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1. Abstract 

Yang-Mills theories within the Standard Model of particle physics predict topologically non-trivial objects 

which describe the tunnelling between classically degenerate vacuum states in Minkowski spacetime. 

Though predicted theoretically as long ago as the 1960’s, no experimental evidence for these objects has yet 

been found. One example of such objects – known as “QCD (quantum chromodynamic) Instantons” – 

should be frequently created at the Large Hadron Collider, but are still to be identified from the existing 

data as they are eclipsed by large numbers of background events. This work aimed to deploy the ABCDisCo 

[1] method of filtering Instanton events from background events on simulated and real experimental data 

samples. It will also appraise the extent to which the performance of Machine Learning algorithms (neural 

networks) employed by this method is insensitive to changes in the expected theoretical behavior of the 

perturbative QCD backgrounds. 

2. Introduction 

One prediction of the standard model is the existence of pseudo-particles aptly named Instantons – non-

perturbative topological objects localized in Minkowski spacetime. These objects are expected to behave as 

“soft-bombs” of large numbers of low-energy tracks in proton-proton collisions. This is a consequence of 

Instantons decaying into all kinematically available quark + antiquark pairs as well as multiple gluons. 

Thus, one expects events presenting Instantons to have more charged tracks and higher sphericity (i.e. 

distribution of momentum is more spherically symmetric). 

 Previously, Instanton events could hypothetically be found in recorded LHC data via threshold 

cuts in phase space. The ABCDisCo method improves this filtering by forming a 2D phase space from the 

independent outputs of two ML (Machine Learning) neural network classifiers that distinguish between 

Instanton events and background and applying statistical methods in order to estimate the background in 

the signal-dominated region. Study [2] determines that neural networks are best suited for this task. 

 In the Monte Carlo simulated event samples, background events may be generated using different 

perturbative QCD theories. In reality, it is unclear which ones better suit the real recorded LHC data. This 

project studies the performance and robustness of the decorrelated ML classifiers used by the ABCDisCo 

method, under a change between two different theories (EPOS and Pythia) that are used to simulate the 

background events upon which the algorithms are trained. This study can be further generalized to 

multiple available background theories. Section 3 describes the scope and method of the project, section 4 

outlines the method and results and section 5 presents further matters to be investigated. 

3. Background estimation using ABCD method 

Collision events are studied by analyzing the charged-particle or debris tracks emerging from the collision 

vertex. Different physical aspects of these tracks (e.g., momentum, direction etc.) can be used to calculate 

various event-level features or event shape variables. Therefore, an Instanton events may be recognized by 

specific behaviors in one or more of these features and variables. This allows the selection of Instanton 

signal region via threshold cuts in phase space, where a cut is defined as a selection of bounds on event 
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observables in which the desired Instanton processes are more prominent over background processes 

compared to the uncut sample [2]. 

The ABCD method allows the estimation of the background within a signal-dominated region as 

determined by a set of cuts in a 2D phase space, where the features/observables f and g comprising the 

phase space are approximately statistically independent for the background [1]. Provided that signal 

contamination is low (see [1] for detailed explanation) in the control regions B, C, D, the background in 

region A (see Figure 1) can be estimated using 

𝑁𝐴,𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 =  

𝑁𝐵,𝑎𝑙𝑙 × 𝑁𝐶,𝑎𝑙𝑙

𝑁𝐷,𝑎𝑙𝑙
     (1), 

where N denotes number of events of a certain class (background, signal or all) in a certain region A, B, C or 

D. 

 
Figure 1 - Phase space of features f and g depicting signal (Instantons) and background; A = signal regions; B, C, D = control 

regions; [1] 

 It should be noted that the features f and g may be selected from the event-level features, but event 

variables have various degrees of correlation between them, making it difficult to meet the statistical 

independence condition required for the ABCD method. Additionally, selecting only two features from 

among the event variables implies neglecting information contained in the rest. 

3.1 Double DisCo and phase space generation 

A phase space of two approximately statistically independent variables f and g is generated using the 

outputs of two ML classifiers (filtering signal from background) before imposing the cuts that will define 

the ABCD regions. Decorrelation between the outputs of the two classifiers is enforced, as explained in [1], 

via the (double) DisCo method. This involves modifying the second of the two classifier’s loss functions to 

𝐿𝐷𝑖𝑠𝐶𝑜 = 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟[𝑓, 𝑦] + 𝛼 × 𝑑𝐶𝑜𝑟𝑟2[𝑓, 𝑔]|𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑     (2), 

where 𝐿𝐷𝑖𝑠𝐶𝑜 is the classifier’s newly created loss function, 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟[𝑓, 𝑦] is the classifier’s base loss function 

(e.g., binary cross entropy), 𝑓 is the classifier’s output, g is the feature to be decorrelated against (the 

previous classifier’s output), 𝑦 ∈ {0,1} is the classification’s target, in this case a Boolean (0 for certainly 

background – bkg. -, 1 for certainly signal – sig.), 𝑑𝐶𝑜𝑟𝑟2[𝑓, 𝑔]|𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  is the squared distance correlation 

between f and g, a quantity characterizing correlation (ranging from 0 for no correlation to 1 for perfect 

correlation) and 𝛼 is a tunable parameter allowing for various degrees of decorrelation. Notably, we expect 

that classification performance will decrease with higher imposed decorrelation. 

3.2 Classifier setup and event-level features used 

 The two classifiers g and f (hereafter referred to as classifiers A and B respectively) used to create the 2D 

phase space are trained to distinguish between Instanton signal events and QCD background on a data 
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sample comprised of a mixture of signal and background. Subsequently, the performance study is executed 

on corresponding mixed samples, which are completely unused for previous training and hence “unseen” 

by the classifiers beforehand.  

For this project, all ML classifier models, scalers and training are done in Keras [3], as it is an ML 

framework which allows the use of custom loss functions, unlike other frameworks such as scikit-learn [4]. 

However, scikit-learn is also used for utilitarian tasks such as splitting the data sets into testing and training 

samples or testing the algorithms.  

 The event-level features used in the training of the two classifiers are presented in Table 1. They 

are either weak discriminants between the signal and background (are very similar between these classes) 

or strong discriminants between the signal and background (are significantly different between these 

classes). Classifier A uses only weakly discriminating features, while classifier B uses both weakly and 

strongly discriminating features. This is done in order to avoid a high systematic correlation between the 

classifier outputs, which would be difficult to eliminate solely via the DisCo loss function.  

Table 1 - Event level features used in the training of the A and B classifiers and their descriptions 

Feature Description Classifier A 

(weakly 

discriminating) 

Classifier 

B 

Number of tracks (track 

multiplicity) 

Recorded number of charged tracks 

of an event 

No Yes 

ST Sum of scalar transverse 3-momenta 

(momenta of tracks in transverse 

plane of event); for formula see [2] 

No Yes 

Invariant mass Sum of invariant masses of all track 

4-momenta 

No Yes 

Invariant mass per track Invariant mass divided by number of 

event tracks 

No Yes 

Transverse mass squared Invariant mass if all track 4-momenta 

were projected onto the transverse 

plane and considered null; for 

formula see [2] 

No Yes 

Transverse mass squared/track Transverse mass squared divided by 

the number of event tracks 

No Yes 

Magnitude of mean 

pseudorapidity 

Absolute value of average of 

pseudorapidity over all event tracks 

= |〈𝜂〉| 

Yes Yes 

Sphericity scalars (S – 

sphericity, A – Aplanarity, C 

and D) 

Scalars characterizing track 

momenta spatial distribution; for 

formulas see [2] 

Yes Yes 

2D transverse Thrust Event shape variable characterizing 

jets produced in collision; for 

formula see [2] 

Yes Yes 

Broadening Event shape variable providing 

additional information about spatial 

positioning of collision tracks; for 

formula see [2] 

Yes Yes 
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4. Method and results 

Multiple perturbative QCD theories exist for the Monte Carlo simulated background samples, but none of 

them perfectly reflect the real behavior of background events. Ideally however, the ML classifiers used to 

implement the above-described methods would be optimized to perform just as well on real data as on 

simulated data, after being trained on one or more background theories. In other words, for the ML 

classifiers to be useful, they need to be insensitive to slight theoretical variations between the behaviors of 

simulated and real background data. If they are not, the possibility of improving on this aspect is to be 

investigated.  

 An equivalent study is done to determine the degree to which the ML algorithms are or can be 

made insensitive to theoretical variations between two Monte Carlo simulated backgrounds:  EPOS and 

Pythia. 

 

Figure 2 - scatter plots in phase space and classifier B cross-section for models trained and tested on the same background; 
red=sig, blue=bkg; (a) - EPOS training, EPOS testing, (b) - Pythia training, Pythia testing; 

4.1 Method 

To analyze how insensitive the ML algorithms can be to background variations, the DisCo decorrelated A 

and B neural network classifiers are trained and then used on simulated testing samples (signal + 
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background) to create scatter plots of the 2D phase space needed to apply the ABCD method. All data 

events are produced at center of mass (CM) energies of 13 TeV. All Instanton mass regime samples (> 

20Gev, > 50Gev) were integrated in the final signal sample. Each event on the scatter plot is weighed using 

its theoretical weight, i.e., how many real events it corresponds to. The integrated luminosity used in the 

calculation of these weights is 𝐿 = 1 𝑝𝑏−1. Scores and performance metrics are calculated using this weight, 

as the number of equivalent real events contained in that data point. Subsequently, the ABCD method is 

applied for a series of cuts defining the signal region and overall performance is evaluated using the metrics 

defined in 4.2. For clarity, a pair of ML classifier algorithms will be referred to as a model. 

Firstly, a model is trained using the EPOS background sample and is tested on EPOS background. 

Similarly, another model is trained using the Pythia background sample and is tested on Pythia 

background. This is done as a consistency check and shows that the models are indeed viable for the 

ABCDisCo method. Representations of the scatter plots obtained are shown in Figure 2. These models are 

then cross-tested using the opposing background theories instead of their respective ones, i.e., the EPOS  

trained model is tested on the Pythia background and vice-versa. This is done to analyze how sensitive (or 

rather insensitive) the models are to variations in the background. The scatter plots obtained are shown in 

Figure 3. 

 
Figure 3 - scatter plots in phase space and classifier B cross-section for models trained and cross-tested on different 

backgrounds; red=sig, blue=bkg; (a) - EPOS training, Pythia testing, (b) - Pythia training, EPOS testing; 
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 Finally, a third model is trained using both the EPOS and the Pythia sample and is then tested on 

each of the two theories separately. This step is executed under the proposal that training the model on all 

possible background theories will give better results in testing, even if real data corresponds more closely 

to one, or a hybrid of the training backgrounds. Intuitively, this one can argue this to be true by saying that 

if the classifiers learn from a sufficient number of background events corresponding to a sufficient number 

of theories, it will make contact with a sufficient number of events that accurately emulate real data. The 

results are plotted in Figure 4. 

 
Figure 4 - scatter plots in phase space and classifier B cross-section for models trained on BOTH background theories and tested 

on each; red=sig, blue=bkg; (a) - double training, EPOS testing, (b) - double training, Pythia testing; 

Following the study done in [2], both classifiers, in each of the models, are consistently trained with 

a decorrelation parameter 𝛼 set to a value of 0.5, for optimal classification-decorrelation ratio. Both 

classifiers are trained for 50 epochs each time and are always using the same signal sample for training. It 

is only the background sample that changes. The training and testing fractions of the total samples are kept 

separate throughout the project. A final important aspect of the training is that the event samples are 

imbalanced. In this case, the background samples are significantly larger than the signal sample. This can 

create a large bias towards the background, meaning that the classifiers will be unable to properly 

distinguish the Instanton events, due to the signal population being negligible by comparison to the 

background one. This is fixed by assigning weights to each sample, indicating the importance of each event 
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in training. The weights assigned to events in a sample are identical and are equal to the inverse of the 

number of events in the given sample, normalized to the number of events in some chosen reference sample 

(e.g., if the background is twice as large as the signal, the background weights will be ½ of the signal 

weights). This discrepancy in sample sizes will also prevent the use of classical ML metrics such as 

accuracy, recall, precision, confusion matrices or ROC curves, as these are affected by sample length bias 

and are unsuitable for unbalanced data sets (class 0, bkg. is much larger or smaller than class 1, sig.). The 

alternative metrics used are described in the next section. 

4.2 Metrics and performance 

Following the above models training and testing, a series of cuts defining the signal region in the 2D phase 

space are generated. This is necessary because there is no clear optimal signal region so multiple sensible 

guesses may be viable. For each model and for each cut, the signal in the signal region is recorded. Similarly, 

in the case of both the EPOS and the Pythia testing, the background contaminations in the signal region are 

recorded and the appropriate metrics are calculated to determine the classifiers’ and the models’ 

performance. Note, as mentioned before, the numbers recorded or estimated in this part of the analysis 

correspond to the theoretical weights and are the equivalent numbers of real events. 

 Lastly, this procedure is repeated using the ABCD estimated background contaminations in the 

signal region. The relevant metrics are computed once again and compared to the values obtained using 

the recorded background contamination, in order to confirm that the ABCD method is indeed efficient. 

 The metrics used are the following1: 

• Sigma:    𝜎 =  
𝑆

√𝑆+�̅�+𝜎𝐵
2
, where 𝑆 is the signal in the signal region, �̅� =

𝐵𝐸𝑃𝑂𝑆+𝐵𝑃𝑦𝑡ℎ𝑖𝑎

2
 is the 

mean background contamination between the EPOS and the Pythia testing of the model and 𝜎𝐵 =
|𝐵𝐸𝑃𝑂𝑆−𝐵𝑃𝑦𝑡ℎ𝑖𝑎|

2
 is the systematic error between the EPOS and the Pythia testing. For the model to be 

considered good, this metric is ideally > 5 for the corresponding cut defining the signal region. 

• 
𝝈𝑩

�̅�
 : the value of the ratio of the systematic error to the mean background contamination is < 0.1 

for a well-performing model and for an adequate signal region cut. 

•  
𝑺

�̅�
 : for a well-performing model and for an adequate signal region cut, the signal should be several 

times larger than the mean background contamination (e.g., > 4 but no strict value). 
 

4.3 Results 

The results following the analysis are the values obtained for the above-described metrics. These are 

presented for multiple signal region cuts, for each of the three models - EPOS, Pythia and double-

background trained - in the Table 2, 3 and 4 respectively.  

It can be seen that for certain cuts, generally the ones above approximately [0.7] for the B classifier, the 

metric scores correspond to what is understood as a good performance of the model, as indicated in section 

4.2. Furthermore, the general trend is that performance increases with increasing values of the B classifier 

cut. Similarly, higher A classifier cuts for the signal region tend to generally provide better metric values, 

but are not as impactful as their B counterpart (this is expected as classifier A only uses weak discriminants). 

 
1 𝐵𝐸𝑃𝑂𝑆  and 𝐵𝑃𝑦𝑡ℎ𝑖𝑎  are the background contaminations in the signal region, recorded or ABCD estimated 

by case. 
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However, it is important to note to excessively restrictive cuts on the signal region (e.g., [A, B]𝑐𝑢𝑡𝑠 =

[0.9, 0.9]) may lead to erroneous or invalid results. This effect can be seen in the last three rows of Table 4, 

where the values taken by the various metrics are unrealistic – e.g., the values of the measured 𝜎 suddenly 

shoot up more than expected, while those of 𝜎𝑒𝑠𝑡  break the ascending trend - or do not exist, as a 

consequence of division by zero. A similar occurrence is also present in the last few lines of the 𝜎 column 

in Table 2. This happens because no background events are registered under the imposed cuts, as a result 

of them being too restrictive, or the behavior of that classifiers in that area is not representative of the whole 

phase space.  

Table 2 - EPOS trained model metric results for various classifier [A, B] cuts. The index "est" refers to values estimated by ABCD 

method, while the others are recorded values; �̅� =
𝐵𝐸𝑃𝑂𝑆+𝐵𝑃𝑦𝑡ℎ𝑖𝑎

2
, 𝜎𝐵 =

|𝐵𝐸𝑃𝑂𝑆−𝐵𝑃𝑦𝑡ℎ𝑖𝑎|

2
, where 𝐵𝐸𝑃𝑂𝑆 and 𝐵𝑃𝑦𝑡ℎ𝑖𝑎 are the 

background predictions in the two different testing cases. 

 [𝐀, 𝐁]𝒄𝒖𝒕𝒔 𝝈 𝝈𝑩

�̅�
 

𝑺

�̅�
 𝝈𝒆𝒔𝒕 𝝈𝑩

�̅� 𝒆𝒔𝒕
 

𝑺

�̅�𝒆𝒔𝒕
 

[0.3, 0.6] 1.46047 0.128548 0.187741 9.409089 0.07832 0.736924 

[0.3, 0.7] 2.413413 0.130107 0.314002 14.42553 0.155893 2.248833 

[0.3, 0.8] 5.047329 0.100702 0.508275 41.95013 0.134706 5.65093 

[0.3, 0.9] 27.89286 0.040044 1.116937 527.0946 0.053862 28.40352 

[0.4, 0.6] 1.641433 0.126995 0.208453 5.791429 0.103451 0.59913 

[0.4, 0.7] 2.76354 0.123012 0.339949 9.107397 0.14422 1.313473 

[0.4, 0.8] 5.660431 0.095757 0.542024 23.79058 0.106246 2.527648 

[0.4, 0.9] 35.37698 0.033075 1.170106 126.035 0.057507 7.248073 

[0.5, 0.6] 1.986073 0.122797 0.243884 5.225905 0.108541 0.567223 

[0.5, 0.7] 3.203208 0.120205 0.385041 9.008521 0.123549 1.112997 

[0.5, 0.8] 6.055263 0.099326 0.601443 25.0878 0.079023 1.982509 

[0.5, 0.9] 28.14346 0.044905 1.263783 426.4693 0.011432 4.877439 

[0.6, 0.6] 2.480699 0.116598 0.289245 5.14239 0.115837 0.59568 

[0.6, 0.7] 3.982131 0.110992 0.441985 9.049125 0.122221 1.105992 

[0.6, 0.8] 7.140024 0.0962 0.686873 24.27579 0.077156 1.873015 

[0.6, 0.9] 29.5896 0.048855 1.445609 444.1734 0.009253 4.11217 

[0.7, 0.6] 3.24703 0.112038 0.363789 5.523462 0.120005 0.662843 

[0.7, 0.7] 5.353788 0.099983 0.53529 9.709737 0.122346 1.187944 

[0.7, 0.8] 10.41693 0.078397 0.816653 23.24728 0.083846 1.949199 

[0.7, 0.9] 43.01788 0.039158 1.68449 201.2078 0.020171 4.059141 

[0.8, 0.6] 5.265031 0.098702 0.519671 6.280544 0.130846 0.821784 

[0.8, 0.7] 7.856841 0.09414 0.739643 11.41208 0.123749 1.412237 

[0.8, 0.8] 15.74094 0.072092 1.134794 25.85261 0.086792 2.243818 

[0.8, 0.9] 53.92848 0.040987 2.210447 164.6859 0.02773 4.567754 

[0.9, 0.6] 27.67053 0.051651 1.429311 5.123006 0.177354 0.908587 

[0.9, 0.7] 37.18029 0.057825 2.150238 9.066924 0.144572 1.310833 

[0.9, 0.8] 16.93019 0.187981 3.182641 20.52562 0.100551 2.063959 

[0.9, 0.9] 24.34425 0.195162 4.751353 87.17354 0.048686 4.247378 

 

The above-described results indicate that the methods used are viable, provided an appropriate choice 

for the ABCD regions is made and that the models are somewhat, but not fully insensitive to changes in 
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background theories between training and testing, as the metric scores’ values are not consistently above 

the ideal threshold. Notably, the double-background training performs better overall than both the EPOS 

and Pythia models, having higher metric scores than these. This confirms the assumption that training on 

multiple possible background theories increases the efficiency and reduces the sensitivity to changes in the 

testing background theory. 

Table 3 - Pythia trained model metric results for various classifier [A, B] cuts. The index "est" refers to values estimated by ABCD 

method, while the others are recorded values; �̅� =
𝐵𝐸𝑃𝑂𝑆+𝐵𝑃𝑦𝑡ℎ𝑖𝑎

2
, 𝜎𝐵 =

|𝐵𝐸𝑃𝑂𝑆−𝐵𝑃𝑦𝑡ℎ𝑖𝑎|

2
, where 𝐵𝐸𝑃𝑂𝑆 and 𝐵𝑃𝑦𝑡ℎ𝑖𝑎 are the 

background predictions in the two different testing cases. 

[𝐀, 𝐁]𝒄𝒖𝒕𝒔 𝝈 𝝈𝑩

�̅�
 

𝑺

�̅�
 𝝈𝒆𝒔𝒕 𝝈𝑩

�̅� 𝒆𝒔𝒕
 

𝑺

�̅�𝒆𝒔𝒕
 

[0.3, 0.6] 1.219 0.145499 0.177363 8.944177 0.178882 1.59995 

[0.3, 0.7] 1.648924 0.140114 0.231037 14.28057 0.167755 2.395631 

[0.3, 0.8] 2.902658 0.122693 0.356137 29.51513 0.162513 4.796592 

[0.3, 0.9] 16.15981 0.061749 0.997845 276.1041 0.076038 20.99657 

[0.4, 0.6] 1.30619 0.141738 0.185136 5.789327 0.158849 0.919631 

[0.4, 0.7] 1.767578 0.13582 0.240072 8.213062 0.155654 1.278399 

[0.4, 0.8] 3.098447 0.118962 0.368599 16.09337 0.134659 2.167122 

[0.4, 0.9] 16.90913 0.059861 1.012194 116.7113 0.068224 7.962673 

[0.5, 0.6] 1.470527 0.137284 0.20188 4.912673 0.146487 0.719644 

[0.5, 0.7] 1.964141 0.13219 0.259641 6.97958 0.137621 0.960538 

[0.5, 0.8] 3.433113 0.11508 0.395083 13.01894 0.11759 1.530904 

[0.5, 0.9] 18.83508 0.055962 1.054044 96.89688 0.049283 4.775467 

[0.6, 0.6] 1.686693 0.137737 0.23232 4.770233 0.144685 0.69018 

[0.6, 0.7] 2.199901 0.134568 0.296036 6.857731 0.132024 0.905388 

[0.6, 0.8] 3.652126 0.121397 0.443356 13.36957 0.105182 1.406234 

[0.6, 0.9] 16.52951 0.069344 1.146223 145.4943 0.02676 3.893626 

[0.7, 0.6] 2.015227 0.139784 0.281696 5.370871 0.138935 0.746201 

[0.7, 0.7] 2.574282 0.138124 0.35557 7.645695 0.125988 0.963262 

[0.7, 0.8] 4.260728 0.122914 0.523704 14.34788 0.102188 1.466188 

[0.7, 0.9] 14.43372 0.091411 1.319398 182.5441 0.020238 3.694736 

[0.8, 0.6] 2.499443 0.150588 0.376386 7.950193 0.124381 0.988854 

[0.8, 0.7] 3.102116 0.149208 0.46286 11.10976 0.114042 1.266977 

[0.8, 0.8] 4.626764 0.139199 0.644039 20.5687 0.091137 1.874577 

[0.8, 0.9] 15.72947 0.094607 1.488116 162.7831 0.026967 4.390331 

[0.9, 0.6] 3.023568 0.212475 0.642433 18.90861 0.090437 1.710056 

[0.9, 0.7] 3.115674 0.232158 0.723328 29.71581 0.075801 2.25252 

[0.9, 0.8] 3.814249 0.224017 0.854457 54.26459 0.062872 3.411929 

[0.9, 0.9] 7.359736 0.22939 1.688249 643.9025 0.011444 7.432676 

 

5. Further work 

Further attempts at improving the method were made but not finalized throughout the course of this 

project. They are described below as possible useful insight into ML methods and as suggestions for further 

work on the topic of this project. 
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Table 4 - Double (EPOS + Pythia) trained model metric results for various classifier [A, B] cuts. The index "est" refers to values 

estimated by ABCD method, while the others are recorded values; �̅� =
𝐵𝐸𝑃𝑂𝑆+𝐵𝑃𝑦𝑡ℎ𝑖𝑎

2
, 𝜎𝐵 =

|𝐵𝐸𝑃𝑂𝑆−𝐵𝑃𝑦𝑡ℎ𝑖𝑎|

2
, where 𝐵𝐸𝑃𝑂𝑆 and 

𝐵𝑃𝑦𝑡ℎ𝑖𝑎 are the background predictions in the two different testing cases. 

[𝐀, 𝐁]𝒄𝒖𝒕𝒔 𝝈 𝝈𝑩

�̅�
 

𝑺

�̅�
 𝝈𝒆𝒔𝒕 𝝈𝑩

�̅� 𝒆𝒔𝒕
 

𝑺

�̅�𝒆𝒔𝒕
 

[0.3, 0.6] 4.005337 0.119322 0.477924 15.14583 0.116299 1.761452 

[0.3, 0.7] 7.171476 0.102407 0.734409 31.03176 0.087396 2.712064 

[0.3, 0.8] 15.32172 0.084162 1.28951 111.1039 0.041979 4.664171 

[0.3, 0.9] 37.86216 0.080793 3.059002 1104.8 0.007138 7.907243 

[0.4, 0.6] 4.632487 0.116733 0.540764 15.68435 0.103923 1.62997 

[0.4, 0.7] 8.052455 0.103031 0.829655 29.74915 0.081702 2.430578 

[0.4, 0.8] 16.80957 0.087443 1.469873 93.62958 0.042266 3.957456 

[0.4, 0.9] 39.81404 0.086768 3.454593 4935.192 0.001237 6.532097 

[0.5, 0.6] 5.08865 0.122028 0.620958 15.41241 0.107474 1.656437 

[0.5, 0.7] 8.770339 0.10861 0.952546 28.75495 0.084387 2.426564 

[0.5, 0.8] 17.65586 0.095055 1.678284 85.47578 0.045162 3.860332 

[0.5, 0.9] 48.81745 0.081654 3.986187 568.4091 0.010916 6.211525 

[0.6, 0.6] 5.637241 0.128911 0.726701 17.27444 0.104081 1.797941 

[0.6, 0.7] 11.44491 0.09805 1.122169 32.73809 0.079683 2.608693 

[0.6, 0.8] 24.61991 0.080548 1.983083 82.18574 0.049076 4.033451 

[0.6, 0.9] 60.67443 0.077979 4.73139 494.2883 0.012806 6.336786 

[0.7, 0.6] 8.664021 0.102313 0.886443 19.26655 0.109802 2.11552 

[0.7, 0.7] 16.11234 0.0845 1.3615 35.63124 0.08529 3.039023 

[0.7, 0.8] 28.68815 0.082985 2.380691 88.58106 0.052037 4.609763 

[0.7, 0.9] 42.35568 0.131995 5.590802 404.8346 0.017347 7.03169 

[0.8, 0.6] 12.07591 0.112744 1.361499 20.6682 0.1548 3.199476 

[0.8, 0.7] 19.7207 0.109697 2.163332 38.50912 0.120587 4.643888 

[0.8, 0.8] 32.27366 0.10631 3.431129 81.99241 0.085521 7.013359 

[0.8, 0.9] 27.49399 0.300349 8.257983 205.5792 0.051328 10.56475 

[0.9, 0.6] 13.31957 0.404194 5.384259 26.23424 0.15072 3.955727 

[0.9, 0.7] 254.5278 1 263.2215 70.15751 0.082712 5.819647 

[0.9, 0.8] 454.2918 1 511.9102 162.737 0.05539 9.153215 

[0.9, 0.9] 986.5931 
 

inf 425.4629 0.033098 15.72229 

 

5.1 PCA – Principal component analysis 

Principal component analysis (PCA) is a technique from statistics for simplifying a data set [5]. It was 

developed by Karl Pearson (1901) and Harold Hotelling (1933). It is generally used in ML methods as a pre-

processing step, in order to reduce the dimensionality of a data set, while keeping all relevant information, 

from all the features comprising the original phase space. This implies creating a new set of variables (that 

are not necessarily physically interpretable) from the original ones and only keeping the most significant 

of these newly created features. More explicitly, PCA is a linear transformation that transforms the data to 

a new coordinate system such that the new set of variables, the principal components, are linear functions 

of the original variables, are uncorrelated, and the greatest variance by any projection of the data comes to 

lie on the first coordinate, the second greatest variance on the second coordinate, and so on. In practice, this 
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is achieved by computing the covariance matrix for the full data set. Next, the eigenvectors and eigenvalues 

of the covariance matrix are computed, and sorted according to decreasing eigenvalue [5]. 

 It should be noted, however, that the use of PCA is not always appropriate, as some variables 

presenting low variance might have high predictive value. Thus, appropriate evaluation of feature 

relevance is imperatively required before applying PCA. 

 An algorithm applying PCA to the data sets was successfully created in the course of this project, 

but was ultimately not applied. This is because feature relevance (importance) is difficult to analyze for 

imbalanced data sets and thus proved too long of a task for the time allocated to this work. Nonetheless, 

PCA could possibly improve the performance of the ABCDisCo method by improving the classification 

power of the ML classifiers. 

5.2 ICA – Independent component analysis 

Independent component analysis (ICA) is a method for automatically identifying the underlying factors in 

a given data set [6]. Essentially, it distinguishes between different independent sources in mixed data-sets 

or variables (e.g., two voices overlapping picked up by two different microphones can be disentangled via 

ICA). Similar to the ABCDisCo method, it can be implemented through ML algorithms. A study of this 

method was proposed during the course of this project as an alternative to the ABCDisCo method for 

filtering Instanton events. Subsequently, the distinguished signals were to be compared with the ones 

found in the simulated data sets. 

 The main problems with implementing ICA were the multidimensionality of the data set (several 

event level features) and the number of degrees of freedom in the data set as opposed to the receptor (i.e., 

2 degrees of freedom – signal and background – but only 1 entangled data set2). These difficulties are solved 

independently in [7], [8] and [9], but their unification surpassed my current expertise. 

 5.3 Decorrelation artifacts 

As can be seen in the top-left corner of Figure 2., in the red signal scatterplot, higher degrees of decorrelation 

can begin to create artifacts (thick red line at ~ [0.7 B]), as a consequence of a reduction in classifying 

capacity. This happens if the classifier’s loss function attributes a higher importance to decorrelation than 

classification and usually leads to the creation of a region where higher than expected signal and 

background densities overlap, as in the case described above. 

 On a case-by-case basis, the location of these artifacts can be useful or detrimental in determining 

an appropriate signal region and achieving overall satisfying results. It is certainly worth investigating 

whether adequate predictions of artifact locations can be made and whether their effects, in conjunction 

with a higher decorrelation parameter, can be exploited to boost the performance of the ABCDisCo method. 

6. Conclusions 

Machine learning methods, particularly neural network classifiers, are proven to be adequate and reliable 

in applying the ABCDisCo method to filtering Instanton events from QCD backgrounds, with metric scores 

consistently close to their desired values, provided appropriate cuts for the signal region are imposed (e.g., 

[A, B]𝑐𝑢𝑡𝑠 = [0.7, 0.8] in the cases presented above). 

In this context, the ML classifiers show some degree of insensitivity to changes in the background 

theory used to train them (EPOS or Pythia here), retaining their satisfying performance even in cross-testing 

 
2 It would seem like a simple solution is to split the data set, but the signals to distinguish are the Instantons and 
the backgrounds, not the individual events, which are independent from each other. Splitting the data set would 
just duplicate the problem to be solved, as it increases the number of degrees of freedom on each side. 
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trials while providing the expected signal shapes. However, a sizeable improvement of this analysis can be 

made by feeding the classifiers multiple background theories in the testing stage. As a result, discrepancies 

between the simulated background events and real data can be mitigated via training on multiple 

suggested theoretical models. 

Notably, careful pre-processing is required if the simulated training data sets are imbalanced and an 

appropriate choice of signal region must be made. An additional consequence of the data sets’ imbalance 

is the implementation of the new 𝜎, 
𝜎𝐵

�̅�
 and 

𝑆

�̅�
 scores. 

Suggestions for further analysis and improvements are made in the latter sections, such as 

implementing a PCA pre-processing step. Additionally, studies of decorrelation and the phase-space 

artifacts that it produces could help improve the performance of DisCo classifier models on a case-to-case 

basis. 
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