weaken a bank such that it needs to de-lever to become

less vulnerable. Hence, in our model exposure losses may not merely foster default-

domino effects through post-default contagion, but also spawn pre-default contagion in

the form of, for example, overlapping portfolio contagion or funding contagion. Exposure

losses can also contribute directly to pre-default contagion, because banks mark down the

value of their interbank exposures as their counterparties’ solvency deteriorates, leading

to further deterioration in solvency as modeled by Bardoscia et al. (2017) - but we do

not capture that direct channel in our implementation.

Overlapping Portfolio Contagion Overlapping portfolio contagion, another form

of node amplification, occurs when the sale of a tradable asset causes the asset price

to drop, leading in turn to a downward valuation of marked-to-market assets of other

institutions that hold the sold asset as well. Where institutions wish to retain their

leverage around some target, this may prompt delevering via asset sales and further price

falls (Duarte & Eisenbach (2015)).

Traditionally, many models have generally motivated delevering by using a binding

leverage constraint λi (see e.g. Cont & Schaanning (2017), Greenwood et al. (2015)),

though a forthcoming paper Coen et al. (2019) models asset sales in the face of risk-

weighted capital ratio and liquidity coverage ratios. Our model includes these constraints

and also allows for asset sales to be triggered by contractual obligations (such as the

obligation to pay back a loan or meet a margin call). Importantly, in our model banks

have options other than selling assets in order to delever; they can also reduce interbank

funding Ii or reverse-repo funding Ri exposures, for example. Therefore, institutions

affected by overlapping portfolio contagion will not necessarily transmit and amplify

marked-to-market shocks even if they are forced to act, but may instead trigger funding

contagion or collateral contagion. Where marked-to-market shocks are sufficient to cause

institutional default and liquidation, this can also trigger exposure loss contagion.
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Collateral Contagion As noted, when falls in asset prices prices lead to margin

calls on repo contracts that cannot be met with available cash or collateral, institutions

will be forced to liquidate other assets in order to raise cash collateral instead. We call

this ‘collateral contagion’, which is a form of edge amplification 3.4.2. Hence, overlap-

ping portfolio contagion and collateral contagion can reinforce each other, similar to the

margin-price spiral Brunnermeier & Pedersen (2009) has identified.

Funding Contagion Funding contagion, which is a form of node amplification,

occurs when a funding shock provokes the institution to raise liquidity by withdrawing

funding from its counterparties. Our model allows banks to cease rolling over funding to

each other, either to raise cash to meet contractual obligations or to deleverage. However,

in the face of funding shocks banks are not limited to taking such actions, and could for

example also raise cash by selling securities.

3.5.3 Behaviour

As noted before, when financial institutions act in our model their option set may be

limited by various constraints. However, within that option set there may still be am-

ple choice. The way in which institutions make that choice is based on behavioural

assumptions. In this section, we discuss these two elements of behaviour. Specifically, we

first discuss how, at a conceptual level, banks in our model attempt to stay away from

their binding regulatory constraints. Subsequently, we outline how we operationalise this

conceptual approach in our stress testing model. We then discuss how banks act in situa-

tions when multiple constraints bind simultaneously, and also discuss the ‘pecking orders’

banks use to decide how to meet their constraints. Finally, we turn to asset managers

and hedge funds, and describe how we model their behaviour.43

We again stress that our generic framework is flexible by design, so that we could for

example also consider the impact of different or more heterogeneous behavioural assump-

tions. In the stress testing model institutions of the same type (bank, asset manager,

hedge fund) use the same set of behavioural rules, but they still act heterogeneously at

any point in time because of their institution-specific combination of binding constraints

and balance sheet properties.

43Our model does not currently consider (1) a number of behavioural options available to banks (e.g.
dividend cuts), (2) strategic interactions, or (3) endogenous intervention by central banks (e.g. lender
of last resort facilities). It also does not allow for buying behaviour, which might act to dampen, for
example, the price impacts of fire sales. However, our generic framework and model implementation does
allow us to experiment - by including (some of) these behavioural options as assumptions in the model
- and to evaluate how important they are to model outcomes.
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Behaviour of Banks: Minima, Buffers and Targets We assume that banks choose

to maintain a ‘management buffer’ at all times. Once banks fall below this buffer value,

they respond to get back to some target (this is in line with the approach taken in e.g.

Bookstaber, Paddrik & Tivnan (2014), Cont & Schaanning (2017)). Such behaviour is

consistent with the empirical findings of Adrian & Shin (2010) and also has intuitive

appeal: institutions have to monitor and adjust their balance sheets to comply with

regulatory standards and are likely to take some buffer space to prevent them dipping

below regulatory requirements too quickly.

Under this setup, banks act when at least one of the following conditions holds: (1)

λM ≤ λi < λBi ≤ λTi ; (2) ρM ≤ ρi < ρBi ≤ ρTi ; and/or (3) Λi < ΛB
i (where ΛB

i may

be above, below, or equal to ΛS). The superscript B and T denote the buffer value and

target value of the constraint, which are bank-specific.

A bank determines the level of its management buffer and target at least in part based

on its assessment of the usability of its regulatory buffer (see discussion in Sections 3.5.1

and 3.7). For example, if banks consider their regulatory buffers to be fully usable, they

may set their management buffer and target at a level that is lower than the regulatory

buffer level, enabling them to use the buffer to absorb shocks. On the other hand,

when banks behave as if buffers are not usable (in other words, if they behave as if

buffers are requirements), their management buffer and target may exceed the regulatory

requirements, to make sure that some shocks can be absorbed before these regulatory

requirements are triggered.

Usability of Regulatory Buffers and Targets To assess the impact of regulatory

buffer usability on systemic risk (see Section 3.6.5), we introduce a parameter u that

determines what fraction of each regulatory buffer (risk-based capital buffer, leverage

buffer, and liquid asset buffer) a bank is willing to use. So if we set u to 25%, then a

bank will seek to prevent its capital ratio falling below 75% of their regulatory buffer

standard by taking actions to rebuild their capital ratio towards a desired target value.

Alternatively, if we set u to 0%, regulatory buffers are not considered to be usable at all,

and banks will take actions to avoid dipping below them. Given a usability u of buffers,

the buffer value at which institutions act to return to target for each constraint is given

by

ρB = ρM + (1− u)(yρρCBi ), (3.9)

λB = λM + (1− u)(yλρCBi ), (3.10)

ΛB = (1− u)ΛS, (3.11)
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where yλ and yρ tell the size of the regulatory leverage buffer and regulatory risk-weighted

buffer relative to the Basel III standard (e.g. yρ = 2 means regulators have doubled the

risk-weighted buffer standard applicable to each bank relative to the Basel III standard).

The default parameters for usability (u), size of the regulatory buffer standards (yρ, yλ),

and the target values (ρTi , λTi and ΛT
i ) are shown in Table 3.2.

Banks’ Actions When Facing Multiple Constraints If necessary, banks can choose

from a set of actions to rebuild capital and liquidity ratios and meet repayment obliga-

tions. The action that is most effective will likely depend on the constraint that binds.

Our model first sets out the set of actions available to banks to meet each constraint in-

dependently, which are compared against the pecking order we impose on these actions.

This process yields multiple pecking orders that banks use to meet their constraints.

We consider the following pecking orders:

Margin calls - An institution i meets a margin call by first attempting to post more

cash or unencumbered (‘u’) assets suiam of the type m, a underlying the repo contract.

If that is not possible, it will raise cash by liquidating other types of unencumbered as-

sets (including interbank contracts and reverse repo lending) in proportion to its current

holdings. We will now describe this mathematically.

We start with explaining the case where the margin call is positive (i.e. M t
ji > 0). As

explained in Section 3.5.2, a margin call may be met with the same type of collateral that

is already placed as part of the contract, or, if that is not sufficient with cash collateral.

In this light, an institution i ∈ F will meet a positive margin call M t
ji > 0 by pledging

se,t,Eijam extra (E) units of collateral m of type a ∈ A to institution j ∈ F at time t. That

is, se,t,Eijam is given by

se,t,Eijam = min{
M t

ji

(1− htam)ptam
; su,t−1
iam }1{M t

ji > 0}, (3.12)

where we note that the units se,t,Eijam pledged can never exceed the units of unencumbered

collateral m of type a ∈ A that institution i ∈ F has of type a,m, su,t−1
iam . If the units of

pledged collateral se,t,Eijam are not sufficient to fully meet the margin call, then institution

i ∈ F has to pledge Ce,t,E
ij extra cash collateral, given by

Ce,t,E
ij = min{max{M t

ji − s
e,t,E
ijam(1− htam)ptam; 0};Cu,t−1

i }1{M t
ji > 0}, (3.13)
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where we note that Ce,t,E
ij can never exceed the amount of unencumbered cash Cu,t−1

i

that institution i ∈ F has. If at this point institution i ∈ F has still not fully satisfied

its margin call M t
ji, then it has to resort to liquidating assets (see also e.g. Gai et al.

(2011)). The amount of assets institution i ∈ F has to liquidate lti to meet the remainer

of the margin call is given by

lti = max{M t
ji − s

e,t,E
ijam(1− htam)ptam − C

e,t,E
ij , 0}1{M t

ji > 0}.44 (3.14)

It liquidates assets according to the ‘margin call pecking order’ described in Section ??.

If the amount of cash that institution i ∈ F raises from liquidating assets is still not

sufficient to honour its margin call M t
ji, then it defaults. In such case, the reverse repo

party j ∈ F is contractually allowed to permanently keep all the collateral (se,tijam and

Ce,t
ij ) in the repurchase agreement Rt

ji (see Section 3.5.2). We assume that institution

i ∈ F will (fire) sells the non-cash collateral (i.e. se,tijam) to eliminate any exposure to the

collateral (Shleifer & Vishny (2011)), which raises cash.

If, on the other hand, the margin call is negative (i.e. M t
ji < 0), then the reverse repo

party j ∈ F must return part of the collateral it has received from the repo party i ∈ F.

It must return some collateral, because the repo contract Rt
ji is now overcollateralised

given the haircuts htam that apply and given the current price of the collateral ptam. We

assume that the reverse repo party j ∈ F first returns (R) Ce,t,R
ji amount of cash collateral

it received from the repo party i ∈ F, given by

Ce,t,R
ij = min{Ce,t−1

ij ; |M t
ji|}1{M t

ji < 0}. (3.15)

Subsequently, if that is not enough, the reverse repo party j ∈ F returns se,t,Rijam units of

non-cash collateral received from the repo party i ∈ F, given by

se,t,Rijam =
max{|M t

ji| − C
e,t,R
ij , 0}

1− htam
1{M

t
ji < 0}. (3.16)

Repaying maturing liabilities - A bank initially meets payment obligations with

cash. If it has insufficient cash, it will raise cash by liquidating assets in the following

order: (1) interbank contracts Ii; (2) reverse repos Ri; (3) unencumbered tradable assets

T ui (starting with the tradable assets that have the least price impact).

44Institution i ∈ F may also slightly liquidate more assets than lti to take any potential liquidation
cost into account.
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Defending the risk-weighted capital ratio - Banks strengthen their risk-weighted

capital ratio ρi by liquidating assets with the highest risk-weight first, in order to raise

cash with a zero risk weight. We will now describe this mathematically.

A a bank returns to a target for the risk-weighted capital ratio ρTi whenever its risk-

weighted capital ratio ρi (defined in equation 3.1) falls below its buffer ρBi and has not

failed yet (i.e. ρi ≥ ρM). A bank i ∈ B returns to its target ratio ρTi by reducing non-

zero risk-weight assets Aip (for ωp 6= 0, for p ∈ P). As noted above, we assume that

the bank returns to target by reducing the most high risk-weight assets first, as this is

the most effective way to quickly get back to the capital ratio target ρTi .45 Given the

risk weights that apply, the order to reduce non-zero risk-weighted assets Aip is given by:

(1) unencumbered corporate bonds T ua2 ; (2) unencumbered other tradable assets T ua4 ; (3)

unencumbered equities T ua3 ; (4) interbank assets Ii; (5) reverse repo Ri.

The iterative method employed by bank i ∈ B to aim to reach its target ρTi is as

follows. It liquidates r̂ip4 amount of asset type Aip4 . It can never reduce more assets

than the unencumbered assets Auip4 it has of this type. That is, r̂ip4 is given by r̂ip4 =

min{rip4 , Auip4}, where rip4 is given by

rip4 =
1

ωp4
[
∑
p∈P

ωpAip −
Ẽi
ρTi

], (3.17)

and follows from

ρTi =
Ẽi

ωp4(Aip4 − rip4) +
∑

p∈P\p4 ωpAip
. (3.18)

If r̂ip4 < rip4 then bank i ∈ B did not have enough unencumbered assets Auip4 of type p4

to reach its target ρTi . Hence, it will next reduce r̂ip6 amount of the next asset in the

pecking order Aip6 . Where r̂ip6 is again given by r̂ip6 = min{rip6 , Aip6} and rip6 is given

by

rip6 =
1

ωp6
[
∑
p∈P

ωpAip −
∑
p=p4

ωpA
u
ip −

Ẽi
ρTi

]1{r̂ip4 < rip4}. (3.19)

We observe that the amount of (unencumbered) assets that have been designated to be

liquidated in the previous round of the iterative procedure have been reduced from the

sum. We continue this iteration for as many times as its needed, by extending this logic,

45We note however that banks may implement optimisation strategies to minimise liquidiation losses
that may result in them selling more liquid assets in preference to less liquid assets, as in Coen et al.
(2019).
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to reach the target ρTi up to the last non-zero risk weight that can be reduced by at most

r̂ip8 = min{rip8 , Aip8}, where rip8 is given by

rip8 =
1

ωp8
[
∑
p∈P

ωpAip −
∑

p=p4,p6,p5,p7

ωpA
u
ip −

Ẽi
ρTi

]1{r̂ipx < ripx , for x = 4, 6, 5, 7}. (3.20)

In case the following condition is true the bank i ∈ B cannot fully reach its target, even

in the absence of liquidation cost

Ẽi∑
p∈P ωpAip −

∑
p=p4,p6,p5,p7p8

ωpAuip
< ρTi . (3.21)

Defending the leverage ratio - Banks first delever by using cash to proportionally

pay back liabilities Li.
46 Where this is insufficient, we assume that banks liquidate assets

in order of increasing liquidation costs. Therefore, the pecking order for liquidation is

the same as the one used when meeting payment obligations. We will now describe this

mathematically.

A bank i ∈ B returns to its leverage target λTi whenever its leverage ratio λi (defined in

equation 3.2 as the bank’s CET1 equity Ẽi
47 over its asset exposure Âi

48 falls below its

buffer value λBi and it has not defaulted yet (i.e. λi ≥ λM). A bank i ∈ B returns to its

leverage target λTi by delevering di amount, rather than issuing new equity to uplift the

leverage ratio λi as issuing equity is typically not feasible in times of distress (Greenwood

et al. (2015)). The delevering amount di is given by

di = [Âi
1

λTi
− Ẽi]1{ λM < λi ≤ λBi }, (3.22)

46We note that in the UK, central bank reserves do not contribute to the leverage ratio, so this option
strictly speaking would not be available.

47In the stress test we would like to capture how asset losses and liability changes effect the value
of the CET1 equity Ẽi. To be able to do this, we approximate the CET1 equity of a bank i at time t
as Ẽti ≈ Eti − ∆t0

i , where ∆t0
i is given by the difference between book equity Ei and CET1 equity Ẽi

at time zero. That is, ∆t0
i := Et0i − Ẽt0i . This approximation is reasonable. The CET1 equity Ẽi of a

bank strongly relates to the book equity of a bank Ei := Ai −Li, but may not be equal to it. With this
approximation, we basically assume that the difference between the equity Ei and the CET1 equity Ẽi
is constant over time.

48As we do not have data to determine how the leverage exposure Âi changes as a function of asset
value changes Ai, we approximate the leverage exposure Âti at time t as the asset value Ati at time t

minus some fixed adjustment ∆̂t0
i determined at time zero. That is, Âti ≈ Ati − ∆̂t0

i . We compute ∆̂t0
i

at time zero (i.e before we shock the system) as the difference between the total assets At0i and leverage

exposure Ât0i at time zero (i.e. ∆̂t0
i := At0i − Ât0i ) and keep it constant throughout the stress test. The

leverage exposure at time zero Ât0i is given by data as Ât0i =
Ẽt0

i

λt0
i

.
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which follows from

λTi =
(Ai − di)− (Li − di)−∆t0

i

Ai − di
1{ λ

M < λi ≤ λBi } =
Ẽt
i

Ai − di
1{ λ

M < λi ≤ λBi }.
(3.23)

A bank i ∈ B delevers di amount by liquidating di amount of assets.

Defending the Liquidity Coverage Ratio - we focus on the numerator of the LCR,

and assume that banks boost their LCR Λi by liquidating non-HQLA assets and raising

cash to increase their holdings of high quality liquid assets, starting by liquidating the

least costly assets. We will now describe this mathematically.

A bank i ∈ B returns to a LCR target ΛT
i if its LCR Λi (defined in equation 3.5) falls

below its buffer ΛB
i . We assume it does so by reducing non-HQLA (i.e. non-Qi) assets to

generate cash Cu
i , which counts towards its HQLA Qi (i.e. the denominator of the LCR

Λi), rather than reducing net outflows Θi) (Θi is the denominator of the LCR Λi). The

amount of non-HQLA assets qi that a bank i ∈ B will liquidate to return to its target is

given by

qi = {ΛT
i Θi −Qi}1{Λi < ΛB

i }, (3.24)

which follows from

ΛT
i =

Qi + qi
Θi

1{Λi < ΛB
i }. (3.25)

A bank i ∈ B liquidates qi amount of non-HQLA assets.

Multiple constraints that bind simultaneously - If multiple constraints bind si-

multaneously, we assume that banks prioritise meeting these constraints as follows:

1. Meet contractual obligations (i.e. repayment obligations and margin calls);

2. Improve the risk-weighted capital ratio ρi;

3. Improve the leverage ratio λi by paying back liabilities with cash, liquidating further

assets if necessary

4. Boost the liquidity coverage ratio Λi.
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We motivate this order with reference to the observation that contractual constraints

are commonly more strictly enforced (which would lead to default) than regulatory con-

straints (FED (2010), BIS (2014), Brown & Dinç (2011)). When both the leverage ratio

and the risk-weighted capital ratio bind, we assume that banks will first take action to im-

prove the risk-weighted capital ratio ρi before acting to alleviate the leverage constraint

λi. We justify this assumption on the basis that re-building the risk-weighted capital

ratio ρi (by liquidating non-zero risk-weighted assets) raises cash, which the bank can

subsequently use to delever should this be necessary. Actions taken with the primary

aim of reducing the leverage ratio, however, may have no impact on the risk-weighted

capital ratio (for example if zero risk-weighted assets are liquidated and the cash used to

pay off liabilities).

In our model, banks address their LCR Λi last for a number of reasons. First, the

LCR Λi is the regulatory constraint that should be minimal (at least in theory) because

it is a buffer rather than a regulatory minimum requirement. Second, taking actions in

our model to improve the risk-weighted capital ratio ρi will in general also boost the

LCR Λi: if a bank liquidates assets with a non-zero risk weight this will raise cash Cu
i

which, insofar it is not used to delever, will increase the numerator of the LCR Λi (the

HQLA Qi, see equation 3.5). This reasoning does not always hold. For example, if a

bank decides to reallocate investments from assets with a high risk-weight to assets with

a low risk-weight that does not count as a HQLA Qi, improving the risk-weighted capital

ratio may not increase a bank’s LCR Λi. When the actions banks take to improve their

risk-weighted capital ratio and to delever have the net effect to push up the LCR Λi, they

need to take fewer additional actions to return the LCR to its target ratio ΛT
i . Moreover,

further action may not be necessary at all if these actions push up the LCR Λi from

Λi < ΛB
i to Λi ≥ ΛB

i .

Bank Failure Contagion models often assume that banks are liquidated on default

(see e.g. Kok & Montagna (2013), Caccioli et al. (2013)). But resolution frameworks in

most jurisdictions have been undergoing rapid changes since the 2007-2008 crisis to enable

the orderly resolution of banks (Armour et al. (2016)). We consider two edge cases for

what happens when banks ‘fail’, which we term disorderly liquidation and contagion-free

resolution.49

In the edge case of disorderly liquidation all banks that fail are rapidly liquidated:

tradable assets are fire-sold and short-term secured and unsecured loans are withdrawn (in

line with Kok & Montagna (2013)), and unsecured creditors take losses (see Section 3.5.2

and 3.5.2) while secured creditors take title to repo collateral. In the other edge case,

49We define failure as a breach of minimum capital requirements or illiquidity.
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contagion-free resolution, every defaulted bank is resolved without any contagion: the

bank simply becomes inactive.50 In reality, the consequences of bank failure would be

between these two extremes (see e.g. BoE (2017a), Klimek et al. (2015), Hüser et al.

(2017), Chennells & Wingfield (2015)). We do not study the impact of specific resolution

regimes here. What matters for our purposes is that our qualitative findings hold for

both edge cases, suggesting they apply across a broad range of outcomes.

Asset manager behaviour Each asset manager i ∈M has the obligation to pay back

shares at their prevailing net asset value when they are redeemed by investors. To do so,

an asset manager first use cash. If this is insufficient to meet redemptions, it liquidates

tradable assets in a ‘vertical slice’ (i.e. proportional to their asset holdings).

The NAV of an asset manager i ∈M (see Section 3.5.1 for a balance sheet description)

is given by

ηi =
Ai − Li
σi

=
Ei
σi
. (3.26)

The performance of an asset manager i ∈ M in terms of its NAV ηti at time t can be

measured relative to a reference time point, which we take to be the beginning of the

stress test t0. We can define the relative loss χti at time t of the NAV ηi of the the

representative asset manager i ∈M as

χti =
ηt0i − ηti
ηti

. (3.27)

In line with the empirical evidence of Coval & Stafford (2007), we simply assume that

the asset manager investors redeem shares proportional to the relative loss of their NAV

χti.
51 That is, the cumulative fraction of the original number of asset managers shares σt0i

that is withdrawn up to time t, f ti is given by

f ti = χti. (3.28)

The asset manager has the obligation to pay back the shares that are redeemed at

their prevailing NAV ηi. If the asset manager does not have enough cash Ci to do so it

must liquidate tradable asset Ti. This can give rise to a contagious fire sales.

50This implementation of contagion-free resolution does not reflect our assessment of current resolution
regimes. We simply want to capture the edge case where resolution is contagion-free, in order to study
the impact on systemic risk.

51We model the redemptions pressures in a simplistic way to be able to make a point that asset
managers can affect banking sector stability (see Section 3.6.3), but given our stress test framework we
could easily implement asset managers in a more involved way (e.g. along the lines of Baranova et al.
(2017)).
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Hedge fund behaviour The behaviour of a hedge fund i ∈ H is driven (1) the obliga-

tion to meet margin calls (see the specification of how this is done earlier in this section).

(2) the obligation to repay a withdrawn repo agreement, and (3) an internal-risk limit to

remain below a leverage bound (if it exceeds that limit, it would be forced to delever).

In each of these cases, the hedge fund employs a pecking order to determine its response.

To meet a margin call Mji, a hedge fund acts in the same way that banks do (see Sec-

tion 3.5.3): it first pledges more unencumbered collateral of the type already placed, then

places unencumbered cash, and finally proportionally liquidates unencumbered assets. To

repay under a repo contract Rji, a hedge fund proportionally liquidates unencumbered

assets. Similar to banks, a hedge fund delevers whenever its leverage ratio λi = Ei
Ai

52

falls underneath its buffer value λBi to return to its leverage target λTi .53 As explained

in Bookstaber, Paddrik & Tivnan (2014), each hedge fund faces an implicit minimum

leverage ratio λMi (which is specific to that hedge fund) implied by the haircuts it faces on

its collateral. When a hedge fund liquidates unencumbered assets to raise cash in order

to pay back liabilities, it does so proportionally.

3.6 Policy experiments and Results

For the same initial shock, we compare the outputs from our system-wide stress testing

model for the European financial system to those from a microprudential stress test. As

a microprudential baseline, we use the European Banking Authority (EBA) 2018 stress

test results.54 The EBA stress test was conducted with static balance sheets and did

not model second-round effects that arose as a consequence of banks’ responses (Ebner

(2018)), despite the fact that surveys involving participants in previous EBA stress tests

have suggested that these effects could be sizable (Brinkhoff et al. (2018)).55 The process

works as follows: following an initial shock, the EBA stress test calculates the initial

impact on each individual bank and provides a microprudential output. Using this output

as a baseline, we use the input from the EBA’s microprudential stress test as an input for

our system-wide stress testing model. On the basis of this input, our system-wide model

then accounts for potential contagion mechanisms that might amplify this initial shock.

52Note the leverage ratio λi of hedge funds has a different definition from the leverage ratio of banks
(see equation 3.2).

53The default parameters for the excess buffer above the hedge fund’s minimum (i.e. λBi -λMi ) and the
excess target above the hedge fund’s buffer (i.e. λTi -λBi ) are given in Table 3.2.

54See the 2018 EBA microprudential stress test outputs here: https://eba.europa.eu/

risk-analysis-and-data/eu-wide-stress-testing/2018/results.
55Participants are allowed to cut dividends in response to the impact of the stress under certain

conditions, and restrictions on distributions associated with entering regulatory capital buffers are also
included. Cost-cutting is, however, constrained.
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To evaluate the relevance of the system-wide stress test, we compare its output to the

microprudential output produced by the EBA’s stress test.

Our results suggest that the inclusion of contagious dynamics among banks leads to

a starkly different (and, generally, more severe) risk outlook on banks’ resilience. In

addition, we show that the efficacy of the resolution process for failing banks is an impor-

tant driver of systemic risk amplification. We then move from this macroprudential but

bank-centered analysis to a truly system-wide perspective by including (representative)

non-bank financial institutions, and show that this leads to further - albeit limited56 -

shock amplification. We also evaluate how different contagion mechanisms can reinforce

each other such that their combination has a greater impact than the sum of its parts.

Finally, we show how the usability and size of regulatory buffers are crucial determinants

of the level of systemic amplification risk.

3.6.1 Default Parameters and Visualisation

Unless otherwise stated, all experiments use the same default parameters, which are given

in Table 3.2.57 Our experiments and their results focus on the magnitude of systemic risk

amplification as a function of (1) the severity of the initial shock, (2) the calibration of

our price impact parameters, and (3) whether or not banks are liquidated in an orderly

way when they fail.

We present the results in a consistent format. On the y-asis, we represent a commonly

used systemic risk measure, E - an approach that is similar to that used in Gai & Kapadia

(2010), Gai et al. (2011), Paulin et al. (2018). This measure is defined by the average

fraction of bank defaults in a systemic event (‘the average extent of a systemic event’),

with a ‘systemic event’ being defined as a situation where at least 5% of the banking

system defaults (see Appendix A.1.3 for a precise definition of E). In line with Paulin et al.

(2018), this average is computed across N=100 simulation runs, where in each run the

reconstructed interbank and tradable networks are randomly redrawn (see Section 3.5.2

and 3.5.2 for the reconstruction methods).58 Given the uncertainty about the network

structure - as noted, we do not have access to the data required to calibrate the model

to the network structure - the randomness in the system (for each simulation run) stems

solely from the randomness in the reconstructed networks (as in Gai & Kapadia (2010));

per x-y-axis point all else is kept constant.

56This may be explained by the lack of granular modelling of the non-banks due to data limitations.
57Each timestep in this model can be thought of as representing a timeframe of about a day to a few

days. Asset sales and actions to stop rolling over repo and interbank contracts can thus be taken and
completed within each timestep. Simulations generally converge after a handful of timesteps, with the
longest of those presented here taking around 20 timesteps to converge.

58Error bars are omitted since they are very small for N = 100 and tend to zero for an increasingly
large N .
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For each experiment, we show the systemic risk assessment E resulting from both the

system-wide stress test (coloured lines) and the microprudential stress test (grey-coloured

lines59). Since the microprudential stress test does not capture contagion defaults, the

grey-coloured lines could be seen as the average fraction of initial bank defaults in a

systemic event E, while the coloured lines represent the total default fraction as defined

above. Their difference represents the average fraction of contagion defaults in a systemic

event (‘the average extent of contagion’). For simplicity, we will frequently refer to E as

displaying systemic risk (or, conversely, financial stability) or the (initial) fraction of bank

defaults.

To highlight the sensitivity of financial stability to the severity of the initial adverse

scenario and market liquidity, we vary the magnitude of the initial shock x on the x-axis.

We do so by applying a scalar of between 0 and 2 to the losses from the 2018 EBA stress

test, for which x = 1. In addition, we vary the price impact by between 0% and 10% if

5% of the market capitalisation of the asset has been sold (see section 3.5.2 for details).

Of course, as is common for models of contagion dynamics,60 the magnitude of systemic

losses generated in these experiments are sensitive to a number of assumptions and pa-

rameters. Accordingly, and in line with use-cases of models using similar techniques (see

e.g. ??), our (current) system-wide stress testing model is not designed to provide highly

precise quantitative predictions, but instead provides qualitative findings. Importantly,

our qualitative findings are robust to varying assumptions and parameters.

59The coloured markers on top of a grey line indicate the coloured line, which the grey line is associated
to. If the microprudential stress test outcome is the same for the different coloured lines, then the line
is just displayed in grey.

60Cont & Schaanning (2017), for example, demonstrate the significant sensitivity of systemic outcomes
to price impact parameters in their model of price-mediated contagion via asset sales.
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Table 3.2: Default settings for the figures in the result Section 4.7.

Parameter Category Default settings Brief description and motivation

Initial shock x = 1

Severity of initial shock of the risk-weighted
capital and leverage ratio
relative to the 2018 European
Banking Authority (EBA) adverse scenario.
Hence, x = 1 means that adverse scenario
of the system-wide stress test
matches that of the 2018 EBA
microprudential stress test.

Institutions
Banks turned on.
Hedge funds &
asset managers turned off.

This choice is motivated by data quality.
Since our initialisation of asset managers
and hedge funds is rough
(based on ECB Statistical Warehouse Data),
we by default exclude them from our model
(‘turn them off’).

Contracts and
contagion channels

Overlapping portfolio contagion,
funding contagion,
exposure loss contagion
& collateral contagion turned on.

We include (‘turn on’) all relevant contagion channels,
because modelling a subset of contagion
channels may lead to
an underestimation of systemic risk (see e.g.
Kok & Montagna (2013), Caccioli et al. (2013)).

Constraints

ρM = 4.5%, yρρCBi
λM = 3%, yλλCB

ΛS = 100%
where yρ = yλ = 1

The regulatory capital requirements,
and capital and liquidity buffer
standards are set in line with Basel III.
The buffer standards are set at yρ = yλ = 1
times the Basel III standard
(i.e. equal to the Basel III standard).

∆ρ,t0
i = ∆ρ,data

i

∆λ,t0
i = ∆λ,data

i

We assume that if regulatory capital
buffer sizes are adjusted relative to
the Basel III standard, banks alter
their capital ratios by an equal
percentage in order to comply
with the new regulatory standard.

Market
Asset price fall is x = 5% if 5%
of the market capitalisation
has been sold.

This is in line with a standard assumption
in the literature, see e.g.
Schnabel & Shin (2004), Cifuentes et al. (2005),
Gai & Kapadia (2010), and Caccioli et al. (2014).

Behaviour

ρBi = ρMi + (1− u)(yρCBi ),
λBi = λMi + (1− u)(yλCBi )
ΛB
i = (1− u)ΛS

i

where u = 50%

Banks act to return to target whenever they
have exhausted u = 50% of their
regulatory capital or liquidity buffers.

ρTi = ρBi + 1%,
λTi = λBi + 1%,
ΛT
i = ΛB

i + 5%

The target value is 1% above
the capital buffers, and 5%
above the liquidity buffer.

3.6.2 From Micro to Macro: A Macroprudential Overlay for
the EBA 2018 Stress Test

We first study how the systemic-risk assessment of system-wide and microprudential stress

tests differ, for different levels of severity of the initial, adverse scenario (as given by the

scaled 2018 EBA scenario). Following the impact of the initial shock on their balance

sheets, banks take actions to return to their targets. These actions, though individually

rational, collectively create contagion, amplifying the initial shock.

Figure 3.3 (default parameters) and 3.4 (triple leverage buffers λCBi ) show the as-
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sessment of systemic risk by the EBA’s microprudential stress test (grey lines) and our

macroprudential stress test (orange lines) as a function of the initial shock. Three key

findings emerge: 1) microprudential stress tests alone are insufficient to assess financial

stability; 2) whether banks fail in a disorderly or managed way has a significant impact

on financial stability; and 3) when we treat the leverage ratio at the time of the EBA

stress test as a binding constraint, it produces greater financial instability than when we

consider the risk-based capital ratio alone.61

Figure 3.3: This figure shows systemic risk E as a function of the scaled impact of the 2018 EBA
scenario. The coloured lines show the system-wide stress test outcome and the grey lines show the (scaled
2018 EBA) microprudential stress test outcome. These results illustrate that, for a given microprudential
stress test outcome, the financial system can be stable or unstable depending on its shock-amplifying
tendency.

First, our results confirm the intuition that for a given microprudential stress test

outcome, the stability of the financial system depends on the system’s shock-amplifying

tendency,62 which implies that microprudential stress tests alone are insufficient to assess

financial stability. For example, comparing the orange lines in the left and right panels

of Figure 3.3 shows that the system can be very unstable (E ≈ 0.9) or quite stable

(E ≈ 0.1) for a microprudential stress test outcome of E = 0 given an initial shock of

61A number of banks have leverage ratios close to – or below – their Basel III minimum requirements
following the initial shock. This in part reflects the fact that the leverage ratio minimum requirement was
not in force in most of the EU at the time of the stress test, though banks were required to disclose their
leverage ratios. This stands in contrast to the situation in the UK, where major UK banks and buildings
societies have been subject to a minimum Tier 1 leverage ratio requirement of 3% and an additional
countercyclical leverage buffer (CCLB) for several years (Bank of England (2015)), and where banks
remained comfortably above their leverage ratio hurdle rates in the 2018 stress test after management
actions had been considered (Bank of England (2018)). When we remove the leverage ratio constraint
in our model, contagion reduces substantially, but the qualitative findings remain robust.

62The shock-amplifying tendency of the system depends, among others, on the ‘usability’ (see Sec-
tion 3.6.4) and size (see Section 3.6.6) of regulatory buffers as well as the resolution regime (this section).
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x = 0.5, demonstrating that the microprudential stress test outcome provides incomplete

insight into the system’s stability. Comparing two panels of Figure 3.3 also demonstrates

that systemic risk is much lower in the case of ‘contagion-free resolution’ than in the case

of ‘disorderly liquidation’ – reaffirming the importance of bank resolution to promoting

financial stability. However, even if resolution is contagion-free, amplification of the initial

stress scenario may still occur due to the actions institutions take – for example, to avoid

default (e.g. by delevering when the usable part of the capital buffer has been exhausted;

see Section 3.5.3 on the banks’ behaviour). In the right plot, the excess systemic risk

(orange line) above the initial impact (grey line) is solely generated by such ‘pre-default

contagion’, as resolution is assumed to be ‘contagion-free’ (see Section 3.5.3).

These results also confirm that financial stability may be highly non-linear in the

impact of the initial shock, with the onset and sharpness of the turn towards instability

depending on the system’s shock-amplifying tendency. This can be seen in the figure,

which in the case of ‘disorderly liquidation’ shows sharp increases in the systemic risk

measure as the severity of the initial shock increases. Comparing the ‘disorderly liquida-

tion’ plots of Figure 3.3 and Figure 3.4 (where leverage ratio buffers are tripled) shows

that the system becomes more shock absorbing when leverage buffers are increased. This

is not surprising, because increasing the leverage buffer not only delays the onset of the

non-linear jump towards instability in the case of ‘disorderly liquidation’ (from x = 0.2

in Figure 3.3 to x = 1.2 in Figure 3.4), but also makes the non-linearity less pronounced.

We note that in the case of ‘contagion-free resolution’, we do not observe such sharp

non-linearities.63

Second, it is clear from Figure 3.3 that microprudential stress tests may significantly

overestimate financial stability, particularly in cases where banks fail in a disorderly man-

ner or where the macroeconomic shock is particularly severe. This finding is consistent

with the findings of Sarin & Summers (2016), who show that market measures suggest

banks would not be resilient to a scenario such as that applied by the 2018 Federal Re-

serve (FED) stress test even though the FED microprudential stress test outcome deems

banks to be robust in such a case.

Microprudential stress tests generally expose banks to severe scenarios calibrated to

previous crises, and so implicitly aim to include the impacts of higher order contagion

63In the case of contagion-free resolution, it is possible for systemic risk to be lower if the initial shock
is larger; for example, the fraction of bank defaults for an initial shock of x = 0.8 is smaller than that for
x = 0.6 in Figure 3.4. If banks in our in our system-wide stress test model default after the initial shock,
they take no actions and cause no further amplification, whereas if they survive but are constrained
they will amplify the shock. In reality, the initial shock would not be instantaneous, so those banks
that default due to the shock could still take actions to try to avoid this outcome, thus amplifying losses
beyond those captured here.
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effects. The non-linear nature of such effects, however, means that simply setting a se-

vere scenario does not guarantee that the full financial stability implications of contagion

dynamics will be captured – not least because the shock-amplifying tendency of a fi-

nancial system markedly changes over time (e.g. due to shifts in the resolution regime,

risk perception in markets). For example, in the edge case of ‘disorderly liquidation’ in

Figure 3.3, even setting a very severe microprudential stress scenario (e.g. of x = 1 given

by the 2018 EBA stress test, which implicitly seeks to include higher-order effects) would

not capture the degree of instability we observe when systemic amplification mechanisms

are included, even for mild initial shocks (of x = 0.25). At approximately E ≈ 40%, as

given by difference of the orange line E ≈ 40% (at x = 0.25) and the grey line E ≈ 10%

(at x = 1), the underestimation of systemic risk in the microprudential stress test is

significant.

Third, our results suggest that the risk of financial instability in the European banking

system is driven by the leverage ratio constraint, which binds more than the risk-weighted

or LCR constraint. Figure 3.4 illustrates that increasing leverage ratio buffers significantly

reduces systemic risk. We further illustrate the relative importance of the leverage ratio

in Figures A.2 and A.3 in Appendix A.3, which show that if we impose only the risk-

weighted capital ratio constraint the system remains stable for much larger regions of the

initial shock than when we impose only the leverage ratio constraint. This result is a

function of the fact that the banks in our system are on average closer to breaching their

leverage ratio constraints than their risk-weighted capital buffer constraints, both before

and after the initial shock (see summary statistics in Table A.3 in Appendix A.3).
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Figure 3.4: This figure has the same set-up as Figure 3.3, except here we have tripled (i.e. yρ = 3
in equation 3.9) the combined risk-weighted capital buffer ρCBi . Tripling the buffer reduces the shock-
amplifying tendency of the financial system and delays the non-linear divergence of the system-wide
stress test outcome from the microprudential stress test outcome. It also almost completely eliminates
systemic risk E in the case of ‘contagion-free resolution’.

3.6.3 Contagious Feedback Loops Between Banks and Non-Banks

Our baseline model only includes banks and their interactions (see Table 3.2). In the

second policy experiment, we add asset managers and hedge funds to our financial sys-

tem to show that expanding the types of financial institutions included in the stress test

changes the expected financial stability outcomes. In Figure 3.5, we show how systemic

risk outcomes change when we add non-banks, first separately and then together. We

show results for the ‘contagion-free resolution’ and ‘disorderly liquidation’ cases. For

the latter, we additionally show results for set-ups in which banks’ capital buffers are

doubled. Including hedge funds allows us to assess the risks posed by margin calls and

the withdrawal of funding from their bank counterparties in terms of prompting asset

sales that further depress prices and amplify banking system losses. On the other hand,

including asset managers captures the risk that the price impacts of banks’ asset sales

affect the performance of asset managers’. That, in turn, could prompt shareholder re-

demptions which may force asset managers to sell into the market to meet them, further

reinforcing fire sale dynamics. To the best of our knowledge, we are the first to include

the above-mentioned contagious feedback loops among banks, hedge funds, and asset

managers.

We find that including hedge funds and asset managers in our system-wide stress test

increases systemic risk modestly. Accordingly, excluding hedge funds and asset man-

agers from a banking system stress test may lead regulators to underestimate systemic
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risk (or overestimate the resilience of banks), particularly if banks’ actions under stress

are likely to affect those institutions and the markets they operate in. The relatively

modest magnitude of the effect of including these institutions likely reflects the fact that

we only include EU-based asset managers and hedge funds, not those based offshore. As

a consequence, hedge funds in particular only hold a small share of total assets in our

model.64 However, at the same time non-bank financial institutions (such as hedge funds)

might be willing and able to buy when banks are forced to sell, potentially mitigating

the price impacts resulting from asset sales. Therefore, a more comprehensive inclusion

of non-banks could also support banking-sector and market stability. This type of coun-

tercyclical behaviour by institutions such as hedge funds has been observed, for example

by Czech & Roberts-Sklar (2017) who also note that while asset managers often behave

countercyclically, this can reverse in times of stress. The Bank of England’s recent paper

on system-wide stress simulation (Aikman et al. (2019)) finds that funding constraints

for hedge funds can lead them to sell assets, which is in line with the result produced by

our model. So whether non-bank financial institutions act pro- or countercyclically and

thus amplify or dampen stress depends largely on the nature of the stress they face. This

scenario-dependency underscores the need to include non-banks in system-wide stress

tests in a way that captures their exposures to different types of valuation and liquidity

shocks in order to obtain a holistic picture of systemic stability.

64Hedge funds included in the ECB Statistical Warehouse data hold approximately 2.7% of the total
assets in the banking sector included in our model. The leverage of our hedge funds is also modest,
reducing the risk that they will need to undertake significant asset sales even in the face of material
funding outflows. We expect that banking sector stability is more heavily influenced by hedge funds if
their size or leverage increases, and note that we do not account for the distribution of leverage between
hedge funds. In this context, we stress the importance of initiatives to try to measure fund leverage,
for example see https://www.iosco.org/news/pdf/IOSCONEWS515.pdf. The aggregate asset value of
asset managers meanwhile is much more significant at approximately 57.2% of the aggregate asset value
of the banking sector, hence the impact of their inclusion on systemic risk is larger.
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Figure 3.5: This figure shows the average fraction of bank defaults in a systemic event E for stress tests
including different constellations of institutions (i.e. banks, banks and asset managers (AMs), banks and
hedge funds (HFs), banks and AMs and HFs) and for different regulatory regimes (i.e. for ‘disorderly
liquidation’ or ‘contagion-free resolution’, for Basel III settings or for Basel III settings except that the
leverage buffer λCBi or risk-weighted capital buffer ρCBi is doubled or tripled). Stability of the banking
sector is (negatively) affected by non-banks (i.e. AMs and HFs); exclusions of these institutions from
(banking) stress tests is thus likely to lead to an overestimation of resilience.

3.6.4 Amplification of Contagion Mechanisms

In the third policy experiment we show that some combinations of contagion mechanisms

are mutually amplifying : the impact of the combination of contagion channels is greater

than the sum of their impacts when considered individually. As discussed in Section

3.5.2, our stress test model includes four contagion mechanisms, (1) overlapping port-

folio contagion (O), (2) exposure loss contagion (E), (3) funding contagion (F), and (4)

collateral contagion (C). We use the flexibility the generic framework provides by the ex-

plicit modelling of contractual features and counterparty relationships to exclude (‘turn

off’) each of these channels, by (1) setting the price impact equal to zero; (2) setting

LGD equal to zero; (3) redirecting interbank contracts and repo contracts to external

nodes that are always able to repay, and (4) removing the margin call obligation from

repo contracts. Then we assess the impacts of various combinations of these channels

in Figure 3.6 where, for instance, the label O&E means that only overlapping portfolio

contagion and exposure loss contagion are included (‘turned on’).

Figure 3.6a shows that contagion mechanisms are mutually amplifying.65 For exam-

ple, if we assume a price impact of 5%, we find that systemic risk due to overlapping

portfolio contagion alone is small (at around E ≈ 5%), systemic risk due to exposure

65To illustrate the relevant dynamics most clearly, we use the ‘disorderly liquidation’ case and increase
banks’ capital buffers for this experiment. Our qualitative conclusions are robust to different parameter
settings.
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loss contagion is moderate in size (i.e. around E ≈ 25%), and instability due to funding

contagion and collateral contagion is absent (i.e E = 0%). However, the systemic risk of

these four contagion mechanisms considered together is substantial (around E ≈ 85%).

Figure 3.6b, which shows a direct measure of this amplification, illustrates this finding.

Focusing on the 5% price impact point in Figure 3.6b (the middle set of bars), we observe

that the ratio of the systemic risk E caused by the joint set of contagion mechanisms over

the systemic risk produced by the sum of the individual contagion mechanisms could be

as large as approximately three when all contagion mechanisms are considered.66 Based

on these findings, it is clear that modelling contagion mechanisms in isolation may lead

to an underestimation of systemic risk as large as 300%. As far as we are aware, we are

the first to show that overlapping portfolio contagion, exposure loss contagion, funding

contagion and collateral contagion are mutually amplifying.

Our results also show that the degree of amplification of systemic risk is heterogeneous

for different sets of jointly-considered contagion mechanisms, and varies with the liquidity

of markets. This is illustrated by the different heights of the bars in Figure 3.6b. By

comparing the height of the bars for the different price impacts in Figure 3.6b and A.4,

we observe that the degree of amplification is heavily dependent on the price impact. For

instance, the amplification is much smaller for a 0% price impact than at the 5% price-

impact point.67 This result clearly shows that market illiquidity can act as a powerful

amplifier of other contagion mechanisms. As far as we are aware, we are also the first to

highlight that the degree of amplification is heterogeneous for different sets of contagion

mechanisms and in market illiquidity.

66The same results are shown in absolute terms in Figure A.4 in Appendix A.3, which shows that the
contagion mechanisms that amplify each other most in relative terms may not be the same contagion
mechanisms that amplify each other most in absolute terms.

67In Figure 3.6b, the amplification smaller than one is an artefact of the finite size of the European
system, which prevents the systemic risk E produced by the joint set of contagion mechanisms to exceed
that of the sum of the parts. Since the individual contagion channels already cause almost maximal
instability (for illustrative purposes, consider E = 0.7 for each of the four contagion mechanisms),
summing their systemic risk is going to be higher (0.7 + 0.7 + 0.7 + 0.7 = 2.8) than the systemic
risk caused by the joint set of contagion mechanisms (which, for illustrative purposes, we set equal to
E = 0.95).
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(a) (b)

Figure 3.6: This figure shows the amplification among contagion mechanisms (overlapping portfolio
contagion, exposure loss contagion, funding contagion and collateral contagion) for the case of ‘disorderly
liquidation’ where the leverage buffer λCBi is made two-and-a-half times larger (i.e. yλ = 2.5). For
instance, ‘O & E’ means that overlapping portfolio contagion and exposure loss contagion are included
(‘turned on’) and the other contagion mechanisms are excluded (‘turned off’). Shock amplification
is heterogeneous among different sets of contagion mechanisms and in the market liquidity. Plot 3.6a
shows systemic risk E as a function of the price impact for various combinations of contagion mechanisms.
Plot 3.6b also elucidates Plot 3.6a by showing the amplification among sets of contagion mechanisms for
different price impacts (PI). Amplification is computed as the systemic risk of the joint set of contagion
mechanisms E over the sum of the systemic risk E of the individual contagion mechanisms. Amplification
greater than one means that the considered contagion mechanisms are mutually amplifying. If the
amplification is equal to one, then contagion mechanisms do not amplify each other.

3.6.5 ‘Usability’ of Buffers and Contagion

Pre-default contagion is in large part a function of institutional behaviour, which is why

we examine how different behaviour in the face of constraints affects systemic contagion.

In particular, we show in Figure 3.7 that the more ‘usable’ banks perceive their buffers

to be, the lower the risk that they will take actions (pre-default) that cause systemic

amplification. Figure 3.7 illustrates this point for the case of ‘contagion-free resolution’,

where the usability of the risk-weighted capital buffer ρCBi , the leverage buffer λCBi ,

and the LCR ΛS are varied in quantiles from u = 0% to u = 100%.68 To the best

of our knowledge, while Basel III and some academics (e.g. Goodhart et al. (2008),

Goodhart (2013)) have qualitatively underscored the importance of usable buffers for

financial stability, we are the first to quantitatively demonstrate it in a system-wide

stress test setting.

68This result also holds for the case of ‘disorderly liquidation’, see Figure A.6 in Appendix A.3. In
our experiments, the usability of the liquid asset buffer is not important for systemic risk (see Figure A.7
in Appendix A.3). This is because the 2018 EBA stress test scenario considers a solvency shock rather
than a liquidity shock. Moreover, most deleveraging options banks have improve their liquidity position.
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Figure 3.7: This figure shows systemic risk E for the case of ‘contagion-free resolution’ as a function
of the price impact (left plot) or as a function of the scaled 2018 EBA scenario (right plot) for different
’levels of usability’ of capital buffers. If banks consider u = 25% of their regulatory buffers to be usable,
they will act, if u = 25% of their regulatory leverage buffer λCBi , risk-weighted capital buffer ρCBi , or
LCR ΛS buffer is exhausted, to avoid a further depletion of the regulatory buffer (see Section 3.5.3 for
implementation details). Resilience increases in the ‘usability’ of regulatory buffers. This result holds
irrespective of the market liquidity or the stress scenario.

3.6.6 Calibration of Buffers with System-Wide Stress Tests

In the final policy experiment, we show that the size of regulatory buffer required to limit

systemic risk may be underestimated if system-wide dynamics are not taken into account.

Figure 3.8 shows systemic risk E for different buffer sizes and for both bank failure

edge cases as a function of the initial shock. The top row shows how stability changes

if regulators double or quadruple the regulatory risk-weighted capital buffer relative to

the Basel III standard, and the bottom row shows the same for the regulatory leverage

buffer.69

69We assume that banks continue to maintain the same management buffer over their regulatory
buffers as in our default calibration, see the default settings in Table 3.2.
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Figure 3.8: This figure shows systemic risk E for both the case of ‘disorderly liquidation’ and ‘contagion-
free resolution’ as a function of the (scaled) 2018 EBA scenario for different regulatory buffer sizes. The
top row shows the effect of doubling and quadrupling the regulatory risk-weighted capital buffer ρCBi
compared to the Basel III standard. The leverage ratio λi and the LCR Λi are also included (‘turned
on’), but kept equal to their Basel standard. The bottom row shows the same as the top row, except
now the regulatory leverage buffer λCBi is doubled or quadrupled relative to the Basel III standard.
Enlarging the capital buffers markedly enhances financial stability. This suggests that regulators relying
on microprudential stress tests (grey-coloured lines) rather than system-wide stress tests (coloured lines)
to calibrate regulatory buffers will overestimate resilience.

Figure 3.8 shows that, as the regulatory buffer size increases (whether through an

increase in the risk-weighted ratio or the leverage ratio), systemic risk drops for any

initial shock size regardless of the resolution edge case. We obtain a similar result for

any level of price impact (see Figure A.9 in Appendix A.3). Significantly smaller capital

buffers are needed to achieve the same level of financial stability in regimes where banks

fail via a ‘contagion-free resolution’ than when they undergo a ‘disorderly liquidation’.

Crucially, when we take contagion dynamics into account the buffers required to

contain systemic risk are significantly higher. This result suggests that relying solely on

microprudential stress tests to calibrate buffers risks overestimating resilience. Figure A.9

in Appendix A.3 further illustrates this findings, and shows that the microprudential

stress tests estimates that the Basel III buffers can effectively mitigate systemic risk to
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a level under E = 10% in case of disorderly liquidation, whereas a when system-wide

dynamics are taken into account buffers need to be more than doubled to achieve the

same outcome. This result is consistent with the results of our policy experiment on

buffer usability: banks that have more sizable, usable buffers can absorb more shocks

without having to engage in destabilising actions. Increasing regulatory buffers tends to

bring down contagion defaults more than it reduces the initial defaults (see Figure A.9 in

Appendix A.3). This points to the special function that regulatory capital buffers perform

in containing contagion and in reducing the inherent shock amplifying tendency of the

financial system. As far as we are aware, we are the first to demonstrate the importance

of using system-wide stress tests to calibrate buffers to avoid underestimating the buffer

size that is needed to maintain stability.

Figure A.9 illustrates this risk. Imagine that regulators believe the initial shock size

will not exceed the 2018 EBA shock (x ∈ [0, 1]), and that they wish to curtail systemic

risk below E = 10% for a price impact in interval [0%, 10%], in a regime where banks are

‘disorderly liquidated’. In this scenario, the microprudential stress test would find that

the Basel III buffers are sufficient (the grey-blue ‘Basel III’ line at E ≈ 5% in the top-

left panel of Figure A.9). However, when system-wide dynamics are taken into account,

regulators would find that they need to more than double the risk-weighted capital buffers

to achieve the same result (the green ‘3x buffer’ line at E = 0% in the top-left panel of

Figure A.9 is the first line to fall underneath E = 10%).

3.7 Policy Implications and Conclusion

In a highly connected financial system, seemingly local shocks can be propagated and

amplified to take on systemic importance. However widely recognised, this reality is

not yet reflected in the design of financial stress tests, which are not yet system-wide in

scope and do not coherently combine multiple interacting contagion and amplification

mechanisms as well as the behavioural responses of heterogeneous financial institutions

to shocks. We have outlined a generic framework for the development of system-wide

financial stress tests with multiple interacting contagion and amplification channels and

heterogeneous financial institutions. We have shown that this framework – thanks to the

way in which it conceptualises financial systems, its advanced simulation engine, and its

software library (the ‘Economic Simulation Library’, or ‘ESL’) – can flexibly implement

stress tests ranging from simple toy models to large-scale, data-driven models with a high

degree of verisimilitude.

We used this framework to implement a system-wide stress test for the European

financial system that incorporates amplification risks associated with default contagion,
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price-mediated contagion via asset sales, funding contagion, and liquidity stress via mar-

gin calls. When comparing our findings to the European Banking Authority’s stress test

from 2018, we found that our system-wide approach reveals hidden weaknesses in the

resilience of the financial system. This raises the concern that current stress test results

may provide false comfort to regulators, markets, and the public at large. Our findings

have at least three important implications for policymakers.

1. System-wide stress tests are necessary complements to microprudential

stress tests to assess systemic risk. Our findings support and add to the growing

body of evidence suggesting that capturing endogenous shock amplifications in stress

test is critical to assess financial stability. Our finding that a positive microprudential

stress tests outcome does not guarantee resilience, and that this problem cannot simply

be resolved by increasing the severity of the stress scenario as a proxy for amplification

dynamics, providing grounds for concern. Because our findings demonstrate that financial

stability is critically defined by amplification dynamics, microprudential stress tests can

be meaningfully complemented by macroprudential overlays (e.g. Dees & Henry (2017),

Fique (2017)) and by considering contagion dynamics in regulatory exercises (e.g. BoE

(2017b)).

2. The usability of capital is key to systemic resilience. Our findings suggest that

(perceived) restrictions on the usability of capital can increase systemic risk. Perception

is hard to regulate, and there are other legitimate considerations that necessarily inform

the design of regulatory buffers (e.g. incentives to behave opportunistically that may

call for restrictions to dividend payments when buffers are depleted, see Armour et al.

(2016)), and our findings do not speak to how this result might best be achieved. They

do, however, call attention to the sharp rise in pre-default contagion that arises when

banks take action to avoid using their buffer capacity - actions that are individually

rational but collectively destabilising. This motivates a careful consideration on the part

of regulators when setting stress test hurdle rates or penalties for using buffer capacity –

a point also recognised by BoE (2013).

3. The calibration of capital buffers should explicitly take into account system-

wide dynamics. Our results show that failing to account for system-wide amplification

risks may cause regulators to set capital buffers at too low a level. The current practice

of using microprudential stress tests to calibrate capital requirements can therefore be

meaningfully complemented by the use of system-wide stress tests. Regulators have the

power do so, for example when calibrating capital requirements under Pillar II of the
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Basel supervisory framework (BCBS (2009) or, in the UK, as part of the calibration

of the countercyclical capital buffer. Indeed, the recent incorporation of feedback and

amplification effects in regulatory stress tests is a step in this direction (see e.g. BoE

(2017b)).70

The models used to calibrate capital requirements could explicitly and systematically

reflect the role of bank resolution in mitigating systemic risk, such that smaller capital

buffers are required if resolution is likely to be effective. Incorporating the benefits of

bank resolution in system-wide stress tests that account for heterogeneity would mirror

the work done by Brooke et al. (2017), who consider the benefits of an effective bank

resolution regime in reducing the optimal level of capital requirements (and buffers)

at a macro level. The results of system-wide stress tests would also provide a richer

dataset to inform the calibration of existing regulatory capital surcharges for systemically

important financial institutions (see e.g. Enriques et al. (2019)), and could even inform

the calibration of a newly created top-up buffer that is explicitly designed to account

for systemic risk – which, following Greenwood et al. (2017), is re-calibrated yearly to

account for time-varying idiosyncratic and systemic risk.

In this paper, we take a first step in providing regulators with a generic framework

that can help to them implement system-wide stress tests, and our results highlight why

doing so is important. But developing this framework, and the system-wide stress test

models that it hosts, remains a work in progress that will require further research and

investment in capacity, software and data. Our findings highlight that further study of,

for example, heterogeneous behaviour in the face of constraints, bank resolution, and non-

bank behaviour will be critical to understanding contagion and amplification. Now that

our generic framework enables regulators to build and use large-scale, data-driven models,

the importance of data availability at a granular level71 grows further – particularly given

the importance of calibration. And, finally, although our generic framework marks and

important step forwards, it is itself incomplete. Integration of derivatives markets, for

example, presents a key modelling challenge.72

70The outcome of such an exercise may not be an across-the-board increase in capital requirements;
the effects may instead be heterogeneous, with some institutions that are more central to the functioning
of the financial system being subjected to stricter requirements. This is in line with the concept of
‘network-sensitive regulation’, proposed by Enriques et al. (2019).

71More data (in the format described in Section 3.4.1) is needed to model interconnections at the
contract-level, which gives important information about the pathways of contagion within a financial
system. Since the 2007-2008 financial crisis, regulators have vastly enhanced data collection – for example
on interbank contracts, security holdings, repurchase agreements and derivative markets (Abad et al.
(2016)) – but especially for the non-banking sector, more (and better quality) data is remains a challenge.

72So far derivatives markets have only, partially, been stress tested on a stand-alone basis (see e.g.
Bardoscia et al. (2018), Paddrik & Young (2017), Paddrik et al. (2016)). Similarly, the roles of hedging
and countercyclical behaviour, for example when fundamentalist investors buy in a fire-sale and dampen
the shock, are key to consider.
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Chapter 4

Systemic Implications of the Bail-In
Design

4.1 Summary

The 2007-2008 financial crisis forced governments to choose between the unattractive al-

ternatives of either bailing out a systemically important bank (SIBs) or having it fail in

a system-wide disruptive manner. Bail-in has been put forward as the primary tool to

resolve a failing bank, which would end the too-big-to-fail problem by letting stakehold-

ers shoulder the losses, while minimising the calamitous impact of a bank’s failure on

the economy and the financial system (WBG (2017)). Though the aptness of bail-in has

been evinced in relatively minor idiosyncratic bank failures, its efficacy in maintaining

stability in cases of large bank failures and episodes of system-wide crises remains to be

practically tested.

This paper investigates the stability implications of the bail-in design, for all these

cases. We develop a multi-layered network model of the European financial system that

captures the prevailing endogenous-amplification mechanisms: exposure loss contagion,

overlapping portfolio contagion, funding contagion, bail-inable debt revaluations, and

bail-inable debt runs.

We apply this stress test model to data provided by S&P Global Market Intelligence,

the ECB Statistical Warehouse, the 2018 European Banking Authority (EBA) stress test

results, allowing us to initialise balance sheets of European banks and non-banks, as well

as decompose banks’ liabilities in seniority classes. In line with Ha laj & Kok (2013),

Kok & Montagna (2013), we reconstruct the bank debt and common asset holding net-

works, which interconnect these institutions. The loss absorbing requirements, which set

a minimum on the amount of long-term loss-absorbing debt that banks should issue (and

cannot be cross-held by banks), further inform the calibration of the maturity profile and

non-bank holdings of bail-inable debt.
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Our results reveal that financial stability hinges on the bail-in design, which consists of

a set of ‘primary’ and ‘secondary’ bail-in parameters. This consists of the failure thresh-

old, recapitalisation target, debt-to-equity conversion rate, loss absorption requirements,

debt exclusions and bail-in-design uncertainty. Our results demonstrate that an early

bail-in, strong recapitalisation and fair distribution of equity compensation by means of

debt-to-equity conversion rates tends to enhance financial resilience. While a late bail-in,

weak recapitalisation and unfair compensation undermines stability. We further show

that excluding run-prone, short-term debt from the application of the bail-in tool, in-

creasing the requirements on loss absorbing debt and providing investors with certainty

about the bail-in design lowers the risk of contagion. While subjecting short-term debt

to the application of the bail-in tool, having weaker requirements on the amount of loss

absorbing debt that banks should hold and more uncertainty regarding the bail-in design,

which prevents pricing risks, are a recipe for bail-in-induced instability.

Next, we find that bail-in usually works when relatively small European systemically

important banks (SIBs) idiosyncratically fail regardless of the elected bail-in parameters

– consistent with empirics. However, we discover that bailing-in banks in a system-wide

crisis may heftily exacerbate financial fragility when the bail-in parameters are not well-

tuned; and observe that ill-designed bail-ins may induce widespread contagion if large

European D-SIBs idiosyncratically fail. Strikingly, we observe a phase shift from an un-

stable to stable system, if resolution authorities do choose appropriate bail-in parameters.

Instability remains curbed even if systemic effects cause multiple banks to be bailed-in

amid pervasive distress. Our evidence fortunately suggests that the pivot for stability is

in the hands of policymakers; and that well-designed bail-ins could credibly be admin-

istered, even in system-wide crises. It also suggests, however, that the current policy

parameters might be in the regime of instability.1

Authors of Paper - Charles Goodhart, J. Doyne Farmer & Alissa M. Kleinnijenhuis
(first author). The paper will available here: Goodhart et al. (2020).

4.2 Introduction

The failure of investment bank Lehman Brothers was perhaps the defining event of the

2007-2008 financial crisis, bringing the financial system and the real economy to the brink

of the abyss (Bernanke (2017)). Incumbent governments were forced to choose between

1We thank the participants at (internal) seminars at the International Monetary Fund, Federal
Reserve Board of Governors, European Commission, European Central Bank, Institute for New Economic
Thinking at the Oxford Martin School, Mathematical Institute at the University of Oxford, National
Institute of Economic Research in London and MIT Sloan School of Management for their invaluable
feedback.
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the unattractive alternatives of either bailing-out a systemically important bank (SIB)

or having to disorderly fail it in a manner that may have threatened financial stability

(French et al. (2010), Bernanke (2010)). Ordinary bankruptcy procedures were entirely

inadequate for dealing with SIB failures (Bernanke (2017)). The Squam Lake Report, an

influential report offering guidance on the reform of financial regulation, recommended

that authorities be given the necessary powers to affect an orderly resolution for sys-

temically important institutions (French et al. (2010)). This recommendation has been

adopted. The Bank Recovery and Resolution Directive (BRRD) establishes a common

approach to resolution in the European Union (EU). Title II, the Orderly Liquidation

provision of the Dodd-Frank Act, provides a process to quickly and efficiently liquidate

a large, complex financial company that is close to failing.

Bail-in has been widely hailed as the primary tool to resolve a failing systemically im-

portant bank (e.g. FSB (2013), Chennells & Wingfield (2015), BoE (2017a)). It would

end the ‘too-big-to-fail’ problem by letting stakeholders shoulder the losses – addressing

moral hazard – while minimising the calamitous impact of a bank’s failure on the econ-

omy and the financial system (FSB (2013)). Bail-in is a statutory power by the resolution

authority that enables to absorb losses and recapitalise a failing bank by incurring losses

on its creditors – while potentially compensating them with a stake in the bank’s equity.

In an ‘open’ bail-in, the goal is to revitalise the bank, whereas in a ‘closed’ bail-in the

aim is to orderly shut it down (Avgouleas & Goodhart (2015)).

The efficacy of bail-in to conserve financial stability in plausible crisis scenarios remains

an open question. While bail-in has proved successful in dealing with the failure of rel-

atively minor SIBs, its aptness in handling cases of large bank failures and in steering

through episodes of system-wide crises without jeopardising stability remains to be prac-

tically tested; a major financial crisis in the period after the Great Recession has yet to

occur. Bail-ins on small SIBs have been victoriously carried out without compromising

stability in Cyprus, the Netherlands, Denmark and the United Kingdom, for example

(WBG (2017)).2 Leading experts remain sceptical as to whether bail-ins can be safely

carried out in periods of high financial turmoil without further exacerbating distress. Ben

Bernanke notes that: ‘controversies remain over how effective even a Title II resolution

would be in the context of a significant financial crisis.’ (Bernanke (2017)). Avgouleas

& Goodhart (2015) argue that ‘the bail-in approach may, indeed, be much superior to

bailouts in the case of idiosyncratic failure. In other cases, the bail-in process may entail

2Though, it must be noted that this was not without complementary bail-out funds. Partially so,
because imposing losses on real-economy creditors was politically inexpedient. This concern, however, is
outside the scope of our paper.
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important risks’. The question of how the bail-in design might modify the system-wide

outcome for better or for worse thus continues to be unanswered.

In this paper we comprehensively investigate the systemic implications of the bail-in de-

sign. For this, we extend a multi-layered network model of the European financial system

developed by Farmer et al. (2020). In addition, we calibrate this model using S &P Global

Market Intelligence data and the 2018 European Banking Authority (EBA) disclosures

of the stress test results. The calibrated model captures the prevailing contagion mech-

anisms that could endogenously amplify shocks emanating from bail-ins: exposure loss

contagion, overlapping portfolio contagion, funding contagion, bail-inable debt revalua-

tions, and bail-inable debt runs.

In sum, our results suggest that financial stability hinges on the bail-in design. Our first

main result reveals how the value of a set of bank-specific, ‘primary’ bail-in parameters

– which include the failure threshold, the recapitalisation target, and the debt-to-equity

conversion rate – sweepingly alters systemic risk. We find that when banks are bailed-in

using a ‘good’ primary bail-in design consisting of an early bail-in, strong recapitalisa-

tion and fair distribution of debt-to-equity compensations, systemic risk is kept in check.

Whereas when banks are bailed-in late, weakly recapitalised and unevenly compensated

by equity claims, bail-ins can induce instability and exacerbate existing financial distress.

Our second main result underscores the supporting role that the more structural, ‘sec-

ondary’ bail-in parameters play in further enhancing or hindering stability. It shows that

the stability wedge between ‘good’ and ‘bad’ primary parameters is further widened by

the choice of secondary parameters. We advance to untangle the stability contribution

of each of the secondary bail-in parameters: the debt exclusions from bail-in, the loss

absorption requirements and the uncertainty in the bail-in design. We find that exclud-

ing run-prone, short-term debt from the application of the bail-in tool, increasing the

loss absorbing requirements relative to the status quo, and decreasing uncertainty in the

bail-in design regulators will apply in a prospective bail-in significantly reduces systemic

risk; and do so to an extent that the primary parameters alone were not able to achieve,

highlighting their essential role in supporting a credible bail-in regime.

Our final main result attests that it is imperative to take multiple contagion mechanisms

and non-bank holdings of bail-inable debt into account when evaluating the system-wide

implications of the bail-in design. Merely considering the exposure loss contagion that

could ensue from bail-ins – as Hüser et al. (2017) have done – would falsely suggest that
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the EU financial system becomes resilient to severe shocks when bail-ins are introduced to

deal with failures of SIBs. Instead, if, rightly, four more prevailing contagion mechanisms

are considered, then stability may be substantially damaged for severe enough shocks –

more gravely so with a poor bail-in design. This result also shows that excluding bail-

inable debt holdings of non-banks from the systemic analysis is a substantial mistake.

Given that the loss absorbing requirements prohibit eligible bail-inable debt to be the

cross-held by systemically important banks, a significant fraction of bail-inable debt is

held by the non-banking sector. If exposure losses and mark-to-market losses amass to

bail-inable debt holdings of leveraged non-banks, then these non-banks may be impelled

to delever to avoid margin calls. Forced asset liquidations by non-banks negatively feed-

back onto the banking system via overlapping portfolio contagion. If, on the other hand,

these losses mount on non-leveraged non-banks then the real economy suffers. Destabil-

ising spirals between the banking and non-banking system are amplified by a poor bail-in

design.

Overall, our results show that bail-in usually works for idiosyncratic failures of smaller

European SIBs regardless of the elected ‘primary’ parameters – which is consistent with

previous experience (WBG (2017)). For all other cases, however, the primary bail-in

parameters do crucially matter. We find that bank bail-ins may heftily exacerbate finan-

cial fragility in financial crisis episodes if ‘primary’ parameters are ‘badly’ chosen; and

also observe that ill-designed bail-ins may induce widespread contagion if larger Euro-

pean SIBs idiosyncratically fail. Strikingly, we witness a phase shift from an unstable to

stable system, if resolution authorities do choose ‘good’ bail-in parameters. Instability

remains curbed even if systemic effects cause multiple banks to be bailed-in amid perva-

sive distress. Our evidence fortunately suggests that the pivot for stability is in the hands

of policymakers; and that well-designed bail-ins could credibly be administered, even in

system-wide crises. It also suggests, however, that the current policy parameters might

be in the regime of instability.

Our contribution adds to the nascent network literature on the systemic effects of bail-

in. Klimek et al. (2015) employ an agent-based network model to evaluate the economic

and financial ramifications of bail-in. They compare its performance against other res-

olution mechanisms. Hüser et al. (2017) evaluate the systemic implications of bail-in in

the EU, drawing on a calibrated multi-layered network model to bank debt and equity

cross-holdings. Bernard et al. (2017) investigate the incentives for banks to contribute

to a voluntary bail-in arise from their exposure to credit and price-mediated contagion.

These papers neither investigate the systemic impact of the bail-in design, nor include
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the prevailing contagion mechanisms and non-banks in this analysis. Instead, they take

the bail-in design as is and merely explore the repercussions of exposure loss contagion

(Klimek et al. (2015), Hüser et al. (2017) and Bernard et al. (2017)) and overlapping

portfolio contagion (Bernard et al. (2017)). By ignoring a set of prevailing interacting

contagion mechanisms, they risk underestimating the systemic footprint of the bail-in

design. Though bail-in has been designed with systemic considerations in mind,3 it is not

enough to assert its suitability on a system-wide scale. As Aymanns et al. (2016) have

shown for the case of the Basel II leverage requirements, well-intended microprudential

regulation may undermine financial resilience when systemic feedbacks are taken into

account. This makes the investigation of the stability implications of the bail-in design

in a networked financial system a necessary gap to fill.

The organisation of the rest of the paper is as follows. Section 4.3 introduces resolution

and the bail-in tool. Section 4.4 describes the data we use to initialise our model. Sec-

tion 4.5 develops our system-wide stress testing model, building forth upon Farmer et al.

(2020). It consists of two parts. Section 4.5.1 focusses on modelling the design of the bail-

in mechanism. Section 4.5.2 models the systemic impact of the bail-in design by capturing

multiple interacting contagion mechanisms in the financial system. As part of this effort,

it develops a novel method for revaluating bail-inable debt (in Section 4.5.2.2) and poses

three ‘what-if’ scenarios that could lead to bail-inable debt collapses (In Section 4.5.2.3).

Section 4.7 portrays our results, which focus on investigating the systemic impact of the

bail-in design in cases of idiosyncratic bank failures and in cases of system-wide crises.

Section 4.8 links our contribution to the literature. Finally, Section 4.9 discusses the

policy implications of our findings.

4.3 Introduction to Bail-In

In this section we will introduce the bail-in tool to resolve a failing bank. A first aim

of this section is to provide a general introduction to the bail-in mechanisms. A second

goal is to introduce the ‘primary’ and ‘secondary’ bail-in design parameters. Our model

choices will be based on this.

The Bank Recovery and Resolution Directive (BRRD), adopted in 2014, establishes a

common approach within the European Union (EU) to the recovery and resolution of

banks and investment firms. EU national governments transpose the BRRD into their

laws. The BRRD provides resolution authorities with new powers to effectively resolve

3See: Directive 2014/59/EU of the European Parliament and of the Council.

112



a bank. Although some attention will be paid to banking regulations outside the EU,

we review the BRRD below because the bail-in model to be developed will be applied in

this chapter to data from the ECB Statistical Warehouse and the 2018 European Banking

Authority (EBA) stress test results.

4.3.1 Failure Threshold: Conditions to Resolve a Bank

A bank will be resolved if the following three conditions are fulfilled:4

1. A bank is deemed to failing or likely to fail (FLTF);

2. Resolving the bank is in the public interest;

3. Failure of the bank cannot be prevented otherwise (e.g. early intervention measures,

conversion of claims outside resolution in accordance with Article 59(1)a, a private

sector solution).

While condition 3 is clear, condition 1 and 2 benefit from further explanation. A bank is

deemed to be FLTF (condition 1) if at least one of the following circumstances apply:56

1. The bank infringes or is likely to infringe upon its requirements for continued au-

thorisation (e.g. minimum capital requirements, because it has incurred or is likely

to incur large asset losses);

2. The bank is expected to insolvent in the near future;

3. The institution is or is likely to be illiquid soon.

Resolving a bank is in the public interest (condition 2) if a bank resolution meets one or

more of the following key resolution objectives:

1. To ensure the continuity of critical functions (e.g. payment services on behalf

of customers, taking deposits from and extending loans to households and small

business, clearing and settling financial transactions; providing custody services

(BoE (2017a)));

2. To avoid financial instability and specifically prevent contagion;

3. To avoid reliance on public funds (via bail-outs);

4See: Article 33(1) of the BRRD.
5See: Article 33(4) of the BRRD.
6See the specification of the FLTF trigger in our model in Section 4.5.1.3.
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and if winding up the institution under normal insolvency proceedings would not meet

the resolution objectives to the same extent.7

In essence, the failure threshold of a bank that is eligible to be resolved is thus given by

the point at which the bank is ‘deemed failing-or-likely-to-fail’. Going forward, we will

refer to this cut-off point as the ‘failing-likely-to-fail ratio’, or simply, the failure thresh-

old. The failure threshold constitutes the first ‘primary’ bail-in parameter.

To comply with the resolution objectives stated above, regulators (e.g. BoE (2017a))

typically resolve systemically important banks (SIBs) by applying a resolution tool, such

as the bail-in tool, and liquidate small banks via the regular insolvency procedure. Con-

trary to SIBs, the smallest firms usually do not pose a threat to financial stability or

have sufficiently critical functions to justify the use of resolution tools. In line with the

resolution approach, we will resolve SIBs and liquidate non-SIBs in our model.8

4.3.2 The Prime Resolution Tool is the Bail-In Tool

If the three resolution conditions – previously discussed – are met then the resolution

authority may resolve a bank applying one or a combination of the following resolution

tools9: (1) the sale of business tool; (2) the bridge institution tool; (3) the asset separation

tool;10; and (4) the bail-in tool.

While in principle all four resolution tools are available to the resolution authority. In

practise, a resolution authority is likely to use the bail-in tool to resolve SIBs. The reason

is that splitting up large and complex firms, so that critical functions can be preserved

while other parts may be wound down, may not be feasible in a timely manner. In light

of this, bail-in is typically the only tool that meets the resolution objectives (Chennells

& Wingfield (2015)). Since bail-in is the prime resolution tool (Hüser et al. (2017)), we

will assume that all SIBs in our model are resolved via the bail-in tool.

4.3.3 The Bail-In Tool

Bail-in is a statutory power by the resolution authority to recapitalise a bank that meets

the resolution conditions to the extent necessary to restore its short-term viability. The

bail-in tools allows to absorb losses and recapitalise a resolved bank by writing down and/or

7See: Article 33(5) of the BRRD.
8Since, as we will learn, all the banks in our model are SIBs, we resolve banks rather than disorderly

liquidate them.
9See: Article 37(3)(4) of the BRRD.

10Exceptionally, the asset separation tool may only be used together with another tool, see: Article
37(5) of the BRRD.

114



converting the bank’s bail-inable claims to equity.

In case the bail-in tool is used to recapitalise the original bank in order to restore the

bank to viability, one refers to the process as an ‘open bail-in’. In case the bail-in tool is

wielded to recapitalise the bridge bank, we speak of a ‘closed bail-in’. In a closed bail-in,

the loss-absorbing liabilities will remain in the original legal entity, which will undergo

the regular insolvency procedure, while the critical activities are transferred to the newly

created bridge entity (Chennells & Wingfield (2015)). The BRRD, which applies to

institutions in the European Union11, allows for both open and closed bail-ins.12, while

Title II of the Orderly Liquidation provision of the Dodd-Frank Act, which applies in

the United States, provides mainly for a closed bail-in process (Avgouleas & Goodhart

(2015)).

4.3.3.1 Recapitalisation target

Short-term viability is aimed to be restored by recapitalising the institution by a suf-

ficient amount such that it complies with the conditions for authorisation and sustains

or regains market confidence.13. In other words, a bank will be recapitalised to a certain

‘recapitalisation target’ – our second ‘primary’ bail-in parameter – compliant with these

guidelines.

Notably, bail-in thus focusses on addressing solvency rather than liquidity to make a

bank viable again. Nonetheless, bail-in may indirectly address liquidity issues: a better

recapitalised bank typically has lower funding costs and lesser issues with retaining access

to market funding (Burrows et al. (2012)).

4.3.3.2 Debt-to-Equity Conversion Rates

The recapitalisation of the bank is brought about by writing down and/or converting to

equity the bank’s bail-inable claims (as noted in Section 4.3.2). It takes place in two

sequential phases (see details in Section 4.5.1):

1. The loss absorption phase (which we will also refer to as ‘phase a’);

2. The recapitalisation part (which we will also refer to as ‘phase b’).

In line with Hüser et al. (2017) and in accordance with technical documents on the bail-in

process (SRB (2017)), we strictly split the loss absorption and recapitalisation phase of

the bail-in mechanism when specifying our model.

In the loss absorption phase, a bank’s bail-inable claims may be partially or fully

11See: Article 1(1) of the BRRD.
12See: Article 46(2) of the BRRD.
13See: Article 43(2)a of the BRRD.
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written down – and potentially converted to an equity claim – to lift an institution out

of insolvency.14 A failed bank may be found to be insolvent, because of incurred losses of

because of previously unrecognised losses. In the recapitalisation phase, the bank’s bail-

inable claims receive further haircuts, which are typically converted to equity to raise the

capital base further above zero to a recapitalisation target.

Article 50 of the BRRD sets out the principles for the deb-to-equity conversion ratio,

which regulators should use when determining how to set the conversion rate. The debt-

to-equity conversion rate, our third ‘primary’ bail-in parameter, determines how many

shares a creditor in priority class k of the bailed-in bank receives per unit of haircut

applied to its principle amount of bail-inable claim. Article 50 tasks the EBA with the

duty to provide guidelines regarding how creditors may be appropriately compensated by

means of the conversion rate. This guideline provides two principles (P) regarding how

the conversion rate in each priority class k should be set (EBA (2017c)):

1. P1- No Creditor Worse Off (NCWO): Resolution authorities should seek to ensure

that no creditor or shareholder is expected to incur greater net losses than it would

have incurred in winding up the bank under normal insolvency proceedings.15 This

condition is in place as is a safeguard for creditors. The principle seeks to avoid

having to use the resolution financing arrangements. Under Article 75 of the BRRD

claimants are entitled to the difference between the expected loss under resolution

and insolvency proceedings if this is positive.16

2. P2 - The Preservation of the Hierarchy of Claims: According to Article 50 of the

BRRD, regulators may apply differential conversion rates under certain circum-

stances. For example, differential rates may be applied to ensure that no creditor is

worse off, or to ensure that the creditor is appropriately compensated for the haircut

it has incurred. Whenever differential conversion rates are applied, the conversion

rate to more senior liabilities under the applicable insolvency law must be higher

than the conversion rate to more junior liabilities under the applicable insolvency

law. Claims in the same priority class must be treated in an equitable manner. The

resolution authority should not apply differential conversion rates, if it is not in the

interest of the resolution objectives (see Section 4.3.1 and Article 34 of the BRRD

(EBA (2017c)).

14See: Article 46(1)a of the BRRD.
15See also: Article 74(2) of the BRRD.
16Additionally, resolution authorities should assess whether appropriate regard has been had to the

right of property under the EU charter of Fundamental rights (EBA (2017c)).
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4.3.3.3 Loss Absorbing Requirements

The bail-in tool can only be effective in absorbing losses and recapitalising a bank to

a desired capital ratio if the bank has sufficient bail-inable debt. In order to ensure

that banks have sufficient bail-inable debt at the start of the bail-in, or in other words,

have enough ‘loss absorbing capacity’, the Financial Stability Board (FSB) and the Bank

Recovery and Resolution Directive (BRRD) have established minimum requirements for

banks’ loss absorbing capacity. The FSB has established a common minimum total loss

absorbing capacity (TLAC) that applies to all globally systemically important banks

(G-SIBs) taking effect on 1 January 2019 (FSB (2015b)). The BRRD has put in place a

minimum requirement for own funds and eligible liabilities (MREL),17 having taken effect

since 1 January 2016. The MREL does not only apply to European GSIBs, but to each

bank under the remit of the BRRD. Other than the TLAC standard, it is determined

on a case-by-case basis. These loss absorption requirements constitute our first set of

‘secondary’ bail-in parameters.

Not all debt instruments are eligible to count towards the loss absorption requirements.

While differences exist in the debt eligibility criteria of TLAC and MREL, they have two

important rules in common. First, eligible debt must have a time to maturity of at least

one year. Second, eligible debt cannot be cross-held by banks. An extensive comparison

among the debt eligibility criteria of TLAC, MREL and bail-inable debt can be found in

Appendix B.5.1. (The eligiblity criteria of bail-inable debt are also separately discussed

next.)

4.3.3.4 Debt Exclusions from Bail-In

Instruments that are eligible to receive haircuts in the loss absorption and recapitalisa-

tion phase of bail-in are part of what we refer to as the ‘hierarchy of bail-inable claims’.

The hierarchy of bail-inable claims respects the hierarchy of claims prescribed in regular

insolvency proceedings, except for the fact that certain debts are excluded. Similar to

the treatment of losses in the insolvency hierarchy, bail-inable debt contracts in a lower

priority class k (or in other words, in a lower seniority class) are subject to losses sooner

than debt contracts kx (where kx > k) in a higher priority class. In keeping with the

insolvency hierarchy, the resolution authority presiding over a bail-in should write-down

or convert instruments in the following order:18 (1) CET1 capital; (2) AT1 capital; (3) T2

capital (4) subordinated debt; and (5) other eligible liabilities. Instruments in the same

priority class k (or in other words, in the seniority class) must be treated in an equitable

manner by distributing losses proportionally among bail-inable liabilities in that same

17See: Article 45 of the BRRD.
18Article 48(1) of the BRRD.
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priority class k.19

Even though all bailed-in debt in a priority class is treated in an equitable manner, all

debt (i.e. including non-bail-inable debt) may not be. Relevant exclusions of debt from

the bail-inable debt hierarchy – which are included in the regular insolvency hierarchy

– are:20 (1) covered deposits (including those covered by the deposit guarantee scheme

(DSG)); (2) liabilities to institutions with a (time to) maturity less than seven days; and

(3) secured liabilities up to their collateral value (including covered bonds). Our second

‘secondary’ parameter is the set of debt exclusions from bail-in.

In addition to fixed exclusions, exclusions from bail-in may also be applied on a dis-

cretionary, ad hoc basis. Resolution authorities may decide to (partially) exclude certain

liabilities, such as derivatives, from the application of write-down or conversion pow-

ers when at least one of the following conditions is met:21 (a) the exclusion is strictly

necessary and proportionate to avoid contagion; (b) the exclusion is necessary and pro-

portionate to achieve continuity of critical functions and core business lines; (c) bailing

in that liability is not possible within the short-time frame; and (d) the application of

the bail-in tool to those liabilities would cause a destruction in value such that the losses

borne by other creditors would be higher than if those liabilities were excluded from

bail-in. When exclusions are applied, breaching the No Creditor Worse Off (NCWO)

condition, becomes more likely (as we will show).

4.3.3.5 Uncertainty in the ‘Primary’ Bail-In Design

The determination of the necessary loss absorption and recapitalisation amount hinges

on the valuation of assets and liabilities at the time of the application of the bail-in tool.

This valuation is to be executed by a designated independent valuer.2223 The valuation of

a bank’s balance sheet is a complicated task that is inherently inconclusive. First, balance

sheets of all large institutions tend to be complex and opaque. Further, contracts on the

balance sheets of banks typically have multiple (equally valid) methods of valuation with

volatile valuation outcomes. Finally, balance sheets often contain unrecognised losses.

In part due to the difficulty to value balance sheets, some resolution authorities in-

dicate (e.g. BoE (2017a)) that bringing phase a and b to conclusion may take months.

However, in line with Hüser et al. (2017), we assume that a bail-in will be completed in

19Article 48(2) of the BBRD.
20See: Article 44(1) of the BRRD.
21See: Article 44(2) of the BRRD.
22See: Article 36(1) of the BRRD.
23More comprehensively, the purposes of valuation are to inform: (a) whether a firm is FLTF; (b)

the scope liabilities subject to bail-in; (c) the amount of loss absorption and recapitalisation needed; (d)
the restructuring plan; (e) the market value estimation; (f) the recovery each investor would have had
in insolvency to deal with the No Creditor Worse Off (NCWO) condition (BoE (2017a)).
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one time step for the following reasons. First, in principle phase a and b of the bail-in

mechanisms could be completed in a day. Take contingent convertibles (CoCos), the con-

tractual analogue of bail-in, as an example.24 Upon issuance, it is clear what the CoCo

trigger and conversion rate is. Hence, when the CoCo is triggered the debt write-down

and/or equity conversion is immediate.

Second, we believe that bail-in should be completed in a short-time period. Large

uncertainty tends to take over financial markets when the terms of the bail-in, and thus

the losses that will be suffered, are only announced after months, thereby aggravating

financial instability. Bail-in could learn from CoCos in the following regard: the terms

of the bail-in must be clear a priori to price risk (i.e. bail-inable debt), and bail-in

should be materialised quickly. This bring us to our third ‘secondary’ bail-in parameter,

(un)certainty in the primary bail-in design: are the three primary parameters (i.e. the

failure threshold, the recapitalisation target, and debt-to-equity conversion rates) that a

resolution authority intends to apply in a prospective bank bail-in knowable and known in

advance?

4.3.4 Following a Bail-In: Restructuring

Once both parts of the bail-in mechanism are completed, a bank is restructured to ad-

dress the cause of its failure and restore its long-term viability. As part of this process,

the bank is required to submit a business reorganisation plan within a month after the

application of the bail-in tool.25 This business reorganisation plan stipulates the timing

and approach to, for example: (a) withdraw from loss-making activities; (b) restructure

existing activities to make these competitive; and/or (c) sell assets or of business lines.26

The resolution authority will assess the likelihood of the plan to restore long-term via-

bility, and may require amendments.27 We will not model this, as our model focusses on

financial crisis dynamics in the short-term: one month (or in other words, 30 timesteps)

– where institutions balance their books and fulfil payment obligations once a day.

24A statutory bail-in mechanism differs from contractual write-off or conversion features, such as con-
tingent convertibles (CoCos). While both involve creditor-financed recapitalisations, CoCos are private
financial contracts with principal and scheduled coupon payments that can be automatically converted
into equity or written down when a predetermined trigger event occurs, whereas bail-in is a statutory
power that enables resolution authorities to eliminate or dilute existing shareholders, and to write-down
or convert claims (Rutledge et al. (2012).

25See: Article 52(1) of the BRRD.
26See: Article 52(6) of the BRRD.
27See: Article 52(1) of the BRRD.
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4.4 Data

We apply our system-wide stress test model to data provided by S&P Global Market

Intelligence, the ECB Statistical Warehouse and the 2018 European Banking Authority

(EBA) stress test results, allowing us to initialise balance sheets of European banks and

non-banks, as well as decompose banks’ liabilities in seniority classes.

We include the 48 banks in our model that participated in the 2018 EBA stress test.28 We

initialise their balance sheets using S&P Global Market Intelligence data. The balance

sheet of each bank is depicted in Figure 4.1. The precise data-codes we used from S&P

Global Market Intelligence to initialise the balance sheet items can be found in Table B.1

in Appendix B.1.1. The S&P Global Market Intelligence also allows us to map the lia-

bilities to seniority classes of debt, which is necessary to estimate each bank’s bail-inable

debt. Table B.2 in Appendix B.1.2, and the accompanying formulas, describe exactly

how this is done. Figure 4.1 illustrates the composition of each bank’s bail-inable debt,

with in its left column a breakdown of the bank’s assets A and in its right column a

breakdown of the bank’s liabilities Li.

!", Other Assets

#", Reverse Repos

$", Interbank Assets

%", Tradable Assets

&", External Assets

'", Equity

(!", Other Liabilities

(#", Repos

)$", Interbank Liabilities

*", Deposits+", Cash 

Figure 4.1: Stylised balance sheet of a bank i ∈ B, where B denotes the set of banks. The bank’s
assets Ai are given by the sum of its cash Ci, external assets Yi, tradable assets Ti, interbank assets
Ii, reverse repos Ri, and other assets Oi. The bank’s liabilities Li are given by the sum of its deposits
Di, interbank liabilities Ĩi, repos R̃i, and other liabilities Õi. The bank’s book equity Ei is given by the
difference of its assets Ai and liabilities Li. The bank’s CET1 equity Ẽi is approximated by equation B.2.
The value of the bank’s own funds Fi, its total capital instruments, is given by the sum of its CET1
equity Ẽi, AT1 equity ẼAT1

i and T2 equity ẼT2
i (see equation 4.6).

28See the list of participating banks here: https://eba.europa.eu/risk-analysis-and-data/

eu-wide-stress-testing/2018/results.
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We use the estimates of the ECB Statistical Warehouse to construct a representative bal-

ance sheet of all non-banks in the European financial system. We next, proportionally,

split χ percent of the balance sheet of the representative non-bank in a ‘leveraged non-

bank’ and (1− χ) percent in a ‘non-leveraged non-bank’ (and remove the representative

non-bank from the system), to reflect that we do not have reliable estimates of the rela-

tive size of leveraged non-banks.29 To express that we do not precisely know the initial

leverage of the leveraged non-bank we define a parameter λt0.30 The stylised balance

sheet of the leveraged and non-leveraged non-bank are exhibited in Figure 4.2.

!", Other Assets

#", Bail-Inable Debt 
Holdings

$", Tradable Assets

%", Equity

&", Liabilities

'", Cash 

Figure 4.2: Stylised balance sheet of a non-bank i ∈ N, where N denotes the set of non-banks. Each
non-bank’s assets Ai are given by the sum of its cash Ci, tradable assets Ti, bail-inable debt holdings
issued by banks Bi, and other assets Oi. The non-banks have a generic liability Li, which is equal to
zero in the case of the non-leveraged non-bank.The equity Ei of each non-bank is given by the difference

of its assets Ai and liabilities Li. Its initial leverage is defined by λt0 :=
Et0

i

At0
i

, and altered by varying Lt0i .

The loss absorbing requirements inform the calibration of the maturity profile and non-

bank holdings of bail-inable debt. Since the loss absorbing requirements allow debt to

count towards the measure only if: (1) the time to maturity of the debt contract is greater

than a year; and (2) the debt contract is not cross-held by banks, we know all the debt

below the requirements will be held by non-banks. Accordingly, we link all the bail-

inable debt below each bank’s requirement to non-banks (χ to the leveraged non-bank

and (1− χ) to the non-leveraged non-bank); and we interconnect all the bail-inable debt

above each bank’s requirement using the debt reconstruction method employed by Ha laj

29In the result section we will vary parameter χ to investigate how banking sector stability is affected
by the size of the leveraged non-banks who hold bail-inable debt.

30In the result section we will vary parameter λt0 to investigate how banking sector stability is affected
by the degree of leverage in the leveraged non-banking system.

121



& Kok (2013), Kok & Montagna (2013). Each bank’s non-bail-inable debt is also inter-

connected using this method.31 Based on our knowledge of the amount of tradable assets

that each institution (bank or non-bank) has on its balance sheet, we randomly recon-

struct common asset holding networks using Kok & Montagna (2013). To acknowledge

that our results use reconstructed networks, we average our findings across N simulation

runs – in which in each simulation run the networks is randomly redrawn – and show

their standard deviation.

We next discuss our model.

4.5 Model

In this section we develop our system-wide stress testing model, which builds forth

upon Farmer et al. (2020). This consists of two parts.

The aim of Section 4.5.1 is to arrive at a mathematical model of design characteristics

of bail-in mechanisms – consisting of ‘primary’ (i.e. failure threshold, recapitalisation

target, conversion rates) and ‘secondary’ (debt exclusions from bail-in, loss absorption

requirements, primary bail-in design ‘uncertainty’) parameters – which has informally

been introduced in Section 4.3.

The pursuit of Section 4.5.2 is to model multiple interacting contagion mechanisms

in a financial system, where bail-in is the preferred method for dealing with bank fail-

ures. We will seek to explain how we jointly model five prevailing contagion mechanisms:

bail-in-induced exposure loss contagion, overlapping portfolio contagion, funding conta-

gion, bail-inable debt revaluations and halts on roll-overs of bail-inable debt (referred to

as bail-inable debt ‘runs’). Additionally we will describe how contagious amplifications

can arise due to both the bail-in design of a bank failure, and institutions’ behaviour in

response to exogeneous or endogeneous shocks (generated by the bail-in design).

The definition of the notation used in this Section is provided in Table B.3 in Ap-

pendix B.2.

4.5.1 Modelling the Design of the Bail-In Mechanism

We approach our endeavour to model the design of the bail-in mechanism by chroni-

cling the steps to execute a bail-in – thereby touching upon the role of each constituent

part: a bank’s pile of bail-inable debt, the loss absorption requirements, haircuts in the

31Any excess of assets or liabilities could be seen as foreign (i.e. outside the EU) investments or
foreign funding, and is linked to a passive ‘external node’.
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loss absorption phase, the recapitalisation target, haircuts in the recapitalisation phase,

the debt-to-equity conversion rates (fair & unfair conversion rates), and the dilution of

existing equity holders.

4.5.1.1 Hierarchy of Bail-inable Claims: Debt Exclusions (First ‘Secondary’
Bail-In Parameter)

We introduced the debt inclusions in and exclusions from bail-in in Section 4.3.3.4. We

now will mathematically formalise this.

The total value of bank i’s bail-inable claims B̂i is given by the sum of bail-inable debt

in each priority class (see Figure 4.3); that is,

B̂i :=
5∑

k=1

Bk
i , (4.1)

where Bk
i denotes the value of bail-inable debt in priority class k of bank i ∈ B. The

mapping between a bank’s liabilities and bail-inable debt composition can be found in

Section 4.4 on the model initialisation.

Since in a bail-in haircuts may be applied to priority classes k = 2, ..., 5, but may not

be applied to priority class k = 1 (which automatically re-values following asset value Ai

changes), it will be useful to also define the bail-inable debt in the set of priority classes

K = [k2, ..., k5] excluding priority class k1

Bi :=
∑
k∈K

Bk
i < Li (4.2)

as we often deal with this quantity.

We note that the total value of a bank’s bail-inable debt Bi is by definition less than

or equal to its amount of liabilities Li. The reason is that some debt is excluded from

the application of the bail-in tool – as we first threw light on in Section 4.3.3.4.

We further define Bkm
ji to be the bail-inable contract of bank i held by institution j

in priority class k with time to maturity m.

Figure 4.4 portrays our estimation of the composition of each bank’s debt B̂i based on

the model initialisation to data described in Section 4.4. Figure 4.5 summerises Figure 4.4

into an aggregate.
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CET1 Capital

Interbank and Other Liabilities

(Excluding Short-Term Maturities

Interbank and Other Liabilities

(Excluding Short-Term Maturities)

T2 Capital

AT1 Capital

k5

k4

k3

k2

k1

Bail-In-Able

Debt

Figure 4.3: Shows the composition of bail-inable debt comprised of multiple priority classes. The
bail-inable debt consists of debt or capital instruments in multiple priority classes kx, for x = 1, ..., 5.
Given the stylised bank balance sheets we consider, the debt or capital instruments in each priority class
are given by the following: (k1) CET1 capital Ẽi; (k2) AT1 capital ẼAT1

i ; (k3) T2 capital ẼT2
i ; (k4)

subordinated interbank and other liabilities (excluding contracts with a time to maturity less than 7
days); and (k5) senior interbank and other liabilities (excluding contracts with a time to maturity less
than 7 days).
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Figure 4.4: Shows the size of the priority classes for European banks that partook in the 2018 EBA
stress test. The various priority classes consist of the following instruments in our model: k1 consists of
CET1 equity Ẽi; k2 consists of AT1 capital ẼAi ; k3 consists of T2 capital ẼT2

i ; k4 consists of interbank
contracts Ĩi and other liabilities Õi; k5 consists of the same type of instruments as k4; k6 consists
of deposits Di; and k7 consists of secured contracts, among which repurchase agreements (repos) R̃i.
Notably, our estimation of bail-innable debts show that European banks have little debt in priority
classes k1, k2, k3, k4 and k7, while having lots of debt in priority classes k5 and k6. Since priority classes
k1 to k4 are small, it is likely that these priority classes suffer large losses in a bail-in, while creditors in
priority class k5 are probably less likely to suffer losses.
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Figure 4.5: Shows the aggregate debt composition of each bank. We note that this result displays
the same as Figure 4.5, but now aggregates the debt across banks per priority class and displays their
relative size in percentages.

4.5.1.2 Loss Absorbing Requirements (Second ‘Secondary’ Bail-In Parame-
ter)

To ensure that banks hold sufficient bail-inable debt B̂i (see equation 4.1) they face loss

absorbing requirements. To that end, as we explained in the introductory Section 4.3.3.3,

each European bank is subject to the MREL loss absorbing requirement. Some – those

that are G-SIBs – are also subject to the TLAC requirement.32 Our goal in this Section

is to spell out the TLAC requirement first and the MREL requirement next, so that we

may use these to infer the percentage of each bank’s debt that is held by non-banks (as

we eluded upon in the data Section 4.4). We are, to the best of our knowledge, the first

to express TLAC and MREL requirements in precise formulas.

TLAC G-SIBs are required to hold sufficient TLAC-eligible instruments Zi such that it

exceeds the minimum risk-weighted TLAC requirement T ρ,M and the minimum leverage

32The list of banks that are designated as G-SIBs in 2018 can be found here: https://www.fsb.org/
2018/11/fsb-publishes-2018-g-sib-list/.
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exposure requirement T λ,M .33

In addition, the CET1 equity Ẽi that is used to meet the regulatory risk-weighted

capital buffers ρCBi or the regulatory leverage buffer λCBi may not also be used to meet

the TLAC standard (FSB (2015b))(see Farmer et al. (2020) for a precise description of

these buffer variables) to ensure that buffers remain usable. A buffer is considered to be

usable by a bank, if the bank is willing to absorb liquidity or valuations shocks using the

buffer. That is, at all times a G-SIBs loss absorbing capacity Zi should be such that both

T ρi =
Zi
Ωi

≥ T ρ,M + ρCBi (4.3)

and

T λi =
Zi

Âi
≥ T λ,M + λCBi (4.4)

hold (FSB (2015b)). In other words, the amount of TLAC-eligible instruments Zi should

at all times satisfy

Zi ≥ max{Ωi(T
ρ,M + ρCBi ), Âi(T

λ,M + λCBi )}, (4.5)

where Ωi denotes bank i’s the risk-weighted assets and Âi signifies bank i’s the asset

exposure (Farmer et al. (2020)).

From 1 January 2019 the minima are set to T ρ,M = 16% and T λ,M = 6%. From 1

January 2022 these will be T ρ,M = 18% and T λ,M = 8%.34 A breach, or likely breach, of

minimum TLAC is ordinarily treated by resolution authorities as seriously as a breach,

or likely breach, of minimum regulatory capital requirements. Regulators take the view

that a breach of the TLAC should be addressed immediately, to ensure that sufficient

loss-absorbing capacity is available in resolution (FSB (2015b)).

MREL MREL is determined on a case-by-case basis for European banks. The MREL

for a bank is determined based on the judgement of the regulator, which is guided by

the criteria set out in Article 45(6) of the BRRD. These include a consideration of a

bank’s: (a) resolvability; (b) loss absorption needs; (c) recapitalisation needs; (d) size;

(e) business model; (f) funding model; (g) risk profile and (h) systemic impact. When

determining the MREL requirement, the regulator will also avoid MREL shortfalls due

33As noted in Section 4.3.3.3, the instruments which are eligible to count towards the TLAC measure
are discussed in Appendix B.5.1.

34In our opinion it would be clearer if authorities would directly include in the TLAC requirement
that the risk-weighted and leverage-based buffer standards must remain usable. Rather than specifying
that CET1 equity that is used to meet regulatory buffers is excluded from TLAC. When including
the buffers that must remain usable, the updated TLAC requirements as of 1 January 2019 become
T ρ,M = 16% + ρCBi and Tλ,M = 6% + λCBi .
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to eligible bail-inable liabilities Bi (defined in equation 4.1) that it anticipates must be

excluded from bail-in on a discretionary basis, due to contagion risks or no-creditor-worse-

off (NCWO) considerations for example.35

Even though MREL is determined on a case-by-case basis, a default MREL require-

ment exists (SRB (2017), EBA (2016)). We will describe this now. A bank must hold

sufficiently many MREL eligible instruments Mi so that it can absorb losses and be re-

capitalised to a level where it sustains market confidence.36 Hence, the minimum MREL

amount MM
i is the sum of the MREL amount required for loss absorption ML

i and the

MREL amount required for recapitalisation MR
i (SRB (2017)).

MREL Baseline Loss Absorption Amount The baseline loss absorption amount

Mi is (subject to some safeguards) set consistently with the sum of the bank’s pillar one

capital requirements ρP1
i , pillar two capital requirements ρP2

i (the latter is set by the

microprudential stress tests, among other determining factors (Farmer et al. (2020)), and

risk-weighted buffer standard ρCBi .37 The pillar one capital requirements ρP1
i states that

a bank should have at least 8% own funds Fi, defined as

Fi = Ẽi + ẼAT1
i + ẼT2

i , (4.6)

relative to its risk-weighted assets Ωi.
38 The reason for this default choice for the loss

absorption amount is that the pillar I, II and buffer standards already reflect the view

of the regulator regarding the unexpected losses an institution should be able to absorb

(EBA (2015)). This baseline loss absorption amount Mi has two safeguards. The first

safeguard is that the loss absorption amount can never be lower than buffer standards

computed using the Basel I standardised approach BIi (the so-called ‘Basel I floor’39).40

The second safeguard is that the loss absorption amount can never be less than the bank’s

leverage requirement λMi (and the bank’s leverage buffer λCBi
41).

35See: Article 44(3) of the BRRD.
36As noted in Section 4.3.3.3, the instruments which are eligible to count towards the MREL measure

are discussed in Appendix B.5.1.
37See: Article 1 of Directive 2014/59/EU.
38More specifically, the pillar one capital requirement ρP1

i states that a bank should have at least: (a)
4.5% CET1 equity Ẽi relative to its risk-weighted assets Ωi; (b) 6% CET1 equity Ẽi and AT1 equity
ẼAT1
i relative to its risk-weighted assets Ωi; and (c) 8% own funds Fi (i.e. CET1 equity Ẽi, AT1 equity

ẼAT1
i and T2 equity ẼT2

i ) relative to its risk-weighted assets Ωi.
39See: Article 500 of Regulation (EU) No 575/2013
40See: Article 1 of Directive 2014/59/EU.
41 Article 1(e) of Directive 2014/59/EU does not specify whether ‘any applicable leverage requirement’

includes a leverage buffer standard λCBi proposed by Basel III (FSB (2017)) or solely refers to the
minimum leverage requirement λM . This leverage ratio buffer λCBi will apply to G-SIBs from 1 January
2018 onwards and will be set at 50% of a G-SIB’s higher-loss absorbency risk-weighted requirements (see
Farmer et al. (2020)). In our opinion this leverage buffer should be included for consistency with the
risk-weighted loss absorbing requirements, where risk-weighted buffers are also taken into account.
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Article 45 of the BRRD stipulates that the denominator of the MREL requirement

should be equal to the sum of the bank’s own funds Fi and liabilities Li. The EBA has

proposed to alter the denominator of the MREL to the bank’s risk exposure amount Ωi,

to make it consistent with the TLAC requirement (EBA (2015)).

Thus, the baseline MREL loss absorption amount under the BRRD approach is given

by4243

ML
i := max{(ρP1

i + ρP2
i + ρCBi )Ωi, BIi, (λ

M + λCBi )Âi}
1

Li + Fi
, (4.7)

where the pillar I requirement ρP1
i (i.e. the sum of the amount of CET1 equity, AT1

capital, and T2 capital a bank should hold relative to its risk exposure Ωi) is set to

8%, the pillar II requirement is set based on the stress test result among others, and

the combined buffer standard ρCBi is set based on the Basel III standards. Further, Âi

denotes the leverage exposure.

MREL Baseline Recapitalisation Amount The baseline MREL recapitalisation

amount MR
i differs depending on whether the institution is a G-SIB that will likely be

bailed in, a small firm that will likely be liquidated, or medium-sized bank that may have

less strong recapitalisation needs than a G-SIB (EBA (2015)). If a bank is expected to be

liquidated, then recapitalisation is not necessary. Hence, in that case the recapitalisation

amount MR
i is set to zero (i.e. MR

i = 0). In the case where the bank is likely to be resolved

via a bail-in, the recapitalisation amount is set such that (subject to the previously

mentioned safeguards) the bank meets the conditions for continued authorisation (i.e.

the pillar I and pillar II requirement ρP1
i , ρP2

i ) and sustains market confidence (i.e. it

has buffers on top of its requirements). Market confidence is believed to be regained by

recapitalising a bank beyond its requirements by an amount equal to the combined buffer

standards ρCBi (EBA (2015)). Hence, for G-SIBs the baseline recapitalisation amount

MR
i equals the baseline loss absorption amount ML

i , that is, MR
i = ML

i . Medium-sized

firms typically only need a fraction ri ∈ [0, 1] of the recapitalisation amount that a G-SIB

needs. Hence, for such firms MR
i = riM

L
i . Thus, the baseline MREL requirement MM

i

equals

42Since we do not model the distinction between Basel III and Basel I risk weights, and neither
use a microprudential stress test to set the pillar II requirement ρP2

i , the formula for the baseline loss

absorption amount simplifies to ML
i = max{(ρP1

i + ρCBi )Ωi, (λ
M + λCBi )Âi}.

43Under the EBA’s approach, using the risk exposure Ωi as the denominator, we would have ML
i =

max{(ρP1
i + ρP2

i + ρCBi )Ωi, BIi, (λ
M + λCBi )Âi} 1

Ωi
.
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MM
i := ML

i +MR
i =


ML

i , if i will be liquidated;

2ML
i , if i is a G-SIB that will be bailed in;

(1 + ri)M
L
i , if i will be resolved with lesser recapitalisation needs.

(4.8)

where ML
i is defined in equation 4.7.44

As is the case for the TLAC loss absorbing requirement, CET1 equity Ẽi that is

counted towards the regulatory risk-weighted buffer ρCBi and regulatory leverage buffer

λCBi cannot be counted towards MREL (EBA (2016)). This means that a bank must

always make sure to have an amount of eligible MREL instruments Mi such that

Mi ≥MM
i (Fi + Li) + max{ρCBi Ωi, λ

CB
i Âi} (4.9)

holds.45 Similar to a TLAC breach, a breach of MREL is treated as seriously as a breach

of the minimum capital requirements (EBA (2015)).

Figure 4.6b shows how much bail-inable debt B̂i each bank participating in the 2018 EBA

stress test holds relative to its MREL, and if applicable, TLAC requirement. We use the

most binding of a bank’s loss absorbing constraints to determine the percentage of its

bail-inable that that is held by non-banks. We bring to the fore that we may overestimate

the degree to which a bank exceeds its requirements, because we use the eligible debt

in bail-in B̂i as a numerator, which counts eligible debt with a time to maturity greater

than 7 days. Rather than using the TLAC Ti or MREL Mi eligible instruments, which

only include debt with a time to maturity greater than 1 year.

44EBA (2016) indicates that banks typically must at least hold an amount of MREL instruments Mi

equal to 8% of liabilities and own funds Li + Fi. This condition could be added to equation 4.8.
45In our opinion it would be clearer if authorities would directly include the risk-weighted and leverage-

based buffer standards that must remain usable, rather than specifying that CET1 equity that is used to
meet regulatory buffers is excluded from MREL. When including the buffers that must remain usable,
the updated minimum loss absorbing amount ML

i as defined in equation 4.7 becomes ML
i := max{(ρP1

i +

ρP2
i + 2 ∗ ρCBi )Ωi, BIi, (λ

M + 2 ∗ λCBi )Âi} 1
Li+Fi

. The updated minimum loss absorbing amount ML
i will

then also feed into the an updated minimum recapitalisation amount MR
i via equation 4.8.
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(a)

(b)

Figure 4.6: Shows the amount of bail-inable debt that banks who participated in the
2018 EBA stress test have relative to their TLAC and MREL standards. The bars plot
the size of a bank’s bail-inable debt B̂i (see equation 4.1) relative to its appliable loss
absorption minima. These are relative to: (a) risk-weighted assets Ωi (blue); (b) asset
exposure Âi (orange); and (c) own funds Fi (see equation 4.6) and liabilities Li (green).
The diamond squares denote the bank’s regulatory minimum for each ratio. Only banks
that are G-SIBs face TLAC requirements.
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4.5.1.3 Failure Threshold (First ‘Primary’ Bail-In Parameter)

While we have introduced the conditions under which a bank is bailed-in in Section 4.3.1,

we have not yet formalised the failure threshold. We will do this here.

Section 4.3.1 specified that a SIB eligible for resolution should be bailed-in if it is deemed

to be FLTF. Determining when a bank is FLTF is not an exact science, and regulatory

guidelines to determine this point differ across jurisdictions. For instance, a bank that

is resolved under Title II of the Orderly Liquidation provision of the Dodd-Frank Act

is presumably bailed in when it is (expected to be) insolvent (Goodhart & Avgouleas

(2016)), whereas a bank that is resolved under the BRRD is likely bailed in when it

breaches its capital requirements, in line with the Basel III recommendations. Further,

regulators also have discretion to determine the FLTF point on a case-by-case basis.

Although the FLTF point is not set in stone, as a modeller you have to make a

determination for the FLTF. In line with Hüser et al. (2017), we assume a bank is bailed

in the first time t ∈ N (where N is the set of natural numbers) when its risk-weighted

capital ratio ρi, given by its equity Ẽi over its risk-weighted assets Ωi, that is

ρi =
Ẽi
Ωi

, (4.10)

falls below its FLTF trigger ρFi .46 The bail-in time τi of bank i is given by

τi = inf{t : ρti < ρFi }.47 (4.11)

The bail-in time τi signifies the state of the balance sheet at the start of bail-in, whereas

the sub-time steps τai and τ bi denote the state of the balance sheet right after phase a and

b are completed, which, as explained in Section 4.3.3, is assumed to be so in the same

time step τi.

In preparation for Section 4.5.2.2, which discusses the valuation of bail-inable debt,

we also need to define the bail-in time τnmi in Monte Carlo run n (out of N runs in total)

applicable to a bail-inable contract issued by bank i with a time to maturity m. This is

given by

τm,ni = inf{s ≤ t+m : ρs,ni < ρFi }. (4.12)

46In Section 4.7, we will evaluate how the choice of the FLTF trigger ρFi affects financial stability.
47Alternatively, we could have also defined the bail-in time τi as the first time the bank falls below

its trigger for at least one of its capital ratios: its risk-weighted capital ratio ρi or its leverage ratio λi,
where the leverage ratio is defined as the bank’s CET1 equity Ẽi over its asset exposure Âi. That is
τi := inf{t ∈ Z : ρti < ρFi or λti < λFi }. For simplicity, we do not assume use this bail-in trigger.
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Equation 4.12 shows that a bail-in in run n will only matter for the contract’s payoff

whenever bail-in takes place before the contract’s maturity T (since t+m = t+ T − t =

T ).48

For simplicity, we will omit the i-subscript or m-superscript whenever the bank or

contract in question is clear.

4.5.1.4 Loss Absorption and Recapitalisation through Haircuts

Once a bank has met the FLTF condition (see equation 4.11), it will be bailed in. The

bail-in starts with applying haircuts to absorb losses and to recapitalise the bank to a

recapitalisation target – as we will discuss next.

To absorb losses in phase a and to recapitalise the bank in phase b, haircuts are applied

to the bank’s bail-inable debt Bi. The total haircut applied to bank i’s bail-inable debt

Bk
i in priority class k is given by hki . This in turn is given by the sum of the haircut

applied in the loss absorption phase ha,ki and the haircuts applied in the recapitalisation

phase hb,ki . That is, the total haircut hki in priority class k is given by

hki := hkτai + hkτbi . (4.13)

Extra sub- or superscripts are added to equation 4.13 to denote contract-specific haircuts.

For instance, hkmτaji denotes the haircut applied in phase a to a bail-inable debt contract

Bkmτ
ji issued by bank i and held by institution j in priority class k with time to maturitym.

We proceed to discuss the necessary loss absorption and recapitalisation amount to revi-

talise the bank and the associated haircuts to affect this.

Loss Absorption Amount Phase a applies whenever the bank is insolvent (i.e. Ẽτ
i <

0 =⇒ ρτi < 0) at the start of bail-in τ . In that case, the CET1 equity of the bank Ẽτ
i ,

in other words priority class k1, is not sufficient to absorb the asset losses necessitating

haircuts to higher priority classes k ∈ K to fully absorb the losses. The total loss l̂τi that

needs to be absorbed is given by the degree of insolvency, that is

l̂τi := |Ẽτ
i |1{ρτi < 0} =

{
0, if ρτi ≥ 0 (no phase a);

> 0, if ρτi < 0 (phase a applies).
49 (4.14)

48If a bail-in in run n does not occur at or prior to the contract’s maturity T , then we set the bail-in
time τm,ni to infinity by convention.

49Obviously, in reality the CET1 equity Ẽi cannot become negative. However, by our definition of
the CET1 equity Ẽi (see equation B.2), an asset value Ai less than Li −∆t0

i implies a negative CET1
equity signifying that asset losses cannot be absorbed by CET1 equity Ẽi.
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The total loss that can be absorbed by the bank’s bail-inable debt Bi (see equation 4.2)

is given by

lτi := min{Bτ
i , l̂

τ
i } (4.15)

The loss absorbing requirements (see Section 4.5.1.2) aim to ensure that a bank has

sufficient bail-inable debt Bi to avoid situations where the losses cannot be fully absorbed

(i.e. Bτ
i < l̂τi ). If the bail-inable debt Bi turns out to be insufficient to absorb losses in

phase a, then the bank remains insolvent. In such cases, regulators need to decide whether

to save the bank or let it fail. In our experiments (see Section 4.7) we either liquidate

the bank or recapitalise the bank via a bail-out (see details in Appendix B.3.1). Also,

perhaps needless to say, we terminate bail-in, so that phase b is not applied. In summary,

for a given loss l̂τi that needs to be absorbed, there are two cases

l̂τi =

{
> Bτ

i , =⇒ the bank remains insolvent and will be liquidated or bailed out;

≤ Bτ
i , =⇒ the bank has sufficient bail-inable debt to the absorb losses.

(4.16)

In any case, after phase a, bank i’s CET1 equity Ẽτ
i updates to

Ẽτa
i =


Ẽτ
i ≥ 0, if ρτi > 0 (CET1 equity unchanged when phase a is not necessary);

0, if l̂τi ≤ Bτ
i (successful phase a eliminates insolvency);

< 0, if l̂τi > Bτ
i (unsuccessful phase a does not eliminate insolvency).

(4.17)

From equation 4.26 we clearly observe that a successful phase a means that the the in-

solvency is eliminated but nothing more: the CET1 equity Ẽi is not lifted above 0 as this

is the task of phase b (see Section 4.5.1.4).

We proceed to formalise how the feasible loss absorption lτi (see equation 4.15) is achieved

through applying haircuts.

Haircuts in Loss Absorption Phase Loss absorption lτi is achieved by applying

haircuts hkτai according to the hierarchy of bail-inable claims and proportional within

each priority class k. Let us specify this procedure. Let kb be the highest priority class

in the hierarchy of bail-inable claims at time τ that the loss lτi fully exceeds, that is, kb

is defined as

kb := max{x ∈ K : lτi ≥
x∑
k=2

Bkτ
i }. (4.18)
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By implication, kb+1 is the first priority class that the loss lτi does not fully exceed and

k ≥ kb+2 are the priority classes which are unaffected by phase a. Using equation 4.18,

the total haircuts hkτai that befall priority classes k ∈ K in phase a are thus given by

hkτai =


Bkτ
i , for k = 2, ..., kb;

lτi −
∑kb

k=2B
kτ
i , for k = kb+1;

0, for k ≥ kb+2.

(4.19)

Due to the application of the haircuts hkτai , the bail-inable debt in priority classes k ∈ K

updates after the completion of phase a to

Bkτa
i =


Bkτ
i − hkτai = 0, for k = 2, ..., kb;

Bkτ
i − hkτai > 0, for k = kb+1;

Bk,τ
i , for k ≥ kb+2.

(4.20)

Given the proportional distribution of the total haircuts hkτai over individual contracts

Bkmτ
ji in a priority class k ∈ K (discussed in Section 4.5.1.1), the contract-specific haircuts

hkmτaji in phase a are given by

hkmτaji =


hkτai

Bkmτji

Bkτi
= Bkmτ

ji , for k = 2, ..., kb;

hkτai

Bkmτji

Bkτi
, for k = kb+1;

0, for k ≥ kb+2.

(4.21)

As a consequence of the haircuts hkmτaji , the value of bail-inable debt contracts Bkmτa
ji in

priority classes k ∈ K update in phase a to

Bkmτa
ji =


0, for k = 2, ..., kb;

Bkmτ
ji − hkmτaji , for k = kb+1;

Bkmτ
ji , for k ≥ kb+2.

(4.22)

Recapitalisation Target (Second ‘Primary’ Bail-In Parameter) After the losses

have been absorbed (see Section 4.5.1.4) by applying haircuts in phase a (see Sec-

tion 4.5.1.4), the bank must be recapitalised to a target capital ratio ρTi at which the

bank should be viable again. As explained in Section 4.3.3, regulators believe a bank to

be viable again when a bank’s capital ratio ρi is comparable to that of its peers or, at a

minimum, satisfies its authorisation conditions (e.g. its minimum capital requirements).

Given a recapitalisation target ρTi , the desired target recapitalisation amount b̂i is

implied by

ρTi =
Ẽτa
i + b̂i
Ωτa
i

, (4.23)
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where Ωτa
i = Ωτ

i , since the risk-weighted assets Ωi are not affected by bail-in. Equa-

tion 4.23 informs how much CET1 equity (i.e. b̂i) must be added (or in other words, how

many bail-inable debt must receive haircuts) to the bank’s phase-a equity Ẽτa
i to hit the

recapitalisation target ρTi . By rewriting equation 4.23, we find that the necessary target

recapitalisation amount is given by

b̂i = ρTi Ωτa
i − Ẽ

τa
i = (ρTi − ρτai )Ωτa

i . (4.24)

Equation 4.24 shows that the necessary recapitalisation target amount b̂i is larger if the

recapitalisation target ρTi is set higher relative to the post-phase-a capital ratio ρτai .

The resolution authority is unable to fully recapitalise the bank if its bail-inable debt

Bτa
i after the completion of phase a is insufficient. The feasible recapitalisation amount

bi is thus capped by Bτa
i as shown below

bi = min{b̂i, Bτa
i }. (4.25)

If the phase-a bail-inable debt Bτa
i is insufficient to fully recapitalise the bank (b̂i > Bτa

i ),

then the bank’s phase-b capital ratio will be below its target (ρτbi < ρTi ). In such case,

the bank could either satisfy its authorisation conditions (ρT2,M ≤ ρτbi < ρTi ) or not

(ρτbi < ρT2,M ≤ ρTi ). If it does not, the regulator must take further action, for instance,

to either liquidate the bank or to further recapitalise the bank via a bail out. If the

bail-in target is not reached but the bank does satisfy its authorisation conditions, then

further regulatory action to fully recapitalise the bank is optional (see Appendix B.3.1).

To avoid a scenario where the bank has insufficient bail-inable debt to fully recapitalise,

total loss absorbing requirements have been introduced (see Section 4.5.1.2). The total

loss absorbing requirements thus both serve to ensure that loss absorption (as explained

in 4.5.1.4) and recapitalisation can be successfully completed. In summary,

ρτbi =

{
ρTi , if b̂i ≤ Bτa

i (phase b successful);

< ρTi , if b̂i > Bτa
i (phase b not or partially successful).

(4.26)

Irrespective of whether phase b is fully successful, the bank’s phase-b CET1 equity Ẽτb
i is

given by

Ẽτb
i = Ẽτa

i + bi. (4.27)

Haircuts in the Recapitalisation Phase Let kr be the first priority class in the

hierarchy of bail-inable claims at time τa which the recapitalisation amount bi exceeds,

that is
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kr := max{x ∈ K : bi ≥
x∑
k=2

Bkτa
i }. (4.28)

Then the total haircuts hkτbi that befall priority classes k ∈ K in phase b are given by

hkτbi =


Bkτa
i , for k = 2, ..., kr;

bi −
∑kr

k=2 B
kτa
i , for k = kr+1;

0, for k ≥ kr+2.

(4.29)

Due to the application of the haircuts hkτbi , the bail-inable debt in priority classes k ∈ K

updates after the completion of phase b to

Bkτb
i =


Bkτa
i − hkτbi = 0, for k = 2, ..., kr;

Bkτa
i − hkτbi > 0, for k = kr+1;

Bk,τa
i , for k ≥ kr+2.

(4.30)

The contract-specific haircuts hkmτbji for priority classes k ∈ K in phase b are given by

hkmτbji =


hkτbi

Bkmτaji

Bkτai

= Bkmτa
ji , for k = 2, ..., kr;

h
kr+1τb
i

B
kr+1mτa
ji

B
kr+1τa
i

, for k = kr+1;

0, for k ≥ kr+2.

(4.31)

Due to the application of the contract-specific haircuts hkmτbji , the value of generic bail-

inable debt contracts in priority classes k ∈ [2, 5] update after the completion of phase b

to

Bkmτb
ji =


0, for k = 2, ..., kr;

Bkmτa
ji − hkmτbji , for k = kr+1;

Bkmτa
ji , for k ≥ kr+2.

(4.32)

We now proceed to discuss the conversion rates offered as a compensation for the haircuts

incurred in phase a and phase b.

Debt-to-Equity Conversion Rates (Third ‘Primary’ Set of Bail-In Parame-

ters) While we introduced the debt-to-equity conversion rates – and the Principles for

setting these – in Section 4.3.3.2, we have not yet modelled it. We proceed by formally

defining the conversion rates. Then we unfold what the implications of two Principles

(NCWO and Preservation of Hierarchy of Claims) are in terms of setting ‘fair’ or ‘unfair’

conversion rates.
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It turns out that it is much easier to satisfy both Principles when one splits the total

conversion rate ∆k
i in: (1) the conversion rate that applies to haircuts hτa incurred in

the loss absorption phase ∆k
ia; and (2) the conversion rate that applies to haircuts hτb

incurred in the recapitalisation phase ∆k
ib. The total conversion rate ∆k

i relates to the

conversion rate in the loss absorption phase ∆k
ia and the recapitalisation phase ∆k

ib as

follows

∆k
i =

∆k
iah

kmτa
ji + ∆k

ibh
kmτb
ji

hkmji
, (4.33)

where we recall from equation 4.13 that the total contract-specific haircut hkmji is given

by the sum of the phase-a haircut hkmτaji and phase-b haircut hkmτbji . Equation 4.33 tells

that the total conversion rate ∆k
i is given by the number of shares a creditor receives per

unit haircut applied to the principle amount of a bail-inable claim Bkm
ji in priority class

k, which, is in accordance with the definition of the debt-to-equity conversion rate ∆k
i

given at the start of this section.

It will also be useful to split the conversion rate in the ‘fair’ conversion rate ∆̃k and

the ‘unfair’ conversation rate ∆̂k
i for both phase a and b (to be specified further in the

next sections). That is,

∆k
ia = ∆̃a + ∆̂k

ia; (4.34)

∆k
ib = ∆̃b + ∆̂k

ib. (4.35)

When conversion rates are applied in phase a and b, a haircutted creditor in priority

class k receives a share εkmτbji of bank i’s CET1 equity Ẽτb
i . So shares εkmτbji and conversion

rates are linked by the following formula

εkmτbji =
∆k
iah

kmτa
ji + ∆k

ibh
kmτb
ji

ητbi
, (4.36)

where ητbi denotes the number of outstanding shares of bank i’s CET1 equity Ẽi after

phase b. The phase-b number of CET1 equity shares ητbi of bank i is given by the sum of

the existing CET1 equity shares after the application of the haircuts in the loss absorption

phase ητai (see equation 4.70) and the newly created shares in phase a and b, that is

ητbi = ητai +

kb∑
k=2

∆k
iaB

kτ
i +∆

kb+1

ia (lτi −
kb∑
k=2

Bkτ
i )+

kr∑
k=2

∆k
ibB

kτa
i +∆

kr+1

ib (bi−
kr∑
k=2

Bkτa
i ), (4.37)

where we recall that kb and kr are defined in equation 4.18 and 4.28.

As the phase-specific conversion rate has been split in the fair and unfair part (see
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equation 4.35) we can split up the received share εkmτbji in the fair ε̃kmτbji and unfair ε̂kmτbji

part. That is,

εkmτbji = ε̃kmτbji + ε̂kmτbji . (4.38)

The value of j’s claim Ekmt
ji is given by its share εkmτbji of bank i’s CET1 equity Ẽt

i , that

is

Ekmt
ji = εkmτbji Ẽt

i , (4.39)

where at time τb we have t = τb. From equation 4.39 it is clear that j’s claim Ekmt
ji of a

fixed share εkmτbji of equity changes over time t as bank i’s CET1 equity Ẽt
i changes. This

is relevant, because it means that converted debt to equity can revalue downwards in the

time period after the bail-in has been completed, even if no (significant) net losses were

suffered due to the conversion itself.

We next discuss the two conversion rate principles imply for setting debt-to-equity rates.

We consider two extremes that may satify these principles: ‘fair’ and ‘unfair’ conversion

rates. To be best of our knowledge, we are the first to formally (using formulas) work

out the implications of these principles.

Fair Conversion Rates The phase-specific conversion rates are set fairly when

Fair Conversion Rate in Phase a : ∆k
ia = ∆̃a = 0 for k ∈ K; (4.40)

Fair Conversion Rate Phase b : ∆k
ib = ∆̃b > 0 for k ∈ K, (4.41)

where the fair conversion rate in phase-b is given by equation 4.42.

‘Fair’ conversion rates in the loss absorption phase

Splitting the phase-specific conversion rate in its fair (and unfair) part is relevant, be-

cause there is typically only one way to set the conversion rates ∆k
ia in phase a without

breaching principle I and II (as will be come clear in the next Section 4.5.1.4 on ‘unfair’

conversion rates and is argued in Appendix B.5.2). This is to set ∆k
ia equal to the ‘fair’

conversion rate ∆̃a in phase a (see equation 4.40), which corresponds to a pure write-

down. The intuition behind this is as follows.

Principle I is not breached when conversion rates are set fairly, because creditors who

face pure write-downs in a bail-in would have also faced pure write-downs (i.e. losses)

in a liquidation, so are not ‘worse off’. Furthermore, applying positive conversion rates
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∆k
ia > 0 would risk making more senior creditors worse off in bail-in than in a liquidation

(violating principle I), since allocating shares is a zero-sum game: if some creditors are

allocated a larger number of shares, others will have a smaller fractional share εji of a

bank i’s equity (as is evident from equation 4.36). Hence, any other conversion rate but

pure write-downs violate principle I.

Principle II holds if conversion rates in phase a are set fairly (see equation 4.41

and 4.40). Under fair conversion rates, the affected creditors in phase-a, who face pure

write-downs, suffer larger net losses than affected creditors in phase-b, who receive an

debt-to-equity conversion. Since creditors in phase a are always in lower (or equal) pri-

ority classes in the hierarchy of bail-inable claims than creditors in phase b, principle II

stands (see details in Appendix B.5.2).50

‘Fair’ conversion rates in the recapitalisation phase

There is also typically only one way to set conversion rate in priority class k in the

recapitalisation phase ∆k
ib without breaching principle I and II. This is to set it equal to

the ‘fair’ conversion rate ∆̃b given by

∆̃b =
ητai
Ẽτa
i

1{Ẽ
τa
i > 0}+ w1{Ẽ

τa
i = 0}. (4.42)

Equation 4.42 shows that the fair conversion rate in the recapitalisation phase ∆̃b is equal

to the number of shares per unit of phase-a equity (
ητai
Ẽτai

) in case equity holders were not

fully diluted in phase a (i.e. if phase a was not necessary since Ẽτ
i = Ẽτa

i > 0, see equa-

tion 4.14) and is equal to any desired number w in case equity holders were fully diluted

after phase a. The idea is that by doing so, non-wiped-out equity holders are diluted

by a ‘fair’ amount and not more. Any conversion rate may be chosen if existing equity

holders are diluted.

When the conversion rate ∆̃b is fair, then for any haircut hkmτbji a creditor receives in

phase b it will receive an equal value Ekmτb
ji of the bank’s phase b CET1 equity Ẽτb

i (note

that the value of the claim may change after the bail-in as is clear from equation 4.39).

The conversion rate ∆̃b is ‘fair’ in the sense that a haircut is compensated with an equal

equity claim,51 so that no net losses are suffered as a direct consequence of the bail-in.

50 In line with Hüser et al. (2017), we will by default set the phase-a conversation rates ∆k
ia fairly

(i.e. ∆k
ia = ∆̃a, ∀k ∈ K, see equation 4.40), unless otherwise indicated. Hence, creditors will not receive

any share as a compensation of their haircuts in phase a (i.e. εkmτaji = 0 for k ∈ K).
51Chen et al. (2013) call the conversion rate of a CoCo ‘fair’ if the write-down is met an an equal

value of the equity claim right after the conversion.
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Roughly speaking, the reason why fair conversion rates typically do not breach prin-

ciple I and II is as follows. Recapitalisation does not take place in liquidation, so haircuts

must be compensated with an equal value of equity to ensure that creditors are ‘worse off’

in a bail-in than in a liquidation. Principle II also holds, as has already been explained

in Appendix B.5.2).

Let us now formalise the above-mentioned. The ‘fair’ share of equity ε̃kmτbji , which a

creditor who received a haircut hkmτbji in phase b receives of bank i’s phase-b CET1 equity

Ẽτb
i (corresponding to a fair phase-b conversion rate ∆̃b, see equation 4.41) is given by

ε̃kmτbji =
hkmτbji

Ẽτb
i

. (4.43)

By multiplying equation 4.43 with the bank’s phase-b CET1 equity Ẽτb
i and using equa-

tion 4.39, we obtain the value Ekmτb
ji of the creditor’s acquired equity claim. It is given

by

Ekmτb
ji = hkmτbji . (4.44)

Equation 4.44 shows that the value of the new claim Ekmτb
ji is equal to the value of the

haircut hkmτbji . Indeed, when the share εkmτbji is such that is is fair ε̃kmτbji (see equation 4.43),

then as a direct consequence of bail-in, a creditor who received a haircut in the recapitali-

sation phase hkmτbji does not suffer net losses, which can be understood from the equations

below

Ekmτb
ji +Bkmτb

ji = Bkmτa
ji ⇐⇒ (4.45)

εkmτbji Ẽτb
i + (Bkmτa

ji − hkmτbji ) = Bkmτa
ji . (4.46)

Equation 4.45 gives the no-net-loss condition for phase b, which says that the value of a

creditor’s claim in phase a and b must be equal, so that no net losses are suffered due to

phase b. In other words, the phase-b haircutted claim Bkmτa
ji (=Bkmτa

ji − hkmτbji ) plus the

equity compensation Ekmτb
ji (=εkmτbji Ẽτb

i ) must equal the phase-a claim Bkmτa
ji . The only

share εkmτbji that satisfies the no-net-loss requirement (as given by equation 4.46) is the

fair share ε̃kmτbji . The relation between the fair conversion rates ∆̃b and ∆̃a = 0 and the

fair share ε̃kmτbji is given by equation

ε̃kmτbji =
∆̃bh

kτb
ji

∆̃bbi + ητai
, (4.47)
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which is a simplification of equation 4.36. By default we will set the conversion rates ∆k
ib

in phase b fairly (i.e. ∆k
ib = ∆̃b, for k ∈ K, see equation 4.41), unless otherwise indicated.

Figure 4.7: This figure provides an example of the application of a bail-in procedure to a bank’s
bail-inable debt. We take bank i = FR12 that partook in the EBA 2018 stress test. In the left plot the
bank’s assets have fallen below the FLTF ratio of ρFi = 0% such that its risk-weighted capital ratio is
ρτi = −4% at the start of the bail-in (i.e. at time τ). Suppose that the regulator has determined that the
bank should be recapitalised to its original capital ratio, that is, ρTi = ρdatai . Further, we assume that
the regulator applies a fair conversation rate in phase a and b (see equation 4.40 and 4.40). We observe
the following. The bars associated to priority class k1 capture the evolution of the bank’s CET1 equity
Ẽi over the course of the bail-in: at time τi (the start of the bail-in); at time τa (after phase a has been
completed); and at time τb (after phase b has been completed). We see that the loss absorption phase
(i.e. phase a) accomplishes wiping out any degree of insolvency by applying haircuts in priority classes
that come lowest in hierarchy (k2 and k3). Creditors who faced haircuts in phase a suffer net losses
that are not compensated with a claim of CET1 equity. Next, the recapitalisation phase (i.e. phase b)
accomplishes to recapitalise the bank such that it regains a positive amount of CET1 equity (see green
dark bar at k1), by applying haircuts in phase b. It applies these haircuts to the priority class that is
next in line in the hierarchy (i.e. k4). For any haircut applied in phase b, creditors get an equal amount
of CET1 equity in return (see light green bar at k4, which is equal in size to the pink bar at k4), since
the regulator’s conversion rate is set fairly. In the right plot we show the same result, but now for the
case where the regulator set the FLTF trigger at ρF = 4.5%. Because of this choice, the bank is already
bailed in when its risk-weighted capital ratio falls to ρτi = 0.5%. You can observe that no haircuts are
applied in phase a in this case, because no degree of insolvency had to be wiped out. Only haircuts
are applied in phase b to recapitalise the bank. We note that since no haircut was applied in phase a,
creditors face a zero net loss as a direct consequence of the bail-in; any haircuts in phase b were replaced
with equal claims in CET1 equity. In sum, we learn from the left and right plot that creditors only face
net losses as a direct consequence of the bail-in when conversion rates are set fairly, whenever the bank
is insolvent at the start of bail-in. On the other hand, if the bank is solvent at the start of bail-in each
creditor that receives a haircut obtains an equal claim of CET1 equity of bank i, so no net losses are
suffered.
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Unfair Conversion Rates

Specification of Principle I: No-Creditor-Worse-Off

The no-creditor-worse-off condition, P1, requires that a creditor in a bail-in is at least as

well off in a bail-in as in the case where the bank would have been liquidated upon failure

(i.e. in a ‘hypothetical liquidation’). That is, for each creditor it must hold that its claim

following a bail-in Bkmτb,B
ji is at least as high as its claim in a hypothetical liquidation

Bkmτb,L
ji , that is,

Bkmτb,B
ji ≥ Bkmτb,L

ji . (4.48)

The claim following a bail-in is given by

Bkmτb,B
ji = Bkmτ

ji − hkmτaji − hkmτbji + εkmτbji Ẽτb
i (4.49)

= Bkmτb
ji + εkmτbji Ẽτb

i , (4.50)

From equation 4.50 it can be seen that the claim Bkmτb,B
ji in a bail-in is equal to the

pay-off P kmτb
ji of a bail-inable claim valued at time τb (see equation 4.88).

The claim following a liquidation is given by one minus the loss given default (LGD)

in liquidation ζkτb,Li times the original claim Bkmτ
ji , that is,

Bkmτb,L
ji = (1− ζkτb,Li )Bkmτ

ji . (4.51)

The LGD ζkτb,Li ∈ [0, 1] in each priority class k in liquidation is given by

ζkτb,Li =


100%, for k = 2, ..., kl;

θτi −(
∑kl

k=1 L
kτ
i −Lk

1τ
i )

Lk
l+1,τ
i

, for k = kl + 1;

0%, for k ≥ kl + 2,

(4.52)

where kl denotes the first priority class that the loss that can be absorbed θτi in liquidation

does not fully exceed, and is given by

kl := max{x : θτi ≥
x∑
k=1

Lkτi − Lk
1τ
i } ∈ k1 ∪K. (4.53)

Lkτi , shown in equation 4.53, signifies the value of bank i’s liabilities in priority class k

at time τ . Note that Lkτi may be different from the bail-inable debt Bkτ
i in priority class

k, due to fixed or ad-hoc exclusions of liabilities from the hierarchy of bail-inable claims
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(see Section 4.5.1.1 and Section 4.5.1.2). In increasing order of seniority, the liquidation

hierarchy (or in other words, the regulator insolvency hierarchy) is given by52

{Lk1i , L
k2
i , L

k3
i , L

k4
i , L

k5
i } = (4.54)

{Ẽi, ẼAT1
i , ẼT2

i , Ĩk4i + Õk4
i , Ĩ

k5
i + Õk5

i } (4.55)

The total loss that needs to be absorbed in liquidation, displayed in equation 4.53, is

given by

θ̂τi =

{
l̂τi , if cτi = 0%;

l̂τi + cτiA
τ
i 1{ρ

τ
i ≤ 0}+ max{Lτi − Aτi (1− cτi ), 0}1{ρτi > 0}, if cτi > 0%,

(4.56)

From equation 4.56 we observe that the loss that needs to be absorbed in liquidation

θ̂τi equals the loss that needs to be absorbed in a bail-in l̂τi (see equation 4.14) if the

estimated liquidation cost cτi is zero. The loss that needs to be absorbed θ̂τi may not be

equal to the loss that can be absorbed θτi by bank i’s liabilities, Lτi =
∑7

k=2 L
k
i . The loss

that can be absorbed is given by

θτi = min{θ̂τi ,
∑
k∈K

Lkτi }. (4.57)

For Section 4.5.1.2 it will also be useful to define the LGD ζkτa,Bi ∈ [0, 1] incurred in

the loss absorption phase of a bail-in53; this is given by

ζkτa,Bi =


100%, for k = 2, ..., kb;

lτi −(
∑kb

k=1B
kτ
i −Bk

1τ
i )

Bk
b+1,τ
i

, for k = kb + 1;

0%, for k ≥ kb + 2,

(4.58)

where kb signifies the first priority class that the feasible loss absorption in phase a of a

bail-in does not fully exceed. It is given by

kb := max{x : lτi ≥
x∑
k=1

Bkτ
i −Bk1τ

i } ∈ k1 ∪K, (4.59)

Having defined the NCWO condition (see equation 4.48), let us now briefly comment

on how the NCWO condition is measured in practise and what wiggle room a resolution

authority has to try to make sure that the NCWO condition is satisfied.

52For our purposes, we do not need to list the liabilities in priority classes k6 and k7.
53We note that in this equation (we set) Bk

1τ
i = 0.

144



The claim following a liquidation Bkmτb,L
ji is valued as follows. As eluded upon in Sec-

tion 4.3.3, Article 74 of the BRRD tasks an independent valuer to estimate the liquidation

value Bkmτb,L
ji (or in other words the LGD ζkτb,Li ) in liquidation. It is left vague, however,

what method the independent valuer should use to estimate the liquidation cost in a

hypothetical bail-in. Given that the insolvency proceedings of Lehman Brothers are 11

years after its failure still ongoing, this does not seem an easy task altogether. To be able

to evaluate the NCWO condition we propose a simple and reasonable way to estimate

the liquidation value of a claim. We apply a uniform liquidation cost cτi across assets Aτi

to obtain the estimation (as we saw in equation 4.56). Further, given the considerable

uncertainty around the estimates of the liquidation costs of a bank, creditors could easily

argue that the liquidation cost cτi in a liquidation would have been very low, so that they

are in fact worse off in a bail-in than in a hypothetical bail-in. Therefore, P1 seems to act

as a magnet for lawsuits.

The value of a claim following a bail-in Bkmτb,B
ji is chosen and valued as follows by the

resolution authority. The resolution authority picks its conversion rates (∆k
ia and ∆k

ib) to

aim to satisfy P1 (the NCWO condition) and P2. Concretely, given a chosen recapital-

isation target ρTi and given its chosen conversion rates ∆k
ia and ∆k

ib it can compute the

value of the haircutted claim Bkmτb
ji (using equation 4.50) and the value of the acquired

equity share εkmτbji (using equation 4.36) of bank i’s estimated phase-b equity Ẽτb
i (using

equation 4.27) to obtain the claim value Bkmτb,B
ji in a bail-in (see equation 4.50). The

resolution authority can keep changing the conversion rates until it has found a config-

uration that satisfies P1 and P2. In this Section we show that the regulator has not

much wiggle room to set the conversion rates as they wish. Typically, only the ‘fair’ rates

satisfy P1 and P2, sometimes ‘unfair’ rates are also permissible (but not desirable), and

occasionally no configuration is possible, in which case the resolution financing funds need

to come to aid. The scope to set unfair rates and the circumstances when the resolution

financing fund must be used are discussed in what follows.

Specification of Principle II: Preservation of Hierarchy of Claims

To fulfil Principle II conversion rates must be set such that for any priority class k

greater than priority class k − 1

∆k
i ≥ ∆k−1

i (4.60)

holds.

145



Scope to set ‘Unfair’ Conversion Rates

In a limited set of circumstances the resolution authority is able to apply differential

rates beyond that which is applied by setting conversion rates ‘fairly’ (i.e. ∆̃b > ∆̃a =

0) without breaching principle P1 and P2. Essentially, applying ‘unfair’ rates may be

possible whenever the estimated liquidation cost in a hypothetical bail-in is large and

whenever the size of the exclusions is relatively small (see Figure 4.8a).
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(a)

(b)

Figure 4.8: Plot 4.8a shows that the larger the (assumed) liquidation costs cτi (see equation 4.56)
are and the smaller the exclusions Xτ

i (see equation 4.68) are, the more scope exists to apply extra
write-downs ψτai (see equation 4.67) to set unfair rates (see equation 4.38 and 4.61). The amount of
extra write-downs is always capped to not exceed the amount necessary to reach the recapitalisation
target. In other words, unfair conversion rates are only possible whenever the estimated liquidation
costs cτi in a hypothetical bail-in are sufficiently high and the exclusions Xτ

i of debt from bail-in are
sufficiently low. The reason is that in such case creditors are worse off in liquidation than in bail-in,
so that creditors in bail-in could be made as worse off as they would have been in liquidation (without
breaching the no-creditor-worse-off condition) by applying ψτa∗

i extra write-downs and allocating the
extra shares to creditors in the highest priority classes (who are part of the recapitalisation phase).
Plot 4.8b shows that the smaller the estimated liquidation costs cτi are and the larger the exclusions
Xτ
i are, the more likely it becomes that the resolution financing fund F τbi (see equation 4.69 ) has to be

employed to make a difference payment to the creditors who are worse off in bail-in than in liquidation (see
Section 4.5.1.2). The resolution-financing-fund contribution is always capped by the amount necessary
to reach the recapitalisation target. Interestingly, by comparing Plot 4.8a and 4.8b we observe that the
size of the unfair write-down ψτa∗

i and the size of the resolution financing fund contribution F τbi resemble
a mirror image: either the liquidation costs cτi are high enough and the exclusions Xτ

i low enough leaving
scope (but no need) to set unfair rates, or the liquidation costs cτi are low enough and exclusions Xτ

i are
high enough necessitating resolution financing fund contributions F τbi to compensate creditors who are
worse off in a bail-in. It never happens that unfair rates can be applied, while the resolution financing
fund must pay, or visa versa. It is always one or the other. Finally, contrary to common believe, from
Plot 4.8a and 4.8b it seems that for realistic liquidation costs (e.g. cτi ≥ 10%) resolution authorities
do not have to greatly worry about breaching the no-creditor-worse-off condition even in the face of
significant exclusions Xτ

i ; for realistic liquidation costs cτi regulators typically have scope to set unfair
rates and are not required to pay from the resolution financing fund, since liquidation costs typically
overshadow exclusions in size.
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The idea is that the ‘unfair’ rates can be applied by making those creditors who would

have been worse off in a liquidation equally worse off in a bail-in (these are usually the

more junior creditors). The freed capital can then be allocated among creditors who

receive haircuts in phase b (these are usually the more senior creditors). We argue that

such practise is disproportionate and risks causing contagion due to junior creditors who

receive unnecessary large losses. Let us now formalise this intuition.

The ‘unfair’ extra share, which is allocated to a creditor j who holds a contract with

time to maturity m of bank i in priority class k, is given by

ε̂kτbji =
ψ
τ∗a
i ε̃

kτb
ji

bi
, (4.61)

where the unfair recapitalisation amount bi is explained in equation 4.64 below.

We recall from equation 4.38 that a creditor j receives the unfair share ε̂τb,kji on top of

its fair share ετb,kji , so that its total share received equals εkmτbji . The term ψ
τ∗a
i denotes the

total size of the extra write-downs in (what we refer to as) phase a∗, to make creditors

equally worse off in bail-in as in liquidation, which we will define shortly (in equation 4.67).

The procedure to apply the unfair rates is as follows:

1. Execute the loss absorption phase as usual (see Section 4.5.1.4).

2. Apply ψ
τ∗a
i amount of extra write-downs in phase a∗. This means that the conversion

rate in phase a∗ is zero, ∆k
ia∗ = 0, ∀k ∈ K.

3. Proceed to the recapitalisation phase. The recapitalisation phase is executed in a

regular way except for the following adjustments:

(a) The necessary recapitalisation amount b̂i is reduced due to the extra write-

downs ψ
τ∗a
i . Therefore, equation 4.24 updates to

b̂i = ρTi Ωτa
i − Ẽ

τa∗
i , (4.62)

where

Ẽτa∗
i = Ẽτa

i + ψ
τ∗a
i . (4.63)

(b) The feasible recapitalisation amount, given in equation 4.25, updates to

bi = min{b̂i, Bτa∗
i }, (4.64)

where Bτa∗
i is given by Bτa

i − ψ
τ∗a
i .

(c) The phase-b capital, given in equation 4.27, updates to

Ẽτb
i = Ẽτa∗

i + bi (4.65)
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(d) For any haircuts applied in phase b return a ‘fair’ share ε̃kmτbji . The extra

‘unfair’ share is compensated based on the ‘fair’ share received (see equa-

tion 4.61). Hereby, it is critical note that some creditors who would have

received a fair share in phase b if no ‘unfair’ rates were applied, now instead

face a pure write-down in phase a∗. As such the pool of creditors who benefit

from the extra unfair share ε̂kmτbji is confined to only those creditors who are

subject to haircuts in phase b excluding those who received haircuts in phase

a∗ or phase a.

Let us now return to the extra write-downs ψ
τ∗a
i that are permissible without breaching

P1 and P2. The size of the extra write-down ψ
τ∗a
i is given by

ψ
τ∗a
i = min{ψ̂τ

∗
a
i , yibi} (4.66)

where the recapitalisation amount bi is computed using equation 4.24 and 4.25 based on

time τa values. Further, yi ∈ [0, 1] is some fraction that determines how unfair resolution

authorities would like to make the shares of those who receive haircuts in phase b, and

ψ̂
τ∗a
i is given by

ψ
τ∗a
i =


0, if kb > kl;

Bkb+1,τ
i max{ζk

l+1,τa,L
i − ζk

b+1,τa,B
i , 0}, if kb = kl;

(1− ζk
b+1,τa,B
i )Bkb+1,τ

i + (
∑kl

k=kb+2 ζ
kτb,L
i Bk,τ

i )1kl≥kb+2 + ζk
l+1,τa,L
i Bkl+1,τ

i , if kb < kl,

(4.67)

From equation 4.67 we learn that ‘unfair’ rates are not possible whenever creditors in a

bail-in are worse off than the LGD in liquidation (i.e. kb > kl), in which case the resolu-

tion financing fund has to be applied (discussed in Section 4.5.1.2). It is also not possible

when the LGD in bail-in ζk
b+1,τa,B
i is higher than in liquidation ζk

l+1,τa,L
i in priority class

kl + 1 = kb + 1, in the case where kl = kb. Unfair rates can only be applied whenever

creditors in a bail-in are better off than in they would have been in a liquidation (i.e.

kb ≤ kl). All the terms in equation 4.67 in essence tell you how much extra write-downs

should be applied to make creditors who are better off in a bail-in than in liquidation

equally worse off as in liquidation.

Equation 4.66 tells that the extra amount of write-down that is possible ψ̂
τ∗a
i without

breaching the no-creditor-worse-off condition, should never be greater than the recapi-

talisation amount bi, else the bank will be recapitalised excessively much (i.e. above the

recapitalisation target ρTi ). Even more, the extra write-down ψ̂
τ∗a
i should not exceed a

fraction yi of the recapitalisation amount bi to ensure that some creditors will remain

subject to haircuts in phase b and thus will be reaping the benefits of the extra unfair
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share (via equation 4.61). In other words, if it would be the case that ψ̂
τ∗a
i = bi, then

the recapitalisation phase would be made redundant and no recipients of the extra unfair

shares would exist, leaving the equity shares of a bank without owner.

Figure 4.9: Compares the haircuts and acquired equity claims for ‘fair’- and ‘unfair’ conversion rates.
For the case of fair conversion rates, we have explained in Figure 4.7 the application of haircuts in phase
a and b and the debt-to-equity conversion. Here we will focus on the differences between the case of
‘fair’- and ‘unfair’ conversion rates. To evaluate the scope for setting unfair rates, resolution authorities
must estimate the liquidation cost cτi (see equation 4.56) in a hypothetical liquidation. Also, they must
determine whether any debt will, on an ad hoc basis, be excluded from bail-in Ukτi (see equation 4.68).
For the purposes of this illustration we suppose that the assumed liquidation cost is cτi = 10% and no
ad hoc exclusions are made (i.e. Ukτi = 0). Let us now proceed to inspect the bars associated to priority
classes k2, k3 and k4 for both the fair and unfair case. We observe that for the unfair case an extra write-
down ψτa∗

i (see equation 4.66) has been applied to the bail-inable debt in priority classs k2, k3 and k4,
resulting in extended haircuts in phase a (see the extended brown bars at k2, k3 and k4 in the right plot),
which are not replaced by shares of CET1 equity (no equally sized pink bars). The extra write-down in
phase a∗, ψτa∗

i , means that the remaining haircuts that need to be applied to fully recapitalise the bank
have decreased. Therefore, you see that the haircuts in phase b (see the pink bar at k4 in right plot) have
become smaller in the ‘unfair’ case than in the ‘fair’ case. In the left plot, the total positive amount of
CET1 equity of bank i, which is created by the haircuts in phase a∗ and phase b, will be allocated as
shares to creditors who were subject to phase b of the bail-in only (i.e. to creditors who received haircuts
in phase b in k4). This is unfair, because creditors in phase a∗ receive no shares and creditors in phase b
receive all the shares. In other words, creditors in phase b make a net profit, because the acquired equity
claims is worth more than they haircuts they receive (observe that the light-green bar is larger than the
pink bar in k4 for the ‘unfair’ case). Compare this to the fair case. Here creditors in phase b obtain
an equal amount of CET1 equity in return for any haircuts they receive in phase b (observe that the
light-green bar is equal to the pink bar in k2, k3 and k4). In sum, unfair rates result in disproportionate
losses to some (i.e. those who face pure write-downs in phase a∗) and disproportionate profits to others
(i.e. those who remain part of phase b). Thus, unfair rates redistribute wealth unfairly. In contrast, fair
rates ensure that all creditors in phase b make neither net profits nor net losses as a direct consequence
of the bail-in. Obviously, both in the fair and the unfair case creditors who receive haircuts in the loss
absorption phase a undergo pure write-downs. This is inevitable: a resolution authority cannot give
shares in return as long as the bank is still insolvent.
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Resolution Financing Agreements P1 stipulates that if the NCWO condition is

violated, then creditors under Article 75 of the BRRD are entitled to the difference

between the expected loss under resolution and liquidation if this is positive. In such

case, resolution authorities have no choice but to resort to the resolution financing fund.

When the exclusions Xkτ
i of claims (from the hierarchy of bail-inable claims (see

Section 4.5.1.1) relative to the liquidation hierarchy (see equation 4.55)) are positive

and the liquidation costs cτi (see equation 4.56) are small enough, only then it is likely

that the resolution financing fund contribution is required. Without exclusions Xkτ
i the

resolution financing fund never has to be tapped. The larger the exclusions Xkτ
i are and

the smaller the estimated liquidation cost cτi are in a hypothetical bail-in, the more likely

it becomes that the resolution financing fund must be used (see Figure 4.8b). Given this

observation, to avoid ad-hoc exclusions Ukτ
i (see Section 4.5.1.1), it makes complete sense

that instruments must be subordinated to count towards TLAC Ti or MREL Mi (see

Section 4.5.1.2).

The size of the exclusions Xkτ
i in priority class k at the start of bail-in τ is given

by any positive difference of the claims that are by default included in the hierarchy

of liquidation Lkτi and the hierarchy of bail-inable claims Bkτ
i plus the claims that are

excluded on an ad-hoc basis Ukτ
i (e.g. because bail-in in these claims would give rise

to contagion or be too difficult, see Section 4.5.1.1). That, the size of exclusions Xkτ
i is

given by

Xkτ
i := (Lkτi −Bkτ

i ) + Ukτ
i (4.68)

For a given loss that must be absorbed in a bail-in l̂i (see equation 4.14), the larger the

exclusions Xkτ
i are the more priority classes kb will experience full write-downs and the

more likely a breach of the NCWO condition becomes. The total size of the resolution

fund contribution F τb
i is given by

Fτbi =


(1− ζk

l+1,τa,L
i )Bkl+1,τ

i + (
∑kb

k=kl+2 ζ
kτa,B
i Bkτ

i )1kb≥kl+2 + ζk
b+1,τa,B
i Bkb+1,τ

i , if kb > kl;

Bkb+1,τ
i max{ζk

b+1,τa,B
i − ζk

l+1,τa,L
i , 0}, if kb = kl;

0, if kb < kl,

(4.69)

The terms in equation 4.69 show how much worse off a creditor is in bail-in than in

liquidation, and thus how much a creditor should be compensated. Comparing the size

of the resolution fund contribution F τb
i (in equation 4.69) and the scope for extra write-

downs ψτa∗i (see equation 4.67), we immediately observe the symmetries just discussed.

Importantly, whenever more creditors are affected by the loss absorption phase of a

bail-in than by the loss absorption phase in liquidation (i.e. if kb > kl) or whenever
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creditors are more severely affected (i.e. if ζk
b+1,τa,B
i > ζk

l+1,τa,L
i if kb = kl), then the

resolution authority cannot avoid a breach of the NCWO condition by setting rates

‘fairly’ or ‘unfairly’: in both cases the resolution financing fund has to be deployed. The

reason that applying ‘unfair’ rates is not effective in avoiding having to tap into resolution

financing fund, is that awarding some creditors more shares than their fair share makes

others worse off.

Dilution of Existing Equity Holders If the bank is insolvent at the start of bail-in τ

(i.e. when phase a applies, see equation 4.14), then the rule is that existing equity holders

are completely wiped out (Klimek et al. (2015), Hüser et al. (2017)). We therefore set

the unit holdings ητai of existing equity holders to zero in such case. That is,

ητai =

{
ητi , if ρτi ≥ 0;

0, if ρτi < 0.
(4.70)

In that spirit, the shares of existing equity holders update to

εk1mτaji =

{
εk1mτji , if ρτi ≥ 0;

0, if ρτi < 0.
(4.71)

If the bank is still solvent at the start of the bail-in (i.e. ρτi ≥ 0), then existing equity

holders are diluted whenever the conversion rates ∆k
i for k ∈ K are positive. In general,

the dilution factor di, which tells by what fraction the non-wiped-out equity holders share

εk1mτaji of bank i’s equity is reduced,54 is given by

di = 1− ητai
ητbi
∈ [0, 1], (4.72)

where ητai is given by equation 4.70 and ητbi is given by equation 4.37. We note that if

shareholders in phase a are completely wiped out (ητai = 0) then the dilution factor di is

equal to 1 (i.e. a hundred percent). Given a dilution factor di, the share εk1mτaji of existing

equity holders updates to

εk1mτbji = (1− di)εk1mτaji . (4.73)

When the dilution factor d̃i is ‘fair’, which is the case when fair conversion rates have

been applied in phase a and b (see equation 4.40 and 4.41), then the claims Ek1
ji of existing

equity holders at phase a and b are equal, so that non-wiped-out existing equity holders

do not suffer net losses as a consequence of the bail-in. That is,

54We recall that k1 denotes priority class 1 associated to the existing CET1 equity holders (see
Section 4.5.1.1).
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Ek1τb
ji = Ek1τa

ji , (4.74)

which we can rewrite as

εk1τaji Ẽτa
i = εk1τbji Ẽτb

i

= εk1τaji (1− di)Ẽτb
i , (4.75)

using equation 4.39 and 4.73. Equation 4.75 implies that the ‘fair’ dilution factor d̃i ∈
[0, 1] is given by

d̃i = 1− Ẽτa
i

Ẽτb
i

(4.76)

= 1− Ẽτa
i

Ẽτa
i + bi

, (4.77)

where we used equation 4.27 to obtain equation 4.77. From equation 4.75 we observe

that the ‘fair’ dilution factor d̃i increases in the recapitalisation amount bi.

We emphasise that setting a fair dilution factor d̃i reduces (dilutes) the fair share ε̃k1τbji

of existing equity holders (i.e. ε̃k1τbji ≤ εk1τaji ), but leaves their equity claim Ek1τb
ji unaltered

(i.e. Ek1τb
ji = Ek1τa

ji ) producing no net losses as a direct consequence of the bail-in, since

the bank’s CET1 equity Ẽτb
i increases (i.e. Ẽτb

i ≥ Ẽτa
i ) as a consequence of phase b of the

bail-in. By default we will assume that the dilution factor di is fair.

Having modelled the bail-in design, we next elucidate how we model the contagious

amplifications that this design might promote.

4.5.2 Modelling Multiple Contagion Mechanisms in the Finan-
cial System

The aim of this Section is to delineate how we model multiple interacting contagion

mechanisms in a financial system consisting of banks and non-banks – where bail-in

is the preferred method for dealing with bank failures. We will make intelligible how

we model five prevailing contagion mechanisms: bail-in-induced exposure loss contagion,

overlapping portfolio contagion, funding contagion, bail-inable debt revaluations and halts

on roll-overs of bail-inable debt (referred to as bail-inable debt ‘runs’). We will treat these

contagion mechanisms in turn.
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4.5.2.1 Exposure Loss Contagion, Overlapping Portfolio Contagion & Fund-
ing Contagion

The previous Section 4.5.1 has discussed how the bail-in design may spark off bail-in-

induced exposure loss contagion. Exposure loss contagion may arise if creditors of a

bailed-in bank suffer exposure losses due to the bail-in and pass on the distress. We

made it clear that creditors tend to suffer larger exposure losses if the failure threshold

is low and the debt-to-equity conversion rate is ‘unfair’. If the failure threshold is low

it is more likely that the bank is insolvent at the start of the bail-in, necessitating pure

write-downs to raise it out of insolvency. If the bank is insolvent, it is never possible to

apply positive debt-to-equity conversion rates to junior creditors that are subject the loss

absorption phase – without making more senior creditors ‘worse off’, which would breach

the NCWO condition. If the debt-to-equity conversion rate is ‘unfair’ then creditors in ju-

nior priority classes must endure large exposure loss with no compension. Hence,‘unfair’

conversion rates tend to fuel contagion.

We use the system-wide stress testing model developed by Farmer et al. (2020) to model

funding contagion and overlapping portfolio contagion. We provide a synopsis of the

approach here.

Banks seek to avoid default by aiming to fulfil contractual obligations and comply with

regulatory constraints. If a bank receives a funding shock and has not sufficient cash to

meet the withdrawal obligation, it will resort to liquidating assets to raise cash. Banks

maintain a ‘pecking order’ that specifies which assets they liquidate first to meet contrac-

tual obligations. We assume that a bank liquidates the most liquid assets first to avoid

unnecessary liquidation costs. In practise this means that banks exhausts withdrawing

maturing loans (which can precipitate funding contagion), before liquidating tradable

assets (which can provoke overlapping portfolio contagion). Other than in Farmer et al.

(2020), we, in this system-wide stress test, introduce maturities to account for collapse-

prone or collapse-proof nature of a bank’s bail-inable debt pile, as expressed by its matu-

rity profile of bail-inable debt. To the best of our knowledge, we are the first to build a

model of funding contagion that captures maturities, rather than assuming all short-term

debt is overnight (and thus can be withdrawn every timestep).

To avoid breaching the minimum risk-weighted capital requirements ρM = 4.5% of Com-

mon Tier I Equity relative to risk-weighted assets, as well as to eschew punitive restric-

tions on the ability to make discretionary payments (such as dividend payments) when

falling too many quantiles into the regulatory capital buffer, banks maintain an internal
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‘buffer’ and target’. Whenever their risk-weighted capital ratio falls below this buffer they

will seek to gradually return to a robuster recapitalisation target. In line with Farmer

et al. (2020), we assume banks are willing to use no more than u = 50% of their com-

bined regulatory capital buffer ρCBi – which consists of the capital conservation buffer,

countercyclical buffer, G-SIB surcharge and systemic risk buffer. Whenever banks have

absorbed losses with their regulatory buffer ρCBi in excess of u = 50% (i.e. whenever

ρi < ρBi = ρM + (1 − u)ρCBi ), they will seek to return to a target risk-weighted capital

ratio ρTi that complies with the regulatory buffer standards (i.e. ρTi = ρM + ρCBi ). Other

than in Farmer et al. (2020), we, more in keeping with reality, assume they climb up to

their target gradually: by no more than 0.5% per day – thereby limiting self-inflicted harm

in terms of high liquidation cost and system-inflicted damage. With this approach the

target strategy is given by ρTi = min{ρi + 0.5%, ρM + ρCBi }. The gradual (risk-weighted)

deleveraging approach improves upon contagion models that unrealistically do not put a

cap on the percentage of a bank’s balance sheet will be liquidated at once (Bookstaber

(2012), Duarte & Eisenbach (2015), Greenwood et al. (2015), Cont & Schaanning (2017)).

To increase the risk-weighted capital ratio to the target, we assume that banks maintain

a ‘risk-weighted pecking order’ that determines that banks will liquididate the assets with

the highest risk-weights first in order to quickly prop up the ratio. The liquidation of

assets may instigate overlapping portfolio contagion or funding contagion, or both.

In line with Farmer et al. (2020), we model the behaviour of the leveraged non-bank

by its actions to keep its leverage ratio relatively stable. Whenever its leverage falls to

90% of their initial leverage, it will seek to return to its initial leverage ratio λt0i . The

non-leveraged non-bank absorbs losses without feeding it back onto the system.

We proceed to discuss our novel method for pricing bail-inable debt. This method is used

to capture that revaluations of bail-inable debt lead to mark-to-marked losses of debt

holders. The incurred losses may pressurise these institutions delever, and thereby add

to contagious pressures. It also can lead to further mark-to-market losses on bail-inable

debt holdings.

4.5.2.2 Revaluation of Bail-Inable Debt

Risk-Neutral Valuation We price bail-inable debt Bkm
ji as the discounted expected

value of future payoffs, in line with the standard approach to pricing financial contracts

(see e.g. Black & Scholes (1973), Merton (1974)). The time-t value V kmt
ji of j’s claim on

bank i’s bail-inable debt in priority class k which matures at time T = t+m (where we

recall that m := T − t is the time to maturity) is given by
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V kmt
ji = exp−r(T−t) EQ[P kT

ji (Aτi , A
T
i )]. (4.78)

Equation 4.78 tells that the time-t value V kmt
ji of bail-inable debt Bkmt

ji is given by the

expected payoff P kT
ji under the risk-neutral measure Q discounted by the risk-free rate r

(which we assume to be zero, in line with today’s low interest rate environment). The

payoff P kt
ji at time T is a function of bank i’s asset value Ai at the time of bail-in τ and

at the maturity T of the bail-inable contract Bkm
ji .

Jump Process for the Evolution of the Asset Value To value a bail-inable con-

tract contract Bkm
ji we need a process that governs the evolution of the asset value Ai.

A simple geometric Brownian motion (GBM) would not suffice, since it does not capture

the fat tails observed in the banks’ asset values Ai (Rachev et al. (2005)). Especially in

financial crises, which we focus on, a bank may suffer sharp tail losses in its asset value

Ai, for example due to counterparty defaults (giving exposure losses) or fire sales (giving

marked-to-market losses) (Farmer et al. (2020)).

Therefore, in line with Pennacchi (2010), who introduced a way to price the con-

tractual analogue of bail-inable debt, CoCos, we propose to model the asset value Ai

evolution according to a jump process. Specifically, we apply Merton’s jump-diffusion

process (Merton (1976)) with log-normal jumps. That is, the risk-neutral jump process

for the asset value Ai follows

dAti
Ati

= (r − λij̄i)dt+ σidW
Qt
i + jidq

t
i , A

t
i = Atsi . (4.79)

We will explain the components of equation 4.79 now. The initial condition stipulates

that asset value Ai at time t equals the asset value in stress test simulation at time t,

which is denoted by ts. The jump events of bank i are governed by a compound Poisson

process qti with jump intensity λi, which gives the mean number of arrivals per unit time

t. The magnitude of bank i’s random jump is given by ji (note, the magnitude should

be interpreted as the fractional increase or decrease in the bank’s total assets Ai), where

1 + ji is log-normally distributed with mean µJi and standard deviation σJi , that is,

ln(1 + ji) ∼ N(µJi , σ
J
i ) (4.80)

The mean jump size j̄i is given by

j̄i = exp(µJi +
(σJi )2

2
)−1. (4.81)
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If the jumps are turned off (i.e. λi = 0), then equation 4.79 returns to a geometric

Brownian motion identical to those posited in Black & Scholes (1973), Merton (1974).

That is,

dAti
Ati

= rdt+ σidW
Qt
i , A

t
i = Atsi . (4.82)

where σ2
i is the instantaneous variance of bank i’s asset returns conditional on the Poisson

event not occurring, and dW Qt
i is a standard Gauss-Wiener process under the risk-neutral

dynamics. Further, dqti and dW Qt
i are assumed to be independent.

The solution to equation 4.79 is

At+1
i = Ati exp(r−λij̄i−

σ2i
2

)∆t+σi
√

∆tZi)(1 + ji)
φi , Ati = Atsi , (4.83)

where Zi is distributed according to the standard normal distribution, and where φi

equals to one with probability λi and equals to zero with probability 1 − λi. Hence, a

jump occurs if φi = 1 and no jump occurs if φi = 0. The magnitude of jump ji is (similar

to equation 4.80) log-normally distributed. That is,

ln(1 + ji) ∼ N(µJi , σ
J
i ). (4.84)

Payoff of Bail-Inable Debt Using equation 4.83, the path of bank i’s asset value Ai

can be generated over the lifetime of the bail-inable contract Bkm
ji (s ∈ [t, T ]). Given

the invariant-liability assumption, we can also run n Monte Carlo paths of the CET1

equity value Ẽi and risk-weighted capital ratio ρi (see Figure 4.10).55 That is: Bs
i = Bt

i

and Lsi = Lti, ∀s ∈ [t,min{τm,ni , T}]; and Bs
i = Bτb,n

i and Lsi = Lτb,ni , ∀s ∈ [τm,nb , T ].

This assumption is in line with the invariant-liability assumption in Merton’s structural

credit risk model (Merton (1974)). To generate the equity Ẽi path we use the invariant-

liability assumption and equation B.2 and B.3. To generate the risk-weighted capital

ratio ρi path, we use the invariant-liability assumption, equation 4.10 and approximation

Ωt+1
i ≈ At+1

i

Ati
Ωt
i. The generated sample paths are then given by

{Ats,ni , At+1,n
i , ..., AT,ni }; (4.85)

{Ẽts,n
i , Ẽt+1,n

i , ..., ẼT,n
i }; (4.86)

{ρts,ni , ρt+1,n
i , ..., ρT,ni }. (4.87)

55Our invariant-liability assumption, which we use for the purposes of valuation only, says that the
bail-inable debt and liabilities remain equal to their time-t value up to bail-in, and stay equal to their
post-bail-in value τb up to maturity T .
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Using these generated sample paths (equation 4.85, 4.86 and 4.87), we can compute the

payoff P kT,n
ji for each Monte Carlo run n. The payoff P kT,n

ji is given by

P kT,n
ji =

{
BkmT,n
ji , if ρs,ni ≥ ρFi , ∀s ∈ [t, T ]

BkmT,n
ji + EkmT,n

ji , if ρs,ni < ρFi , for a s ∈ [t, T ]
(4.88)

where the payoff if no bail-in occurs (i.e. if ρs,ni ≥ ρFi , ∀s ∈ [t, T ]) can, using the invariant-

liability assumption, be rewritten as

BkmT,n
ji = Bkmt

ji , (4.89)

and the payoff if a bail-in occurs (i.e. if ρs,ni < ρFi , for a s ∈ [t, T ]) can be rewritten as

BkmT,n
ji + EkmT,n

ji = (Bkmτ,n
ji − hkmτa,nji − hkmτb,nji ) + εkmτb,nji

ˆ̃ET,n
i

56

= Bkmτb,n
ji + εkmτb,nji (Ẽτb,n

i +
T∑

s=τm,ni

(Ẽs+1,n
i − Ẽs,n

i )

= Bkmτb
ji + εkmτb,nji (Ẽτb,n

i + ẼT,n
i − Ẽτ,n

i ).57 (4.90)

Let us now explain the composition of the payoff P kT,n
ji in equation 4.88, which we have

just decomposed using equation 4.89 and equation 4.90. Equation 4.89 tells us that the

payoff P kT,n
ji in simulation run n is equal to the notional Bkmt

ji , if no bail-in occurs over

the lifetime of the contract, which is so if a simulated sample path n of the risk-weighted

capital ratio ρs,ni (see equation 4.87) remains at all times during s ∈ [t, T ] above the FLTF

trigger ρFi .

Equation 4.90 tells us that if a bail-in occurs within the lifetime of the contract (i.e.

if ρs,ni < ρFi , for a s ∈ [t, T ]), then the payoff P kT,n
ji of the bail-inable claim is equal to the

time-T value of the bail-inable claim BkmT,n
ji plus the acquired equity claim EkmT,B,n

ji .

Equation 4.90 can be further decomposed as follows. The bail-inable claim BkmT,n
ji

at maturity T equals the haircutted bail-inable claim Bkmτb
ji right after bail-in (using the

invariant-liability assumption). The time-τb bail-inable claim Bkmτb
ji equals the time-t bail-

inable claim (using the invariant-liability assumption) Bkmt
ji minus the haircuts applied

in phase a and b. The value of the time-T equity claim EkmT,n
ji in run n is given by the

equity share εkmτb,nji acquired in phase b times the time-T value of bank i’s equity ˆ̃ET,n
i ,

where ˆ̃ET,n
i denotes the time-T value of a bank’s CET1 equity that is potentially modified

by bail-in. In turn, ˆ̃ET,n
i is derived from its CET1 equity right after bail-in Ẽτb,n

i plus the

sample-path difference of its CET1 equity between time T , ẼT,n
i (not modified by bail-in)

and time τ , Ẽτ,n
i .

We highlight the two implicit assumptions we make when valuing the CET1 equity
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claim Ekm,B,T
ji at the maturity T of the original bail-inable contract Bkm

ji . First, the CET1

equity claim Ekm,B,T
ji can be converted to cash at time T at no liquidation cost (i.e. no

price impact). Second, the new equity holder only wants to convert its CET1 equity claim

Ekm,T
ji to cash at time T rather than later or earlier. Alternatively, you can also value

the payoff of a CET1 equity claim Ekm
ji right after bail-in (τb), if you believe creditors

would want to convert their acquired equity claim Ekmτb
ji to cash right away. In such case,

EmT,B,n
ji in equation 4.88 is replaced with Emτb,n

ji (assuming a zero risk-free rate r) and

equation 4.90 simplifies to

BkmT,n
ji + Ekmτb,n

ji = Bkmτb
ji + εkmτb,nji Ẽτb,n

i (4.91)

If the acquired claim is immediately converted to cash, then the creditor j is no longer

exposed to bank i’s equity fluctuations Ẽs,n
i for s ∈ [τb, T ], which could alter j’s payoff

P kmT
ji . To avoid any exposure to bank i’s equity fluctuations, creditors may prefer to

convert their CET1 equity claim straight away, especially when they believe the bank’s

CET1 equity value Ẽi could plummet after bail-in (t > τb).
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(a) (b)

Figure 4.10: Figure 4.10a illustrates the evolution of bank i = FR12’s asset value Ai according to the
jump process described in equation 4.83 over the course of 30 time steps for N=10 Monte Carlo runs. The
jump-process parameters for this illustration are: σi = 8%, µJi = −2%, σJi = 2 and λi = 50. Plot 4.10b
shows the corresponding evolution of the risk-weighted capital ratio ρi. The value of bail-enable debt is
approximated as the average discounted payoff of N scenarios of the evolution of the risk-weighted (rw)
assets ρi. The payoff in run n is equal to the original payoff (the notional) if the rw capital ratio did not
fall flow the failing-likely-to-fail trigger (FLTF) ρF before the maturity T (where T = 30 here) of the
contract . The triangles, squares and spades represent the first time the risk-weighted capital ratio ρ fell
in a run n below the FLTF trigger ρF , for the case where ρF is set to 7%, 4.5% and 0%, respectively. That
is, these shapes represent the risk-weighted capital ratio at the start τ of the ‘hypothetical bail-in’ in run
n, ρτ,mi . We note that when the FLTF trigger is set to ρF = 0%, it can happen that the risk-weighted
capital ratio at the start of bail-in ρτ,n is negative. This can happen as a consequence of sudden asset
drops (due to exposure losses, for instance). Whereas if the FLTF trigger is set significantly above 0%,
then it is less likely that a drop in the asset value causes the risk-weighted capital ratio to be negative at
the start of bail-in (e.g. the spades are less likely to be below zero). Hence, the level of the FLTF trigger
matters: only if the risk-weighted capital ratio is negative at the start of bail-in do some creditors face
losses in phase a of the ‘fair’ (hypothetical) bail-in, which are typically not compensated with equity
shares. Thus when the FTFT is set lower it is more likely that the payoff is reduced. This in turn affects
the pricing of bail-inable debt.

Hypothetical Bail-In in a Stress Test to Price Bail-In Debt The value V kmt
ji

(see equation 4.78) of a bail-inable debt claim Bkm
ji is approximated by the average payoff

P kT,n
ji (see equation 4.88) over N Monte Carlo runs. That is,

V kmt
ji ≈ exp−r(T−t)

1

N

N∑
n=1

P kT,n
ji (Aτ,ni , AT,ni ). (4.92)

Figure 4.11 and 4.5.2.2 show the sensitivity of the valuation V kmt
ji to the jump process

parameters and to the bail-in parameters, respectively. Figure 4.5.2.2 shows the difference

in valuation V kmt
ji for different priority classes k, given a set of bail-in parameters and

jump process parameters.

In the stress test, we will value V kmt
ji each bail-inable debt contract Bkm

ji of every

bank i ∈ B at every time step t according to equation 4.92. We obtain the relevant
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inputs to price each bail-inable debt contract Bkm
ji at each time t as follows. The initial

conditions for the pricing of bail-inable debt Bkm
ji update at each time step t using the

time-t balance sheet information in the stress test. Specifically, at each time step the

inputs of the jump process and payoff function (i.e. Ati, Ẽ
t
i , ρ

t
i, L

t
i and Bt

i) update. When

a bail-in event occurs in run n a ‘hypothetical bail-in’ is executed at time τm,ni using the

following information: the asset value at bail-in Aτ,ni , the CET1 equity value at bail-in

Ẽτ,n
i , the risk-weighted capital ratio at bail-in ρτ,ni , the time-t composition of bail-inable

debt Bt
i (see equation 4.2), the time-t composition of liabilities Lti, the conversion rates in

the loss absorption phase ∆k
ia, the conversion rate in the recapitalisation phase ∆k

ib and

the recapitalisation target ρTi (see Section 4.5.1.4). The hypothetical bail-in gives us the

value of the haircuts in the loss absorption phase hkmτa,nji and the recapitalisation phase

hkmτb,nji in run n. Together, this allows us to compute the value of bail-inable debt V kmt
ji

(∀t, k ∈ K, i ∈ B).
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Figure 4.11: Shows the sensitivity of the relative price fall of the bail-inable debt value V kmtji (see
equation 4.92) (relative to time t0) to the four jump process (see equation 4.83) parameters: (4.11a) the
jump intensity λi; (4.11b) the jump mean jJi ; (4.11c) the jump volatility σYi ; and (4.11d) the volatility
σ. Several observations are noteworthy. First, the price of bail-inable debt V kmtji falls relatively more as

the FLTF trigger is set lower. The lower the FLTF trigger ρFi is set the higher the chance that bank
i is insolvent at the start of bail-in (i.e. ρFi ). When this is the case, creditors face pure write-downs
in the loss absorption phase when conversion rates are set fairly. The consequence is that the payoff is
lower and hence that the bail-inable debt value falls relatively more. Furthermore, we observe that when
the jump volatility σJi is positive a higher jump intensity λi means that the bail-inable debt value falls
more, since the asset value Ani diverges more across N Monte Carlo runs and hence more asset paths
experience a bail-in. A higher jump volatility also makes a bail-in more likely as paths diverge more,
leading to more paths with a lower payoff, giving a lower bail-inable debt value. The following default
set-up is used. The contour plots are shown for bail-inable debt of bank i = FR12 in priority class k2.
The default jump process parameters are: λi = 50, µJi = −2%, σJi = 2%, σi = 5%. The default bail-in
parameters are: initial shock x = 1 (equal to 2018 EBA stress test scenario), time to maturity m = 7
days, ρTi = ρdatai , and the conversion rates in phase a and b are fair (i.e. ∆k2

ia = ∆̃a and ∆k2
ib = ∆̃b, see

equation 4.40 and 4.41). N = 100 Monte Carlo runs are used to compute the relative price fall at each
point.
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Figure 4.12: Shows the sensitivity of the relative price fall of the bail-inable debt value V kmtji (see
equation 4.92) (relative to time t0) to the shock and bail-in parameters: (4.12a) the initial shock size x;
(4.12b) the time to maturity m; and (4.12c) the excess recapitalisation target above the FLTF trigger
ρTi − ρFi . Several observations are noteworthy. First, the price of bail-inable debt V kmtji falls relatively

more as the FLTF trigger is set lower. The reason is that the lower the FLTF trigger ρFi is set the
higher the chance is that bank i is insolvent at the start of bail-in (i.e. ρFi ). When this is the case,
creditors face pure write-downs in the loss absorption phase when conversion rates are set fairly. The
consequence is that the payoff is lower and hence that the bail-inable debt value falls relatively more.
Furthermore, we observe that more severe initial shocks make the bail-inable debt fall more, because
large initial shocks push the risk-weighted capital ratio ρt1i down making a bail-in more likely. We also
observe that bail-inable contracts with a longer time to maturity m are worth less, because it is more
likely that a bail-in takes place in the elongated time period before maturity T . The default settings
are as follows. The contour plots are shown for bail-inable debt of bank i = FR12 in priority class k2.
The default jump process parameters (see equation 4.83) are: λi = 50, µJi = −2%, σJi = 2%, σi = 5%.
The default bail-in parameters are: initial shock x = 1 (equal to 2018 EBA stress test scenario), time
to maturity maturity m = 7 days, ρTi = ρdatai , and the conversion rates in phase a and b are fair (i.e.
∆k2
ia = ∆̃a and ∆k2

ib = ∆̃b, see equation 4.40 and 4.41). N = 100 Monte Carlo runs are used to compute
the relative price fall at each point.
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Figure 4.13: Shows the sensitivity of the relative price fall of the bail-inable debt V kmtji (see equa-

tion 4.92) (relative to time t0) to the jump volatility σYi for several bail-inable debt priority classes k.
Plot 4.13a, 4.13b, 4.13c, and 4.13d show the the relative price fall of bail-inable debt in priority classes
k2, k3, k4 and k5 respectively. We observe that debt in higher priority classes revalues less easily. It
is logical that the lowest priority classes are the most subject to revaluations. When conversion rates
are fair, these lower priority classes are the first to face pure write-downs to absorb losses, leading to
payoff reductions and hence bail-inable debt reductions. Higher priority classes are less easily subject to
loss absorptions and hence revalue less. Although higher priority classes may be subject to haircuts in
the recapitalisation phase, this does not lead to payoff declines when the conversion rates are fair, since
any haircut in phase b is replaced with an equal claim of bank i’s CET1 equity. The finding that the
relative price fall becomes more pronounced as the priority class becomes lower does not only hold as
a function of the jump volatility σYi and the FLTF ratio ρFi , but it holds generally (i.e. across jump-
and bail-in parameters). The default settings are as follows. The contour plots are shown for bail-inable
debt of bank i = FR12 in priority class k2. The default jump process parameters (see equation 4.83)
are: λi = 50, µJi = −2%, σJi = 2%, σi = 5%. The default bail-in parameters are: initial shock x = 1
(equal to 2018 EBA stress test scenario), time to maturity maturity m = 7 days, ρTi = ρdatai , and the
conversion rates in phase a and b are fair (i.e. ∆k2

ia = ∆̃a and ∆k2
ib = ∆̃b, see equation 4.40 and 4.41).

N = 100 Monte Carlo runs are used to compute the relative price fall at each point.
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4.5.2.3 ‘Runs’ on Bail-Inable Debt

We consider the possibility that bail-inable creditors j run in anticipation of a bail-in.

This is problematic for two reasons. First, runs may cause the bank’s bail-inable debt Bi

to collapse, which makes it less likely that a resolution authority can successfully complete

the loss absorption and liquidation phase of a bail-in (see Section 4.5.1.4 and 4.5.1.4).

Second, runs may trigger a bank to liquidate assets (e.g. by fire selling securities) to repay

the withdrawn bail-inable debt, which could give contagion. Given that the conditions

under which bail-inable creditors run are unknown to resolution authorities, we posit

three plausible run scenarios.

Run Scenarios

Uncertainty A creditor j holding bail-inable debt Bkm
ji attemps to run if bank i’s

risk-weighted capital ratio ρi gets to close to its FLTF ratio ρFi , that is if

ρi < ρRji := ρFi + rji, (4.93)

where rji presents some margin (e.g. 2%) on top of the FLTF trigger ρFi below which a

creditor attempts to run.

Creditors who attempt to run based on condition 4.93 do so irrespective of their bail-

inable debt payoff Pmk
ji and hence regardless of potential losses. A reason why a creditor

may run based on such a crude run condition is that large uncertainty may exists over

the losses it could suffer in a bail-in, as is the case in the current regulatory regime.

Resolution authorities have not provided a precise specification of the bail-in parameters,

which determine the payoff losses. In particular, merely indicative guidelines exists for

the FLTF ratio ρFi (see Section 4.5.1.3), the recapitalisation target ρTi (see Section 4.5.1.4)

and the conversion rates ∆k
i (see Section 4.5.1.4), leaving a wide range of possible values

these bail-in parameters could take. Such uncertainty makes it impossible for creditors

to accurately price bail-inable debt and estimate their losses if a bail-in occurs. Another

factor adding to the uncertainty is the time regulators expect it takes to complete bail-in

(see Section 4.3.3), which would leave creditors paralysed in the process.

Expected Losses A creditor may also attempt to run whenever its expected loss

Λkmt
ji exceeds a certain threshold ψji (e.g. 5%), that is if

Λkmt
ji := 1−

V kmt
ji

Bkmt
ji

> ψji, (4.94)
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where the expected loss Λkmt
ji is given by the relative difference in the valuation V kmt

ji

at time t (see equation 4.92) compared to the notional of bail-inable debt Bkmt
ji time t.

Other than in run condition one (see Section 4.5.2.3), under this run condition creditors

would only attempt to run when the bail-in parameters (i.e. ρFi , ρTi , ∆k
ia and ∆k

ib) are set

such that creditors in priority class k are expected to suffer larger losses and when such

a bail-in becomes likely (i.e. if ρi gets close to ρFi ). Further, creditors in different priority

classes k ∈ K would attempt to run at different times, since the expected loss Λkmt
ji in

each priority class k is different. When fair conversion rates (∆̃a, ∆̃b, see Section 4.5.1.4)

are applied, more junior creditors would typically try to run sooner than more senior

creditors, as the lowest priority classes k are the first in line to absorb losses via pure

write-downs (see Section 4.5.1.4).

Value-at-Risk Losses A creditor may attempt to run whenever its value-at-risk

(VaR) losses Λ̃kmt
ji exceed a certain threshold ψ̃ji (e.g. 5%), that is if

Λ̃kmt
ji := 1−

Ṽ kmt
ji

Bkmt
ji

> ψ̃ji, (4.95)

where the worst-case value Ṽ kmt
ji at time t is approximated by

Ṽ kmt
ji ≈ 1

αN
exp−r(T−t)

N∑
n=1

P kT,n
ji (Aτ,ni , AT,ni )1{P

kT,n
ji ∈ Pα,N}, (4.96)

where Pα,N is the set of the α% lowest payoffs in N Monte Carlo runs. The VaR run

condition is similar to run condition two (see Section 4.5.2.3), except that creditors who

apply this condition are typically more risk-averse or more prudent: they run when their

VaR loss Λ̃kmt
ji rather than their expected loss Λkmt

ji exceeds a certain threshold.

Payment Suspensions and Public Funding Backstop Mechanism While runs in

anticipation of a bail-in are both a credible threat to financial stability and to a successful

recapitalisation in a bail-in, runs during a bail-in are of less concern, in part due to proper

regulatory frameworks that are in place to address liquidity issues. First, the resolution

authority has the power to suspend certain payment obligations for one business day.5859

However, if the resolution authority has not affected bail-in within the suspension day,

the bail-inable debt of the bank may still deteriorate the next day, since obligations

that would have been due during the suspension period will fall due immediately upon

58See: Article 69 of the BRRD.
59The suspension power does not apply to certain instruments, such as eligible deposits and pay-

ments to operating systems, presumably to ensure depositors retain access to cash and financial markets
continue to operate.
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the expiry of the suspension period.60 Second, even if runs take place during a bail-

in, a ‘public funding backstop mechanism’ is available to G-SIBs (FSB (2016a)), which

does not prevent a bail-inable debt B̂i collapse but does ensure that the bank can pay

back withdrawn bail-inable debt without having to resort to liquidating assets, which

potentially gives contagion. The public funding backstop mechanism can be used if a

(recapitalised) firm cannot maintain private sector access to refinance its liabilities as

they fall due. The term of the funding is typically no longer than needed to maintain

continuity of critical functions to achieve resolution, but sufficiently long to allow the

G-SIB in resolution to regain access to private sources of funding (FSB (2016a)). It is

not clear whether D-SIBs and non-SIBs would also enjoy access to the public funding

backstop mechanism. Hence, if they are also bailed in, a run on them during a bail-in

could prove harmful.

Another part of the reason why runs during a bail-in are less of a concern is that

in our model a bail-in is concluded in one time step (see section 4.3.3, as we believe

it ideally should be) making runs less likely. We also consider runs following a bail-in.

However, these only occur in so far as the run conditions (specified in Section 4.5.2.3)

are breached again and do not occur due to fears about asset quality or concerns about

long-term profitability. These concerns should be alleviated by a successful restructuring

of the bank to restore long-term viability (see Section 4.3.3).

When is a Bail-Inable Creditor Able to Run? Even if a bail-inable creditor wants

to run, the bail-inable creditor may not be able to run. A creditor can only run on

the maturity date T of the contract. Therefore, long-term bail-inable debt Bm2k
ji is less

prone to runs than short-term bail-inable debt Bm1k
ji (where the time to maturity m2 is

such that m2 > m1). In light of this, bail-inable debt Bmk
ji only counts towards a bank’s

loss absorbing requirements (see Section 4.5.1.2 on TLAC & MREL, and see specifically

Section B.5.1) if the time to maturity m is greater than or equal to one year. Hence,

creditors that hold bail-inable debt that counts towards the loss absorbing requirements

are only able to run (i.e. not roll over their maturing debt) in anticipation of a bail-in,

if they anticipate bail-in at least a year in advance, making such runs less likely and less

likely harmful.

However, many liabilities that do not count towards the loss absorbing requirements

do count towards bail-inable debt B̂i (see Section 4.5.1.1). Only liabilities that have

a time to maturity smaller than seven days are excluded from bail-inable debt B̂i (see

Section 4.5.1.1). While this inconsistency may serve a purpose (e.g. banks have extra debt

that is in principle bail-inable, which is useful in case the debt that counts towards the

60See: Article 69(2) of the BRRD.
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loss absorbing requirements turns out to be insufficient), this inconsistency also provides

an opportunity for creditors of bail-inable debt that does not count towards the loss

absorbing requirements to run in anticipation of a bail-in, since they are subject to

potential bail-in losses too. These creditors are also more likely to be successful in running

since their contracts mature between seven days and one year.

To conclude, let us formalise when a bail-inable creditor Bkm
ji runs in our model. A

bail-inable creditor runs if the following two conditions hold. First, a bail-inable creditor

attemps to run if the applicable run condition (see Section 4.5.2.3) is satisfied. Second,

running becomes mandatory if the maturity T of the bail-inable contract Bmk
ji coincides

with the current time t in the stress test, which is the case if the time to maturity m is

equal to zero.

4.6 Link to the Literature

Our contribution adds to the nascent network literature on the systemic effects of bail-

in. Klimek et al. (2015) employ an agent-based network model to evaluate the economic

and financial ramifications of bail-in. They compare its performance against other res-

olution mechanisms. Hüser et al. (2017) evaluate the systemic implications of bail-in in

the EU, drawing on a calibrated multi-layered network model to bank debt and equity

cross-holdings. Bernard et al. (2017) investigate the incentives for banks to contribute

to a voluntary bail-in arise from their exposure to credit and price-mediated contagion.

These papers neither investigate the systemic impact of the bail-in design, nor include

the prevailing contagion mechanisms and non-banks in this analysis. Instead, they take

the bail-in design as is and merely explore the repercussions of exposure loss contagion

(Klimek et al. (2015), Hüser et al. (2017) and Bernard et al. (2017)) and overlapping

portfolio contagion (Bernard et al. (2017)).61 By ignoring a set of prevailing interacting

contagion mechanisms, they risk underestimating the systemic footprint of the bail-in

design. Though bail-in has been designed with systemic considerations in mind,62 it is

not enough to assert its suitability on a system-wide scale. As Aymanns et al. (2016)

have shown for the case of the Basel II leverage requirements, well-intended micropruden-

tial regulation may undermine financial resilience when systemic feedbacks are taken into

account. This makes the investigation of the stability implications of the bail-in design

in a networked financial system a necessary gap to fill.

61To the best of our knowledge, other prior papers on bail-in discusss its risks and some of its design
issues (see e.g. Eichengreen & Ruehl (2001), Rutledge et al. (2012), Persaud (2014), Conlon & Cotter
(2014), Sommer (2014), De Spiegeleer et al. (2014), Avgouleas & Goodhart (2016), Schäfer et al. (2016),
Zenios (2016)), but typically do not evaluate the implications of the bail-in design in a networked system.

62See: Directive 2014/59/EU of the European Parliament and of the Council.
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Our system-wide stress testing methodology extends that of Farmer et al. (2020).

This work in turn unites the modelling of heterogeneous institutions, contracts, markets,

constraints and behaviours – which can produce amplifications among multiple conta-

gion mechanisms. Many of these have, individually or in part, though not fully jointly,

been modelled in previous papers (see e.g. Amini et al. (2013), Caccioli et al. (2013,

2014, 2015, 2014), Kok & Montagna (2013) for models overlapping portfolio contagion,

exposure loss contagion and funding contagion). Our novel contributions – in particular

to Farmer et al. (2020), but also to the wider financial contagion literature – are to model

the bail-in design, revaluations of bail-inable debt (we take a similar approach to valuing

bail-inable debt as Pennacchi (2010), Chen et al. (2013) take to price contingent convert-

ibles), multiple maturities (which are necessary to understand the stability of bail-inable

debt), and gradual risk-weighted deleveraging (rather than unbounded deleveraging as

Bookstaber (2012), Duarte & Eisenbach (2015), Greenwood et al. (2015), Cont & Schaan-

ning (2017) allow for).

In terms of enhancing understanding of the bail-in design, we are the first to have

worked out the implications of the two principles for setting debt-to-equity ratios: the

NCWO principle and the preservation-of-hierarchy-of-claims principle. We find that reg-

ulators always have the option to set fair conversion rates whenever they do not have to

resort to the resolution financing fund; and they never have the obligation to set unfair

conversion rates –which are unnessarily detrimental to financial stability – in such cases.

We work out what scope regulators have to set unfair conversion rates, while remaining

compliant with these two principles. We show that debt-to-equity conversion rates may

be set unfairly if the assumed liquidation costs in the hypothetical disorderly liquidation

of the bank are large enough and the debt exclusions from the application of the bail-in

tool are small enough. Conversely, we compute the size of the resolution financing fund

contribution, which is positive whenever these assumed liquidation costs are sufficiently

small and the debt exclusions are sufficiently large. We are also the first, to the best of

our knowledge, to precisely stipulate the TLAC and MREL requirements for banks in

formula form. We also have more precisely specified in formulas the bail-in design than

we have seen in any previous paper – which also contributes to the understanding of the

bail-in design.

4.7 Results

Our aim is to provide evidence addressing the main question of this paper: what are the

systemic implications of the bail-in design? Our three-pronged approach to answer this
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enquiry takes the following logic.

First, we need to examine the joint stability impact of the parameters set by regulators

when designing each individual bank bail-in: the failure threshold, the recapitalisation

target and the debt-to-equity conversion rate. Since these three settings form the principle

bail-in design for a specific bank, we refer to this trio as the ‘primary’ bail-in parameters.

We ask: are there ‘good’ and ‘bad’ sets of primary parameters from the systemic-risk

perspective? And, what is the fragility difference between the ‘good’ and ‘bad’ parame-

ters choice, if any?

This enquiry imparts the overall impact of the primary parameters, but enmeshes

the stability impact of individual primary bail-in parameters. Therefore, we proceed to

disentangle the sway that each primary parameter holds over stability.

Second, to more comprehensively answer our basic research question, we ought to study

supplementary stability effect that the structural (rather than bank-specific) bail-in de-

sign disseminates. In particular we focus on the systemic impact of debt exclusions, loss

absorbing requirements and bail-in ‘uncertainty’. Since these parameters are structural

in their nature (rather than upfront in the individual bail-in design), we refer to these as

the ‘secondary’ bail-in parameters. We then pose the following questions: do secondary

parameters matter on a system-wide scale? If so, to what extent could the choice of sec-

ondary parameters further widen the stability wedge between ‘good’ and ‘bad’ primary

parameters?

This analysis conveys the umbrella impact of the secondary bail-in design. But falls

short of unravelling the system-wide impact of the individual secondary parameters.

Hence, the next plots focus on untangling the power that each of the three secondary

parameters holds to modify stability.

The systemic footprint of the primary and secondary bail-in design is inadequately exam-

ined when the germane mechanisms that endogenously amplify shocks are not taken into

account. Therefore, our third, and final, analysis focuses on appraising the role that each

contagion mechanism plays in enlarging the systemic footprint of the bail-in design. Such

system-wide analysis would not be complete without the inclusion of non-bank holdings

of bail-inable debt.

To assert the robustness of our three main results and their decomposition into parts, we

conduct extensive sensitivity analyses throughout the result section. To be clear, while

our extensive experiments and sensitivity analyses substantiate the qualitative validity
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of our results. They do not underscore the quantitative validity of our findings. For the

latter to gain credence, we require a calibration of our model to more detailed data on

the bail-inable debt holdings and to asset liquidities. All network models in the finan-

cial stability space, including ours, also likely benefit from better informed behaviour of

financial institutions.

The first way, in which we facilitate ease of composition and cross-comparison across

results, is to employ the same set of default parameters across all plots, unless otherwise

stated. The default parameters are summarised in Table 4.1.

It is worthwhile to highlight our purpose of defining a set of ‘good’ and ‘bad’ primary

and secondary bail-in parameters. First, it allows us to do sensitivity analyses by ex-

ploring the impact of deviations from the ‘good’ or ‘bad’ baseline. For the sake of con-

sistency, in all our plots we look at deviations from the ‘good’ primary parameters and

status-quo secondary parameters going forward – unless otherwise indicated. But in Ap-

pendix B.4,which exhibits our extensive senstivity analyses, we also show that our results

stand when deviations from the ‘bad’ baseline case are taken. Second, it allows us to

show the stability impact of either of the extreme, but still plausible, parameters that

regulators could pick. We discover that ‘good’ and ‘bad’ parameters lie at the extreme

ends of the stability spectrum, while staying on the edges of the regulatory range that

they could plausibly attain. Outside these ranges, regulators are not likely to set the

bail-in parameters.

To be sure, we define ‘good’ and ‘bad’ parameters to sharply accentuate how stability

hinges on the bail-in design. We neither intend to prescribe the regulatory application

of ‘good’ bail-in parameters, nor intend to invariably dissuade wielding ‘bad’ parameters.

We solely provide evidence that suggests that stability tends to ameliorate when param-

eters advance in the ‘good’ direction and deteriorate when parameters move in the ‘bad’

direction.

Here we summarise the settings of the ‘good’ and ‘bad’ ‘primary’ and ‘secondary’ bail-in

design:

The triple of good primary parameters is given by:

1. Failure threshold at the minimum capital requirements (i.e. ρF = 4.5%).

2. Recapitalisation target equal to minimum capital requirements plus two times com-

bined regulatory buffers (i.e. ρRT = ρM + 2ρCB).
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Table 4.1: Default settings for the figures in the result section.

Parameter
Category

Default Settings Detailed Default Settings Brief Description & Motivation

Institutions
Banks turned on Our research question focusses on stability in the banking sector.

Non-banks turned on

• Leveraged non-banks vs.
non-leveraged non-banks:
χ = 50%.

• Initial leverage of leveraged
non-banks (E

A
):

λt0i = 30%.

Turned on to take contagious
feedback loops between the banks and
non-banks into account.

We do not know what percentage
of bail-inable debt held
by the non-banks is respectively
held by leveraged vs.
non-leveraged non-banks.
We roughly know leverage of non-banks.

(Sensitivity analysis in result section.)

Contracts

&

Contagion

Mechanisms

Bail-in induced
exposure loss contagion,
Overlapping portfolio
contagion &
Funding Contagion turned on.

We include (‘turn on’) all relevant contagion channels, because modelling a subset
of contagion channels may lead to an underestimation of systemic risk
(see e.g. Kok & Montagna (2013), Caccioli et al. (2013), Farmer et al. (2020)).

(Sensitivity analysis in result section & Appendix.)

Revaluation of bail-inable
debt turned on.

Jump process parameters:

• Volatility σ = 8%;
• Jump volatility σJ = 2%;
• Jump mean σµ = −2%;
• Jump intensity λ = 50.

The jump process parameters
are chosen in line with
Chen et al. (2013), Pennacchi (2010),
who model contingent convertibles (CoCos),
the contractual analogue of a bail-in.

(Sensitivity analysis in main body.)

Loss-concern-induced
halts of rolling over
bail-inable debt
(‘bail-in runs’)

Run scenario:

• Runs based on expected losses
(threshold=10%) turned on;
• Runs based on VaR losses
(threshold=20%) turned off;
• Runs based on ‘uncertainty’
turned off.

In the stress test excercise we pose
three ‘what-if’ scenarios for why creditors
may decide to stop
rolling-over bail-inable debt.

(Sensitivity analysis in result section
& Appendix.)

Constraints
Risk-weighted (rw)
capital ratio

Regulatory stress tests focus on assessing whether the banks’ rw
capital ratios remain strong enough to survive an severely
adverse scenario. We could also easily include the leverage ratio
and liquidity coverage ratio, building forth upon Farmer et al. (2020).

Market
Asset price fall is x = 5%
if 5% of the market
capitalisation has been sold.

This is in line with a standard assumption in the literature,
see e.g. Schnabel & Shin (2004), Cifuentes et al. (2005)
Gai & Kapadia (2010), Caccioli et al. (2014) and Farmer et al. (2020).

(Sensitivity analysis in Farmer et al. (2020), on which this paper builds forth.)

Behaviour

Seek to avoid default:

Meet contractual
obligations (CO) and
regulatory constraints (RC).

• Fulfilling CO takes priority over
complying with RC.
• Pecking orders: liquidate most
liquid assets first (for CO),
liquidate assets with the
highest risk-weight first
(for the rw capital ratio).

Internal rw capital
buffer & target:
• ρBi = ρM + (1− u)ρCBi ,
where u = 50%;
• ρTi = min{ρi + 0.5%, ρTi },
where ρTi = ρi + 1

2
ρCBi .

In line with Farmer et al. (2020)
we assume banks are willing
to use u = 50% of
their combined regulatory buffer ρCBi .
Once they fall below this they will
gradually seek to return to a stable rw
capital ratio target ρTi .

(Sensitivity analysis in
Farmer et al. (2020) on which
this paper builds forth.)

Failure

Method

&

Design

Bail-in
(disorderly liquidation).

Bail-in design:

Good ‘primary’ parameters
&
Status quo
secondary parameters.

Good ‘primary’ parameters:

• Failure threshold ρF = 4.5%;
• Recapitalisation target
ρRTi = ρM + 2ρCBi ;
• Fair conversion rates.

Elected to show the financial stability
impact of a well-designed ‘primary’ bail-in.

(Sensitivity analysis in results section &
Appendix.)

Status Quo ‘secondary’ parameters:

• Debt excluded from bail-in
with a TTM less than 7 days;
• Current loss absorbing requirements;
• ‘Uncertain’ bail-in design.

We take the ‘secondary’ bail-in design in
accordance with
the regulatory status quo.
(Sensitivity analysis in results section &
Appendix.)
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3. Fair conversion rates.

The triple of bad primary parameters is comprised of:

1. Failure threshold at insolvency (i.e. ρF = 0%).

2. Recapitalisation target equal to minimum capital requirements plus a half of the

combined regulatory buffers (i.e. ρRT = ρM + 1
2
ρCB).

3. Unfair conversion rates.

The bad (status quo) secondary parameters are:

1. Debt excluded from bail-in with a time to maturity less than 7 days.

2. Current loss absorbing requirements.

3. Certain bail-in design.

The good secondary parameters are composed of:

1. Debt excluded from bail-in with a time to maturity less than 1 year.

2. Double the current loss absorbing requirements (but short-term debt is excluded

from bail-in, see above item).

3. Uncertain bail-in design.

The second way in which we promote compositional ease and cross-comparison of findings

is to consistently displaying results.

y-axis:

In order to appraise the stability impact of the bail-in design we show a measure of

systemic risk on the y-axis. A suitable systemic risk measure is the average size of the

contagious asset losses (in trillion euros) in the European banking system. To place losses

in perspective the total asset value in the banking system prior to shocks is 22 trillion

173



euros.63 64 The average contagious asset loss is computed across N=50 simulation runs,

where – consistent with Gai & Kapadia (2010), Gai et al. (2011), Caccioli et al. (2014),

Paulin et al. (2018) – in each run the asset holding network and interbank network are

randomly reconstructed. In line with Cont et al. (2010), we intentionally exclude the

impact of the initial stress scenario from this measure – to be able to evaluate the en-

dogenous systemic-risk amplification of the shock rather than the severity of the shock

itself.

x-axes:

Since our paper seeks to study the impact of the bail-in design both in case of idiosyncratic

failures and in the case of system-wide crises, we always display our findings as a function

of each. On the left x-axis, we display the number of idiosyncratic bank failures, by picking

the x = 1, ..., 5 largest banks by asset value to exogenously default.65 On the right x-axis,

we show a system-wide shock in severity ranging from zero to two times the severely

adverse initial scenario applied in the 2018 European Banking Authority stress test.66

Critically, the left and the right subplots of each figure answer two supplementary research

questions. The left plot asks if the bail-in design could induce contagion. Whereas the

right subplot inquires how the bail-in design might either exacerbate or contain earlier

contagious losses incurred in the system-wide tribulation. Aside from this purpose, the x-

axes also enable the sensitivity analysis of results to the shock size and type. It appears

that such sensitivity analysis is key: although we find that our results are robust to

different shocks, the systemic damage is heavily dependent on the adverse shock scenario.

63We note that the ‘average extent of contagion’, a commonly used systemic risk measure that counts
the average fraction of bank failures in a systemic event (Gai & Kapadia (2010), Gai et al. (2011), Caccioli
et al. (2014), Paulin et al. (2018)), is a suitable instability yardstick in financial systems where liquidation
is the preferred mode of bank failure. But, it does not suit well for the systems where bail-in is the norm.
The reason is that we only concern about bail-ins occurring in so far as they impose significant losses on
the system. With some bail-in designs losses might be contained while bail-ins may occur frequently. In
contrast, we invariably worry about disorderly liquidations of SIBs because they almost always impose
large creditor and systemic losses. Hence, counting failures in the case of disorderly liquidations makes
sense, but doing so for bail-ins may give a distorted view of financial distress.

64We also note that measuring systemic risk by the losses as a percentage of the initial CET1 equity
in the banking sector, as for instance Cont & Schaanning (2017, 2019) have done, does not suit a bail-in
study. Bailed-in banks may regain capital even though their bail-in could impose large system-wide
losses.

65An exogenous bank failure is brought about by imposing an asset loss to a bank’s external assets
such that its risk-weighted capital ratio falls f% below the failing-likely-to-fail ratio at which a bank is
bailed in. Given that a bank usually suffers an asset loss that cause it to fall well-below the bail-in
threshold and given that asset losses typically are only fully recognised once the bail-in process is started
(Chennells & Wingfield (2015)), we believe 4% is reasonable.

66See: https://eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2018.
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4.7.1 Stability Impact of the Primary Bail-In Design

Our main research question is: what are the systemic implications of the bail-in design?

Figure 4.14 is the first central plot of our paper in answer to this question.

Figure 4.14: Shows the stability impact of the ‘primary’ bail-in design.

It suggests that financial stability hinges on the primary bail-in design. Figure 4.14 re-

veals how the value of a set of ‘primary’ bail-in parameters – which include the failure

threshold, the recapitalisation target and the debt-to-equity conversion rate – sweepingly

alters systemic risk. A notable exception is the case of smaller SIB failures. Figure B.1

in Appendix B.4 shows that bail-in usually works for idiosyncratic failures of smaller

European SIBs, implying that the elected ‘primary’ parameters do not matter much here

– which is consistent with empirics. For all other cases, however, the primary bail-in

parameters do crucially matter. The left plot in Figure 4.14 exhibits that ill-designed

bail-ins may induce widespread contagion if larger European SIBs idiosyncratically fail.

The right plot in Figure 4.14 finds that bank bail-ins may heftily exacerbate financial

fragility in financial crisis episodes if ‘primary’ parameters are ‘badly’ chosen.

Strikingly, we witness a phase shift from an unstable (orange lines) to stable system

(blue lines), if resolution authorities do choose ‘good’ primary bail-in parameters. For

large idiosyncratic failures, ‘good’ parameters cut down contagion (by up to 3.5 trillion

euros relative to the ‘bad’ case) so as to altogether extinguish it. For system-wide shocks,

‘good’ parameters curb instability rather than exacerbate it as ‘bad’ parameters do (re-

ducing contagious asset losses by down to 1.5 trillion euros). This result qualitatively

holds even if epidemic contagion causes multiple banks to be bailed-in amid pervasive
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distress.

To place the first main result in perspective, it is essential to benchmark the systemic

implications of a ‘good’ and ‘bad’ primary bail-in design against the main alternative

modes of dealing with bank failure: disorderly liquidation and bail-out. Figure B.2 & B.3

in Appendix B.4 confirm regulators’ hopes that bail-in substantially brings down con-

tagion relative to the case where failed banks are disorderly liquidated: a sine qua non

for finding bail-in a preferential failure mode over disorderly liquidation. The reaped

stability benefits of changing the failure method from disorderly liquidation to bail-in

are much less substantial when the primary parameters are ‘badly’ chosen: it achieves a

one-trillion-euro reduction in losses in the case of idiosyncratic failures, rather than the

4.5 trillion euro decline that ‘good’ parameters result in.

Figure B.2 & B.3 in Appendix B.4 also confirm our expectation that bail-out outper-

forms bail-in on the financial stability front, which was anticipated. Bail-outs – though

politically and economically undesirable – recapitalise a bank by inserting cash without

imposing losses on creditors. These are financial benefits that bail-in does not enjoy. It

is worth noting that there are in fact two forms of bail-in. ‘Bail-in disorderly liquidation’

is the form where a bailed-in bank whose loss-absorbing debt proves insufficient to recap-

italise it to meet its authorisation conditions is disorderly liquidated. ‘Bail-in bail-out’

is the form where a bank in such circumstance is further bailed-out instead. As noted

in the default settings, we work under the premise that a bank is disorderly liquidated;

because we are interested in evaluating the systemic success of bail-in in absence of gov-

ernment aid. Unsurprisingly, from a financial stability perspective ‘bail-in bail-out’ gains

the palm. Overall, this result implies that a well-designed bail-in, in particular,67 is far

more efficacious in taming systemic risk than failing a bank disorderly. It is also much

more desirable than a bank bail-out.

We have seen the sway that the primary bail-in parameters hold over stability. And

weighed up the merits of a ‘good’ and ‘bad’ bail-in against other failure modes. But, we

have yet to disentangle how each primary policy parameter bends the system towards

stability or peril. We proceed to focus on the influence that the first primary bail-in

parameter, the failure threshold (also referred to as the FLTF ratio), exerts on systemic

risk.

67More so than an ill-designed bail-in.
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4.7.1.1 Stability Impact of the FLTF Ratio

Figure 4.15 unfolds the stability impact of the failing-likely-to-fail ratio (rho): the closer a

bank’s capital ratio is to insolvency before it is bailed-in, the higher the system’s contagious

losses are.

Figure 4.15: Shows the stability impact of the first ‘primary’ bail-in parameter: the failing-
likely-to-fail ratio (or in other words, the failure threshold).

This finding appear counterintuitive. On the one hand, postponing the bail-in of a bank

until it is nearly insolvent tends to reduce the number of bank failures, as less banks see

their capital ratios fall that far. Even though this may seem beneficial, from the perspec-

tive of systemic risk it is usually not. Even though bail-ins may happen less frequently,

the damage they do is more severe. Banks that are bailed-in only when their capital ratio

falls below a FLTF threshold that is set close to insolvency (i.e. not far off ρ = 0%) are

very likely to be somewhat, or quite possibly severely, insolvent at the start of a bail-in.68

This impairs stability. Recapitalising an insolvent bank leaves the regulators with no

other option (without violating the no-creditors-worse-off principle or the preservation

of hierarchy of claims principle) but to apply pure write-downs to reduce liabilities to

eliminate the insolvency. Only after the insolvency is wiped out, is the regulator in a

position to compensate loss-bearing creditors with equity claims via a positive debt-to-

equity conversion rate. Hence, forced pure write-downs upon insolvent banks impose net

exposure losses on junior creditors. This may galvanise exposure loss contagion.

68That is for two reasons. First, an asset loss is always comes in lumps, entailing that a bank that falls
below the FLTF cut-off due to an asset loss typically plummets significantly rather than slightly below
the threshold. Second, asset losses are frequently fully recognised only when the bail-in has commenced
(Chennells & Wingfield (2015)) – though we do not model this here.
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On the other hand, a bail-in that is launched once a bank is still solvent – which is more

likely the case if the FLTF ratio is set high enough – maintains stability. In such case,

a bank can be recapitalised by applying solely positive debt-to-equity conversion rates.

This implies that creditors do not have to suffer net exposure losses: a haircut is replaced

with an equal equity claim, resulting in no net loss, if conversion rates are selected to be

fair.

Surprisingly, even if conversion rates are ‘unfair’ as is the case under a ‘bad’ bail-in de-

sign – so creditors of solvent banks suffer some losses too (see Figure B.4 in Appendix B.4)

– we observe that an ‘early’ bail-in triumphs a ‘late’ bail-in. Presumably, the reason is

that an early recapitalisation restores a bank to good health, making it less likely to act

in destabilising ways.

Overall, this result implies that regulators who bail-in banks ‘too late’ risk jeopardising

their stability. We will now proceed to unknot the systemic ripple effects of the second

‘primary’ bail-in parameter, the recapitalisation target.

4.7.1.2 Stability Impact of the Recapitalisation Target

Figure 4.16 unveils the stability impact of the second ‘primary’ bail-in parameter, the

recapitalisation target. It shows that contagion tends to be more pronounced, if bailed-in

banks are less strongly recapitalised.
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Figure 4.16: Shows the stability impact of the second ‘primary’ bail-in parameter: the re-
capitalisation target ρRT . The label ρM means that a bank is recapitalised to just meet its
authorisation condition: its minimum capital requirement of ρM = 4.5% of CET1 equity rela-
tive to risk-weighted assets. Whereas the label ρM + ρCB means that a bank is recapitalised
to not only meet its minimum capital requirement ρM , but also (just about) comply with its
combined regulatory capital buffer ρCB.

This result is perhaps surprising. A higher recapitalisation target implies a larger recap-

italisation amount (recall equation 4.24 ). It thus entails more colossal haircuts resulting

in larger losses that afflict creditors. So, one might think that increasing the recapitalisa-

tion target increases the exposure losses to creditors. Yet, this does not have to be true if

the conversation rates are fair – as they are in a well-designed bail-in. In such cases, any

haircut in the recapitalisation phase is replaced with an equal claim of the bank’s equity,

so that no net losses are suffered. Obviously, the creditor is now lower in the insolvency

hierarchy, so that raises its exposure to future – though not current – losses, were it to

hold on to the equity stake rather than convert it to cash. Also, if the creditor were to

sell the equity stake, he may incur liquidation costs. In sum, on account of no net losses

being (directly) suffered when conversion rates are fair, a higher recapitalisation target

does not inflict higher losses on creditors, and therefore does not compromise stability.

One might speculate that this result may not uphold in the face of unfair, rather than

fair, conversion rates. Unfair conversion rates exact pure write-downs, and thus losses,

on most creditors except the most senior ones that were included in the bank recapital-

isation. Hence, a higher recapitalisation target means more severe losses for most, and

higher profits for a very few, presumably wreaking more instability.

Unexpectedly, even when unfair conversion rates are employed as part of a ‘bad’ bail-

in design, we observe that a lower recapitalisation target tends to aggravate instability
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(see Figure B.5 in Appendix B.4). Why is this so? The reason is twofold. First, banks

that are inadequately recapitalised are prone to funding flights. It is widely known that a

market-imposed minimum capital constraint exists (Burrows et al. (2012)): banks whose

capital ratio falls below this threshold typically encounter a halt to the roll-over of their

short-term funding. Funding shocks typically elicit disorderly liquidations to meet the

repayment obligations. So, a stronger recapitalisation minimises the risk that new asset

losses following a bail-in cause the bank to tumble below the market constraint, fortifying

stability.

In our model, specifically, the market constraint comes into force via creditors who

pull back their maturing bail-inable debt whenever its expected loss or VaR loss ex-

ceeds some threshold. This expected-loss threshold is more easily exceeded if the bank

is ill-capitalised, as the expected loss increases in the likelihood of a costly bail-in; or,

if creditors do not have enough information to price bail-inable debt and thus compute

expected or VaR losses. In such cases, the creditors in our model use a rough rule of

thumb to pull back funding if the bank’s capital ratio is very close to its failure threshold.

The second reason why a lower recapitalisation target tends to aggravate instability is

that ill-capitalised banks are susceptible to act in destabilising ways to further bolster up

their capital ratio. Banks typically maintain a stable ‘capital ratio target’ (Adrian & Shin

(2010)). And hold a ‘ buffer’ below which they will take actions to, over time, revert to

their target capital ratio (Cont & Schaanning (2017), FSB (2017), Farmer et al. (2020)).

There are various reasons for this; one of which is the survival instinct to not fall be-

low the market-imposed and regulatory-imposed minimum capital constraints, which can

lead to failure. Another is not to eat into the regulatory capital buffers, which come with

restrictions on the ability to make discretionary dividend and bonus payments (Goodhart

(2013), Farmer et al. (2020)). Though such motives may be individually rational, they

can be destabilising from the perspective of the system as a whole. Delevering to shore

up the risk-weighted capital ratio entails liquidating assets with a non-zero risk weight.69

Liquidating assets depresses the value of common asset holdings, if tradable assets are

sold at discounts. Or, it induces funding shocks, if maturing loans are withdrawn. In-

deed, the risk-weighted delevering in our model provokes common asset holding contagion

and funding contagion. Hence, in this second way too, the by-product of a poor bank

recapitalisation is often system-wide contagion.

69Or issuing new equity. But this is typically not feasible during financial distress (Greenwood et al.
(2015)).
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To sum up, this finding implies that resolution authorities who are bend on safeguarding

stability should richly recapitalise a bank. We next proceed to decipher the system-wide

effects of the third primary bail-in parameter, the debt-to-equity conversion rate.

4.7.1.3 Stability Impact of the Debt-to-Equity Conversion Rate

Figure 4.17 untangles the stability impact of the third primary bail-in parameter, the

debt-to-equity conversion rate. It is shows that fair conversion rates preclude contagion

in the case of idiosyncratic cases of SIB failures and curtail contagion in system-wide

crises, while unfair conversion rates severely deepen financial distress in both circum-

stances.

Figure 4.17: Shows the stability impact of the third ‘primary’ bail-in parameter: the debt-to-
equity conversion rate.

Unsurprisingly, the benchmark case of ‘zero conversion rates’, merely plotted to facilitate

comparison, undermines stability most. This is logical, since zero conversion rates imply

pure write-downs – meaning that each creditor in the bail-in suffers maximal exposure

losses.

Fair conversion rates fare best. This is understandable, given that with a fair conver-

sion rate a loss-bearing creditor in the recapitalisation phase is fully compensated by an

equally sized equity claim. As a result creditors suffer no net losses due to the bail-in

mechanism, thereby ruling out exposure loss contagion and the further contagious ampli-
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fications that may ensue.70 This does not mean, however, that a fair conversion rate can

fully pre-empt exposure loss contagion. If a bank is insolvent at the onset of bail-in, then

the regulator usually has no choice – without violating the conversion rate principles —

but to impose pure write-downs on the most junior creditors until the bank is taken out

of insolvency.

Unfair conversion rates fare worse than fair conversion rates, but – perhaps needless to

say – better than zero conversion rates. Why are unfair rates a detriment to financial

stability, while fair rates are not? On account of the unfair distribution of losses that

unfair rates impinge on creditors, some debtors face excessive losses, while other reap

excessive profits. Junior creditors are lined-up to face pure write-downs – whereas under

fair rates they would have been compensated enduring no net loss. While senior cred-

itors are orchestrated to benefit; they acquire a larger equity claim than under the fair

scheme, and so make a net profit. Imposing excessive losses on junior creditors threatens

to them to transgress their constraints – be it internal, regulatory, or contractual. This is

especially probable in a financial crisis, in which institutions typically drift close to their

constraints (Aymanns et al. (2018)). The accrual of net profits to a small group of the

most senior creditors is not only unfair, but also proves inconsequential with respect to

ameliorating stability. Most it can do is to move senior creditors further away from their

constraints, which is a good consequence. However, that evidently does not outweigh

the cost of bringing the rest of the creditors closer to their constraints – as we observe.

Institutions that encroach their constraints or even breach them are prone to enfeeble

stability by acting in contagious manners. For all these reasons, fair conversion rates –

which impose no more than the minimum necessary net losses to wipe out insolvency –

outperform unfair conversion rates on the financial stability front.

The first central result in this paper (see Figure 4.14) showed that stability hinges on the

triple of primary bail-in parameters, but did not reveal the role herein of the conversion

rates. In this plot, we disentangled the stability impact of the third and final primary

bail-in parameter, the debt-to-equity conversion rate. To more exhaustively answer our

basic research question concerning the systemic implications of the bail-in design, it is

necessary to understand how resilience may be further pivoted by the secondary, more

structural, bail-in parameters. This brings us to our second central result in this paper.

70Obviously, equity claims can revalue after bail-in, risking losses at a later stage if the equity claim
is not converted to cash.
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4.7.2 Stability Impact of the Secondary Bail-In Design

Figure 4.18 displays the financial stability impact of also tuning the secondary bail-in

design on top of calibrating the primary design. Comparing the case where both primary

and secondary parameters are ‘well’ or ‘ill’ calibrated (this figure) the case where solely

the primary parameters are suitably or ill-suitably calibrated (the first main result, Fig-

ure 4.14) we observe that the selection of secondary parameters may significantly stretch

the wedge between ‘good’ and ‘bad’ primary parameters.

Figure 4.18: Shows the stability impact of also calibrating the ‘secondary’ bail-in design on
top of tuning the ‘primary’ bail-in design.

Interestingly, while even ‘good’ primary bail-in parameters were not able to fully contain

contagion during system-wide distress (see Figure 4.14), adding ‘good’ secondary param-

eters achieves to suppres contagion to acceptable levels. On the other hand, tallying ‘bad’

secondary parameters to already ‘bad’ primary parameters, aggravates financial instabil-

ity across shock types (see Figure 4.14).

This result implies that regulators who suitably calibrate secondary parameters stand

strong to tame systemic risk – even under severely adverse systemic scenarios. On the

other hand, regulators who do not, risk structurally eroding resilience. Though this result

elegantly captures the joint impact of the secondary parameters, it shrouds the part each

of the three ‘secondary’ parameters plays in amending stability. The aim of the next

results is to unveil this.
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4.7.2.1 Stability Impact the Loss Absorbing Requirements & Debt Exclu-
sions from Bail-In

Figure 4.19 uncovers the stability impact of debt exclusions from bail-in. It shows that

systemic risk drops sharply if debt with a time to maturity (TTM) less than a year is

excluded from bail-in.

Figure 4.19: Shows the stability impact of two of the ‘secondary’ bail-in parameters: debt
exclusions and loss absorbing requirements.

Remarkably, excluding short-term debt (orange line) succeeds in subduing contagion to

(more) acceptable levels in periods of system-wide turmoil. Whereas even good ‘primary’

parameters were not able to proficiently subjugate contagion in such cases (see the first

central plot, Figure 4.14).

This result run contrary to expectations. Excluding debt from the application of the

bail-in tool reduces the stack of bail-inable debt that regulators have at their disposal to

absorb losses and recapitalise a failing bank. This makes it more likely that a bailed-in

bank cannot be recapitalised to meet its authorisation conditions (i.e. its minimum cap-

ital requirements) and must harmfully be disorderly liquidated (our default assumption)

or bailed-out instead.

On the other hand, excluding short-term debt should not dent stability, if regulators

adequately calibrated the ‘loss absorbing requirements’ – which are meant to ensure that

banks have sufficient ‘loss absorbing capacity’. According to current regulatory judge-

ment, banks that comply with their loss absorption requirements should already hold

enough loss-absorbing debt. So, including short-term debt in bail-in would be superflu-

ous. (We recall that only debt with a TTM greater than one year counts towards the loss

absorbing requirements, so excluding short-term debt does not alter the loss absorbing
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requirements.) So, provided that regulators have calibrated the requisite loss absorbing

requirements well, excluding short-term debt should at least do no harm.

Why do we then observe that excluding short-term debt actually does good? The

explanation is that roll-over risk of bail-inable debt falls sharply, if only long-term bail-

inable debt remains – this is understandable. Short-term creditors will feel secure to keep

lending to a bank, even if it is on the brink of a bail-in, if they know that their contracts

are by definition excluded from bail-in losses. Indeed, the creditors in our model only

halt funding to bank’s whose bail-inable debt is expected to suffer grave losses, and these

creditors never withdraw funding of non-bail-inable debt purely out of loss concerns. Ex-

cluding short-term debt not only makes bail-inable debt collapses in short anticipation

of an impending bail-in impossible, but also eliminates the consequent risk of disorderly

liquidations of assets (at fire sale prices) to meet the obligation to pay back the with-

drawn bail-inable debt. Unfortunately, under the BRRD that governs EU bail-ins, only

debt with a TTM less than 7 day is excluded – corresponding to the worse-off blue line

in Figure 4.19 .

Figure 4.19 further demonstrates that if the excluded short-term bail-inable debt (with

a TTM between 7 days and 1 year) is accompanied by an equal increase in long-term

bail-inable debt with a TTM greater than a year, then resilience further upgrades. Such

a shift can be achieved by increasing banks’ loss absorbing requirements, since only long-

term bail-inable debt with a TTM greater than a year counts towards the requirements,

as we previously noted. Hence, our result suggests that increasing the loss absorbing

requirements significantly shrinks systemic risk.

This finding belies regulatory judgement that the current loss absorbing requirements

are sufficiently high. Our finding highlights the merits of increased loss absorbing require-

ments in terms of notching up banks’ bail-inable debt pile; which reduces both the risk of

necessitated alternative means of dealing with failure and the risk that an ill-recapitalised

bank will be prone to funding flights and engage in destabilising actions to prop up its

capital ratio (e.g. delevering). Our finding also bespeaks a more structural point – which

bears no reference to bail-in in particular. Increasing the loss absorbing requirements

structurally shifts the maturity profile of banks’ liabilities towards more stable long-term

funding. Banks who issue longer-term debt and invest in longer-term debt issued by other

banks are both less vulnerable to funding shocks and less infectious in imposing funding

shocks on others. The reason is that long-term debt cannot easily be withdrawn.

The two findings based in Figure 4.19 imply that regulators can significantly subdue

contagion by excluding short-term debt from bail-in and by increasing the loss absorb-
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ing requirements. And that tuning these secondary parameters well is especially critical

in system-wide crisis episodes: in such cases, as our first main result (see Figure 4.14)

showed, even good primary parameters are not able to curb contagion to tolerable levels.

Having unmasked the stability contribution of two of the ‘secondary’ parameters, we

proceed to examine how the third and last ‘secondary’ parameter turns stability. It

proved most efficient to do this as part of our third central result – which focuses on

studying the role of each contagion mechanism and bail-inable debt holder in modifying

the systemic footprint of the ‘primary’ and ‘secondary’ bail-in design.

4.7.3 Contagious Amplifications of the Bail-in Design

Our third and final main figure (Figure 4.20) attests that it is imperative to take multiple

contagion mechanisms and non-bank holdings of bail-inable debt into account to avoid

underestimating the system-wide implications of a bail-in design. To reduce our results to

essentials, we show this result here for the default settings of ‘good’ primary parameters

and a system-wide shock – for now not tuning secondary parameters. (In Appendix B.4

we also show this result holds for a ‘bad’ bail-in design and idiosyncratic shocks.)

Figure 4.20: Shows the contagious amplifications of the primary bail-in design – as a function
of system-wide shock.

Our result shows that merely considering the exposure loss contagion that could ensue

from bail-ins – as Hüser et al. (2017) have done – would falsely suggest the EU financial

system becomes resilient to severe system-wide shocks with the introduction of bail-ins to

deal with failures of SIBs. Instead, if, rightly, four more prevailing contagion mechanisms
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are taken into account, then stability may be compromised for severe enough shocks

– especially with a poor primary bail-in design (see Figure B.6 in Appendix B.4). The

reason is that contagion mechanisms may mutually amplify each other, as we next explain.

Exposure Loss Contagion & Overlapping Portfolio Contagion

Exposure loss contagion amplifies overlapping portfolio contagion, and visa versa. Expo-

sure losses incurred in a bail-in may prompt institutions to delever to strengthen their

capital ratios. To delever, institutions may liquidate tradable assets at fire-sale prices.

This will lead other institutions that hold these assets in common to suffer mark-to-

market losses. In turn, this can trigger these institutions to take destabilising actions,

such as embarking on further fire sales. In our model, institutions will delever when their

capital ratio falls below their safety buffer (Farmer et al. (2020)). When this happens,

they will seek to gradually return to a more prudent capital ratio target.

On the flipside, overlapping portfolio contagion can also foster exposure loss conta-

gion. Mark-to-market losses may shift a bank’s capital ratio below its failure threshold.

The consequent bail-in could impose exposure losses.

Figure B.6 in Appendix B.4 shows that the two-sided amplification between exposure

loss contagion and overlapping portfolio contagion is substantially magnified if primary

bail-in parameters are ill-chosen. It is not difficult to understand why: exposure losses

tend to be more extreme when conversion rates are ‘unfair’. Because in such a case, most

junior creditors who bear haircuts will not be compensated by equity claims, making

their net exposure loss more grievous.

Fragility also easily escalates when the bail-in recapitalisation target is low, as it is

under the ‘bad’ primary settings. Following a weak recapitalisation, banks easily suffer

further losses that shift their capital ratio below their safety buffer, triggering delevering

via for instance overlapping portfolio contagion.

Low failure thresholds, under an ill-designed primary bail-in, further reinforce the am-

plification between exposure loss contagion and overlapping portfolio contagion. This is

because more banks are insolvent at the start of bail-in when thresholds are low. Raising

a bank out of insolvency requires applying pure write-downs. This troubles counterpar-

ties with larger exposure losses, which could in turn more sharply stir up overlapping

portfolio contagion.

Exposure Loss Contagion, Funding Contagion & Overlapping Portfolio Con-

tagion
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Exposure loss contagion, funding contagion and overlapping portfolio contagion are mu-

tually amplifying. Exposure losses afflicted in a bail-in may motivate a bank to delever to

a stronger capital ratio, as just discussed. An alternative way to delevering by liquidating

tradable assets is to withdraw maturing loans. The counterparties of the bank are then

obliged to repay the notional of the loan. If they do not have a thick enough cash buffer

to do so, they are forced to disorderly liquidate assets to raise cash. If they choose to halt

rolling over loans to their counterparties, funding contagion arises. If instead, they opt

to fire sell assets, overlapping portfolio contagion may emerge. So, bail-ins can induce

funding contagion and overlapping portfolio contagion in sequel.

In the other direction, a system-wide shock may spur funding and overlapping port-

folio contagion, which may in turn precipitate bail-ins that could induce exposure losses.

In our model, which builds forth upon Farmer et al. (2020), banks maintain a ‘peck-

ing order’ that determines which type of assets they will liquidate first. In line with the

literature (e.g. Halaj (2018)), we assume that they start with liquidating assets with the

lowest liquidation cost. Hence, the banks in our model will opt to liquidate maturing

loans before they undertake to liquidate tradable assets.

Revaluations of Bail-inable Debt & Interaction with Other Contagion Mech-

anisms

The bail-inable debt value plummets if two scenarios are jointly true. One, a bail-in

becomes more likely. Two, the debt pay-off in a bail-in is appreciably lower in a bail-in

than in the absence of one. This is logical, since the value of a contract is given by the

discounted value of future pay-offs. If many future pay-offs are low, the contract’s value

will reflect it.

The set of circumstances under which these two scenarios are simultaneously true

determines when one should expect sharp revaluations. For the first scenario, a bail-in

becomes more likely if a bank’s capital ratio falls closer to the failure threshold. Hence,

the mixture of overlapping portfolio contagion, funding contagion and exposure loss con-

tagion, which may pull down a bank’s capital ratio, accelerates declines in the bail-inable

debt value. For the second scenario, the bail-in pay-off dwindles if conversion rates are

unfair and the bank is bailed-in late – since these ‘primary’ bail-in settings inflict ex-

posure losses destitute of compensation. Hence, ‘bad’ primary bail-in parameters could

intensify destabilising spirals – wherein debt revaluations prompt more contagion, foster

more debt revaluations and so on. Therefore, ‘bad’ primary parameters tend to ignite

mutual amplifications among contagion mechanisms.

We have explained how the three forms of contagion can stimulate bail-inable debt

prices to fall. In reverse, declines in the bail-inable debt value lead to mark-to-market
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losses. This could precipitate bail-ins and delevering, which in turn bring about the

aforementioned forms of contagion.

Revaluations of Bail-inable Debt & Runs

Bail-inable debt revaluations may spur creditors to stop rolling over bail-inable debt, im-

posing destablising funding shocks.

A revaluation of a bail-inable debt contract not only imposes mark-to-mark losses

on banks and non-banks who hold that contract, but also increases the expected loss –

equal to the notional minus the value of the contract – and VaR ‘worst-case’ loss on that

contract. As the expected loss and VaR loss on a bail-inable debt contract increases, a

creditor is more inclined to withdraw this debt if it matures to reduce exposure to the

loss-heavy investment.

In our model funding is cut when the expected loss or VaR loss exceeds a certain

threshold. This inflicts a funding shock on the bank that issued the bail-inable debt.

In turn, the shock may prompt the bank to undertake costly asset liquidations to fulfil

the obligation to repay the contract; thereby kindling overlapping portfolio contagion or

funding contagion, for instance.

Hence, sharp declines in the bail-inable debt values (brought about by widespread

contagion) may precipitate destructive bail-inable debt collapses – caused by creditors

who do not roll-over this debt for fear of losing money. A bail-inable debt collapse not only

spurs disorderly asset liquidations, but also makes it harder to successfully recapitalise

the bank would it need to be bailed-in. According to Avgouleas & Goodhart (2015) the

risk of bail-inable debt collapses is one of the most salient reasons why bailing-in banks

in system-wide crises might destroy rather than ameliorate stability.

Figure 4.21 shows that he is right. We observe that contagious asset losses in system-wide

crises fall dramatically if the ‘secondary’ bail-in design is also well-tuned, in addition to

the calibration of the ‘primary’ design (shown above in Figure 4.14). This drop can be

explained by collapse-prone short-term debt that is excluded from bail-in and replaced

with collapse-proof long-term bail-inable debt, which reduces the risk of evaporating bail-

inable debt piles. More generally, suitably tuning the ‘secondary’ bail-in design, on top of

the ‘primary’ design, strikingly shrinks contagious amplifications among contagion chan-

nels.
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Figure 4.21: Shows the contagious amplifications of fine-tuning the ‘secondary’ bail-in design,
in addition to the ‘primary’ design – as a function of the system-wide shock.

Uncertain Bail-In Design

We now revert to our endeavour of examining how the third and last ‘secondary’ parame-

ter – bail-in uncertainty – influences stability. A funding withdrawal of a bail-inable debt

contracts inspired by increases in the contract’s expected loss and VaR loss require the

creditor to be able to price bail-inable debt. This is only possible if the regulator has a

priori precisely proclaimed the primary bail-in parameters that will apply in a prospec-

tive bail-in of the bank who has issued the bail-inable debt contract. In the absence

of such information – and instead in the presence of loose avowals about the ranges of

these parameters – pricing bail-inable debt with any accuracy, and thus estimating loss

exposures becomes impossible. Therefore, creditors instead might resort to crude mea-

sures to decide when to stop rolling over short-term bail-inable debt – such as a cut-off

capital ratio, below which bail-inable funding is retracted, as is the case in our model.

If substantial ‘uncertainty’ exists about the primary bail-in design, adverse shocks may

not only induce an indiscriminate collapse of bail-inable debt across priority classes, ir-

respective of the prospective losses inflicted in each priority class. It can also provoke

bail-ins by inducing a downward spiral of capital ratios brought about by calamitous

asset liquidations to meet the ‘uncertainty’ funding shocks. If uncertainty in the bail-in

design prevents creditors from seeing that regulators will in fact apply ‘good’ primary

parameters (making prospective losses low), such indiscriminate runs would be not only

unwarranted, but also unnecessarily cataclysmic.

Non-banks

This figure (Figure 4.20) illustrates that ignoring non-bank holdings of bail-inable debt
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may lead one to materially underestimate the systemic impact of bail-ins on the banking

system.71 The reason is that non-banks hold the overwhelming majority of bail-inable

debt. Thereby non-banks are susceptible to contagiously feedback onto the banking sys-

tem any bail-inable debt losses thrust upon them. Non-banks hold much bail-inable debt,

because the loss absorbing requirements only count debt that is not cross-held by banks.

Hence, all the eligible debt that is short of a bank’s loss absorbing requirements is neces-

sarily held by non-banks. Only eligible debt in excess of the requirements is potentially

cross-held by banks.

Given that a substantial amount of bail-inable debt is held by non-banks, any ex-

posure loss resulting from a bail-in tends to be disproportionately felt by non-banks.

Also, since debt must be long-term to count towards the loss absorbing requirements,

non-banks are particularly exposed to vicious revaluations of bail-inable debt – especially

when primary bail-in parameters are ‘bad’ (see Figure B.6 in Appendix B.4). Debt con-

tracts with longer maturities are more prone to revaluations, since, other things equal, a

bail-in is more likely to occur over a longer than shorter horizon.

Exposure losses and mark-to-market revaluation losses in the non-banking sector can ei-

ther befall leveraged non-banks or non-leveraged non-banks.

Leveraged non-banks, impaired by exposure losses and mark-to-market revaluation

losses, are likely to delever to, for instance, meet margin requirements. In line with Cont

& Schaanning (2017), these leveraged institutions in our model delever to return to target

whenever their leverage falls to 90% of their leverage target. The consequent disorderly

liquidation of tradable assets by leveraged non-banks regresses to hurt banks that hold

these assets in common, potentially setting off pervasive contagion in the banking sys-

tem. As non-banks become more highly leveraged they grow more susceptible to forced

delevering. Hence, non-bank holdings of bail-inable debt are a more pernicious threat to

banking sector stability if non-banks are highly leveraged. We show this in Figure B.7 in

Appendix B.4.

On the other hand, most non-leveraged non-banks impaired by exposure and mark-to-

marked losses are unlikely to bounce back losses onto the banking sector, which improves

resilience. This gain in stability, however, comes with a cost: real-economy individu-

als will tend to shoulder the losses of bank bail-ins. The reason is that non-leveraged

non-banks are institutions such as pension funds and insurance companies, in which real

71Note that our measure of systemic risk estimates the contagion losses that befall the banking system.
Purposefully, it does not measure contagious losses afflicting the non-banking sector. It solely aims
to measure to what extent contagious feedback loops between banks and non-banks could excerbate
banking-sector losses.
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economy individuals have invested their savings and protected themselves against casu-

alties.

Hence, as a larger percentage of the bail-inable debt held by the non-banking sector

is possessed by non-leveraged non-banks, systemic risk tends to fall (see Figure B.8 in

Appendix B.4). However, the repellent downside is that real-economy individuals will

suffer more losses (see Figure B.9 in Appendix B.4). Aside from the consideration that

imposing losses on taxpayers may be undesirable, it may also be politically difficult to

pull off – as previous experience has shown (WBG (2017)).

The result on non-banks implies the following. While regulators evidently believe that

discouraging cross-holdings of bail-inable debt by banks improves stability – as is clear

from the design of the loss absorbing requirements – they may have deluded themselves:

it merely pushes bail-inable debt holdings out into the non-banking system, but does not

shield the banking system from bail-in-induced contagion. It begs the question: who can

best bear the bail-in losses?

4.8 Link to the Literature

Our contribution adds to the nascent network literature on the systemic effects of bail-in.

Klimek et al. (2015) employ an agent-based network model to evaluate the economic and

financial ramifications of bail-in. They compare its performance against other resolution

mechanisms. Hüser et al. (2017) evaluate the systemic implications of bail-in in the EU,

drawing on a calibrated multi-layered network model to bank debt and equity cross-

holdings. These papers neither investigate the systemic impact of the bail-in design, nor

include multiple contagion mechanisms and non-banks in this analysis. Instead, they take

the bail-in design as is and merely explore the repercussions of exposure loss contagion.

By ignoring multiple interaction contagion mechanisms, they risk underestimating the

systemic footprint of the bail-in design. Though bail-in has been designed with systemic

considerations in mind,72 it is not enough to assert its suitability on a system-wide scale.

As Aymanns et al. (2016) have shown for the case of the Basel II leverage requirements,

well-intended microprudential regulation may undermine financial resilience when sys-

temic feedbacks are taken into account. This makes the investigation of the stability

implications of the bail-in design in a networked financial system a necessary gap to fill.

Our system-wide stress testing methodology extends that of Farmer et al. (2020).

This work in turn unites the modelling of heterogeneous institutions, contracts, markets,

constraints and behaviours – which can produce amplifications among multiple conta-

gion mechanisms. Many of these have, individually or in part, though not fully jointly,

72See: Directive 2014/59/EU of the European Parliament and of the Council.
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been modelled in previous papers (see e.g. Amini et al. (2013), Caccioli et al. (2013,

2014, 2015, 2014), Kok & Montagna (2013) for models overlapping portfolio contagion,

exposure loss contagion and funding contagion). Our novel contributions – in particular

to Farmer et al. (2020), but also to the wider financial contagion literature – are to model

the bail-in design, revaluations of bail-inable debt (we take a similar approach to valuing

bail-inable debt as Pennacchi (2010), Chen et al. (2013) take to price contingent convert-

ibles), multiple maturities (which are necessary to understand the stability of bail-inable

debt), and gradual risk-weighted deleveraging (rather than unbounded deleveraging as

Bookstaber (2012), Duarte & Eisenbach (2015), Greenwood et al. (2015), Cont & Schaan-

ning (2017) allow for).

In terms of enhancing understanding of the bail-in design, we are the first to have

worked out the implications of the two principles for setting debt-to-equity ratios: the

NCWO principle and the preservation-of-hierarchy-of-claims principle. We find that reg-

ulators always have the option to set fair conversion rates whenever they do not have to

resort to the resolution financing fund; and they never have the obligation to set unfair

conversion rates –which are unnessarily detrimental to financial stability – in such cases.

We work out what scope regulators have to set unfair conversion rates, while remaining

compliant with these two principles. We show that debt-to-equity conversion rates may

be set unfairly if the assumed liquidation costs in the hypothetical disorderly liquidation

of the bank are large enough and the debt exclusions from the application of the bail-in

tool are small enough. Conversely, we compute the size of the resolution financing fund

contribution, which is positive whenever these assumed liquidation costs are sufficiently

small and the debt exclusions are sufficiently large. We are also the first, to the best of

our knowledge, to precisely stipulate the TLAC and MREL requirements for banks in

formula form. We also have more precisely specified in formulas the bail-in design than

we have seen in any previous paper – which also contributes to the understanding of the

bail-in design.

4.9 Discussion and Policy Implications

The major contribution of this paper is the examination of the systemic implications of

the bail-in design in our networked financial system. We have developed a multi-layered

network model of the European financial system, which extends the one in Farmer et al.

(2020). The model also captures the systemic footprint of the ‘primary’ and ‘secondary’

bail-in design parameters by jointly including the chief endogenous amplification mecha-

nisms: exposure loss contagion, overlapping portfolio contagion, funding contagion, bail-
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inable debt revaluations, and bail-inable debt runs.

Our results shed light onto the controversy whether bail-in is feasible in epochs of system-

wide financial tumult and incidents of major SIB failures without further exacerbation

of financial distress. Importantly, it enquired how the viability of bail-ins in such cases

might depend, if at all, on the elected bail-in design.

We discovered that financial stability hinges on the selected bail-in policy parameters.

Specifically, we showed that ‘good’ primary bail-in parameters altogether avert contagion

for any idiosyncratic SIB failure, while ‘bad’ parameters induce significant contagious

asset losses (on the order of multiple trillions) if larger European SIBs fail. Smaller

European SIB failures are not powerful enough to bring about sweeping contagion, re-

gardless of the bail-in design – consistent with experience (WBG (2017)). In cases of dire

system-wide trouble, ‘good’ primary parameters accomplish to restrain contagious losses

(extinction is usually not possible, since even in the absence of bail-ins do we observe

institutions in turmoil that act in systemically unsettling ways), whereas ‘bad’ parame-

ters substantially exacerbate distress. Supplementing the calibration of the bail-in design

with ‘secondary’ bail-in parameters widens the stability wedge between a fit and an unfit

primary bail-in design. ‘Good’ secondary bail-in parameters further improve resilience

and ‘bad’ ones further deteriorate it.

Our results suggest that a crisis-proof bail-in design involves the following ‘good’ primary

parameters: a timely bail-in, strong recapitalisations, and fair conversion rates. It is

also reinforced by a trio of ‘good’ secondary policy settings: short-term (< 1 year) debt

exclusions from the application of the bail-in tool, elevated loss absorption requirements,

and certainty about the primary bail-in design. In contrast, a crisis-unfit bail-in design

encompasses the following ‘bad’ bail-in settings: late bail-ins, weaker recapitalisations,

unfair conversion rates, short-term (7 days < maturity < 1 year) debt inclusions, mod-

erate loss absorption requirements and uncertainty in the bail-in design.

These qualitative findings are robust to extensive sensitivity analysis. Though, quantita-

tive estimates would benefit from a more detailed network calibration, including to the

cross-holdings of bail-inable debt. (Our current calibration simply deploys the balance

sheet information on debt holdings in each priority class for European banks. It then re-

constructs, instead of intrinsically ‘knowing’, bail-inable debt cross-holdings among banks

and non-banks). A future study that amalgamates such calibration would quantitatively
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strengthen our qualitatively robust results.

Our evidence fortunately suggests that the pivot for stability is in the hands of policy-

makers. It also suggests, however, that the current policy parameters might be in the

regime of instability. Towards this end, we briefly review the regulatory policy guidelines

for each of the ‘primary’ and ‘secondary’ bail-in parameters. We then infer their systemic

implications based on our findings.

Failure threshold

The key condition that must be fulfilled for the bank to be bailed-in is that it is deemed

failing or likely to fail (FLTF).73 Under Basel III rules, these guidelines imply that rel-

evant authorities should intervene to resolve a bank whenever its risk-weighted capital

ratio falls below the minimum requirement of 4.5% (Avgouleas & Goodhart (2015)). It is

not clear that the European resolution authority will uphold this ‘good’ FLTF threshold.

According to Avgouleas & Goodhart (2015), it is in the (short-term) interest of the stake-

holders (bank, resolution authority, creditors, etc.) to act too late. The US authorities,

according to New York Federal Reserve Staff (NY FED), will even explicitly disregard

the Basel III requirement of an ‘early’ bail-in. The FED staff states that “[t]he resolution

authority in the US model is ‘slow’ in the sense that it will shut down and resolve a

firm only once its (book) equity capital is exhausted (McAndrews et al. (2014)).” Their

preference corresponds to a ‘bad’ risk-weighted failure threshold of 0%. Given that our

results unveil that regulators who bail-in banks ‘too late’ unnecessarily risk compromising

resilience, the stability implications of such a ‘bad’ policy choice could prove dismal.

Recapitalisation target

A bank should be recapitalised by a sufficient amount such that it complies with the con-

ditions for authorisation and sustains or regains market confidence.74 This means that

a recapitalisation must at least lift the bank above the minimum capital ratio of 4.5%

of core tier I equity over risk-weighted assets.75 Technical guidelines leave it debatable,

however, whether recapitalisation just above the minimum requirements is enough; or,

whether a bank should be further recapitalised to either a ratio in line with the average

of its peers (SRB (2017)), or to a ratio that also (partially) meets its regulatory buffer

standards – which sit on top of its capital requirements (Farmer et al. (2020)). Even

73See: Article 33(1) of the BRRD.
74See: Article 43(2)a of the BRRD.
75And 8% of Tier I capital relative to risk-weighted assets.
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though our results show that a strong recapitalisation strengthens stability, it is far from

obvious that resolution authorities will elect this option given that a higher (‘good’) recap-

italisation is affected by imposing heavier haircuts on creditors – which, notwithstanding

that creditors are typically compensated by equity claims, may be politically inexpedient.

Debt-to-equity conversion rates

Article 50 of the BRRD sets out the principles for the debt-to-equity conversion ra-

tio that regulators should use when determining how to set the conversion rate. The

debt-to-equity conversion rate specifies how many shares a creditor of bank receives per

unit haircut to the principle amount of claim. Article 50 tasks the European Banking

Authority (EBA) with the duty to provide guidelines regarding how creditors may be ap-

propriately compensated by means of the conversion rate. The EBA’s guideline provides

two principles for setting the conversion rate in each priority class: the no-creditor-worse-

off (NCWO) principle and the preservation-of-hierarchy-of-claims (PHC) principle (EBA

(2017c)). Based on these two principles it is not evident that the resolution authority

will elect ‘fair’ conversion rates. Instead, it is plausible that regulators deviate from the

‘fair’ rates to apply ‘unfair’ rates in order to attempt to meet NCWO principle, which

we showed poses a threat to stability.76

Debt exclusions

Certain liabilities that would be part of normal insolvency proceedings are excluded from

the application of the bail-in tool either a priori or on an ad-hoc basis.7778 Our results

have suggested that including in bail-in debt with a time to maturity between seven days

and one year – as is the case in the current regulatory approach – is a ‘bad’ idea. It

undercuts stability compared with the case where debt with such maturities is a pri-

ori excluded from bail-in. Inclusion makes the funding pile of bail-inable debt unstable.

Short-term bail-inable debt is prone collapse, because creditors might avoid debt expo-

sures to bank impending to be bailed-in. Such a debt collapse renders a successful bail-in

recapitalisation infeasible and provokes disorderly asset liquidations. We have shown that

76We recall that ‘fair’ conversion rates are such that, at the point of conversion, a creditor of bank
receives an equal amount of principle amount of claim per unit haircut in the bail-in recapitalisation
phase. Contingent convertibles (CoCos) with such a conversion rate are also called ‘fair’ (Chen et al.
(2013)). Conversion rates are called ‘unfair’ when they deviate from this scheme. To place a bound on
the impact of unfair rates, we in this paper take the maximally unfair rate that still satisfies the two
principles: junior creditors are made as worse off as in liquidation and senior creditors are excessively
compensated.

77See: Article 44(1) of the BRRD.
78See: Article 44(2) of the BRRD.
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regulators would be better off excluding from bail-in debt with a time to maturity be-

tween seven days and one year, in line with the eligibility prescriptions for debt to count

towards the loss absorption requirements (FSB (2015b)). The loss absorption require-

ments rightly acknowledge that only long-term debt with a time to maturity greater than

one year is truly a stable source of loss-absorbing debt. Given the demonstrated down-

sides of including short-term debt, this concern is better addressed by notching up the

loss absorbing requirements, as we discuss next. In absence of ‘good’ choice by regulators

for debt exclusions, our result suggest that the system may be headed towards instability.

Loss absorbing requirements

The bail-in tool can only be efficacious if banks have a sufficient loss absorbing capacity

to absorb losses and be recapitalised. In recognition of this fact, the Financial Stability

Board (FSB) and the Bank Recovery and Resolution Directive (BRRD) have established

minimum requirements for banks’ loss absorbing capacity: TLAC (for globally system-

ically important banks) and MREL (for European banks). Our results have provided

evidence that increasing the loss absorbing requirements, relative to the status quo, can

supremely bring down financial vulnerability as well as keeping contagion subdued fol-

lowing severely adverse system-wide shocks. We have also shown that an increase in the

loss absorbing requirements is especially warranted if debt with a time to maturity be-

tween seven days and one year is excluded from bail-in. It is not obvious that regulators

are willing to enlarge the loss absorbing requirements to serve stability. The reason is

that hiking up the requirements amounts to exhorting structural changes in the maturity

composition of banks’ debt: given that solely long-term debt counts towards the require-

ments, raising this would impel banks to swap short-term for longer-term debt. Aside

from financial stability considerations, we do not consider broader economic factors that

can inform whether such a change is desirable. It suffices to note that the new bundle

of post-crisis regulations has already brought structural network changes. Think of the

liquidity coverage ratio (LCR) that stimulates banks to hold sufficient highly-liquid as-

sets. And thereby shifts the liquidity profile of banks’ assets (BIS (2013)). Or, think of

the introduction of the loss absorbing requirements, which is already shifting the matu-

rity profile of banks’ liabilities (FSB (2015b)). Since regulators have wrought structural

changes before, they have the power to cultivate structural changes again. And hence

bolster stability: banks who are obliged to hold longer-term debt are less susceptible to

funding shocks and bail-inable debt collapses.

Bail-in design uncertainty
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Uncertainty induces instability. The experience of the last 2007-2009 crisis has taught us

once more. Disregarding this widely accepted phenomenon (Geithner (2014), Bernanke

(2015)), resolution authorities have left the primary bail-in uncertain. As we have ex-

plained: the failure threshold could minimally range from a capital ratio of 0% to 4.5%;

the recapitalisation target could at least range from a capital ratio 4.5% (meeting autho-

risation conditions) to 12% (also meeting buffer standards); and the conversion rate could

attain any value that satisfies the two principles, be it fair, fully unfair or somewhere in

between.

We finalise this paper by returning to Ben Bernanke’s words: “Have we ended bail-

outs? [...] We cannot guarantee that a future administration, fearful of the economic

consequences of a building financial crisis, will not authorise a financial bail-out. But the

best way to reduce the odds of that happening is to have in place a set of procedures to

deal with failing financial firms that those responsible for preserving financial stability

expect to be effective” (Bernanke (2017)). Moral hazard is reduced if bail-ins are a

credible alternative to bail-out. Our paper showed that the credibility of bail-in critically

depends on the bail-in design.
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Chapter 5

Concluding Remarks

The overarching research question in this thesis is whether new building blocks – express-

ing the heterogeneity of institutions, contracts, markets, constraints and behaviour in the

interconnected financial system – can be supplied for system-wide stress tests to better

capture the endogeneous amplification of shocks in order to improve the assessment of

systemic risk and the evaluation of prudential policies to address financial fragility.

In this thesis I have proposed a novel methodology for system-wide stress testing taking

into account crucial determinants of systemic risk – interacting contagion mechanisms,

constraints, institution types and behaviours (in Chapter 3) – which may give rise to

endogeneous amplifications of valuation and liquidity shocks. This method builds forth

upon the previous literature discussed in Chapter 2. This approach to system-wide stress

testing proves to be powerful in answering some of the most salient questions of financial

stability today – for instance, revolving around the regulatory standard design (Basel III;

in Chapter 3) and novel resolution frameworks (bail-in; in Chapter 4). The application

power of these methods to inform prudential policies appeals to central banks, as is evi-

dent from the collaborations I have formed with the Bank of England, European Central

Bank, International Monetary Fund and South-African Reserve Bank.

While my thesis has made some important steps to advance the assessment of systemic

risk and evaluate policies to address it, some shortcomings as well as exciting areas of

future research remain. The limitations of my research have been elaborately discussed

in the discussion section of each chapter. So I will primarily focus on how some of the

deficiencies in my work may be addressed in the future research. I list some prime topics

that hold my interest here:

1. Calibrating system-wide models.
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• Although outside the scope of this current research, my models could benefit

from a calibration to more granular data and to market liquidity.

2. System-wide stress testing the derivative markets jointly with other asset classes.

• To holistically account for systemic risk, derivative markets should be taken

into account in system-wide assessments – in my models that is currently not

the case.

3. Learning agents in financial stability models.

• Our system-wide stress tests assume that institutions act according to heuris-

tics, while in reality institutions are boundedly-rational learning agents.

4. Market ecology models of systemic risk.

• Institutions attempt to avoid default during severe distress in our system-

wide model, which causes selling pressures. While in reality, when some are

forced to sell others might be willing and able to buy. We do not capture the

reinforcing effect this may have on stability.

5. Feedbacks between the financial system and the real economy.

• Ultimately the reason why we care about systemic risk in the financial system

is that it may impair the real economy. Our stress tests falls short of assessing

the negative effects of financial distress on the real economy.

6. Integrating regulatory and market-based stress tests.

• Regulatory stress tests based on accounting data may be slow to recognise

risks, if any, that have evidently been building up in the financial system as

evinced by market indicators. Our stress test can be improve by incorporating

in marked-based stress indicators.

7. Hedging & systemic risk.

• Systemic risk might be misjudged if hedges that cancel risks, or that may

break down in distress, are not taken into account – as is the case in our

current models.
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8. Reverse stress test of the South-African financial system.

• Our models investigate the impact of an adverse scenario on the financial

system. Another approach to assess systemic risk is to evaluate what shock

type and severity is needed to cause a system-wide collapse.

9. Climate-change stress test.

• System-wide stress test models can be naturally adopted to see how climate-

risk may propagate through the system. These stress tests can in turn help

to better price exposures to climate risk.

These topics will partially be studied as part of my postdoctoral research, which I will con-

duct at the Massachusetts Institute of Technology (MIT) and Oxford University starting

in late October 2019.

201



Appendix A

Foundation of System-Wide Stress
Testing

A.1 Further Details on Model Implementation

A.1.1 Notation

Table A.1 and A.2 give the definition of the variables used in this paper.

Table A.1: Shows the definition of notation.

Category
Subcategory
(if any)

Variable Definition

Institu-
tions
& Con-
tracts

Cash

Ci,
Cu
i

Ce
ij

Ce,t,E
ij

Ce,t,R
ij

Cash of institution i.
Unencumbered cash of institution i.
Encumbered cash of institution i provided to institution j.
Extra encumbered cash of institution i provided to institution j.
Encumbered cash of institution i returned by institution j.

Tradable
Assets

Ti
Tia
Tiam
siam
suiam
seijam
se,t,Eijam

se,t,Rijam

Tradable assets of institution i.
Tradable assets of institution i of type a.
Tradable asset m of institution i of type a.
Encumbered tradable asset m of institution i provided to institution j of type a.
Unencumbered tradable asset m of institution i of type a.
Encumbered tradable asset m of institution i provided to institution j of type a.
Extra encumbered tradable asset m of type a of institution i provided to institution j.
Encumbered tradable asset m of type a of institution i returned by institution j.

Repurchase
Agreements

Ri

R̃i

Rij

ham
Mij

Reverse repo contract of institution i.
Repo contract of institution i.
Reverse repo contract of institution i to institution j.
Haircut applicable to tradable asset m of type a.
Margin call from institution i to institution j.

Other
Items

Yi
Di

Oi

Õi

External assets of institution i.
Deposits of institution i.
Other assets of institution i.
Other liabilities of institution i.

Markets
pam
βam
f tam

Price of asset m of type a.
Price impact parameter associated to asset m of type a.
Cumulative fraction sold of asset m of type a up to time t.
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Table A.2: Shows the definition of notation (this table is a continuation of Table A.1).

Category
Subcategory
(if any)

Variable Definition

Con-
straints

Risk-
weighted
capital ratio

ρi
ρM

ρBi
ρTi
ρCBi
ρCCBi

ρG−SIBi

ρD−SIBi

ρSRi
ρCCyBi

ρdatai

ρEBAi

Ẽi
Ωi

Aip
ωp

Risk-weighted (rw) capital ratio of bank i.
Regulatory minimum for the risk-weighted capital ratio.
Buffer value of the risk-weighted capital ratio where bank i acts to return to target.
Target value of the risk-weighted capital ratio of bank i.
Combined regulatory risk-weighted capital buffer of bank i.
Capital conservation buffer of bank i.
Globally systemically important bank (G-SIB) surcharge of bank i.
Domestically systemically important bank (D-SIB) surcharge of bank i.
Systemic risk buffer applicable to bank i.
Countercyclical capital buffer applicable to bank i.
Rw capital ratio of bank i by 2017Q4 S&P Global Market Intelligence data.
EBA 2018 microprudential stress test outcome of bank i for its rw capital ratio.
Common Tier I (CET1) equity of bank i.
Risk-weighted assets of bank i.
Asset value of type p of bank i.
Risk weight associated to assets of type p.

Leverage
ratio

λi
λM

λBi
λTi
λCBi
λdatai

λEBAi

Âi

Leverage ratio of bank i.
Regulatory minimum for the leverage ratio.
Buffer value of the leverage ratio where bank i acts to return to target.
Target value of the leverage ratio of bank i.
The (combined) regulatory leverage buffer of bank i.
The leverage ratio of bank i according to 2017Q4 S&P Global Market Intelligence data.
EBA 2018 microprudential stress test outcome of bank i for its leverage ratio.
Asset exposure of bank i.

LCR

Λi

ΛS

Λdata
i

Qi

Θi

ΘI
i

ΘO
i

ω̃p
ω̃l

Liquidity coverage ratio (LCR) of bank i.
Regulatory standard for the LCR.
LCR of bank i according to the 2017Q4 S&P Global Market Intelligence data.
High-quality-liquid-assets (HQLA) of bank i.
Net outflows of bank i under a 30-day period of financial distress.
Inflows of bank i under a 30-day period of financial distress.
Outflows of bank i under a 30-day period of financial distress.
Inflow rate associated to assets of type p.
Outflow rate associated to assets of type l.

NAV
ηi
χti

Net asset value (NAV) of asset manager i.
Relative loss in NAV at time t of asset manager i in comparison with time t0.

Behaviour

u%
yρ

yλ

∆ρ,t0
i

∆λ,t0
i

di
r̂ip
qi
f ti

Usability of buffers (percentage of regulatory buffers that banks are willing to use).
Size of combined risk-weighted buffer ρCBi relative to Basel III standard.
Size of combined leverage buffer λCBi relative to Basel III standard.
Distance of pre-stress (t0) rw capital ratio of bank i to its regulatory rw buffer.
Distance of pre-stress (t0) leverage ratio of bank i to its regulatory leverage buffer.
Amount bank i aims to delever.
Amount bank i liquidates of assets of type p to raise its risk-weighted capital ratio.
Amount bank i liquidates of non-HQLA assets to raises its LCR.
Fraction of the initial number of outstanding shares withdrawn up to time t.

Systemic risk
measure

E
P
S

fD(n)
N

Average extent of a systemic event (average fraction of bank defaults in a systemic event).
Probability of a systemic event.
Set of simulation runs in which a systemic event (if at least 5% of banks default) occurs.
Fraction of bank defaults in case of a systemic event in simulation run n.
Number of simulation runs.

Sets

F

B

M

A

N

P

L

D

I

Set of financial institutions.
Set of banks.
Set of asset managers.
Set of different asset types (gov. bonds, corp. bonds, equities, other tradable assets).
Set of non-banks that do not partake in our stress test.
Set of different types of assets.
Set of different types of liabilities.
Set of defaulted banks.
Set of banks that defaulted due to the adverse scenario (set of initially defaulted banks).

A.1.2 Initialisation

Financial Institutions
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Hedge Funds Due to limited available information regarding hedge funds, we make

some assumptions to initialise the balance sheet of each hedge fund i ∈ H (see Sec-

tion 3.5.1). Specifically, we base our initialisation on the IOSCO (2017) and FCA (2015)

surveys. It is useful to summarise their main findings to support our approach to mod-

elling hedge funds. Hedge funds can attain two types of leverage: financial leverage (i.e.

that acquired through borrowing) and synthetic leverage (i.e. that obtained through

derivative exposures). While the IOSCO (2017) and FCA (2015) surveys indicate that

the synthetic leverage can be substantial, the financial leverage of hedge funds is typically

limited. The mean financial leverage of hedge funds based on the FCA (2015) survey is

found to be 2.3. According to IOSCO (2017) and FCA (2015), hedge funds acquire al-

most all their financial leverage through collateralised lending, and hardly any through

unsecured funds. Collateralised lending comes either in the form of repo contracts or in

the shape of margin lending. The survey finds that the split between these is about 60

to 40 percent. This funding is typically provided by the prime broker of the hedge fund,

which is usually a bank. Both forms of secured lending can lead to margin calls (defined

in equation 3.8), which may trigger the hedge fund to engage in fire sales.

Given the above survey information and using ECB Statistical Warehouse Data on

the aggregate hedge fund size and its aggregate asset allocation,1 we decided to initialise

the balance sheet of each hedge fund i ∈ H as follows. We impose the (heroic) assump-

tions that each bank i ∈ B acts as a prime broker to one hedge fund i ∈ H,2 so that

|H| = |B|. We set the leverage of each hedge fund i ∈ H equal to the hedge funds’ mean

financial leverage (i.e. λi = 2.3, ∀i ∈ H). We assume all funding from a bank i ∈ B to

a hedge fund i ∈ H happens via reverse repos Ri.
3 As we have data on the reverse repo

Ri position of each bank i ∈ B (see Section 3.5.1), the total estimated size of the hedge

fund sector in Europe (from the ECB Statistical Warehouse Data), and the leverage λi

of each hedge fund i ∈ H (FCA (2015)), we can derive the asset value Ai and repo size

1See ECB Statistical Warehouse: https://sdw.ecb.europa.eu/browse.do?node=9691340.
2In reality, the largest hedge funds may have multiple brokers. Given the significant data limitations

and the subsequent necessity to take a stylised approach, for simplicity we choose to allocate one hedge
fund counterparty to each bank. In practice, where hedge funds have multiple brokers, in the case that
in our simulation we had one bank withdrawing funding from a hedge fund, we should then model the
appetite and capacity of that hedge fund’s other prime brokers to extend their exposure to that hedge
fund - or even allow the hedge fund to seek a new prime broking relationship. The exclusion of this type
of behaviour means that we are likely to overstate the impact of hedge funds’ defensive actions in our
simulations, all else being equal.

3As explained, in reality funding to hedge funds also goes via margin lending. We do not model
margin lending for two reasons. First, we do not have data on the size of margin lending banks engage
in. Two, margin lending does not affect systemic risk materially differently than repo lending does: in
both cases, margin calls may trigger hedge funds to engage in fire sales. For a detailed discussion of
margin lending, hedge funds and stability, see Paulin et al. (2018).
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R̃i
4 of each hedge fund i ∈ H. The value of each asset type Aip of a hedge fund i ∈ H is

approximated, by multiplying the asset size Ai of a hedge fund i ∈ H, with the aggregate

asset value held by hedge funds of that asset type relative to the aggregate asset value of

hedge funds.

Further Details on Financial Contracts

Tradable Assets As discussed in Section 3.5.2, we consider different types of trad-

able assets a ∈ A. Specifically, we consider four types: A :=

{government bonds, corporate bonds, equities, other tradable assets}. For each financial

institution i ∈ B ∪M ∪ H, our balance sheet data (see Appendix A.1.2) allows us to

initialise the value of each tradable asset type Tia, for a ∈ A. We set the number of in-

dividual securities Mα per type a ∈ A in line with the number of securities that Cont &

Schaanning (2017) construct per type a ∈ A in the EU network. Specifically, this means

setting Mα = 37, ∀a ∈ A, which corresponds to the 37 geographical regions that Cont &

Schaanning (2017) consider for their four types of marketable securities.

The ECB Statistical Warehouse also gives an estimate of the aggregate EU tradable

asset positions for each non-bank sector Tia (a ∈ A and i ∈ N, where N denotes the

set of different types of non-banks not considered in our stress test) not included in our

system-wide stress test (e.g. pension funds, insurance companies, financial vehicle corpo-

rations). Together this allows us to reconstruct the common asset holdings network (i.e.

Tiam, ∀i ∈ B ∪M ∪H ∪N, ∀a ∈ A, for m = 1, ...,Ma) using the reconstruction method

employed in Kok & Montagna (2013). In essence, this method allows us to reconstruct

|A| number of random bipartite networks between the |B ∪M ∪H ∪ N| nodes and Mα

securties, for each a ∈ A. In each network, a link from an institution i to a security a

means that the institution has that particular security in its portfolio. The amount of

the shares is represented through the weight of the edge. Each link in a bipartite network

has the same probability p to exist.5 In line with Kok & Montagna (2013), we assume

that, for each institution, all its out-going links have the same weight.

Markets To estimate the price impact (see Section 3.5.2), we set the denominator of the

cumulative fraction of net asset sales f tam, which appears in the price impact function (see

equation 3.7) to the total market capitalisation in asset m of type a ∈ A, which includes

the holdings of non-banks that are not included in our stress test (see Appendix A.1.2).

4Namely, the repo size R̃i of each hedge fund i ∈ H equals the reverse repo size Ri of its corresponding
prime-broker bank i ∈ B.

5We set p = 0.3 as a baseline. We find that our qualitative results are robust to varying p. We note
that varying p influences the sparseness of the network and concentration of asset holdings.
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That is, the denominator of f tam is given by
∑

i∈B∪M∪H∪N
T
t0
iam

p
t0
am

, where in line with the

contagion literature (e.g. Caccioli et al. (2014)) the initial price of each tradable asset is

normalised to pt0am = 1.

Constraints Here we discuss the regulatory parameters that are associated to the Basel

III regulatory capital requirements and buffer standards discussed in Section 3.5.1. Let

us start with explaining how the risk-weights ωp in the risk-weighted capital requirement

ρi (see equation 3.1) are set. In line with the Basel III standardised approach, we set the

risk weights ωp for p = 1, ..., 8 (i.e. except p = 9) equal to {0, 0.35, 0, 1, 0.75, 1, 0.4, 0.1}.
We are able to compute the risk-weight ωp9 for other assets Oi by solving one equation

is one unknown as ωp9 = ( Ẽi
ρi
−

∑8
p=1 ωpAip)

1
Ai9

. Once we have computed ωp9, we keep it

constant throughout the stress test. Setting the risk-weight ωp9 as such makes sure that

the CET1 ratio ρi at time t0 of the stress test alights with the 2017Q4 data. It makes

sense to not set a fixed risk-weight for ωp9, as other assets Oi is a collection of a variety of

assets that would bear different risk-weights under the Basel III standardised approach.

We will now discuss the parameters associated to the LCR Λi (see equation 3.5).

The net outflows Θi in the LCR denominator were defined as a function of the inflows

ΘI
i :=

∑
p∈P ω̃pAip and outflows ΘO

i :=
∑

l∈L ω̃lLil under distress. Here ω̃p is the inflow

rate for asset type p ∈ P and ω̃l is the outflow rate for liability type l ∈ L. The inflow

rates ω̃p and outflow rates ω̃l associated to the LCR Λi are set in line with BIS (2013). The

outflow rates ω̃l associated with {Di, Ĩi, R̃i, Õi} are respectively set to {0.05, 1, 1, 0.5}.6

Other liabilities Õi is a mix of different liabilities, so we cannot precisely determine

the outflow rate. Hence, we set it equal to the (approximate) average outflow rate:

0.5. The inflow rates ω̃p associated with {Ci, Yi, Ti, Ii, Ri, Ei} are respectively set to

{0, 0.5, 0, 1, 1, 0}.7 The inflow rate ω̃p associated with other assets Oi cannot be precisely

determined as other assets consists of a mix of different asset types. Hence, we set it such

that the LCR at time t0, Λt0
i , matches the 2017Q4 data for each bank i ∈ B. We keep

the outflow rate ω̃p associated with other assets Oi constant throughout the stress test.

Whenever the LCR Λi of a bank is not reported we set it equal to the average LCR of

the other banks i ∈ B for which the LCR Λi was reported.

The bank-specific standards for the components of the risk-weighted capital buffer

ρCBi (i.e. the G-SIB surcharge ρG−SIBi , the D-SIB surcharge ρD−SIBi , the systemic risk

buffer ρSRi , and the CCyB ρCCyBi , see equation 3.3) are publicly listed.8

6If repo contracts R̃i are secured with HQLA assets the outflow rate is zero instead of one.
7Again, if reverse repo contracts Ri are secured with HQLA assets the inflow rate is zero instead of

one.
8See the list of G-SIB surcharges here: http://www.fsb.org/wp-content/uploads/P211117-1.

pdf. See the list of D-SIB surcharges here: https://www.eba.europa.eu/risk-analysis-and-data/
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Behaviour No data available, as discussed in Section 3.4.1.

A.1.3 Default Configuration

y-axis: Systemic Risk Measure In line with, but a generalisation upon Schnabel &

Shin (2004), Cifuentes et al. (2005), Gai & Kapadia (2010), Caccioli et al. (2014), Paulin

et al. (2018), we use the ‘average extent of a systemic event E’ to measure systemic risk.

The systemic risk measure E gives the average fraction of (contagion) defaults given that

a systemic event occurs, which is said to be so if at least γ = 5% (contagion) defaults

occur. That is, E is given by

E :=
1

|S|
∑
n∈S

fD(n), (A.1)

where the terms of equation A.1 are defined as follows:

• S denotes the set of simulations runs (out of N simulation runs in total) in which

a systemic event occurs. That is, S is defined by

S := {n ∈ [1, N ] : 1SE(n) = 1}, (A.2)

where 1SE(n) = 1 is an indicator variable denoting the occurrence of a systemic

event in simulations run n, and is given by

1SE(n) =

{
1, if fD(n) > γ,

0, otherwise,

where γ denotes the threshold above which a systemic event is said to occur.

• fD(n) denotes the fraction of (contagion) defaults in run n, defined as

fD(n) =
1

|D|
∑
i∈D

1D(i, n), (A.3)

where we set D = B (B is the set of banks) or D = B\I (I is the set of initial

defaults, so B\I is the set of banks that could default due to contagion). Hence,

fB(n) gives the fraction of total (i.e. initial defaults plus contagion defaults) in

run n and fB\I(n) gives the fraction of contagion defaults in run n. 1D(i, n) is an

indicator variable indicating whether a bank defaults (due to contagion) in run n.

That is,

1D(i, n) =

{
1, if institution i ∈ D (= B,B\I) defaults in run n,

0, otherwise.

other-systemically-important-institutions-o-siis-/2017. See the list of of applicable systemic
risk buffers here: https://www.esrb.europa.eu/national_policy/systemic/html/index.en.html.
See the list of CCyB here: https://www.esrb.europa.eu/national_policy/ccb/html/index.en.

html.
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For completeness, the probability of a systemic event P is given by

P :=
1

N

N∑
n=1

1SE(n), (A.4)

although we do not use this measure in our results. The randomness arises from the

random redraw in every simulation run n = 1, ..., N of the interbank- and common asset

holdings network (see Appendix A.1.2).

To interpret our results (see Section 4.7) correctly it is important to note the following.

The coloured lines, which correspond to the system-wide stress test outcomes, give the

average extent of a systemic event E (see equation A.1 applying D = B). That is, is shows

the average fraction of total (i.e. initial + contagion) defaults in a systemic event. The

grey lines (associated to the coloured lines), which correspond to the microprudential

stress test outcome, also display systemic risk measure E for the case where D = B.

However, since by design a microprudential stress test only captures initial defaults and

no contagion defaults, the systemic risk measure E in fact displays the average fraction

of initial defaults in a systemic event (which is not random as it does not depend on the

redrawing of the network). The difference between the coloured and the grey lines (i.e.

between the system-wide and microprudential stress test outcome) typically corresponds

to the average extent of a systemic event E when D = B\I. When D = B\I, the average

extent of a systemic event could also be called ‘the average extent of contagion (in a

cascade)’, as Schnabel & Shin (2004), Cifuentes et al. (2005), Gai & Kapadia (2010),

Caccioli et al. (2014), Paulin et al. (2018) refer to the systemic risk measure E.

A.2 System-Wide Stress Testing Software

We developed state-of-the-art system-wide stress testing software, which lives up to to-

day’s standards in (scientific) computing. This software can be used by regulators (and

researchers) to build their own system-wide stress test models and flexibly adjust these

depending on the stress test exercise or policy question at hand. Good software is crit-

ical to run robust stress tests on big data. In this Appendix will provide the links to

the software packages and motivate their design principles. Detailed documentation is

found on the Github links provided. Furthermore, we will discuss how we ensure that the

institutions act in synchronous ways when this would be the case in financial markets.

A.2.1 Design Principles

We will now discuss the five design principles for robust system-wide stress testing code

listed in Section 3.4.3.
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Transparency The design principle transparency says that the model’s specification

has to be fully documented. This is done by publishing a complete description of the

model and by making the library (if any) underpinning the code and the code of the

model (built within the library) publicly available. Additionally, we are putting emphasis

on modularity and readability to further improve on transparency. Our model is fully

described in this paper and our code (with a detailed code documentation) is published

under the Apache License.9 The link to the system-wide stress test library and model

are found here:

• System-Wide Stress Test Library:

https://github.com/ox-inet-resilience/resilience

• System-Wide Stress Test Model:

github.com/ox-inet-resilience/sw_stresstest

The library repository consists of reusable and extensible building blocks. The model

repository is built in this library and consists of the system-wide stress testing model on

randomised data (as not all data used for the paper is publicly available). The system-

wide stress test library itself is built on top of the Economic Simulation Library (ESL),

which contains a system to make the simulation order independent (see Appendix ??).10

Further, to give a broad overview of the structure of the code Figure A.1 displays the

class diagram of the code.

Figure A.1: A system-wide stress test consists of five building blocks and so does its code. We have
three main classes: First, institutions. The different institution types (e.g. bank, asset managers, and
hedge funds) inherent from the parent class institutions. Since (regulatory) constraints are typically
institution-type specific these inherent from the institution-specific classes. Second, contracts and its
associated class contract ’obligations’. Each type of contract has its own class (e.g. tradable asset and
loan (repo loan and interbank loan)) and inherits from the generic contract class. Third, markets and
its associated class ‘order book’. There can be many types of markets among which an asset market,
which inherits from the generic market class. In addition the code also has a separate section (i.e. file)
dedicated to the building block behaviour. Since behaviour only consists of behavioural functions it does
not have its own class.

9Alternatively, transparency of the code can be achieved by publishing a virtual machine containing
the code and environment. Such a virtual machine could also contain a detailed description of the model
(see e.g. ?).

10The link to the Economic Simulation Library is given by: https://github.com/

ox-inet-resilience/py-distilledESL.
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Reproducibility The design principle reproducibility says that the reader should be

able to run the simulations and obtain an identical outcome. Although it is often not

possible to reproduce plots in a paper, since they use confidential data, it is possible to

reproduce the same plots as in the paper, but run on random data. This can be done as

follows. First, the same version of the code has to be used (while our code continues to

develop over time, Github has version control that allows you to obtain the version that

was used to produce the plots in the paper). The version of the code used to produce the

the plots in this paper is tag ‘v0.2’ (find in Github of System-Wide Stress Test Library).

The tag is the shorthand for the hash. Second, the same fixed seed has to be used as

for the plots in the paper. Third, the reproduced plots have to be compared against the

random data plots made available on Github and must be found to be identical.

Modularity The design principle modularity says that the code must be composed

of self-contained modules. Modularity implies flexibility, which is the ability to easily

adjust the model, replace components of the model with others, and extend (or reduce)

the model. The five building blocks for system-wide stress testing (see Section 3.4.1)

are chosen in such a way to maximise the modularity of the code. This is beneficial for

various reasons, including the following:

1. It allows one to turn institutions, constraints, contagion mechanisms and behavioural

strategies on and off, so that (among others):

(a) The financial system’s dynamics can be studied both holistically and in part.

(b) The contributions of each components to stability can be detected.

(c) (Simpler) contagion models can be replicated.

(d) The validity of the model can be checked and enforced one component at a

time.

2. It allows one to model (some parts of) the system in a more abstract and (some

parts of the system in) a more detailed way, depending on the granularity of data

available, the assumptions being made, or the research or policy question being

asked. For instance, a price impact function could be replaced by an order book

where it would be advantageous for a particular research question.

3. It facilitates the adjustment of the stress test to a changing financial system. This

is indispensable for the tool to have longevity in the macroprudential policy toolkit,

since the structure of the financial system and the amplification mechanisms that

it comprises constantly change over time (Anderson et al. (2018)).
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The behaviours of institutions are deliberately separated into their own building block (see

Section 3.4.1) because these vary most across models and because behavioural strategies

are typically assumptions (by lack of data), whose sensitivity to the stress test outcome

should be studied.

To illustrate how the five building blocks contribute to modularity and make it easy to

implement many other contagion and stress test models in the literature, we implemented

an overlapping portfolio contagion model (also referred to as fire sale contagion model)

similar to Cont & Schaanning (2017), using the organising principles of the system-wide

stress test framework, see:

• Fire Sale System-Wide Stress Test (Learning Module):

https://github.com/ox-inet-resilience/firesale_stresstest

We highly recommend the reader to go through this simplified model in order to grasp

the structure of the framework. The full model essentially uses the same class structures

and common application programming interface (API) but only with more extensive

implementations for each building blocks.

Readability The design principle readability says that the reader should be able to

read and understand the implementation in a short amount of time. We prioritise the

code to be readable over inherent performance. We do so by using Python over other

compiled languages in order to avoid verbosity in expression of the framework. (Another

reason python is our preferred language since it has extensive scientific libraries ecosystem

and is most widely used (Economist (2018)).) Further, we make our code readable by

choosing intuitive variable names, commenting the code where necessary, and structuring

our code logically (see e.g. Appendix A.2.1 on modularity).

Performant The design principle performance says that the code should execute fast

as possible as long as it does not sacrifice readability (see Appendix A.2.1). The prime

way to address performance is to use parallelisation across multiple central processing

units (CPUs), which in colloquial language means that that computations are distributed

across multiple brains (computational units). Parallelisation across N number of CPUs

has the benefit of reducing the computation time by about N times. Cloud computing

services enable you to run stress testing code at multiple CPUs.11

11Amazon EC2 c5.2xlarge and Google Cloud Platform n1-highcpu-16, are cloud computing services.
Amazon EC2 c5.2xlarge consists of 16 vCPUs of 3.0 GHz Intel Xeon Platinum 8000 series, boostable to 3.4
GHz. See: https://aws.amazon.com/ec2/instance-types/c5/. Google Cloud Platform n1-highcpu-
16 consists of 16 vCPUs of available Intel Xeon platforms. See: https://cloud.google.com/compute/
docs/machine-types#highcpu, and https://cloud.google.com/compute/docs/cpu-platforms
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In our model a figure consists of multiple lines, which extend the x-axis based on x

computed points (where currently x = 11), where each line is computed as the average

over N independent simulation runs (where currently N = 100). In such case, there are

two ways to parallelise the computations to produce the figure:

1. Parallelise across independent simulation runs n = 1, ..., N , where each simulation

run has different random seed.

2. Parallelise across institutions within a simulation run n.

We chose the first for two reasons. First, a simulation run typically completes in approx-

imately 3s. Hence, it is costlier to spawn processes dedicated to each institutions within

3s. Second, in order to parallelise across institutions, the code has to be designed in such

a way that enables live objects to be serialised into a file, which often complicates the

implementation.12 While the second parallelisation technique would have provided the

same amount of speed up if the code were to be written in C++, the crux of the point

is that the first technique speeds up our current runs to the point where speed is no

longer an issue. It takes typically 5-10 min to produce a figure which is run on Amazon

EC2 c5.4xlarge (the figure would have taken about 8 times longer on a single core), for

instance.

Other ways in which the performance of the code can be enhanced include caching

commonly repeated computations and commonly called variables. For example, once an

institution’s total assets Ai have been computed ones (which is a relatively expensive

operation according to the profiling results) and are known to be invariant over the next

steps of the computations, its value is passed over directly to the next function

As part of our future development of the system-wide stress test library, we plan to

maintain two versions of the library, a front-end library and back-end library, which

will display identical behaviour. The Python implementation will focus on readability.

The C/C++/Cython/Julia implementation will focus on performance. Two-language

software is commonly observed in scientific computing. For instance, the linear algebra

subset of Numpy library has various performant back-end choices, such as LAPACK, AT-

LAS, BLAS and OpenBLAS.13 Also, many machine learning libraries consist of multiple

languages. The Keras machine learning library, is one such example. It has back-end

choices which include Tensorflow, Theano and CNTK.14 With the scale of the current

model, it is not a priority to implement the performant version yet. However, for mod-

elling entire derivatives markets on a real-time basis, for instance, such speed-ups become

essential.
12See abcEconomics for how to do this in Python: https://github.com/ab-ce/abce.
13See: https://docs.scipy.org/doc/numpy/user/building.html#prerequisites.
14See: https://keras.io/backend/.
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Correctness We add the design principle, correct, to emphasise the importance of

creating bug-free code that does what it should do. There are two main ways in which

the correctness of the code can be asserted. First, you can make assertions, which is a

statement that a predicate (i.e. a Boolean function which either outputs true or false)

is always true at that point in code execution. If we encounter a bug, we usually add

a new in-line assertion, to actively prevent future bugs of the same kind. For instance,

we made an assertion to ensure that each bank raised enough liquidity, wherever the

bank had sufficient assets that could be liquidated, to be able to reach its risk-weighted

capital target ρTi .15 Second, unit tests should be implemented in the code to complement

assertions. The purpose is to validate that each unit of the software performs as designed.

A unit is the smallest testable part of any software (it usually has one or a few inputs

and usually a single output). We plan to do more work to add unit tests going forward

(open source contributions are welcome).

An evident way to make the code correct is to take out bugs. Rather than relying on

detailed logging in order to inform us the internal state of the system at any given time

(which we found out grew to an enormous size, especially during a sensitivity analysis),

we use the line number information in the error message to immediately point us in the

right direction to start debugging. In absence of logging messages the code becomes more

concise, so that the reader can better grasp the logical flow of the code (see Appendix A.2.1

on readability).

15It should be noted that while in principle enough liquidity has been raised, due to price impact,
non-repayments, and other factors, the actual liquidity raised later on may differ from the calculated
liquidity raised.
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A.3 Sensitivity Analysis

From Micro to Macro: A Macroprudential Overlay to the EBA
2018 Stress Test

Figure A.2: Shows the same set-up as in Figure 3.3, except that we have now turned the leverage ratio
λi off. This means that the leverage minimum λM , buffer λBi and target λTi do not apply. We observe
that the financial system remains stable for a much more severe initial scenario when the leverage ratio
λi is off compared to when it is one (in Figure 3.3). Joint with the results of Figure A.3, this indicates
that instability under Basel III might be driven by a binding leverage constraint.

Figure A.3: Shows the same set-up as in Figure 3.3, except that we have now turned the risk-weighted
capital ratio ρi off. This means that the risk-weighted capital ratio minimum ρM , buffer ρBi and target
ρTi do not apply. We observe that this result is almost identical to the result when the risk-weighted
capital ratio ρi is turned on in Figure 3.3. Together with the results in Figure A.2, this suggests that
the risk-weighted capital ratio is relatively less binding than the leverage ratio, and is not driving the
instability dynamics under Basel III.
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Table A.3: Summary statistics of the leverage ratio and risk-weighted capital ratio of banks. It shows
the average value (and standard deviation) of the ratios: (a) pre-distress; (b) initial-distress (value after
the application of the 2018 EBA impact); (c) buffer point at which banks act; (d) combined regulatory
buffer; (e) and minimum capital ratio. Furthermore, the table also shows that on average the banks’
leverage ratio binds more than their risk-weighted capital ratio, both prior to and after the initial
distress. The “distance-to-act” and distance-to-default are measures that express the degree to which
the constraints of banks bind. These two measures are shown in this table too.

Leverage ratio Risk-weighted capital ratio

Average and standard
deviation raw data

Pre-distress ratio λ̄data
5.5%
(1.6%)

ρ̄data
15.3%
(3.3%)

Initial distress ratio
(under 2018 EBA scenario)

λ̄EBA
4.7%
(1.6%)

ρ̄EBA
11.3%
(3.5%)

Buffer ratio
(point where to act to avoid
getting too close to default,
default setting: 50%
usability of regulatory buffers)

λ̄B =
λM + 0.5λCB

3.3%
(0.05%)

ρ̄B =
ρM + 0.5ρCB

6.5%
(0.6%)

Combined regulatory
buffer (CB)

λCB
0.6%
($0.1%)

ρCB
3.9%
(1.1%)

Minimum ratio λM 3% ρB 4.5%

Average “distance-to-act”
Prior to distress λ̄data − λ̄B 2.2% ρ̄data − ρ̄B 8.9%
Initial distress
(under 2018 EBA scenario)

λ̄EBA − λ̄B 1.4% ρ̄EBA − ρ̄B 4.9%

Average distance-to-default
Prior to distress λ̄data − λM 2.5% ρ̄data − ρM 10.8%
Initial distress
(under 2018 EBA scenario)

λ̄EBA − λM 1.7% ρ̄EBA − ρM 6.8%
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Amplification of Contagion Mechanisms

Figure A.4: Shows the excess systemic risk E (given by the joint set of contagion mechanisms minus
the systemic risk E of the sum of the individual contagion mechanisms) for various price impacts (PI),
for various sets of contagion mechanism and the same set-up as in Figure 3.6. A positive excess systemic
risk E means that the considered contagion mechanisms are mutually amplifying; the value gives the
absolute degree of underestimation of systemic risk if the contagion mechanisms are not jointly consid-
ered. (Negative excess systemic risk is an artefact of a finitely-sized financial system, which prevents
systemic risk E produced by the joint set of contagion mechanisms to exceed that of the sum of the parts
when the individual contagion channels already produce near maximum instability.) We observe that
in absolute terms, systemic risk could be underestimated by over E ≈ 55% (see the O&E&F&C bar).
Importantly, we note that the contagion mechanisms that amplify each other most in relative terms (see
Figure 3.6b) may not be the same contagion mechanisms that amplify each other most in absolute terms
(see Figure A.4). For instance, overlapping portfolio contagion and collateral contagion (see O&C at 5%
price impact in 3.6b ) amplify each other most in relative terms, while overlapping portfolio contagion
and exposure loss contagion (see O&E at 5% price impact in A.4) amplify each other most in absolute
terms.
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(a)

(b) (c)

Figure A.5: Shows the same set-up as in Figure 3.6, except that now we use the Basel III default settings
(see Table 3.2). We observe that under Basel III, overlapping portfolio contagion (‘O’) and exposure loss
contagion (‘E’), on an individual basis, already cause the system to be unstable, so combining multiple
contagion mechanisms cannot do much more harm in a finitely-sized system. As such the amplification
in Plot A.5b is often smaller than one, and the excess systemic risk E in plot A.5c is frequently negative.
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‘Usability’ of Buffers and Contagion

Figure A.6: Shows the same set-up as in Figure 3.7, except now for the case of ‘disorderly liquidation’
the top row shows the effect of the usability of the regulatory risk-weighted capital buffer ρCBi only
(i.e. the leverage ratio λi and the LCR Λi are turned off), and the bottom row shows the effect of the
usability of the regulatory leverage buffer λCBi only. Adding to the findings of Figure 3.7, we observe
that resilience also increases in the usability of each individual regulatory capital buffer, and also holds
for the case of ‘disorderly liquidation’.
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Figure A.7: Shows the same set-up as in Figure 3.7, except that we now fix the usability of the
regulatory leverage buffer λCBi and the risk-weighted capital buffer ρCBi at their default value of u = 50%,
and solely vary the usability of the LCR standard ΛS . We observe that the usability of the LCR does not
(or barely) affect systemic risk E. This indicates that the LCR does not bind under the stress conditions
imposed by the (scaled) 2018 EBA scenario.

Figure A.8: Shows systemic risk E as a function of the price impact for the case where the regulatory
leverage buffer λCBi is tripled (i.e. yλ = 3), for different excess targets above the buffer (i.e. ρBi − ρBi =
λTi − λBi = x%, for x = 0.5, ..., 5%, see definitions in Section 3.5.3). The excess target above the buffer
basically tells by how many percentages the bank improves its capital ratio to return to its target once it
has breached its buffer value. We observe that stability decreases if banks more aggressively move away
from their buffer values (for different buffer settings we also observe this effect for the right plot, but
now the instability is too small to be affected by the excess target). Hence, individual stability can lead
to collective instability.
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Calibration of Buffers with System-Wide Stress Tests

Figure A.9: Shows the same set-up as in Figure 3.8 except we now show how systemic risk E decreases
in the regulatory buffer sizes as a function of the price impact. Also, we add the triple buffer case. By
showing systemic risk E as a function of the price impact, it becomes even easier to observe that the
size of regulatory capital buffers needed to confine systemic risk may be underestimated if system-wide
dynamics are not taken into account (the grey-coloured lines give the necessary buffer sizes according to
the microprudential stress test and the coloured lines tell the requisite the buffer sizes when system-wide
effects are taken into account). Specifically, imagine that regulators believe that the initial shock size
will not exceed the 2018 EBA shock (x ∈ [0, 1]), and that they wish to bound systemic risk underneath
E = 10% for a price impact in interval [0%, 10%], in a regime where banks are ‘disorderly liquidated’. In
such case, the microprudential stress test would find that the Basel III buffers are sufficient (the grey-blue
‘Basel III’ line at E ≈ 5% in the top-left panel of Figure A.9). However, when system-wide dynamics are
taken into account, regulators would find that they need to more than double the risk-weighted capital
buffers to achieve this (the green ‘3x buffer’ line at E = 0% in the top-left panel of Figure A.9 is the first
line to fall underneath E = 10%).

220



Appendix B

Systemic Implications of the Bail-In
Design

B.1 Data

B.1.1 Initialisation of Balance Sheets

In Table B.1 we report how we initialised the balance sheets of banks using SNL 2017Q4

data.

Table B.1: Initialisation of Bank Balance Sheets

Balance Sheet Items Data Identifier/Inference Associated Data Name

Total Assets Ai 132264 Total Assets (Reported)
• Cash Ci 246025 Cash and Balances with Central Banks (Reported)

• External Assets Yi 132214 - 224934
Total Net Loans (Reported)
Net Loans to Banks (Reported)

• Interbank Assets Ii 224934 Net Loans to Banks (Reported)

• Reverse Repo Ri 224945 + 224944
Memo: Reverse Repos Incl in Customer Loans (Reported)+
Memo: Reverse Repos Incl in Bank Loans (Reported)

• Tradable Assets Ti 132191 Total Securities (Reported)
- Government Bonds T 1

i 224927 (SNL) * gov bonds EBA/ (gov + corp bonds EBA) Total Debt Instruments (Reported)
- Corporate Bonds T 2

i 224927 (SNL) * corp bonds EBA/ (gov + corp bonds EBA) Total Debt Instruments (Reported)
- Equities T 3

i 224928 Total Equity Instruments (Reported)

- Other Tradable Assets T 4
i

224929 + 224930 , or

max(Ti −
∑3

k=1 T
k
i , 0)

Securities Owned: Derivative Financial Instruments (Reported) +
Securities Owned: Other Investments (Reported)

• Other Assets Oi Ai − (Ci + Yi + Ii +Ri + Ti)
Total Liabilities Li 132367 Total Liabilities (Reported)
• Deposits Di 132288 - 224953

• Interbank Loans Ĩi 224953 Total Deposits from Banks (Reported)

• Repo R̃i 224966 + 224969 + 224965
Memo: Repo Agreements in Deposits from Customers (Reported)+
Memo: Repurchase Agreements Not in Deposits (Reported) +
Memo: Repo Agreements in Deposits from Customers (Reported)

• Other Liabilities Õi max{Li − (Di + Ĩi + R̃i), 0}
Equity Êi {Ai − Li}
• CET1 Equity Ẽi 248877 Tier 1 Common Capital (CET1) (Reported)

B.1.2 Initialisation of Seniority Classes

In Table B.2 gives the initialisation of the seniority classes in our model using SNL data.

Note that Ĩi, Õi, Di and R̃i are already defined in Table B.1. We do not have data on

the amount of secured debt liabilities, hence we set x (in this table) to zero.
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Table B.2: Initialisation of Seniority Classes

Seniority Class Name Data Identifier/Inference Associated Data Name
1 CET1 Equity 248877 Tier 1 Common Capital (CET1) (Reported)

2 AT1 Equity 133172-248877
Tier 1 Capital (Reported) -
Tier 1 Common Capital (CET1) (Reported)

3 T2 Capital 133173 - 133172 Total Capital (Reported) -Tier 1 Capital (Reported)

4 Subordinated Debt

(225040+225030+225049)/
[(225040+225030+225049)+
(225031+225041+225050) +(x)]×
(Ĩi + Õi)

(Subordinated Debt Liabilities Held at Fair Value (Reported)+
Subordinated Debt Liabilities Held for Trading (Reported)+
Sub Debt Liabilities Held at Amortized Cost (Reported))/
[(Subordinated Debt Liabilities Held at Fair Value (Reported)+
Subordinated Debt Liabilities Held for Trading (Reported)+
Sub Debt Liabilities Held at Amortized Cost (Reported))
+(Senior Debt Liabilities Held for Trading (Reported)+
Senior Debt Liabilities Held at Fair Value (Reported)
+Senior Debt Liabilities Held at Amortized Cost (Reported))+
Secured Debt Liabilities]×
(Ĩi + Õi)

5 Senior Debt

225031+225041+225050)/
[(225040+225030+225049)+
(225031+225041+225050)+(x)]

×(Ĩi + Õi)

(Senior Debt Liabilities Held for Trading (Reported)+
Senior Debt Liabilities Held at Fair Value (Reported)+
Senior Debt Liabilities Held at Amortized Cost (Reported))/
[(Subordinated Debt Liabilities Held at Fair Value (Reported)+
Subordinated Debt Liabilities Held for Trading (Reported)+
Sub Debt Liabilities Held at Amortized Cost (Reported))+
(Senior Debt Liabilities Held for Trading (Reported)+
Senior Debt Liabilities Held at Fair Value (Reported)+
Senior Debt Liabilities Held at Amortized Cost (Reported))+

Secured Debt Liabilities]×(Ĩi + Õi)

6 Deposits Di =132288 - 224953
Total Deposits (Reported) -
Total Deposits from Banks (Reported)

7 Secured Debt

R̃i + Õk7
i + Ĩk7

i =

R̃i+ (x)/ [(225040+225030+225049)+
(225031+225041+225050) +(x)]×
(Ĩi + Õi)

R̃i+ (Secured Debt Liabilities)/
[(Subordinated Debt Liabilities Held at Fair Value (Reported)+
Subordinated Debt Liabilities Held for Trading (Reported)+
Sub Debt Liabilities Held at Amortized Cost (Reported))+
(Senior Debt Liabilities Held for Trading (Reported)+
Senior Debt Liabilities Held at Fair Value (Reported)+
Senior Debt Liabilities Held at Amortized Cost (Reported))+

Secured Debt Liabilities]×(Ĩi + Õi)

Mapping between Liability Types and Seniority Classes

The hierarchy of bank i’s bail-inable debt, which runs from bail-inable debt in the first

priority class Bk1
i to bail-inable debt in the fifth priority class Bk5

i , consists of the following

instruments (see a summary in Figure 4.3):

1. Priority class 1 consists of CET1 equity:

Bk1
i = Ẽi :=

∑
j∈F

Eji; (B.1)

• where Eji denotes the holding of institution j ∈ F (where F is the set of

financial institutions) of bank i’s CET1 equity Ẽi. The bank’s CET1 equity

Ẽi is approximated by

Ẽt
i ≈ Et

i −∆t0
i , (B.2)

where ∆t0
i is defined as the difference between book equity Ei and CET1 equity

Ẽi at time zero (i.e. ∆t0
i := Et0

i − Ẽt0
i ). This is a reasonable approximation

to capture how asset losses and liability changes effect the value of the CET1

222



equity Ẽt
i in a stress test. The CET1 equity Ẽi of a bank strongly relates to

the book equity of a bank Ei, defined as

Ei =: Ai − Li, (B.3)

but may not be equal to it. With this approximation, we assume that the

difference between the equity Ei and the CET1 equity Ẽi is constant over

time.

2. Priority class 2 consists of additional tier I (AT1) equity:

Bk2
i =: ẼAT1

i =
∑
j∈F

EAT1
ji , (B.4)

• where EAT1
ji denotes the holding of institution j ∈ F of bank i’s AT1 equity

ẼAT1
i . We note that all AT1 contracts EAT1

ji are perpetual, else they would

not be allowed to count towards a bank’s AT1 equity ẼAT1
i .

3. Priority class 3 consists of tier II (T2) equity:

Bk3
i := ẼT2

i =
∑
j∈F

∑
m∈M

ET2,m
ji , (B.5)

• where ET2,m
ji denotes the holding of institution j ∈ F with time to maturity

m ∈M of bank i’s T2 equity ẼT2
i . The time to maturity m is defined as the

difference between the maturity date T and the current time t (i.e. m := T−t).

4. Priority class 4 consists of subordinate interbank contracts and other liabilities with

a time to maturity of at least 7 days:

Bk4
i :=

∑
j∈B

∑
m∈M

(Ik4mji +Ok4m
ji ), (B.6)

• where Ik4mji and Ok4m
ji denote the value of institution j’s holdings of bank i’s

subordinated interbank contracts and other liabilities with time to maturity

m ∈M.

5. Priority class 5 consists of senior interbank contracts and other liabilities with a

time to maturity of at least 7 days:

Bk5
i :=

∑
j∈B

∑
m∈M

(Ik5mji +Ok5m
ji ), (B.7)

• where Ik5mji and Ok5m
ji denote the value of institution j’s holdings of bank i’s

senior interbank contracts and other liabilities with time to maturity m ∈M.
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B.2 Notation

Table B.3: Shows the definition of notation.

Category Variable Definition

Balance sheet

Ei
Ẽi
Ẽt,n
i

Eji
Ekm
ji

ẼAT1
i

EAT1
ji

ẼT2
i

ET2,m
ji

Fi
Ai
At,ni
Li
Ci
Yi
Ti
Ii
Ĩi
Ikmij
Ri

R̃i

Oi

Õi

Okm
ji

The book equity of bank i.
The CET1 equity of bank i.
The CET1 equity of bank i in Monte Carlo run n at time t.
The CET1 equity of bank i held by institution j.
The CET1 equity of bank i in priority class k with time to maturity m held by institution j.
The AT1 equity of bank i.
The AT1 equity of bank i held by bank j.
The T2 equity of bank i.
The T2 equity of bank i with a time to maturity m held by bank j.
The total funds of bank i.
The asset value of the bank i.
The asset value of bank i in Monte Carlo run n at time t.
The liability value of bank i.
The cash of bank i.
The external asset value of bank i.
The tradable asset value of bank i.
The interbank asset value of bank i.
The interbank liability value of bank i.
The interbank assets in priority class k with time to maturity m provided by bank i to bank j.
The reverse repo value of bank i.
The repo value of bank i.
The value of the other assets of bank i.
The value of the other liabilities of bank i.
The other liabilities of bank j in priority class k with time to maturity m held by institution j.

Bail-inable debt

Bi

Bk
i

Bkm
ji

B̂i

The bail-inable debt value of bank i.
The bail-inable debt value of bank i in priority class k.
The bail-inable debt of bank i in priority class k with time to maturity m held by institution j.
The bail-inable debt value of bank i excluding debt in the first priority class (i.e. CET1 equity).

Risk-weighted capital ratio

ρi
ρdatai

ρt,ni
ρFi
ρTi

The risk-weighted capital ratio of bank i.
The risk-weighted capital ratio of bank i as given data.
The risk-weighted capital ratio of bank i in Monte Carlo run n at time t.
The failing-likely to fail (FLTF) (risk-weighted capital) ratio applicable to bank i.
The (risk-weighted capital ratio) recapitalisation target applicable to bank i.

Time

t
ts
T
T̄
m
τi
τm,ni

τa
τb

Current time.
Current time in simulation (subscript is only used if necessary to avoid confusion).
Maturity of a contract.
Length of a contract (in days).
Time to maturity (m := T − t).
Bail-in time of bank i.
Bail-in time of bank i in Monte Carlo run n that affects contracts with a time to maturity m.
State of balance sheet after the loss absorption phase of the bail-in (phase a) has been completed.
State of the balance sheet after the recapitalisation phase of the bail-in (phase b) has been completed.

Loss absorption &
recapitalisation
amount

l̂τi
lτi
b̂i
bi

Necessary loss absorption amount of bank i at time τ .
Feasible loss absorption amount of bank i at time τ .
Preferred recapitalisation amount of bank i.
Feasible recapitalisation amount of bank i.
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Table B.4: Shows the definition of notation.

Category Variable Definition

Haircuts

hki
hkτai

hτbki
hkmτaji

hkmτbji

Total haircut applied to priority class k of bank i.
Total haircut applied to priority class k of bank i in the loss absorption phase (phase a).
Total haircut applied to priority class k of bank i in the recapitalisation phase (phase b).
Haircut applied in phase a to a contract in priority class k with time to maturity m held by creditor j of bank i.
Haircut applied in phase b to a contract in priority class k with time to maturity m held by creditor j of bank i.

Conversion
rates

∆k
i

∆k
ia

∆k
ib

∆̃a

∆̃b

∆̂k
ia

∆̂k
ib

Conversion rate (or: debt-to-equity conversion rate) applicable to contracts in priority class k of bank i.
Conversion rate that holds for the loss absorption phase applicable to contracts in priority class k of bank i.
Conversion rate that holds for the recapitalisation phase applicable to contracts in priority class k of bank i.
‘Fair’ conversion rate in the loss absorption phase (phase a).
‘Fair’ conversion rate in the recapitalisation phase (phase b).
‘Unfair’ conversion rate component that holds for phase a applicable to contracts in priority class k of bank i.
‘Unfair’ conversion rate component that holds for phase b applicable to contracts in priority class k of bank i.

Acquired
equity share

εkmτbji

ε̃kmτbji

ε̂kmτbji

εk1τji

The acquired share (at time τb) of bank i’s equity for a contract in priority class k with time to maturity m held by institution j.
The ‘fair’ acquired share (at time τb) of bank i’s equity for a contract in priority class k with time to maturity m held by institution j.
The ‘unfair’ part of the acquired share of bank i’s equity for a contract in priority class k with time to maturity m held by institution j.
The share of an existing equity holder (i.e. priority class k1) j of bank i’s equity at the start time of bail-in τ .

Number of
shares

ητi
ητai
ητbi
w

The number of shares of bank i at the start time of bail-in τ .
The number of shares of bank i after the loss absorption phase (phase a) of bail-in.
The number of shares of bank i after the recapitalisation phase (phase b) of bail-in.
The arbitrarily chosen number of newly created shares if equity holders are wiped out.

Valuation of
bail-inable
debt

V kmt
ji

P kT
ji

The time-t value of a bail-inable debt contract of bank i in priority class k with time to maturity m held by institution j.
The payoff at maturity T of a bail-inable debt contract of bank i in priority class k held by institution j.

Jump process
of asset value

r
σ2
i

W Q
i

Zi
λi
ji
j̄i
µJi
σJi
φi

The risk-free rate (we set r = 0).
The instantaneous variance of bank i’s asset returns conditional on a Poisson event not occurring.
Gauss-Wiener process of bank i under the risk-neutral dynamics.
Value of a draw from the standard normal distribution for bank i.
The jump intensity of bank i.
The size of a random jump of bank i.
The mean random jump size of bank i.
The mean for bank i of the log-normal distribution associated to the jump size ji.
The standard deviation for bank i of the log-normal distribution associated to the jump size ji.
A Boolean variable for bank i that takes value one with probability λi and value zero with probability 1− λi.

Runs

ρRji
Λkmt
ji

Λ̃kmt
ji

ψji
ψ̃ji

The threshold value of the risk-weighted capital ratio of bank i beyond which a creditor j attempts to run.
The relative valuation loss at time t of a bail-inable contract of bank i in priority class k with time to maturity m held by institution j.
The VaR valuation loss at time t of a bail-inable debt contract of bank i in priority class k with time to maturity m held by institution j.
The threshold value of the relative valuation loss Λkmt

ji of bank i beyond which a creditor j attempts to run.

The threshold value of the VaR valuation loss Λ̃kmt
ji of bank i beyond which a creditor j attempts to run.

B.3 Model Specifics

B.3.1 Alternative Ways of Dealing with Bank Failure

Bail-Out A bank i ∈ B can be recapitalised from a risk-weighted capital ratio ρti at

time t to a recapitalisation target ρTi (see section 4.5.1.4) by means of a bail-out. Bail-out

is achieved by injecting equity in the bank. The equity injection also gives a bank an

equal amount of cash. So other than in a bail-in, a bail-out also directly addresses any

liquidity issues a bank may face. Specifically, the amount of equity ai that a government

needs to inject to recapitalise a bank at time t is given by

ai = Ωt
iρ
T
i − Ẽt

i , (B.8)

which follows from

ρTi =
Ẽt
i + ai
Ωt
i

. (B.9)

Equation B.9 tells that, due to the bail-out, bank i’s CET1 equity updates to Ẽt+1
i =

Ẽt
i +ai (numerator) and its cash updates to Ct+1

i = Ct
i +ai (denominator). However, the
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cash does not show up in the risk-weighted assets Ωi (denominator), since it bears a zero

risk-weight.

Bail-out can be performed once the bank has failed (i.e. at time t = τi), if the loss

absorption phase of bail-in was not successful (i.e. at time t = τa), or if phase b was not

successful (i.e. at time t = τb). In the first case a bail-out rather than a bail-in is used

to fully recapitalise the bank, whereas in the latter two cases bail-out is performed to

further recapitalise the bank because the bail-inable debt Bi was not sufficient.

Liquidation Liquidation is performed in the same way as the liquidation procedure

described in Farmer et al. (2020). Assets are liquidated (i.e. tradable assets are sold and

short-term funding is pulled). Liabilities face a loss given default of a hundred percent,

since in the short-time period that the stress test considers the recovery is typically zero.

B.4 Sensitivity Analysis

Figure B.1: Shows the stability impact of the ‘primary’ bail-in design, when smaller SIBs fail.
The left x-axis now displays the failure of the 5 smallest SIBs, rather than the 5 largest SIBs as
the main results do. We observe that stabilty is left unaffected by the choice of ‘good’ or ‘bad’
bail-in parameters for idiosyncratic failures of small European SIBs.
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Figure B.2: Compares the stability impact of the leading modes of dealing with bank failure:
disorderly liquidation, bail-out, and bail-in (disorderly liquidation if bail-in is not succesful; or
bail-out if bail-in is not succesful). It does so for the case where the ‘primary’ bail-in parameters
are well-chosen. And the same parameters, if applicable, apply to the other methods of dealing
with SIB failure.

Figure B.3: Compares the stability impact of the leading approaches of dealing with bank
failure: disorderly liquidation, bail-out, and bail-in (disorderly liquidation if bail-in is not suc-
cesful, or bail-out if bail-in is not succesful). It does so for the case where the ‘primary’ bail-in
parameters are ill-chosen. And the same parameters, if applicable, apply to the other means of
dealing with SIB failure.
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Figure B.4: Shows the stability impact of the failure threshold, for the case where ‘bad’ primary
parameters are applied.

Figure B.5: Shows the stability impact of the recapitalisation target, for the case where ‘bad’
primary parameters are used.
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Figure B.6: Shows the contagious amplifications of the ‘primary’ bail-in design, for the case
where bad’ primary parameters are wielded.

Figure B.7: Shows the stability impact of the initial leverage of leveraged non-banks. We
observe that systemic risk in the banking system spikes if the initial leverage of non-banks is
higher.
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Figure B.8: Shows the stability impact of the relative size of leveraged non-banks χ vs. non-
leveraged non-banks (1−χ). We observe that banking sector fragility surges if a relative larger
percentage of the bail-inable debt that is held by the non-banking sector is held by leveraged
non-banks.

Figure B.9: Shows the asset loss to non-leveraged non-banks – a good proxy for the asset losses
that the real economy may suffer – as a function of the percentage of bail-inable debt held by
the non-banking sector that is possessed by non-leveraged non-banks, such as pension funds
and insurance companies.
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B.5 Detailed Descriptions

B.5.1 Comparing Debt Eligibility Criteria for MREL, TLAC,
and Bail-In

In this section we will compare the main commonalities and differences between instru-

ments that are eligible for: (i) bail-in Bi (these have been discussed in Section 4.5.1.1);

(ii) TLAC Ti; and (iii) MREL Mi. A complete description of the eligible instruments for

bail-in Bi, TLAC Ti and MREL Mi are given in: Article 44 of the BBRD, FSB (2015b),

and Article 45 of the BRRD and EBA (2016), respectively.

Commonalities The main commonalities are twofold. First, CET1 equity Ẽi, AT1

capital ẼA
i , and tier 2 capital ẼT

i are eligible for bail-in Bi, MREL Mi, and TLAC Ti.

Second, structured products, covered deposits and non-contracts (e.g. tax liabilities) are

excluded from bail-in Bi, as well as from MREL Mi and TLAC Ti.

Differences The main differences regard the treatment of: (a) the maturity; (b) deriva-

tives; (c) cross holdings; (d) buffer requirements; (e) the denominator; and (f) subordi-

nation. We will discuss each of these in turn.

Maturity The time to maturity T − t of instruments that are eligible for MREL Mi

and TLAC Ti is at least one year, whereas instruments to institutions with a maturity T

greater than or equal to seven days, or instruments to settlement systems with a time to

maturity T − t of at least seven days are eligible for bail-in Bi. Why does a discrepancy

exist?

By making only those contracts eligible for TLAC and MREL that have a residual

maturity of at least a year, regulators encourage banks to have a maturity profile of

bail-inable debt Bi that is sufficiently long that the bail-inable debt amount Bi cannot

suddenly collapse (e.g. if counterparties do not roll-over debt). This rule in principle

allows the resolution authority to make use of the loss absorbing capacity with a residual

maturity less than one year but greater than seven days. So it gives extra capacity, while

encouraging stable forms of bail-inable claims Bi. Yet, in our opinion this inconsistency

is not helpful. As we explained in the Section about runs 4.5.2.3, instruments that are

maturity-wise not eligible for MREL Mi and TLAC Ti but are eligible for bail-in Bi may

be subject to a run in anticipation of a bail-in. In the run Section 4.5.2.3 and the result

Section 4.7, we will argue and show that the minimum maturity of instruments that are

excluded needs to be increased. Perhaps to a level in line with the TLAC Ti and MREL

Mi exclusions.
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Derivatives Derivatives are excluded from MREL Mi and TLAC Ti, while derivatives

are in principle included in bail-in Bi. Yet, authorities may exclude derivatives on an

ad-hoc basis (such as when bailing in derivatives would give rise to contagion) (see Sec-

tion 4.5.1.1).1 Why does a disparity exist?

Authorities presumably anticipate that it may be hard to bail-in derivatives. There-

fore, to ensure a bank has sufficient bail-inable claims Bi that in practise (rather than in

principle) can be bailed in, regulators exclude derivatives from the measures (TLAC and

MREL) that aim to ensure that a bank has sufficient loss absorbing capacity.

Cross Holdings Cross holdings of MREL instruments by banks (both G-SIBs and

non-GSIBs) and cross holdings of TLAC instruments by G-SIBs are excluded (subject

to some exceptions) from the MREL Mi and TLAC Ti measure respectively.23 However,

cross holdings of bail-inable debt are not excluded from a bank’s bail-inable debt Bi. Yet,

the authority has the power to exclude cross holdings of bail-inable debt in exceptional

circumstances.4 Why this dissimilarity?

The MREL Mi and TLAC Ti measure exclude cross holdings of MREL and TLAC

instruments to avoid the risk of contagion within the (G-SIB) banking sector. However,

these measures do not exclude the risk of contagion between the banking sector and the

non-banking sector and the risk of contagion within the non-banking sector.

Despite the TLAC and MREL exclusions of cross holdings from the loss absorbing

requirements, cross holdings of TLAC and MREL may be bailed in. This rule is presum-

ably in place to provide regulators with extra loss absorbing capacity if bailing in cross

holdings would not risk contagion. These are the most important differences from the

point of view of contagion. Three further differences remain.

Buffers As discussed in Section 4.5.1.2, CET1 equity Ẽi that is counted towards the

buffer standards ρCBi and λCBi cannot count towards TLAC Ti or MREL Mi. However,

this part of CET1 equity is subject to bail-in Bi. This difference makes sense to keep

buffer usable.

The MREL and TLAC requirements are computed with respect to different denomi-

nators (as we saw in section 4.5.1.2). MREL requirements are computed with respect to

1See: Article 44(3) of the BRRD.
2In the case of TLAC this is brought about by the requirement that TLAC cross holdings by G-SIBs

are substracted from a bank’s T2 ẼAi capital, and if this is not sufficient from its AT1 ẼTi and CET1
equity Ẽi next (FSB (2016b)). Note, that this requirement is a double blow. It reduces both TLAC Ti
and a bank’s capital requirements.

3In the case of MREL, exceptions include that MREL cross holdings by banks below a certain
threshold may count towards MREL Mi, so as to support market-making activities (EBA (2016)).

4See: Article 44(3) of the BRRD.
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a bank’s liabilities and own funds Fi+Li, while TLAC requirements are determined with

respect to a bank’s risk exposure Ωi. Strikingly, regulators have not specified a measure

to determine the minimum amount of bail-inable debt Bi. Instead the set of instruments

that are eligible for bail-in Bi is a superset of the instruments that are eligible for MREL

Mi and TLAC Ti (as we saw from point (a), (b) and (c)),5 because the MREL MM
i

and TLAC TM requirements implicitly set a floor to the minimum amount of bail-inable

instruments Bi, which a bank must have.

Subordination To be eligible towards TLAC Ti instruments must be contractually and

statutory subordinated (subject to some exceptions). Contractual subordination means

that TLAC eligible instruments must be contractually subordinated to instruments that

are explicitly excluded from TLAC.6 Statutory subordination means that a TLAC eligi-

ble instrument must be junior in the creditor hierarchy to instruments that are explicitly

excluded from TLAC. The main reason why regulators have introduced subordination is

to circumnavigate the no creditor worse-off condition (NCWO) safeguard (EBA (2016)).

This safeguard requires that no shareholder or creditor must be left worse off from the use

of resolution, else the shareholder or creditor is entitled to the payment of the difference

from the resolution financing arrangements (in Section 4.5.1.2 we discuss why exclusions

make a breach of the no-creditor-worse-off condition more likely, and therefore why sub-

ordination is useful).7 Instruments, which are eligible towards MREL Mi originally did

not have a subordination requirement. However, EBA (2016) proposes that under the

revised framework G-SIBs (not non-GIBs) should have a subordination requirement in

line with TLAC.8

Bail-inable claims Bi do not have to be subordinated contractually or statutory to

instruments that are explicitly excluded from bail-in as defined in Article 44(2) of the

BRRD. Why is there a lack of congruence?

By requiring subordination, in order for instruments to be eligible for TLAC Ti and

MREL Mi, regulators encourage banks to hold more subordinated debt. This increases

the bail-inable debt amount Bi of banks that is at a low risk of breaching the NCWO

principle. Why not make the bail-inable debt Bi consistent with MREL Mi and TLAC

Ti regarding subordination? This would reduce investors’ uncertainty regarding the in-

struments are likely subject to bail-in and allow them to price risk better.

5That is, typically it would be the case that B̂i ≥ Ti and B̂i ≥Mi
6The full list of contracts that are excluded from TLAC can be found in FSB (2015b).
7See: Article 75 of the BRRD.
8Specifically, under the revised framework, G-SIBs should be required to meet their MREL with

subordinated instruments, at least to a level of 16% of RWAs in 2019 and 18% of RWAs in 2022 in line
with the TLAC term sheet (EBA (2016)).
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Closing Remarks To conclude, we have seen that instruments that are eligible for

bail-in Bi substantively differ from the instruments hat are eligible from MREL Mi and

TLAC Ti. Also, differences in eligibility between TLAC Ti and MREL Mi instruments

exist. Since both TLAC and MREL requirements serve the same purpose: to establish

a minimum loss absorbing capacity for banks (which can be used in a bail-in), it makes

sense to eliminate any discrepancies between TLAC Ti and MRELMi eligible instruments.

Eligibility to count towards TLAC Ti and MREL Mi is more conservative than eligibility

towards bail-inable debt. In some sense this makes sense. Regulators require easily usable

loss absorbing capacity but also allow less easily usable loss absorbing capacity to be used

in a bail-in would the former not be sufficient in size to restore a bank to viability. On the

other hand, it seems odd that if the aim is to increase the loss absorbing capacity in a bail-

in, regulators – rather than setting a minimum amount of bail-inable debt requirement

(as this is what actually matters in equation 4.15 and equation 4.25, which stipulate the

maximum loss absorbing capacity and maximum recapitalisation capacity respectively)

– define a different yet related measure. Therefore, we propose the following minimum

requirement. The minimum amount of bail-inable debt Bi that banks must hold must

satisfy the following equation

Bi ≥ BM
i Ωi, (B.10)

where BM
i is some specified minimum set on the amount of risk-weighted bail-inable debt

that bank i should hold. The question remains: what claims should be eligible as bail-

inable debt Bi? Either authorities could stick to the current standard as enshrined in

Article 44(2). Or if authorities think that certain bail-inable debt in Article 44(2) is in

practise not bail-inable, regulators should update 44(2) to make it consistent with the

instruments that are eligible for TLAC.

B.5.2 Principles on the Debt-to-Equity Conversion Rate

B.5.2.1 Only ‘Fair’ Conversion Rates are Typically Compatible with P1 &
P2

It turns out that it is much easier to satisfy P1 and P2 when the conversion rate ∆k
i is

split in the conversion rate applicable to haircuts in the loss absorption phase ∆k
ia and to

haircuts in the recapitalisation phase ∆k
ib (see equation 4.33 for the relation among the

phase-a- and phase-b conversion rate and the overall conversion rate ∆k
i ). Typically, the

only compatible conversion rate with P1 and P2 is the ‘fair’ conversion rate (exceptions

are discussed in Section 4.5.1.2). We will now explain why this is so.

For now let us assume (we will relax these in Section 4.5.1.2) that the liquidation cost
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cτi in a hypothetical liquidation is zero (see equation 4.56) and that there are no exclusions

Xτ
i of claims in a bail-in relative to the insolvency hierarchy (see equation 4.68). In such

case, the sole conversation rate in phase a and b compatible with P1 and P2 is the ‘fair’

conversion rate given by ∆k
ia = ∆̃a = 0 and ∆k

ib = ∆̃b for k ∈ K (see equation 4.40, 4.41

and 4.42). When conversion rates in phase a and b are set ‘fairly’ the joint conversion

rate ∆k
i is also compatible with P1 and P2. These can be seen as follows.

• A ‘fair’ conversion rate ∆̃a = 0 in phase a satisfies P1: The loss absorption need l̂i

in a bail-in is equal to that in a hypothetical liquidation (see equation 4.14). Hence,

if conversion rates ∆k
ia are set to zero in phase a of a bail-in, then creditors are not

worse off than in a liquidation: the loss given default ζkτbi in each priority class k is

equal (see equation ??).

Applying positive conversion rates ∆k
ia > 0 in phase a makes creditors who receive

a haircut in phase b worse off. In part this can be understood from equation 4.36.

Equation 4.36 shows that allotting shares is a zero-sum game. If creditors in phase

a receive more than their ‘fair’ share (i.e. ∆k
ia > ∆̃a = 0), then creditors in phase b

by implication obtain less than their fair share (i.e. ∆k
ib < ∆̃b).

• A ‘fair’ conversion rate ∆̃b > 0 in phase b satisfies P1: Creditors who are subject

to haircuts in the recapitalisation phase should not suffer any losses if P1 is to be

satisfied, since in liquidation losses are absorbed but no recapitalisation is done.

Therefore, fair rates ∆̃b should be applied so that any haircut hkmτbji in phase b (see

equation 4.13) is replaced with an equal claim Ekmτb
ji = ε̃kmτbji Ẽτb

i of bank i’s CET1

equity Ẽτb
i (see equation 4.39), resulting in no net losses.

• ‘Fair’ conversion rates in phase a and b jointly satisfy P2: P2 holds because ∆̃a <

∆̃b and creditors in more junior priority classes are the first to be subjected to phase

a, while creditors in more senior priority classes will likely be (only) subjected to

haircuts in phase b. The hierarchy of claims is thus preserved.

• ‘Fair’ conversion rates in phase a and b imply the joint conversion rates ∆k
i satisfy

P1 and P2: P1 clearly holds for the joint conversion rates ∆k
i , since it holds for the

individual conversion rates in phase a and b. From equation

∆k
i =

∆̃bh
kmτb
ji

hkmτaji + hkmτbji

, (B.11)

which simplifies equation 4.33 for the case of ‘fair’ conversion rates, also shows

clearly that P2 is satisfied: creditors in a junior priority class k more often have a
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positive haircut hkmτaji > 0 in phase a than creditors in a more senior priority class

do, leading to a smaller or equal conversion rate ∆k
i for more junior priority classes.

Setting conversion rates ‘fairly’ is not only easy, as well as compatible with P1 and P2, it

is also desirable. Setting rates other than ‘fairly’, that is, ‘unfairly’ gives excessive losses

to some (i.e. junior creditors) and net profits to others (i.e. senior creditors). This not

only skews the wealth distribution and could be argued to be ‘disproportionate’9, it also

risks exacerbating contagion (our main concern).

We will now proceed to formalise P1 so that we can discuss the case when ‘unfair’

rates are possible without breaching P1 and P2 and treat the situation where neither

‘fair’ nor ‘unfair’ rates are compatible with P1 and P2 necessitating a contribution of the

resolution financing fund.

9A regulator is principle is allowed to convert a debt claim to a certain amount of equity greater or
smaller than the original converted debt claim, as long as it is not disproportionate. See EBA (2017c)
point (1.18).
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Hüser, A.-C. & Kok, C. (2019), ‘Mapping bank securities across euro area sectors: com-

paring funding and exposure networks’.

IMF (2014), Canada financial sector stability assessment, Technical report, International

Monetary Fund.

IMF (2019), ‘Financial sector assessment program (fsap)’, https://www.imf.org/

external/np/fsap/fssa.aspx.

Iori, G. & Mantegna, R. (2018), Complex financial networks, in C. Hommes & B. LeBaron,

eds, ‘Handbook of Computational Economics, Volume 4, Heterogeneous Agent Models’,

Elsevier, Amsterdam.

IOSCO (2017), Report on the fourth IOSCO hedge funds survey, Technical report, In-

ternational Organization of Securities Commissions.

250

https://www.bloomberg.com/news/articles/2015-12-06/leverage-ratio-for-banks-can-be-raised-as-high-as-5-bis-says 
https://www.bloomberg.com/news/articles/2015-12-06/leverage-ratio-for-banks-can-be-raised-as-high-as-5-bis-says 
http://libertystreeteconomics.newyorkfed.org/2016/04/are-stress-tests-still-informative.html
http://libertystreeteconomics.newyorkfed.org/2016/04/are-stress-tests-still-informative.html
https://www.imf.org/external/np/fsap/fssa.aspx 
https://www.imf.org/external/np/fsap/fssa.aspx 


Iyer, R. & Peydro, J.-L. (2011), ‘Interbank contagion at work: Evidence from a natural

experiment’, Review of Financial Studies 24(4), 1337–1377.

Judge, K. & Berner, R. (2019), ‘The data standardization challenge’, Columbia Law

School Scholarship Repository, Working Paper .

Kapadia, S., Drehmann, M., Elliott, J. & Sterne, G. (2013), Liquidity risk, cash flow con-

straints, and systemic feedbacks, in ‘Quantifying Systemic Risk’, University of Chicago

Press, pp. 29–61.

Khandani, A. E. & Lo, A. W. (2011), ‘What happened to the quants in august 2007?

Evidence from factors and transactions data’, Journal of Financial Markets 14(1), 1–46.

Kiyotaki, N. & Moore, J. (1997), ‘Credit cycles’, Journal of political economy 105(2), 211–

248.

Klimek, P., Poledna, S., Farmer, J. D. & Thurner, S. (2015), ‘To bail-out or to bail-

in? Answers from an agent-based model’, Journal of Economic Dynamics and Control

50, 144–154.

Kok, C. & Montagna, M. (2013), Multi-layered interbank model for assessing systemic

risk, Technical report, European Central Bank.

Kyle, A. S. (1985), ‘Continuous auctions and insider trading’, Econometrica: Journal of

the Econometric Society 53(6), 1315–1335.

LeBaron, B. (2006), ‘Agent-based computational finance’, Handbook of computational

economics 2, 1187–1233.

Lo, A. W. (2017), Adaptive markets: Financial evolution at the speed of thought, Prince-

ton University Press, Princeton, Princeton.

Martin, A., Skeie, D. & Von Thadden, E.-L. (2014), ‘Repo runs’, Review of Financial

Studies 27(4), 957–989.

May, R. M. & Arinaminpathy, N. (2010), ‘Systemic risk: the dynamics of model banking

systems’, Journal of the Royal Society Interface 7(46), 823–838.

McAndrews, J., Morgan, D. P., Santos, J. A. & Yorulmazer, T. (2014), ‘What makes

large bank failures so messy and what to do about it?’, pp. 229–244.

Mehrling, P., Pozsar, Z., Sweeney, J. & Neilson, D. H. (2013), ‘Bagehot was a shadow

banker: shadow banking, central banking, and the future of global finance’, Central

Banking, and the Future of Global Finance .

251



Merton, R. C. (1974), ‘On the pricing of corporate debt: The risk structure of interest

rates’, Journal of Finance 29(2), 449–470.

Merton, R. C. (1976), ‘Option pricing when underlying stock returns are discontinuous’,

Journal of Financial Economics 3(1-2), 125–144.

Moretti, M., Stolz, S. M. & Swinburne, M. (2008), Stress Testing at the IMF, IMF

Working Paper WP/08/206.

Morris, S. & Shin, H. S. (2001), ‘Global games: theory and applications’.

Noonan, L., Binham, C. & Shotter, J. (2016), ‘Deutsche bank received

special treatment in eu stress tests’, https://www.ft.com/content/

44768ea8-8c71-11e6-8aa5-f79f5696c731.

OFR (2014), Office of financial research: 2014 annual report, Technical report, Office of

Financial Research.

Ong, L. L. & Pazarbasioglu, C. (2014), ‘Credibility and crisis stress testing’, International

Journal of Financial Studies 2(1), 15–81.

Paddrik, M. E. & Young, P. (2017), ‘How safe are central counterparties in derivatives

markets?’, LSE Research Online .

Paddrik, M., Rajan, S. & Young, H. P. (2016), ‘Contagion in the CDS market’, Office of

Financial Research Working Paper pp. 16–12.

Paulin, J., Calinescu, A. & Wooldridge, M. (2018), ‘Understanding flash crash con-

tagion and systemic risk: A micro-macro agent-based approach’, arXiv preprint

arXiv:1805.08454 .

Pennacchi, G. (2010), ‘A structural model of contingent bank capital’, FRB of Cleveland

Working Paper 10-04 .

Persaud, A. (2014), ‘Why bail-in securities are fool’s gold’, Available at SSRN 2643702 .

Pistor, K. (2013), ‘A legal theory of finance’, Journal of Comparative Economics

41(2), 315–330.

Poledna, S., Molina-Borboa, J. L., Mart́ınez-Jaramillo, S., Van Der Leij, M. & Thurner,

S. (2015), ‘The multi-layer network nature of systemic risk and its implications for the

costs of financial crises’, Journal of Financial Stability 20, 70–81.

252

https://www.ft.com/content/44768ea8-8c71-11e6-8aa5-f79f5696c731
https://www.ft.com/content/44768ea8-8c71-11e6-8aa5-f79f5696c731


Pozsar, Z. (2013), ‘Shadow banking and the global financial ecosystem’, VoxEU,

November 6.

Pozsar, Z., Adrian, T., Ashcraft, A. B. & Boesky, H. (2010), ‘Shadow banking’.

Pozsar, Z. & Singh, M. (2011), ‘The nonbank-bank nexus and the shadow banking sys-

tem’, IMF Working Paper 11/289 .

Prudential Regulation Authority (2017), Constulation paper CP15/17: The minimum

requirement for own funds and eligible liabilities (MREL) – buffers, Technical report,

Bank of England.

Quagliariello, M. (2009), Stress-testing the Banking System: Methodologies and

Applications, Cambridge University Press.

Rachev, S. T., Menn, C. & Fabozzi, F. J. (2005), Fat-tailed and skewed asset return

distributions: implications for risk management, portfolio selection, and option pricing,

Vol. 139, John Wiley & Sons, Hoboken.

Rogers, L. C. & Veraart, L. A. (2013), ‘Failure and rescue in an interbank network’,

Management Science 59(4), 882–898.

Rutledge, V., Moore, M., Dobler, M., Bossu, W., Jassaud, N. & Zhou, J. (2012), ‘From

bail-out to bail-in: mandatory debt restructuring of systemic financial institutions’.

Sarin, N. & Summers, L. H. (2016), ‘Have big banks gotten safer?’, Brookings Papers .

Sarin, N. & Summers, L. H. (2020, forthcoming in Handbook of Financial Stress Testing),

On Market-Based Approaches to the Valuation of Capital, Cambridge University Press.
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