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Abstract

This thesis studies denotational models, in the form of sheaf cat-

egories, of functional programming languages with higher-order

functions and recursion. We give a general method for building

such models and show how the method includes examples such

as existing models of probabilistic and differentiable computation.

Using our method, we build a new fully abstract sheaf model of

higher-order recursion inspired by the fully abstract logical rela-

tions models of O’Hearn and Riecke. In this way, we show that

our method for building sheaf models can be used both to unify

existing models that have so far been studied separately and to

discover new models.

The models we build are in the style of Moggi, namely, a carte-

sian closed category with a monad for modelling non-termination.

More specifically, our general method builds sheaf categories by

specifying a concrete site with a class of admissible monomor-

phisms, a concept which we define. We combine this approach

with techniques from synthetic and axiomatic domain theory to

obtain a lifting monad on the sheaf category and to model re-

cursion. We then prove the models obtained in this way are

computationally adequate.
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Chapter 1

Introduction

This thesis is about denotational semantics of functional programming lan-

guages. We are interested in building models of higher-order recursive pro-

grams in the tradition of Moggi [Mog91], using cartesian closed categories

(CCCs) and monads. In this setup, types are interpreted as objects in the

category and programs as partial morphisms with admissible domain, since

recursive programs might not terminate.

Function spaces exist in the category as objects, given formally by the

cartesian closed structure, and they are used to interpret higher-order func-

tions. Partial morphisms can be equivalently described using a lifting monad

L on the category: a partial morphism A ⇀ B is a morphism A→ LB. For

example, to give a partial function between sets it is enough to give a total

function A→ B ⊎ {⊥}.
A well-known interpretation of higher-order recursion in the form of a

CCC with a monad is the ωCPO model (see e.g. [Win93, Section 11.3]), of

chain-complete partial orders and continuous partial functions with Scott-

open domain. If we wish to combine higher-order recursion with other fea-

tures, then the notion of partial map and admissible domain from the ωCPO

model needs to be refined. This is not straightforward because of the inter-

action of the new features with the higher-order recursion. Examples of such

situations include:

1. probabilistic programming languages, which can encode continuous
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probability distributions [VKS19, HKSY17];

2. differentiable programming and automatic differentiation [HSV20, Vák20];

3. a variation of differentiable programming where a certain degree of

non-smoothness is allowed [LYRY20, LHM21].

4. A refinement of partial maps is also needed to obtain a fully abstract

model of higher-order recursion [OR95, RS02]. Informally, full abstrac-

tion means that denotational equality in the model characterizes ob-

servational equality of programs, thus saying that the model is a good

fit for the language in question.

The goal of this thesis is to show how, in all four situations described

above, higher-order recursion can be modelled in the same way using the

machinery of concrete sheaves. To do this, we develop a new modular method

for building cartesian closed categories with a lifting monad, and show that a

model of probabilistic programming, based on ω-quasi-Borel spaces [VKS19],

a model of differentiable programming, based on ω-diffeological spaces [Vák20],

and its variation, the ωPAP spaces model [LHM21], are all instances of our

method. Moreover, we use our method to build a new fully abstract model of

higher-order recursion, inspired by the work of O’Hearn and Riecke [OR95,

RS02] which uses logical relations [Plo73].

We note that the models (1)-(3) each have extra domain-specific structure

which is not accounted for by our general method for building them, such

as a probability monad in the ω-quasi-Borel spaces case. Our focus is to

show that, despite these different domain-specific requirements, the structure

needed to model higher-order recursion can be obtained in the same way.

This is a significant contribution because it provides a unified framework

for the three existing models (1)-(3). Moreover, we show that our general

method is also useful for building new models, as illustrated by our fully

abstract sheaf model of higher-order recursion. We hope that in the future

our method will be useful for exploring the space of denotational models

for other higher-order recursive languages, such as those with computational

effects [Mog91] that go beyond partiality.

2



We now give more details about our general method for building mod-

els. To model partiality and recursion we use techniques from axiomatic and

synthetic domain theory. For example, we use the concept of dominance

(e.g. [Ros86, Mul92]) to specify admissible domains of partial morphisms

A ⇀ B; (the admissible domains will be certain subobjects A′ ↣ A). We

also use an internal notion of chain and chain-completeness to replace the cor-

responding notions from ωCPO. These ingredients are explained and adapted

to our setting in Chapters 2 to 4.

The core of our method for building models as categories of concrete

sheaves is detailed throughout Chapters 5 to 7. In Chapter 8 we present our

fully abstract sheaf model obtained using this method.

A well-known technique for obtaining denotational models of higher-order

computation is via the Yoneda embedding. Informally, the Yoneda embed-

ding is a canonical way of passing from a model of first-order types, i.e. any

category C, to a model of higher-order types, the category of presheaves on

C, which is cartesian closed.

Our models are built in the same vein, but instead of presheaves we

use categories of sheaves, a standard concept from topos theory. Categories

of sheaves refine presheaves in a canonical way by allowing certain colimits,

which are generally not preserved by the Yoneda embedding, to be preserved.

This refinement is useful because in our examples presheaves are not enough

to model datatypes such as the natural numbers or the reals, which are

interpreted as colimits.

In fact, our method gives models that are each part of a subcategory

of concrete sheaves, which admits an elementary description in terms of

sets with structure and structure preserving functions. The use of concrete

presheaves and sheaves in computer science is not new, they have been used

for example in [Ehr07, EX16]. The idea of using sheaf conditions to be able

to model certain datatypes, like sum types, goes back to Fiore and Simp-

son [FS99].
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Thesis outline and contributions

The material in this thesis is based on joint work with Sean Moss and Sam

Staton published in the following two papers:

[MMS21] Cristina Matache, Sean Moss, and Sam Staton. Recursion and

Sequentiality in Categories of Sheaves. In FSCD, 2021.

[MMS22] Cristina Matache, Sean K. Moss, and Sam Staton. Concrete

categories and higher-order recursion: with applications including

probability, differentiability, and full abstraction. In LICS, 2022.

Chapter 2. In this chapter we recall background material used in the rest

of the thesis. We start with categories of sheaves, sites and concrete sheaves;

the standard references are [MM92, Joh02]. Then we recall the treatment

of partiality in a topos using the notion of dominance [Ros86] and connect

it to partial maps and lifting monads. The main result of this chapter is

the construction of a lifting monad from a dominance (Proposition 2.4.5 and

Theorem 2.4.9).

Chapter 3. Here, we provide sufficient conditions on a cartesian closed cat-

egory with a monad in order to be able to prove a fixed point theorem (Corol-

lary 3.2.5). The development is very closely related to results in the axiomatic

and synthetic domain theory literature (e.g. [FP96, LS97, Sim98, RS99]),

although there are technical differences, explained in the related work sec-

tion 3.3. The results in this chapter appeared in [MMS21, Section 2].

Chapter 4. In this chapter we identify sufficient conditions such that a

sheaf category with a dominance can interpret call-by-value PCF (PCFv); we

refer to such an interpretation as a normal model (Definition 4.3.1). The

most important condition is that the natural numbers object in the sheaf

category is “complete”, a property analogous to chain-completeness for cpos.

This “completeness” allows us to interpret recursion using the fixed point

theorem from Chapter 3. We then prove that the model is sound with respect

to an operational semantics (Theorem 4.3.5).
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The contribution in this chapter is proving that normal models satisfy the

premises of the fixed point theorem, i.e. that they have the right “complete”

objects. Although normal models are closely related to Simpson’s natural

models [Sim98], we do not know if we can deduce these completeness proper-

ties from the analogous ones for natural models because of technical reasons

discussed in the related work section 7.4.

In Section 4.4, we introduce a running example of normal model, the cat-

egory vSet, closely related to the category H of [FR01]. We show in Proposi-

tion 4.4.10 how the model of call-by-value PCF in vSet is essentially the ωCPO

model. The results in this chapter appeared in [MMS21, Sections 3.1, 4, 5].

Chapter 5. In Chapters 5 and 6 we prove the main results used in our

general method for building normal models. These results were published

in [MMS22, Sections 5.3, 6.3, 7.1].

In Chapter 5 we introduce the notion of class of pre-admissible monos (Def-

inition 5.1.2) and show how, given such a class in a site, we can construct a

dominance in the corresponding sheaf category (Theorem 5.1.6). This result

is new and generalizes a result by Mulry [Mul94] for presheaves. We then

prove some results that characterize the dominance and lifting monad when

the site is concrete; these results will be used in the next two chapters. We

show that our running example of normal model from Chapter 4, vSet, can be

seen as a category of sheaves on a concrete site with a class of pre-admissible

monos.

Chapter 6. In this chapter we identify sufficient conditions such that, in a

category of sheaves with a class of pre-admissible monos in its site, the natural

numbers object is “complete”. This completeness is the main requirement of

being a normal model, introduced in Chapter 4 in order to model recursion

using the fixed point theorem from Chapter 3.

The main result of the chapter is summarized in Theorem 6.2.5. Roughly,

the additional conditions on the site that allow us to deduce completeness are

that the site is concrete and contains the vertical natural numbers, and that

the class of monos is admissible (Definition 6.2.1). The contributions of this
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chapter are introducing the notion of admissible monos and proving Theo-

rem 6.2.5.

Chapter 7. In this chapter we summarize our recipe for building normal

models of call-by-value PCF using a concrete site with admissible monos

(see Theorem 7.1.1). This is the main contribution of the thesis.

We show in Theorem 7.1.3 that the normal models obtained using our

recipe are adequate, which implies that we can prove contextual equivalence

of programs by proving they have equal denotations in the model. Our

adequacy result is closely related to Simpson’s adequacy for natural mod-

els [Sim98]. In this setup, all types are interpreted as concrete sheaves, so

the subcategory of concrete sheaves is also an adequate model. These result

appeared in [MMS22, Section 7.2].

Another important contribution of the chapter is showing, in Section 7.2,

how three existing models are an instance of the recipe from Theorem 7.1.1

for building normal models. These are the ω-quasi-Borel spaces model of

probabilistic programming [VKS19], the ω-diffeological spaces model of dif-

ferentiable programming [Vák20], and the ωPAP spaces model [LHM21]. We

show that our running example vSet, which is essentially the ωCPO model,

is an instance of the recipe as well.

Chapter 8. Here, we present a more involved example (see Section 8.1) of

a normal model built using the recipe from Theorem 7.1.1. This is a new

model of call-by-value PCF which we prove is fully abstract in Section 8.2

(see Theorem 8.2.11). The material in this chapter appears in [MMS21,

Sections 6.3, 7].

Full abstraction means that denotational equality of programs coincides

with contextual equivalence. This is a desirable property because the math-

ematical structure of the denotational model can provide simpler ways of

proving contextual equivalences, which are otherwise hard to prove by op-

erational arguments. Full abstraction ensures that such proof methods are

complete. However, full abstraction is usually hard to obtain; many ade-

quate models are not fully abstract, like the ωCPO model of PCF [Plo77].
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One reason why full abstraction fails in the ωCPO model is that the model

contains functions, like parallel-or, that are not definable in PCF.

The quest for fully abstract models of PCF has generated a large amount

of research, for example in game semantics [AJM00, HO00]. Another ear-

lier line of research tried to characterize the notion of “sequential” function

(e.g. [Sie92, JT93, Cur93]), in order to exclude functions like parallel-or from

the model. Our fully abstract model is inspired by the work of O’Hearn and

Riecke [OR95, RS02, Mar00a, Str06], which uses logical relations to char-

acterize sequentiality. We discuss the relationship with their work in Sec-

tion 8.3.

To summarize, the general method for building normal models which we

develop throughout Chapters 3 to 7 is used in Chapter 8 to tackle the well-

established problem of building fully abstract models for PCF. By obtaining

a new fully abstract model we show the wide applicability of our method,

and help explain some of the ideas in the models of O’Hearn and Riecke in

a principled way, by using concrete sheaves and admissible monos.

7
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Chapter 2

Preliminaries: categories of

sheaves and dominance

In this chapter we present well-known definitions and results which will be

used in the rest of the thesis. We assume familiarity with category theory, for

example with notions like cartesian closed categories, presheaves, the Yoneda

lemma, monads.

In Section 2.1, we start by defining categories of sheaves (i.e. Grothendieck

toposes) which will be the basis of all the denotational models in the thesis.

In Section 2.2 we discuss subobjects, a generalization of the notion of subset

from the category Set to a Grothendieck topos, and use this in Section 2.4

to generalize partial functions to partial maps. Partial maps will be used to

model possibly non-terminating programs.

An important point of this chapter is to introduce the notion of dom-

inance (Definition 2.3.2) in a Grothendieck topos as a means of specifying

possible domains of partial maps. Dominances are then connected to mon-

ads (Theorem 2.4.9), which will later allow us to build models in the style of

Moggi [Mog91], using a cartesian closed category with a monad.

Most of the results in this chapter are well-known, although we had to

prove ourselves some facts about ∆-subobject, and the lifting monad being

pointed. We also provide our own proof of Proposition 2.4.5 whose statement

appears in [Mul92].
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2.1 Sites and Sheaves

In this section we recall background material about sites and categories of

sheaves. There are other useful facts about categories of sheaves which we use

later but omit here for reasons of brevity; the standard references are [Joh02,

MM92].

Definition 2.1.1. A site (C, J) is a small category C with a coverage J . A

coverage consists of, for every object c ∈ C, a set J(c) of sets of morphisms

with codomain c, {fi : ci → c}i∈I . We call {fi : ci → c}i∈I in J(c) a covering

family of c, or say that it covers c. A coverage must satisfy the following

axiom:

(C) For every map h : d → c in C, if {fi : ci → c}i∈I is in J(c), then there

is a covering family {gj : dj → d}j∈I′ of d such that every h ◦ gj factors
through some fi.

Remark 2.1.2. This definition of coverage is the minimal one ([Joh02,

A2.1.9]), and there can be several coverages on C giving rise to the same

category of sheaves (Definition 2.1.4). It can be useful to add saturation

conditions to the coverage to make calculation easier:

(M) J contains {idc : c→ c} for all c ∈ C;

(L) If {fi : ci → c}i∈I ∈ J(c) and {gij : bij → ci}j∈I′i ∈ J(ci) for i ∈ I then

{fi ◦ gij : bij → c}i∈I,j∈I′i ∈ J(c).

All the coverages that we consider in later chapters will satisfy the (M) and

(L) axioms.

Definition 2.1.3. Given a site (C, J), a covering family {fi : ci → c}i∈I ∈
J(c), and a presheaf F ∈ PSh(C), a matching family is a set

{si ∈ F (ci)}i∈I

such that for all i, j ∈ I, d ∈ C, g : d→ ci, and h : d→ cj with

fi ◦ g = fj ◦ h

10



we have

F (g)(si) = F (h)(sj).

Definition 2.1.4. A sheaf on a site (C, J) is a presheaf F ∈ PSh(C) such

that for every covering family {fi : ci → c}i∈I and every matching family

{si ∈ F (ci)}i∈I there is a unique amalgamation s ∈ F (c) such that:

F (fi)(s) = si for all i ∈ I.

Denote by Sh(C, J) the full subcategory of PSh(C) whose objects are J-

sheaves. We define a Grothendieck topos to be a category of sheaves Sh(C, J).

Proposition 2.1.5 (e.g. [Joh02, A4.1.8],[MM92, III.5, Theorem 1]). The

embedding i : Sh(C, J)→ PSh(C) has a left adjoint

a : PSh(C)→ Sh(C, J)

called the associated sheaf functor, or sheafification functor, which preserves

finite limits.

A coverage is defined to be subcanonical if all representable functors

y(c) = C(−, c) are already sheaves. In this case the sheafification functor

a leaves them unchanged. Many coverages however are not subcanonical, for

example the coverage used in Chapter 8 for a fully abstract model of PCFv.

In this case, we will use instead the sheafified representables ay(c).

We recall some more useful properties of the category of sheaves Sh(C, J)
from [MM92, III.6]:

� Sh(C, J) has all small limits and they are computed as in PSh(C).

� Sh(C, J) has all small colimits and they are computed by first com-

puting the colimit in presheaves followed by applying the sheafification

functor a.

� Exponentials are computed like in presheaves. Moreover, sheaves are

an exponential ideal: if F and P are presheaves, and F is also a sheaf,

then the exponential F P computed in the category of presheaves is a

sheaf.

11



2.1.1 Concrete sites and sheaves

We recall the definitions of concrete site and concrete sheaf from [Dub79,

BH11]. Both concrete presheaves and concrete sheaves have received appli-

cations in computer science before, for example in [Ehr07, EX16].

Definition 2.1.6. A concrete site (Definition 2.1.1) is a site (C, J) with a

terminal object ⋆ such that the maps

C(a, b)→ Set
(
C(⋆, a),C(⋆, b)

)
are all injective, and for every covering family {fi : ci → c | i ∈ I} ∈ J(c),
the map ∐

i∈I

C(⋆, ci)→ C(⋆, c)

is surjective. We will sometimes refer to the first condition by saying C is

well-pointed.

In a concrete site (C, J), for any object c in C we define:

|c| = C(⋆, c)

and refer to |c| as the points of c. Since every map in C is determined by

what it does on points, we can identify a morphism f : c → d with the

induced function |f | : |c| → |d|. Thus

|−| : C→ Set

is a faithful functor, but not necessarily full.

Given a presheaf F on C, we also define:

|F | = F (⋆).

Remark 2.1.7. Given a concrete site (C, J), the sheafified representables

ay(c) can be calculated as follows. Notice that the presheaf

Set(|−|, |c|) : Cop → Set

12



is a sheaf. This is because thanks to the matching condition and the fact

that C is well-pointed, we can always glue a matching family {|di| → |c|}i∈I ,
for a cover {di → d}i∈I of d, to a function |d| → |c|.

The representable C(−, c) embeds into the sheaf Set(|−|, |c|) thanks to

concreteness. Then ay(c) is the smallest subfunctor of Set(|−|, |c|) containing
C(−, c) and closed under amalgamation. This fact can be deduced using the

isomorphism of homsets given by the adjunction a ⊣ i.
If the coverage satisfies axioms (M) and (L), then it is enough to close

under amalgamations in just one step:

ay(c)(d) ∼=
{
ϕ ∈ Set(|d|, |c|)

∣∣ ∃{fi : di → d} ∈ J(d).

∀i.ϕ ◦ |fi| ∈ im
(
y(c)(di) ↪→ Set(|di|, |c|)

)}
.

Definition 2.1.8. Let (C, J) be a concrete site. A concrete presheaf is a

presheaf F on C such that, for every c ∈ C, the function

⟨F (x : ⋆→ c)⟩x∈|c| : F (c)→ Set(|c|, F (⋆))

is injective. Denote by ConcPSh(C) the category of concrete presheaves on

C, which is a full subcategory of PSh(C).
A concrete sheaf on the site (C, J) is a concrete presheaf that is also a

sheaf for J . Denote by Conc(C, J) the category of concrete sheaves on (C, J).

One advantage of working with concrete presheaves is that they have an

explicit description: we can think of F as being the set |F |, together with a

set of functions |c| → |F | for each c ∈ C. Often we will think of the set F (c)

as a relation on the set |F | with arity |c|.
If G and F are both presheaves and F is concrete, then a natural trans-

formation α : G → F is determined by the function α⋆ : |G| → |F |. Thus,

concrete presheaves form a well-pointed category.

From Remark 2.1.7 we can see that a sheafified representable ay(c) is still

concrete. From here we can deduce that the sheafification functor a preserves

concreteness.

The following proposition shows that concrete sheaves are a well-behaved
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subcategory of sheaves:

Proposition 2.1.9 (e.g. [Joh02, C2.2], [BH11]). Let (C, J) be a concrete

site. The full inclusion Conc(C, J) → Sh(C, J) preserves all limits, expo-

nentials, and coproducts, and has a left adjoint, so Conc(C, J) is a reflective

subcategory.

2.1.2 Grothendieck topologies

It is common to define a category of sheaves using a Grothendieck topology

T on a small category C, as in [MM92, III.2], rather than using a cover-

age (Definition 2.1.1). A Grothendieck topology contains sieves, where a

sieve on an object c is a family of morphisms with codomain c closed under

precomposition. Given a sieve S on c and a morphism f : d→ c, define:

f ∗(S) = {h | cod(h) = d and (f ◦ h) ∈ S}.

Then f ∗(S) is a sieve on d, sometimes called the pullback of S along f .

Definition 2.1.10 (e.g. [MM92, III.2]). A Grothendieck topology T on a

small category C consists of, for each object c ∈ C, a collection T (c) of sieves

on c satisfying the following axioms:

(C′) If S is in T (c), then for any map h : d→ c, the pullback sieve h∗(S) is

in T (d).

(M′) The maximal sieve {f | cod(f) = c} is in T (c).

(L′) If S is in T (c), and R is any sieve on c such that for any map h : d→ c

in S the sieve h∗(R) is in T (d), then R is in T (c).

The notions of matching family for a sieve, amalgamation of a matching

family, and sheaf on (C, T ) are defined analogously to the corresponding

notions for covering families (Definitions 2.1.3 and 2.1.4).

It is a standard result that every coverage J on C has a corresponding

Grothendieck topology T that gives rise to the same sheaves. The construc-

tion of T is detailed in the proof of [Joh02, Proposition C.2.1.9]. In the case
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when J satisfies the (M) and (L) axioms this construction can be simplified

as follows.

Proposition 2.1.11. Let (C, J) be a small site where the coverage J satisfies

axioms (M) and (L) (Remark 2.1.2). For every object c in C, let T (c) contain
all the sieves on c that contain some covering family from J(c).

Then T is a Grothendieck topology on C which determines the same

sheaves as J .

Proof. To show T satisfies axioms (C′) and (M′) use the corresponding axioms

(C) and (M) for coverages. To show axiom (L′) holds consider a sieve S ∈
T (c) and let {fi : ci → c}i∈I be the cover from J(c) that is included in S.

Then because f ∗
i (R) ∈ T (ci), for each fi there must be a cover {gij : dij →

ci}i∈I,j∈I′i from J(ci) which is included in f ∗
i (R). By axiom (L) for coverages

we know that the following family is in J(c):

{fi ◦ gij : dij → c}i∈I,j∈I′i .

But this family is also included in R so R ∈ T (c).
Consider a sheaf X for T and consider a cover {fi}i∈I in J(c). By closing

this cover under precomposition with any morphism, we obtain a sieve S in

T (c). To show that X satisfies the sheaf condition for {fi}i∈I it is enough to

use the fact that it satisfies the sheaf condition for S. Hence X is a sheaf for

J as well.

Consider a sheaf X for J and a sieve S in T (c). Then S contains a cover

{fi : ci → c}i∈I from J(c). Consider a matching family {xh}h∈S for S, where

each xh is in X(dom(h)). This gives a matching family {xfi}i∈I for the cover
{fi : ci → c}i∈I , which has a unique amalgamation x ∈ X(c).

Now consider a map h : d→ c in S. We need to show that:

X(h)(x) = xh.

This would mean that x is also an amalgamation for {xh}h∈S, and must be

the unique one, thus concluding the proof that X satisfies the sheaf condition

for S.

15



Let {gj : dj → d}j∈I′ be the cover in J(d) whose composite with h factors

through {fi}i∈I , as guaranteed by axiom (C) for coverages. Then for each gj

there is an ij ∈ I such that gj factors as:

h ◦ gj = fij ◦ zj (2.1)

where zj : dj → cij . From eq. (2.1) we can see that {X(zj)(xfij )}j∈I′ is a

matching family for the cover {gj}j∈I′ of d.
Because x is an amalgamation for {xfi}i∈I we get that for all j ∈ I ′:

X(zj)(xfij ) = X(fij ◦ zj)(x) = X(h ◦ gj)(x).

So X(h)(x) is an amalgamation for the matching family {X(zj)(xfij )}j∈I′ ,
and because X satisfies the sheaf condition for {gj}j∈I′ , this must be the

unique amalgamation.

But because {xh′}h′∈S is a matching family for S, we know for all j ∈ I ′:

X(zj)(xfij ) = X(gj)(xh).

So xh is an amalgamation for the matching family {X(zj)(xfij )}j∈I′ as well,
and therefore X(h)(x) = x. This concludes the proof that X is a sheaf for

T .

In this thesis we chose to define sheaves in terms of coverages because

coverages are easier to specify individually than Grothendieck topologies,

and because it is easier to check that a functor satisfies the sheaf condition

for a coverage. Nevertheless, in the proofs of Proposition 4.4.7, Lemma 5.1.5

and Theorem 5.1.6 we will use sieves and Grothendieck topologies generated

by a coverage via Proposition 2.1.11.

2.2 Subobjects

Throughout the thesis, we will use the standard notion of subobject, see for

example [Bor94, Chapter 4] or [Joh02, Section A.1.3]. Subobjects generalize
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the intuition of subsets from Set to an arbitrary category.

Definition 2.2.1. In any category, two monomorphisms f : B ↣ A and

g : C ↣ A are equivalent if there exists an isomorphism e : B → C such

that

g ◦ e = f.

A subobject of A is an equivalence class of monomorphisms with codomain

A.

A monomorphism f : B ↣ A is smaller than a monomorphism g : C ↣ A

when there exists a map i : B → C such that g ◦ i = f , that is, f factors

through g.

Throughout the thesis, we will use standard facts about subobjects which

hold in a Grothendieck topos. Using the order on monomorphisms from Def-

inition 2.2.1, we obtain a partial order on the set Sub(A) of subobjects of A.

The union of a family of subobjects of A is defined to be their supremum in

Sub(A), and their intersection is defined to be their infimum.

In a Grothendieck topos, we can calculate the intersection of two sub-

objects by taking their pullback. Two subobjects are defined to be disjoint

if their pullback is the initial object 0; in this case, their union is obtained

by taking their coproduct. Notice that the pullback of a subobject with an

arbitrary map is also a subobject.

We will use standard facts about the union and intersection of subob-

jects, such as the fact that taking union of subobjects commutes with taking

pullback. We give the proof for one of these facts below, the rest have a

similar flavour.

Lemma 2.2.2. In a Grothendieck topos, the respective pullbacks of disjoint

subobjects along an arbitrary map are again disjoint subobjects.

Proof. Consider subobjects m : A ↣ B and n : C ↣ B which are disjoint,

meaning that their pullback is 0. Let m′ be the pullback of m along f and

n′ the pullback of n.
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C ′

0 C D

0 A′ B

A

f2
n′

n
f

a

b

f1

m′

m

The pullback of f1 along a, and that of f2 along b must both be 0. This

means that the diagonal square consisting of 0, C ′, A and B is also a pullback,

so the top square is a pullback as well. Therefore, m′ and n′ are disjoint.

Recall the following definition from e.g. [MM92, Chapter I]:

Definition 2.2.3. In a category with finite limits, a subobject classifier is

a monomorphism ⊤ : 1 ↣ Ω, such that for every monomorphism A ↣ B,

there is a unique map χ : B → Ω that makes the following square a pullback:

A 1

B Ω

!

⊤

χ

Proposition 2.2.4 (e.g [MM92, Chapter 3, Section 7]). Every Grothendieck

topos has a subobject classifier.

The subobject classifier can be understood as generalizing the notion of

“truth values” from Set, its Set analogue being the set with two elements, true

and false. Similarly, the classifying map χ corresponds to the characteristic

function of the subset A ⊆ B. Moreover, ⊤ : 1 → Ω can be thought of as a

“universal monomorphism”, such that all other subobjects are a pullback of

it, in a unique way.
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2.3 Dominance

In the following chapters (e.g. Chapters 4 to 8), we will be interested in

studying only a certain class of monomorphisms from our topos. For this,

we refine the notion of subobject classifier to that of dominance. Since a

dominance will be a subobject of the subobject classifier, using the dominance

will intuitively mean restricting the available set of truth values. In this

section we continue working in a Grothendieck topos E .

Definition 2.3.1. Consider a fixed object ∆ and a fixed morphism ⊤ : 1→
∆. We say a subobject m : A′ ↣ A is a ∆-subobject, or is classified by ∆, if

it is a pullback of ⊤ : 1→ ∆ along some map A→ ∆.

We will use Mulry’s [Mul92, Mul94] definition of dominance (which he

calls a partial truth value object) and follow his development in this and the

next section. An equivalent definition is given by Rosolini [Ros86]. A more

general definition is given in [FP96].

Definition 2.3.2. In a topos Grothendieck E , a dominance is a subobject

of the subobject classifier δ : ∆ ↣ Ω such that:

1. true ∈ ∆, i.e. ⊤ : 1→ Ω factors through ∆.

2. ∆-subobjectsare closed under composition: if A↣ B and B ↣ C are

both classified by ∆, then so is A↣ C.

We will often consider a dominance such that 0 ↣ 1 is a ∆-subobject.

This means that there is a map ⊥ : 1 ↣ ∆ which classifies 0 ↣ 1.

Proposition 2.3.3. For every ∆-subobject m : A′ ↣ A there is a unique

map χ : A→ ∆ such that m is the pullback of ⊤ : 1→ ∆ along χ.

Proof. Suppose that there is another such map χ′. Both δ ◦ χ and δ ◦ χ′ :

A→ Ω are classifying maps for m, so by definition of the subobject classifier

they must be equal. Because δ is mono, χ must be equal to χ′.

Example 2.3.4. Ω is a trivial example of a dominance.
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Below are some useful facts about ∆-subobjects.

Lemma 2.3.5. ∆-subobjects are stable under pullback.

Proof. Let m : A′ ↣ A be a ∆-subobject with classifying map χ. If we

pull back m along another map f : B → A, we obtain another ∆-subobject

B′ ↣ B with classifying map χ ◦ f , like in the diagram below:

B′ A′ 1

B A ∆

!

m

!

⊤

f χ

Lemma 2.3.6. ∆-subobjects are closed under finite intersections, including

maximal subobjects.

Proof. For an identity subobject idA : A ↣ A, the classifying map that

makes it a ∆-subobject is A
!−→ 1

⊤−→ ∆. The intersection of two ∆-subobjects

is their pullback. Since ∆-subobjects are closed under pullback and compo-

sition, their intersection is also a ∆-subobject.

Lemma 2.3.7. If !1 : 0 ↣ 1 is a ∆-subobject then every !X : 0 ↣ X is a

∆-subobject.

Proof. Let ⊥ : 1 → ∆ be the classifying map of !1. The pullback of !1

along X → 1 must be !X : 0 ↣ X because in a topos 0 is strict ini-

tial ([Joh02][Lemma A.1.4.1]) so any map with codomain 0 is an isomor-

phism. Therefore !X : 0 ↣ X is a pullback of ⊤ as well.

0 0 1

X 1 ∆

id

!X

!1

!1 ⊤

⊥
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Proposition 2.3.8. If 0 ↣ 1 is a ∆-subobject, then coproduct inclusions are

∆-subobjects.

Proof. Consider the coproduct inclusion ιj : Aj →
∑

i∈I Ai. We defined

⊥ : 1→ ∆ to be the classifying map of the empty subobject 0 ↣ 1.

Consider the map α :
∑

i∈I 1 → ∆ which is the co-pairing of, for every

i ∈ I, ⊤ if i = j and ⊥ otherwise. Then the map α ◦ (
∑

i∈I !) :
∑

i∈I Ai → ∆

classifies ιj because the following two squares are pullbacks:

Aj 1 1

∑
i∈I Ai

∑
i∈I 1 ∆

!

ιj

id

incj ⊤

∑
i∈I !

α

2.4 Partial maps

In this section, we generalize the intuition behind partial functions between

sets. A partial function A ⇀ B can be specified by a subset A′ ⊆ A, its

domain, and a total function A′ → B. In our generalization, the subset is

replaced by a subobject A′ ↣ A.

When modelling recursive programs we might want to only allow certain

subobjects as domains of partial maps. For example in the cpo model of PCF

the partial maps have Scott-open domain, see for example [Fio94, Section

3.1]. Another intuition for restricting the allowed domains comes from the

computable partial functions, i.e. those that can be implemented by a Turing

machine. Their domain cannot be any subset but must be a semidecidable

one, in the sense that there exists a Turing machine that accepts the inputs

from the subset, but does not halt otherwise. For this purpose we will use

the notion of dominance from the previous section.

The main purpose of this section is to explain the connection between

the notions of dominance, partial maps, and lifting monad in a Grothendieck

topos. The main results are that a dominance gives rise to a partial map
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classifier (Proposition 2.4.5) which is a strong monad (Theorem 2.4.9).

Definition 2.4.1 ([RR88],[CL02, Section 3.1]). In any category C, a class

of monosM is a stable system of monos if:

1. All the isomorphisms are inM.

2. M is closed under composition.

3. The pullbacks of maps inM along arbitrary maps exist and are again

inM.

Definition 2.4.2. Let C be any category andM a stable system of monos.

The category PartM(C) ofM-partial maps in C has the same objects as C
and morphisms A ⇀ B are isomorphism classes of pairs (m : A′ ↣ A, f :

A′ → B), where m ∈M and f ∈ C.
Two partial maps (m : A′ ↣ A, f : A′ → B) and (m′ : A′′ ↣ A, f ′ :

A′′ → B) are in the same isomorphism class if there exists an isomorphism

α : A′ → A′′ in C such that:

m = m′ ◦ α f = f ′ ◦ α.

Composition of partial maps is defined using pullback stability as for example

in [CL02, Section 3.1].

Definition 2.4.3 ([CL03, Section 2.1]). Consider a category C with a stable

system of monosM. A partial map classifier for an object B is a monomor-

phism ηB : B ↣ LB inM such that for every partial map (m, f) : A ⇀ B

with m ∈M there is a unique map f ′ : A→ LB making the following square

a pullback:

R B

A LB

f

m ηB

f ′

One can check that f ′ is independent of the representative we choose for

the isomorphism class of the partial map (m, f).
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Definition 2.4.4. In a topos E with a dominance ∆, letM∆ be formed of

the ∆-subobjects, that is the subobjects classified by ∆.

By Lemma 2.3.6 and Lemma 2.3.5 we see that M∆ is a stable system

of monos. Therefore, we have the following proposition from [Mul92, Theo-

rem 1.7].

Proposition 2.4.5. In a topos E, for every dominance ∆ ↣ Ω there exists

a corresponding partial map classifier L∆(−), classifying partial maps whose

domain is a ∆-subobject.

Proof. It is well-known that the subobject classifier Ω in a topos has a corre-

sponding partial map classifier [Joh02, Proposition A2.4.7]. In this case the

pullback functor between slice categories ⊤∗ : E/Ω → E/1 ∼= E has a right

adjoint Π⊤ : E → E/Ω, and the partial map classifier is defined as:

LΩA = (ΣΩ ◦ Π⊤)(A)

where ΣΩ : E/Ω→ E sends f : A→ Ω to A.

The same proof could be adapted for ∆, but we can also construct L∆

explicitly as follows. For an object Y in C denote the partial map classifier

associated to Ω by ηΩY : Y ↣ LΩY . Since Ω classifies all monos, ηΩY has a

classifying map χ.

X ′ Y 1

L∆Y ∆

X LΩY Ω

m

f !

ηY ηΩY
⊤

⊤
χ∗(δ)

δ

f ′

g

α

χ

By definition, ∆ is a subobject of Ω, δ : ∆ ↣ Ω. Take the pullback of χ

along δ, and then again along ⊤ : 1→ ∆. The resulting map ηY : Y → L∆Y

is our candidate partial map classifier for ∆. Note that:

ηΩY = χ∗(δ) ◦ ηY .
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We need to consider a partial map (m, f) : X ⇀ Y , where m is classified

by ∆, and show it corresponds to a unique total map X → L∆Y . The mono

m has a unique classifying map α : X → ∆ such that:

m = α∗(⊤).

Also, since ηΩY is a partial map classifier, there must be a unique morphism

f ′ : X → LΩY such that:

m = f ′∗(ηΩY ).

It follows that both δ ◦ α and χ ◦ f ′ classify m along ⊤ : 1 → Ω, so

they must be equal. This means that X forms a cone for the pullback L∆Y ,

so there must be a comparison map g : X → L∆Y , with the following two

properties:

f ′ = χ∗(δ) ◦ g α = δ∗(χ) ◦ g.

From the first equation we can see that:

ηY ◦ f = g ◦m

and using the second equation and the pullback lemma, we can deduce that

m = g∗(ηY ).

It remains to show that g is the unique map with this property. Suppose

there is another g′ : X → L∆Y . Then m is the pullback of ηΩY along χ∗(δ)◦g′,
so since f ′ is the unique map with this property, we have:

f ′ = χ∗(δ) ◦ g′

and therefore g = g′.

Remark 2.4.6. From the proof above we can see that each ηA is a ∆-

subobject. Therefore, for every map f : X → L∆A there is a corresponding

(unique) partial map whose domain is a ∆-subobject, obtained by pulling
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back ηA along f .

Remark 2.4.7. A partial map A ⇀ 1 is determined by a ∆-subobject m :

A′ ↣ A. Therefore, we see that the map ⊤ : 1 ↣ ∆ satisfies the definition

of partial map classifier for 1.

As noted for example in [CL03, Section 2.1], L∆A being a partial map

classifier for an object A is equivalent to the existence of a natural isomor-

phism:

PartM∆
(E)(I−, A) ∼= E(−, L∆A) : Eop → Set

where I : E → PartM∆
(E) is the inclusion functor. Because partial maps

X ⇀ 1 correspond to monos X ′ ↣ X classified by ∆, we see that both L∆1

and ∆ are representing objects for the same functor PartM∆
(E)(I−, 1), so

they must be isomorphic:

∆ ∼= L∆1.

Lemma 2.4.8. L∆ is a functor.

Proof. Define the action of L∆ on a map g : A → B to be the total map

associated to the partial map (ηA, g) : L∆A ⇀ B. This is well defined because

ηA is a ∆-subobject. Functoriality of L∆ is proved using the pullback lemma

and the fact that every partial map has a unique total map corresponding to

it. This also shows that η is a natural transformation.

Theorem 2.4.9. In a topos E with a dominance ∆, the partial map classifier

functor L∆ is in fact a strong commutative monad on E, such that the Kleisli

category of L∆ is equivalent to the category ofM∆-partial maps in E:

Kl(L∆) ∼= PartM∆
(E).

Proof. For a proof that L∆ is a monad see [Mul92, Theorem 1.8]. For the

strength see [CL03, Proposition 2.3]. The fact that Kl(L∆) ∼= PartM∆
(E) is

also mentioned in [CL03, Section 2.1].

As explained in [Mul92, CL03], the unit of the monad is given by the

partial map classifier structure ηA : A ↣ L∆A. The multiplication µA :
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L2
∆A → L∆A is the unique total map corresponding to the partial map

(ηL∆A ◦ ηA, idA) : L2
∆A ⇀ A.

The monad L∆ satisfies the definition of lifting monad used by, for exam-

ple, by Fiore, Plotkin and Power [FPP97, Appendix A]. This is true because

L∆ is a partial map classifier and the unit η is cartesian (meaning that the

naturality squares for η are pullbacks) because of the way the action of L∆

on morphisms is defined in Lemma 2.4.8.

Moreover, being a partial map classifier, L∆ fits the intuition from Set

that a lifting monad should add a bottom element to a set. From now on,

we will refer to monads obtained from dominances using Theorem 2.4.9 as

lifting monads.

Monads have been widely used in denotational semantics to build models

of computational effects, starting with the seminal work of Moggi [Mog91].

Therefore, the connection between dominances, partial maps and lifting mon-

ads is crucial for us, allowing us to model the non-termination effect in the

style of Moggi.

Remark 2.4.10. As remarked in [FP96] after Proposition 1.2, the underly-

ing endofunctor of the monad L∆ can be described as follows. Let Π⊤ : E →
E/∆ be the right adjoint to the pullback functor ⊤∗ : E/∆ → E/1 ∼= E and

Σ∆ : E/∆→ E be the domain functor, then:

L∆ = Σ∆ ◦ Π⊤.

Definition 2.4.11. Let 1 be the constant 1 functor and let F be a strong

monad, both on a Grothendieck topos E . A natural transformation α : 1→
F is strong if for any objects A and B in E the following diagram commutes:

A× 1(B) ∼= A× 1 1(A×B) ∼= 1

A× FB F (A×B)

!

idA×αB
αA×B

strA,B

The definition above is an instance of a more general definition of strong

natural transformation between strong functors (e.g. [Joh02, Section B2.1]),
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but this restricted definition is all we need here. In this case, the strength of

1 is given by maps into the terminal object.

Lemma 2.4.12. If ∆ classifies 0 ↣ 1, the monad L∆ has a point, ⊥ : 1→
L∆, that is a strong natural transformation between the constant 1 functor

and L∆.

Proof. For an object A, use the assumption that 0 ↣ 1 is a ∆-subobject

to define ⊥A to be the total map that corresponds to the partial map (0 ↣

1, 0→ A).

0 A

1 L∆A B

L∆B

!A

!1
!B ηA f

⊥A

⊥B

L∆f ηB

To show naturality, consider a map f : A→ B, we need to show that:

⊥B = (L∆f) ◦ ⊥A.

By definition of L∆f , we know that it makes the right square a pullback

so both (L∆f) ◦ ⊥A and ⊥B correspond to the partial map (!1, !B) and must

therefore be equal.

To show that ⊥ is a strong natural transformation (Definition 2.4.11), we

need to show the following square commutes:

A× 1 1

A× L∆B L∆(A×B)

!

id×⊥B ⊥A×B

strA,B

If we multiply the pullback square in the definition of ⊥B by A it still

remains a pullback, and we also know from [Joh02, Lemma A.1.4.1] that 0

is a strict initial object, therefore A × 0 ∼= 0. So we get the following two
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pullback squares:

0 A×B A×B

A× 1 A× L∆B L∆(A×B)

!A×1

!A×B id

id×ηB ηA×B

id×⊥B strA,B

where the right square is a pullback because the strength is the total map

corresponding to the partial map (idA × ηB, idA×B) [CL03, Proposition 2.3].

Thus, strA,B ◦ (idA ×⊥B) is the total map corresponding to the partial map

(!A×1, !A×B). (We have shown in Lemma 2.3.7 that every 0 → X is a ∆-

subobject.)

Using the pullback in the definition of ⊥A×B, we get another two pullback
squares:

0 0 A×B

A× 1 1 L∆(A×B)

!A×1

id

!1

!A×B

ηA×B

! ⊥A×B

Therefore ⊥A×B◦! also corresponds to the partial map (!A×1, !A×B), so we

must get the equality:

⊥A×B◦! = strA,B ◦ (idA ×⊥B).
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Chapter 3

A categorical setting for

recursion

In this thesis, we are interested in modelling higher-order recursive programs

in the style of Moggi [Mog91] using a cartesian closed category and a monad.

A monad however is not enough for modelling recursion, we also need certain

maps to have fixed points in order to interpret recursively defined programs.

One example of such a model is the category ωCPO of chain-complete par-

tial orders (cpo’s) and continuous functions (see e.g. [Win93, Section 11.3]),

where Tarski’s fixed point theorem holds. In this chapter, we construct fixed

points (Corollary 3.2.5) similar to the ones constructed in Tarski’s fixed point

theorem, but in a more general setting.

We work in a cartesian closed category C with a strong monad L sat-

isfying Assumption 3.0.1 below. Here L should be thought of as a lifting

monad in the sense discussed in Section 2.4. We also make two further as-

sumptions about the existence of a certain limit ω (Assumption 3.1.1) and a

certain colimit ω (Assumption 3.1.4) in C, which intuitively are analogous to

the natural numbers N+ {∞} and N respectively. We use ω and ω to define

analogous notions to “chain” and “chain-completeness” (Definition 3.2.2) and

then prove a fixed point theorem (Theorem 3.2.3 and Corollary 3.2.5).

The assumptions in this chapter are reasonable since in Chapters 4 to 8

we deal with sheaf categories with a dominance (Definition 2.3.2). These are

29



cartesian closed, have all small limits and colimits, and have a lifting monad

induced by the dominance.

The results in this chapter appeared at FSCD 2021 [MMS21, Section 2].

Very similar results about fixed points appeared before in synthetic and ax-

iomatic domain theory, as explained in the related work section (Section 3.3).

However, we do not know whether our fixed point theorem can be deduced

from these previous results because of a difference in the way ω and ω are

defined. Hence, the main contribution of this chapter is proving the fixed

point theorem from Corollary 3.2.5.

Assumption 3.0.1. L is a pointed monad, i.e. there is a natural transfor-

mation ⊥ : 1→ L between the constant 1 functor, 1, and L. We ask further

that ⊥ is a strong natural transformation (Definition 2.4.11).

3.1 The vertical natural numbers

To model recursively defined programs, we want to be able to talk about

increasing chains of approximations and their suprema. For this, we consider

an object ω in C analogous to the linear order (0 ≤ 1 ≤ 2 ≤ . . .), the vertical

natural numbers (Assumption 3.1.4), and an object ω analogous to (0 ≤ 1 ≤
2 ≤ . . . ≤ ∞), the extended vertical natural numbers (Assumption 3.1.1).

This then allows us to think of a map ω → X as a chain in X and ω → X

as a chain with a supremum.

Assumption 3.1.1. Assume that the following diagram has a limit in C,
denoted by ω:

1
!←− L1

L(!)←−− LL1
LL(!)←−−− . . . (3.1)

and denote the limiting cone by (πn : ω → Ln1)n∈N. We refer to ω as the

extended vertical natural numbers.

Lemma 3.1.2. There is another cone over diagram (3.1) with apex ω given

by:

! : ω → 1 = L01 ω
πn−→ Ln1

ηLn1−−→ Ln+11.
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Denote the morphism determined by this cone by succω : ω → ω.

Proof. To show we have a cone, there are two diagrams that need to com-

mute:

ω 1 ω Ln1 Ln+11

1 L1 Ln+11 Ln+21

!

π0

πn

πn+1

ηLn1

η1

! Ln(!)

ηLn+11

Ln+1(!)

The first one commutes because 1 is terminal. The second one commutes

because (πn : ω → Ln(1))n∈N forms a cone and η is natural.

Lemma 3.1.3. Another cone for diagram (3.1) with apex 1 is given by:

id : 1→ 1 = L01 1
ηLn1◦...◦η1−−−−−−→ Ln+11

and determines a morphism ∞ : 1→ ω. Furthermore, it is the case that:

succω ◦∞ =∞.

Proof. To show we have a cone, we can see immediately that:

1
η1−→ L1

!−→ 1 = id1

and for all n ∈ N the following diagram commutes:

1 Ln+11 Ln+21

Ln1 Ln+11

ηLn1◦...◦η1

Ln(!)

ηLn+11

Ln+1(!)

ηLn1

because η is natural and the left triangle was checked in the previous step.

Finally, to show succω ◦ ∞ = ∞, we use uniqueness of the comparison

map ∞. We can see immediately that:

1
∞−→ ω

succω−−−→ ω
π0−→ 1 = id1.
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The next step is to show that the following square commutes:

ω ω

Ln1

1 Ln+11

succω

πn

πn+1

ηLn1

∞

ηLn1◦...◦η1

The top-right triangle commutes because succω is a comparison map, and

the top-left triangle because ∞ is one, so we are done.

Assumption 3.1.4. Assume the following diagram has a colimit ω in C:

1
⊥1−→ L1

L(⊥1)−−−→ LL1
LL(⊥1)−−−−→ . . . (3.2)

and denote the colimiting cocone by (ιn : Ln1→ ω)n∈N. We refer to ω as the

vertical natural numbers.

Lemma 3.1.5. There is another cocone for diagram (3.2) given by

Ln1
ηLn1−−→ Ln+11

ιn+1−−→ ω

which determines a comparison map succω : ω → ω.

Proof. To show we have a cocone, we need to show the following commutes:

Ln1 Ln+11

Ln+11 Ln+21

ω

Ln(⊥1)

ηLn1 ηLn+11

Ln+1(⊥1)

ιn+1 ιn+2

The top square commutes by naturality of η, and the bottom triangle com-

mutes because (ιn : Ln1→ ω)n∈N forms a cocone.
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Lemma 3.1.6. For a fixed n ∈ N, consider the following family of maps

indexed by m:

Lm1
Lm(⊥1)−−−−→ . . .

Ln−1(⊥1)−−−−−→ Ln1 for m < n Ln1
id−→ Ln1

Lm1
Lm−1(!)−−−−→ . . .

Ln(!)−−−→ Ln1 for m > n.

This family forms a cocone for diagram (3.2) with apex Ln1. Denote by

fn : ω → Ln1 the comparison map given by the universal property of the

colimit ω.

The family of maps (fn : ω → Ln1)n∈N forms a cone for diagram (3.1)

with apex ω. Denote by i : ω → ω the comparison map given by the universal

property of the limit ω.

Then i satisfies the following equation:

i ◦ (succω : ω → ω) = (succω : ω → ω) ◦ i.

Proof. We first show that the family of maps (Lm1→ Ln1)m∈N defined above

indeed forms a cocone for diagram (3.2). Ifm < n it is clear that the triangles

in the cocone commute. Moreover, 1
⊥1−→ L1

!−→ 1 = id1; by applying Lm to

this equation for m ≥ n, we see that the triangle at step m commutes. (We

can also deduce that ⊥1 is monic because it has a retraction.)

Next, we show the family (fn : ω → Ln1)n∈N forms a cone for dia-

gram (3.1), that is, for all n ∈ N:

fn = Ln(!) ◦ fn+1.

By uniqueness of fn, it is enough to show for m < n:

Ln−1(⊥1) ◦ . . . ◦ Lm(⊥1) = Ln(!) ◦ fn+1 ◦ ιm

which is true because fn+1 ◦ ιm = Ln(⊥1) ◦ Ln−1(⊥1) ◦ . . . ◦ Lm(⊥1) and
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! ◦ ⊥1 = id1. For m = n, it is enough to show:

idLn1 = Ln(!) ◦ fn+1 ◦ ιn

which is proved similarly. And for m > n, show:

Ln(!) ◦ . . . ◦ Lm−1(!) = Ln(!) ◦ fn+1 ◦ ιm

which is true because the right-hand side equals Ln+1(!)◦. . .◦Lm−1(!). There-

fore, the family (fn : ω → Ln1)n∈N forms a cone and we get a comparison

map i : ω → ω.

To show

i ◦ (succω : ω → ω) = (succω : ω → ω) ◦ i

using the universal properties of ω and ω it is enough to show for all n,m ∈ N:

πm ◦ i ◦ succω ◦ ιn = πm ◦ succω ◦ i ◦ ιn : Ln1→ Lm1.

If m = 0, then the two sides must be equal because 1 is terminal.

If m > 0, because succω, succω and i are comparison maps, we can rewrite

the left-hand side as:

LHS = (πm ◦ i) ◦ (succω ◦ ιn) = fm ◦ (ιn+1 ◦ ηLn1)

and the right-hand side as:

RHS = (πm ◦ succω) ◦ i ◦ ιn = (ηLm−11 ◦ πm−1) ◦ i ◦ ιn
= ηLm−11 ◦ fm−1 ◦ ιn.

Since fm and fm−1 are comparison maps out of the colimit ω we get:

LHS =


Lm(!) ◦ . . . ◦ Ln(!) ◦ ηLn1 if n ≥ m

idLn1 ◦ ηLn1 if n+ 1 = m

Lm−1(⊥1) ◦ . . . ◦ Ln+1(⊥1) ◦ ηLn1 if n+ 1 < m
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RHS =


ηLm−11 ◦ Lm−1(!) ◦ . . . ◦ Ln−1(!) if n ≥ m

ηLm−11 ◦ idLm−11 if n+ 1 = m

ηLm−11 ◦ Lm−2(⊥1) ◦ . . . ◦ Ln(⊥1) if n+ 1 < m

and we can see that in each case the two sides are equal because η is natural.

Example 3.1.7. Consider the category Set with the lifting monad L which

adds a bottom element to each set: L(X) = X ∪ {⊥} and L(f) preserves ⊥
and otherwise acts like f . We can regard Ln1 as the set {0, 1, . . . , n}. The

maps ⊥1 : 1 → L1 and ηLn1 : Ln1 → Ln+11 are defined as ⊥1(0) = 0 and

ηLn1(k) = k + 1.

Because ω is the limit of 1
!←− L1

L(!)←−− LL1
LL(!)←−−− . . ., it can be re-

garded as N ∪ {∞}, where n is represented by the eventually constant tuple

(0, 1, 2, . . . , n, n, . . .), and ∞ is represented by the always increasing tuple

(0, 1, 2, . . .). Similarly, ω is the colimit of 1
⊥1−→ L1

L(⊥1)−−−→ LL1
LL(⊥1)−−−−→ . . . so

it is a (quotiented) union and can thus be thought of as N.
The successor maps perform the obvious successor operation on N and

N ∪ {∞} respectively. The comparison map i : ω → ω is the inclusion

N ↪→ N ∪ {∞}.

In the rest of the thesis we will not be using this example of ω and ω in

Set, but instead we will use their description in presheaves on a concrete site

extensively (see Section 6.3.1). The Set example provides a good intuition

for the situation in presheaves because, as explained in Remark 6.3.1, the

underlying sets of ω and ω are still N and N ∪ {∞} respectively.
Another example worth mentioning, but which we will not use, is ωCPO,

the category of chain-complete partial orders and continuous maps. In this

case, the lifting monad has the same underlying structure as in the Set exam-

ple, but ω and ω are both N∪{∞} with the usual order on natural numbers.
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3.2 A fixed point theorem

Recall that Tarski’s fixed point theorem (e.g. [Win93, Theorem 5.11]), which

applies to cpo’s with bottom and continuous functions, constructs a least

fixed point as the least upper bound of an ω-chain of approximations. We

will use a similar strategy to construct fixed points in our more general

setting.

Informally, we think of a map ω → X as a chain valued in X. In order

to express that the chain ω → X has a least upper bound, we will ask that

it has a unique extension to a map ω → X. We do this using the notion of

orthogonality:

Definition 3.2.1 ([AR94, Definition 1.32] ). An object X ∈ C is right-

orthogonal to a morphism f : A→ B if every map A→ X factors uniquely

through f .

A X

B

f
∃!

Intuitively, if an object X is right-orthogonal to the comparison map

i : ω → ω, then all the chains ω → X have a least upper bound. It is

usual in synthetic domain theory to restrict to a subcategory of complete

objects that admit fixed points (e.g. [FP96, LS97, RS99, vOS00]). We define

completeness as follows:

Definition 3.2.2. An object X ∈ C is L-complete if it is right-orthogonal

to (i× idA) : ω ×A→ ω ×A for every A ∈ C. Moreover, X is well-complete

if LX is L-complete.

Because we need to compute fixed points of terms in context, it is not

enough to ask for orthogonality with respect to i : ω → ω, instead we ask

for the slightly stronger condition above. We will obtain a parametrised

fixed point theorem for well-complete objects X that are L-algebras. The

requirement that X is an L-algebra is analogous to the requirement from

Tarski’s fixed point theorem for cpo’s that X has a bottom element.
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Recall that an L-algebra consists of an object X ∈ C and a map a :

LX → X such that the following diagrams commute:

X LX LLX LX

X LX X

ηX

id
a

La

µX a

a

Theorem 3.2.3. Let X ∈ C be well-complete and an L-algebra. For any

map g : Γ ×X → X, we can construct a fixed point ϕg : Γ → X such that,

for any ρ : Y → Γ ∈ C:
ϕg(ρ) = g(ρ, ϕg(ρ)).

In addition to the notion of L-completeness from Definition 3.2.2, in Sec-

tion 4.1.1 we will introduce a stronger notion (Definition 4.1.1), in order to

give a different characterization of well-completeness in Proposition 4.1.5.

This characterization will be useful when proving that PCF types are inter-

preted as complete objects, in Proposition 4.3.4.

Before proving Theorem 3.2.3 above we first prove the following lemma:

Lemma 3.2.4. Consider X ∈ C such that LX is L-complete. Then for any

map f : Γ×LX → LX we can construct a fixed point ξ : Γ→ LX such that,

for any ρ : Y → Γ ∈ C:
f(ρ, ξ(ρ)) = ξ(ρ).

Proof. The strategy is to define a map apω : Γ × ω → LX which is a chain

of finite approximations of a fixed point for f . Then we extend this map to

ω and show that the value at ∞ : 1→ ω gives a fixed point.

Constructing apω : Γ × ω → LX. First define a family of maps apn :

Γ× Ln1→ LX using generalized elements:

ap0(ρ, !) = ⊥X(!) ap0 = ⊥X ◦ π2 : Γ× 1→ LX

bpn(ρ, i) = f(ρ, apn(ρ, i)) bpn = f ◦ ⟨π1, apn⟩ : Γ× Ln1→ LX

apn+1(ρ, i) = bp∗n(ρ, i)

37



where bp∗n is the Γ-indexed Kleisli extension of bpn : Γ× Ln1→ LX:

Γ× Ln+11
strΓ,Ln1−−−−→ L(Γ× Ln1) Lbpn−−−→ L2X

µX−−→ LX.

The functor Γ×(−) preserves colimits because it is a left adjoint, so Γ×ω
is the colimit of the diagram:

Γ× 1
idΓ×⊥1−−−−→ Γ× L1 idΓ×L(⊥1)−−−−−−→ Γ× LL1 idΓ×LL(⊥1)−−−−−−−→ . . . . (3.3)

Using the universal property of this colimit, we show that the family (apn)n

defines a map apω : Γ× ω → LX. For this we show by induction:

apn = apn+1 ◦ (idΓ × Ln(⊥1)).

For n = 0 this becomes:

⊥X◦! = µ ◦ Lbp0 ◦ str ◦ (idΓ ×⊥1)

= µ ◦ Lbp0 ◦ ⊥Γ×1◦! ⊥ is a strong natural transformation

and the two sides are equal because ⊥ : 1→ L is natural.

For n > 0, the right hand side becomes:

apn+1 ◦ (idΓ × Ln(⊥1)) = bp∗n ◦ (idΓ × Ln(⊥1))

= (bpn ◦ (idΓ × Ln−1(⊥1)))
∗

by naturality of strength

= (f ◦ ⟨π1, apn⟩ ◦ (idΓ × Ln−1(⊥1)))
∗

= (f ◦ ⟨π1, apn−1⟩)∗

by induction hypothesis

= bp∗n−1

= apn.
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Applying f gives the next element in the chain apω. This intuition

is captured by the following equation:

apω ◦ (idΓ × succω) = f ◦ ⟨π1, apω⟩ : Γ× ω → LX. (3.4)

The family of maps (apn+1 ◦ (idΓ × ηLn1) : Γ × Ln1 → LX)n∈N forms a

cocone for diagram (3.3). This can be proved using naturality of η and the

fact that (apn)n∈N forms a cocone for the same diagram. The comparison

map for the above cocone is apω ◦ (idΓ × succω). To prove that the required

triangles commute, we use the fact that apω is the comparison map of the

cocone (apn)n∈N, and that (idΓ× succω) is the comparison map of the cocone

(idΓ × (ιn+1 ◦ ηLn1))n∈N.

Similarly, the family (f ◦ ⟨π1, apn⟩)n∈N is a cocone for diagram (3.3)

because (apn)n∈N is, and has comparison map f ◦ ⟨π1, apω⟩. Therefore to

prove Equation (3.4) it is enough to show for all n ∈ N:

apn+1 ◦ (idΓ × ηLn1) = f ◦ ⟨π1, apn⟩.

Notice that the right hand side is the definition of bpn. The left hand

side can be unfolded by definition as:

apn+1 ◦ (idΓ × ηLn1) = µX ◦ Lbpn ◦ strΓ,Ln1 ◦ (idΓ × ηLn1)

= µX ◦ Lbpn ◦ ηΓ×Ln1 by a strength equation

= µX ◦ ηX ◦ bpn by naturality of η

= bpn by a monad equation.

Constructing the fixed point ξ : Γ→ LX. Because LX is L-complete,

apω has a unique extension apω : Γ×ω → LX along (idΓ×i) : Γ×ω → Γ×ω.
We can show that apω ◦ (idΓ × succω) is an extension of apω ◦ (idΓ ×

succω) using the fact that i commutes with succ (Lemma 3.1.6). Similarly,

f ◦⟨π1, apω⟩ is an extension of f ◦⟨π1, apω⟩. Using Equation (3.4) we see that
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these two extensions must be equal so:

apω ◦ (idΓ × succω) = f ◦ ⟨π1, apω⟩ : Γ× ω → LX. (3.5)

Finally, define the candidate fixed point of f , ξ : Γ→ LX, to be:

ξ(ρ) = apω(ρ,∞)

where ρ is any map into Γ and ∞ : 1→ ω from Lemma 3.1.3. Now we show

that ξ indeed has the fixed point property:

ξ(ρ) = apω(ρ,∞)

= apω(ρ, succω(∞)) by Lemma 3.1.3

= f(ρ, apω(ρ,∞)) by Equation (3.5)

= f(ρ, ξ(ρ)).

Using Lemma 3.2.4 we can finally prove the fixed point theorem, Theo-

rem 3.2.3.

Proof of Theorem 3.2.3. Denote the algebra structure of X by α : LX → X,

which we use to construct the following map:

Γ× LX idΓ×α−−−→ Γ×X g−→ X
ηX−→ LX.

For the map above, we can construct a fixed point ξ : Γ→ LX using Lemma 3.2.4.

The candidate fixed point for g is α ◦ ξ : Γ → X. The following calculation

shows that it is indeed a fixed point:

g ◦ ⟨idΓ, α ◦ ξ⟩ = α ◦
(
ηX ◦ g ◦ (idΓ × α)

)
◦ ⟨idΓ, ξ⟩

by the first algebra equation of α

= α ◦ ξ because ξ is a fixed point.
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Using the fixed point constructed in Theorem 3.2.3 we can obtain fixed

points suitable for interpreting recursion in a call-by-value language:

Corollary 3.2.5. Consider objects Γ, A, B in C such that LBA is a well-

complete object. For a morphism m : Γ× LBA × A→ LB we can construct

a fixed point recm : Γ→ LBA such that, for any ⟨ρ, a⟩ : Y → Γ× A ∈ C:

recm(ρ)(a) = m(ρ, recm(ρ), a).

Proof. The object LBA has an algebra structure given by currying the fol-

lowing morphism:

L(LBA)× A
str

A,LBA

−−−−−→ L(LBA × A)
LevA,B−−−−→ LLB

µB−→ LB.

Currying m we get a map of type Γ × LBA → LBA for which we can ap-

ply Theorem 3.2.3 to obtain the fixed point recm.

3.3 Related work

The treatment of recursion described in this chapter originates in the ax-

iomatic domain theory literature [FP96, Fio96, FPP97, Fio97]. The ideas

of constructing the vertical natural numbers objects ω and ω, and of using

orthogonality to require that chains have least upper bounds are not new.

Perhaps the closest work is [FP96]. There however, ω and ω are defined

as the initial algebra and final coalgebra of the functor L respectively, rather

than being defined as a colimit and limit. When we made our definitions

however we were not familiar with these developments in axiomatic domain

theory.

We do not know whether the assumptions we made in this chapter imply

that ω is the initial algebra, but this fact is not necessary for proving the

fixed point theorem (Corollary 3.2.5) that we use for the denotational inter-

pretation of call-by-value PCF in Section 4.3. Nevertheless, we conjecture

that in all the examples we consider (Sections 4.4 and 7.2 and Chapter 8) ω

is the initial algebra.
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The same ideas appear in the synthetic domain theory literature. Long-

ley and Simpson [LS97, Section 5] (and others [RS99, vOS00]) also define ω

and ω as initial algebra and final coalgebra, and use the notion of complete

object and dominance. However, their results are in the context of realiz-

ability toposes rather than sheaf categories, which we study in the following

chapters.
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Chapter 4

Normal models of PCFv

The aim of this chapter is to identify sufficient conditions such that a Grothen-

dieck topos has enough structure to interpret call-by-value PCF (PCFv). We

will call such a category a normal model (Definition 4.3.1).

In Section 4.1, we prove some technical results about completeness, as

defined in Definition 3.2.2. In Section 4.2 we define PCFv and its operational

semantics. In Section 4.3 we define normal models and, using the complete-

ness results from Section 4.1, we show that normal models can interpret

PCFv; Theorem 4.3.5 shows that this interpretation is sound. Finally, in Sec-

tion 4.4 we introduce our first example of normal model, the category vSet

of presheaves on the vertical natural numbers (Definition 4.4.1), which will

be a running example. In Proposition 4.4.10 we show that the vSet model is

essentially the traditional ωCPO model of call-by-value PCF.

In Chapters 5 to 7 we will develop a recipe for building adequate normal

models and show that the vSet model is an instance of this recipe. Other

examples of the same recipe, that go beyond ωCPO, will be presented in Sec-

tion 7.2 and in Chapter 8.

The results in this chapter were published at FSCD 2021 [MMS21, Sec-

tion 3.1, 4, 5]. The notion of normal model is closely related to Simpson’s

notion of natural model [Sim98], and the interpretation of PCFv in a nor-

mal model is the usual interpretation in a cartesian closed category with a

monad (see e.g [Mog91]). Nevertheless, the contribution of this chapter is
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to prove that normal models satisfy the premises of the fixed point theo-

rem from Corollary 3.2.5. This is done using the results about completeness

from Section 4.1, and we do not know if it can be deduced from the work

of Simpson [Sim98], because of the different way in which completeness is

defined there; this issue is discussed in Section 7.4. The notion of normal

model will be useful in the next three chapters, as a target for our recipe of

building sound and adequate models.

In this chapter we work in a Grothendieck topos E with a dominance ∆

(Definition 2.3.2) which classifies the subobject 0 ↣ 1. Let L∆ be the lifting

monad associated to the dominance ∆. Then by Lemma 2.4.12, L∆ is a

pointed monad. Denote by ω∆ and ω∆ the vertical natural numbers objects

(defined in Section 3.1) obtained from the lifting monad L∆. Notice that

ω∆ and ω∆ exist because E has all small limits and colimits. Hence all the

assumptions about E from Chapter 3, needed for fixed points, are satisfied.

4.1 Consequences of the dominance being a

complete object

In order to interpret PCFv one condition we will ask for is that ∆ is an L∆-

complete object (Definition 3.2.2). Roughly speaking, this will ensure that

there are enough complete objects in E to interpret types. In this section, we

prove some technical consequences of ∆ being complete, which will be used

in Section 4.3.

4.1.1 A strengthening of completeness

Recall that in Section 3.2 we defined an object X to be L∆-complete if it is

right-orthogonal (Definition 3.2.1) to all maps of the form ω∆×A→ ω∆×A.
Intuitively, this means that ω-chains valued in X and parameterised by A

have a least upper bound.

Now, we consider a strengthening of the L∆-completeness condition, which

roughly says that partial maps ω∆ × A ⇀ X can be extended uniquely to
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partial maps ω∆ × A ⇀ X, rather than just total maps. The reason for in-

troducing this new definition is to characterize L∆-completeness for objects

of the form L∆X, in Proposition 4.1.5. This characterization will be used

when proving that PCFv types are interpreted as complete objects (Proposi-

tion 4.3.4).

Definition 4.1.1. Let O∆ be the class of maps in E which are pullbacks of

maps of the form i×idA : ω∆×A→ ω∆×A along ∆-subobjects of ω∆×A (Def-

inition 2.3.1). Write O⊥
∆ for the class of objects right-orthogonal (Defini-

tion 3.2.1) to every map in O∆.

The following are useful facts about O∆; we sketch the proofs:

� O∆ is closed under pullback along ∆-subobjects.

Proof sketch. This is because the composition of ∆-subobjects is a ∆-

subobject.

� O∆ is closed under the operations (−)× idA.

Proof sketch. We can use the fact that ∆-subobjects are closed under

these operations.

The orthogonality class O⊥
∆ seen as a full subcategory of E has the fol-

lowing standard properties:

� O⊥
∆ is contained in the class of L∆-complete objects.

Proof sketch. This is because the identity subobject id : ω×A→ ω×A
is always a ∆-subobject.

� O⊥
∆ is closed under limits in E [AR94, Observation 1.34].

� O⊥
∆ is a reflective subcategory of E (defined in e.g. [Joh02, A1.1.1]).

� O⊥
∆ is an exponential ideal (see e.g. [Joh02, A1.5.10] for a definition).
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We give proofs for the last two facts above:

Lemma 4.1.2. O⊥
∆ is a reflective subcategory of E.

Proof. From [AR94, Observation 1.36] we know that every small orthogonal-

ity class, that is, objects orthogonal to a small class of maps, is a reflective

subcategory of the Grothendieck topos E .
Every Grothendieck topos E admits a set of objects S which generates

E under colimits, by Giraud’s theorem e.g. [Joh02, C2.2.8]. In the case

of a sheaf topos, we can take this set to be the sheafified representables

ay(c). The class of maps O∆ is not small, but the subset of O∆ consisting of

pullbacks of maps of the form i × iday(c), where c is an object in the site of

E , is small. We can deduce that O⊥
∆ is equivalently the class of objects right

orthogonal to this small subset of O∆, using the fact that any object in E is

a colimit of sheafified representables and colimits are preserved by products

and pullbacks. Thus, we can apply Observation 1.36 from [AR94] to O⊥
∆.

Lemma 4.1.3. O⊥
∆ is an exponential ideal.

Proof. Let A ∈ O⊥
∆. We need to prove that for any object B in E , the

exponential B ⇒ A is in O⊥
∆.

Let x : X ′ → X be the pullback of a ∆-subobject X ↣ ω∆ × C along

ω∆×C → ω∆×C, and consider a map f : X ′ → (B ⇒ A). Let f ′ : X ′×B →
A be the uncurrying of f .

Then x × idB : X ′ × B → X × B is in O∆ because O∆ is closed under

(−)× idB. Since A ∈ O⊥
∆, f

′ has a unique extension f ′ : X × B → A. Then

the currying of f ′, f : X → (B ⇒ A), is the unique extension of f .

4.1.2 Some completeness results

We now establish some consequences of the dominance ∆ being an L∆-

complete object. First, we show that for any object X, L∆X being L∆-

complete (i.e X being well-complete) is equivalent to X being in O⊥
∆ (Propo-

sition 4.1.5). Then we show that the initial object is inO⊥
∆ (Proposition 4.1.6)

and give a necessary and sufficient condition for O⊥
∆ to be closed under co-

products (Proposition 4.1.9). These propositions will be used in Section 4.3
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to show that we can interpret recursion in a Grothendieck topos with a dom-

inance using the fixed point constructed in Corollary 3.2.5.

Lemma 4.1.4. Suppose ∆ is L∆-complete. Then ∆ is in O⊥
∆.

Proof. Consider a ∆-subobject φ : X ′ ↣ ω∆ × A. Because ∆-subobjects

are stable under pullback (Lemma 2.3.5), α : X ↣ ω∆ × A in the pullback

diagram below is also a ∆-subobject:

X ω∆ × A

X ′ ω∆ × A

α

x i×idA

φ

We need to show that ∆ is right orthogonal to x so consider a map

f : X → ∆. We will show that f has a unique extension f ′ : X ′ → ∆.

From Remark 2.4.7 we know that ∆ satisfies the definition of a partial map

classifier for 1. So f corresponds to a partial map (f ∗(⊤) : Y ↣ X, ! : Y → 1)

which makes the following diagram a pullback:

Y 1

X ∆ ∼= L∆1

!

f∗(⊤) ⊤

f

The aim is to find another ∆-subobject Y ′ ↣ X ′ which corresponds to a

map f ′ extending f .

∆-subobjects are closed under composition by definition so α ◦ f ∗(⊤) is
also a ∆-subobject, and has a classifying map β : ω∆ × A→ ∆. Because ∆

is right orthogonal to i× idA : ω∆ × A→ ω∆ × A, β has a unique extension

β. The pullback of ⊤ along β is again a ∆-subobject β
∗
(⊤) : Y ′ ↣ ω∆ ×A.

All these maps are depicted in Figure 4.1.

Because α ◦ f ∗(⊤) is the pullback of ⊤ along β, and β
∗
(⊤) the pullback

of ⊤ along β and:

β = β ◦ (i× idA)

then by the pullback lemma, α ◦ f ∗(⊤) is also the pullback of β
∗
(⊤) along
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Y 1

X

ω∆ × A ∆ ∼= L∆1

X ′ ∩ Y ′ X ′

Y ′ ω∆ × A

f∗(⊤)

!

⊤

α

x
β

i×idA

∼=

φ

β
∗
(⊤)

!

β

Figure 4.1: Showing ∆ is in O⊥
∆.

(i× idA).

The next step is to show that Y ′ actually factors through X ′, giving the

∆-subobject we want.

Taking the intersection of the subobjects α ◦ f ∗(⊤) and α, via pullback,

gives again α ◦ f ∗(⊤). Because they are the pullback of β
∗
(⊤) and φ re-

spectively, along (i × idA), we must get the same result if we first take the

pullback of β
∗
(⊤) and φ, denoted by X ′ ∩ Y ′, and then pull back the result

along (i× idA). Therefore the following square is also a pullback:

Y X ω∆ × A

X ′ ∩ Y ′ Y ′ ω∆ × A

f∗(⊤) α

i×idA

β
∗
(⊤)

∆-subobjects are stable under pullback and closed under composition so

X ′ ∩ Y ′ ↣ Y ′ ↣ ω∆ × A is also a ∆-subobject. Let its classifying map be

γ : ω∆ × A → ∆. By the pullback lemma the outer square in the following
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diagram is a pullback:

Y X ω∆ × A

X ′ ∩ Y ′ Y ′ ω∆ × A

1 ∆

f∗(⊤) α

i×idA

!

β
∗
(⊤)

γ

⊤

But we assumed that the unique classifying map of α ◦ f ∗(⊤) is β, there-
fore:

β = γ ◦ (i× idA).

Because ∆ is complete, β is the unique extension of β, therefore:

β = γ.

This means that the subobjects that β and γ classify must be isomorphic, so

X ′ ∩ Y ′ ↣ Y ′ is an isomorphism and we have a ∆-subobject ψ : Y ′ ↣ X ′:

X ′ ∩ Y ′ X ′

Y ′ ω∆ × A

∼= φψ

β
∗
(⊤)

Define the candidate extension of f : X → ∆, f ′ : X ′ → ∆, to be the

classifying map of ψ, or equivalently the total map associated to the partial

map (ψ, ! : Y ′ → 1). So ψ = f ′∗(⊤).
Consider the following diagram. We need to show that f = f ′ ◦ x.

Y 1

Y ′ X ∆ ∼= L1

X ′

f∗(⊤)

!

⊤

ψ=f ′∗(⊤)

!

x

f

f ′
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By looking at Figure 4.1 we can see that f ∗(⊤) is the pullback of f ′∗(⊤)
along x. Therefore, by the pullback lemma, f ∗(⊤) is the pullback of ⊤ along

f ′ ◦ x. But the unique classifying map of f ∗(⊤) is f , therefore:

f = f ′ ◦ x.

Finally, we need to show that f ′ is unique. Consider another f ′′ : X ′ → ∆

such that:

f = f ′′ ◦ x.

Let the ∆-subobject f ′′∗(⊤) : Y ′′ ↣ X ′ be the pullback of ⊤ along f ′′. Using

the pullback lemma, we see that f ∗(⊤) : Y ↣ X must be the pullback of

f ′′∗(⊤) along x.
Therefore φ◦f ′′∗(⊤) : Y ′′ ↣ X ′ ↣ ω∆×A pulled back along i× idA gives

α ◦ f ∗(⊤) : Y ↣ X ↣ ω∆ × A. The map φ ◦ f ′′∗(⊤) : Y ′′ ↣ X ′ ↣ ω∆ × A
is a ∆-subobject, so let its classifying map be ρ : ω∆ ×A→ ∆. Because the

classifying map of α ◦ f ∗(⊤) is β we get that:

β = ρ ◦ (i× idA).

But the unique extension of β is β so:

β = ρ

and the ∆-subobjects that they classify must be isomorphic:

β
∗
(⊤) = φ ◦ ψ ∼= φ ◦ f ′′∗(⊤).

The map φ is mono so the following ∆-subobjects are also isomorphic:

ψ = f ′∗(⊤) ∼= f ′′∗(⊤)

which means they must have the same classifying map and therefore:

f ′ = f ′′.
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Proposition 4.1.5. Assume that ∆ is L∆-complete. Then for any A in E
the following three statements are equivalent:

1. A is in O⊥
∆;

2. L∆A is L∆-complete;

3. L∆A is in O⊥
∆.

Notice that the fact that Item 1 implies Item 3 means that O⊥
∆ is closed under

L∆.

Proof. We first show that Item 1 is equivalent to Item 2.

Item 1 implies Item 2. Assume that A ∈ O⊥
∆. To show that L∆A is

L∆-complete, consider a map f : ω∆ × B → L∆A and show it has a unique

extension to ω∆ ×B.

The total map f : ω∆ × B → L∆A corresponds to a partial map (m :

X ↣ ω∆ × B, g : X → A) with m a ∆-subobject. Therefore, m has a

classifying map β : ω∆×B → ∆. Because ∆ is L∆-complete, β has a unique

extension β : ω∆ ×B → ∆ such that:

β = β ◦ (i× idB).

Let β
∗
(⊤) be the ∆-subobject classified by β. We can deduce by the

pullback lemma that m is the pullback of β
∗
(⊤) along (i× idB). The whole

construction appears in the diagram below.

X A

ω∆ ×B L∆A

X ′

ω∆ ×B

g

m

x

ηA

i×idB

f

β
∗
(⊤)

g

f
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Because A ∈ O⊥
∆, A is orthogonal to x, so g has a unique extension g

such that:

g = g ◦ x.

The pair (β
∗
(⊤), g) is a partial map which determines a total map f : ω∆ ×

B → L∆A, such that β
∗
(⊤) is the pullback of ηA along f .

We already know that m is the pullback of β
∗
(⊤) along (i × idB), so by

the pullback lemma m is the pullback of ηA along f ◦(i× idB). So f ◦(i× idB)
represents the partial map (m, g). But we assumed that the unique total map

corresponding to the partial map (m, g) is f , therefore:

f = f ◦ (i× idB).

It now remains to show that f is the unique map with this property.

Assume there is another f
′
such that:

f = f
′ ◦ (i× idB).

This determines a partial map (p : X ′′ ↣ ω∆ × B, g′ : X ′′ → A), where p is

a ∆-subobject, as in the diagram below. By the pullback lemma, m is the

pullback of p along i× idB, where the other side of the pullback is x′.

X A

ω∆ ×B L∆A

X ′′ X ′

ω∆ ×B

g

m

xx′

ηA

i×idB

f

p

α
∼=

g′

β
∗
(⊤)

g

f
′

Let βp : ω∆ ×B → ∆ be the classifying map of p. Again by the pullback

lemma, m is the pullback of ⊤ along βp ◦ (i × idB), so by uniqueness of β,
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the classifying map of m, we have:

β = βp.

This means that the ∆-subobjects β
∗
(⊤) and p are isomorphic. So there

exists an iso α : X ′′ → X ′ such that β
∗
(⊤) ◦ α = p, and also:

x = α ◦ x′,

which means that

g = g ◦ α ◦ x′.

We know that A is orthogonal to x′, therefore g has a unique extension

along x′, which we have shown to be g ◦ α. We can also show by a diagram

chase that:

ηA ◦ g = ηA ◦ g′ ◦ x′.

Because ηA is mono by the definition of partial map classifier we get that:

g′ = g ◦ α.

We have shown that the partial maps (p, g′) and (β
∗
(⊤), g) are in fact

equal. Therefore they must correspond to the same total map, so:

f
′
= f.

Item 2 implies Item 1. Assume that L∆A is L∆-complete. To show

A ∈ O⊥
∆, consider a ∆-subobject m : X ′ ↣ ω∆ × B and denote its pullback

along i × idB by x : X → X ′ and α : X ↣ ω∆ × B. We need to show that

A is right orthogonal to x, so consider a map f : X → A which we will show

can be extended uniquely to X ′. The situation is depicted in the diagram
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below.

X A

ω∆ ×B L∆A

X ′′ X ′

ω∆ ×B

f

α

xx′

ηA

i×idB

g

p=g∗(ηA)

a
∼=

h

m

f
′

g

g′

The pair (α, f) is a partial map, so it must correspond to a total map

g : ω∆ × B → L∆A. Because L∆A is complete, g has a unique extension g

such that:

g = g ◦ (i× idB).

Let (p, h) be the partial map corresponding to g. We will show that the

∆-subobjects p and m are in fact isomorphic.

Using the pullback lemma we can see that α is the pullback of p along

i × idB. Denote by x′ : X → X ′′ the other leg of the pullback. The map

p is a ∆-subobject so it has a classifying map γ : ω∆ × B → ∆. Therefore

γ ◦ (i× idB) must be the classifying map of the α.

Similarly, let β, be the classifying map of m, then β ◦ (i× idB) classifies

α so we get:

γ ◦ (i× idB) = β ◦ (i× idB).

We know that ∆ is complete, so the map γ ◦ (i× idB) : ω∆ ×B → L∆A has

a unique extension, therefore:

γ = β.

This means that m and p are isomorphic ∆-subobjects, so there exists an

iso a : X ′′ → X ′ such that p = m ◦ a, and therefore x = a ◦ x′.
Let the candidate extension of f be:

f = a−1 ◦ h.
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and we need to show f = f ◦ x. This reduces to showing:

f = h ◦ x′.

By a diagram chase we can see that:

ηA ◦ f = ηA ◦ h ◦ x′

and this is sufficient because ηA is monic.

Now we need to show that f = h ◦ a−1 is the unique extension of f along

x. Consider another f
′
such that:

f = f
′ ◦ x.

The pair (m, f
′
) is a partial map, so it corresponds to a total map g′ :

ω∆×B → L∆A. Therefore, α is the pullback of ηA along g′ ◦ (i× idB), which

means that:

g = g′ ◦ (i× idB).

But the unique extension of g is g, so g = g′. This means that the partial

maps they correspond to, (p, h) and (m, f
′
), are equal. We already know

that a is an iso between p and m (and m is mono), so we obtain:

f = h ◦ a−1 = f
′
.

Item 1 implies Item 3. Assume that A ∈ O⊥
∆. We need to prove that

L∆A ∈ O⊥
∆. For this consider a ∆-subobject q : Z ′ ↣ ω∆×B, and z : Z → Z ′

its pullback along i× idB. To show L∆A is right orthogonal to z consider a

map f : Z → L∆A and show it has a unique extension to Z ′.

From Lemma 4.1.4 we know that ∆ ∈ O⊥
∆, so we know ∆ is right orthog-

onal to z. Using this fact the proof proceeds in the same way as the proof

that Item 1 implies Item 2 (A ∈ O⊥
∆ implies L∆A is complete). The role of

i× idB from that proof is now played by z, and orthogonality of ∆ to i× idB

is replaced by orthogonality to z.

55



Item 3 implies Item 2. We need to prove that L∆A ∈ O⊥
∆ implies

L∆A is L∆-complete. This is immediate because the top subobjects are

∆-subobjects.

Proposition 4.1.6. Assume that ∆ is L∆-complete. Then 0, the initial

object, is in O⊥
∆.

Proof. Let m : X ′ ↣ ω∆×B be a ∆-subobject and consider x : X → X ′ the

pullback of i× idB : ω∆×B → ω∆×B along m. Consider a map f : X → 0.

We need to show f can be extended uniquely to X ′.

Since we are working in a topos, we know that 0 is a strict initial ob-

ject ([Joh02, Lemma A.1.4.1]), so any map with codomain 0 is an isomor-

phism. Therefore X is isomorphic to 0, and it is enough to show that id0 can

be extended to a map X ′ → 0. The situation is illustrated in the following

diagram.

0 0

X ′ ω∆ ×B

0 ω∆ ×B

!X′ !ω∆×B

id

m i×idB

!ω∆×B

It is enough to show that X ′ is isomorphic to 0. Consider the ∆-subobject

!ω∆×B : 0 ↣ ω∆ × B. We know both !ω∆×B and !ω∆×B are ∆-subobjects

from Lemma 2.3.7. The map !ω∆×B must be the pullback of !ω∆×B along

i× idB because 0 is strict initial.

Using the pullback lemma, we can see that the classifying map of !ω∆×B

is equal to i × idB composed with either the classifying map if m or the

classifying map of !ω∆×B. Because ∆ is L∆-complete, it means that m and

!ω∆×B have the same classifying map, so they are isomorphic subobjects.

Therefore X ′ is isomorphic to 0.

Before we can prove the last consequence of completeness of ∆, which
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is about coproducts (Proposition 4.1.9), we need to prove the following two

lemmas:

Lemma 4.1.7. Assume that ∆ is L∆-complete. A J-indexed family of sub-

objects of ω∆×B is disjoint (meaning that their pullback is the initial object

0) if their pullback along i× idB : ω∆ ×B → ω∆ ×B is a disjoint family.

Proof. Consider a family of ∆-subobjects (φj : Xj ↣ ω∆ × B)j∈J and their

pullback along i × idB, (φ
′
j : X

′
j ↣ ω∆ × B)j∈J . It is enough to show that

any two subobjects Xi and Xj are disjoint. Let their pullback be Y .

We know that X ′
i and X

′
j are disjoint so their pullback is 0. Now we want

to show that the ∆-subobject Y ↣ Xi is isomorphic to 0 ↣ Xi.

X ′
j

0 Xj ω∆ ×B

Y X ′
i ω∆ ×B

0 Xi

φ′
j

φj i×idB
φ′
i

xi
φi

We know that 0 ↣ Xi and 0 ↣ X ′
i are ∆-subobjects from Lemma 2.3.7.

Let αi : Xi → ∆ be the classifying map of 0 ↣ Xi. By the pullback lemma,

αi ◦ xi is the classifying map of 0 ↣ X ′
i.

Let βj be the classifying map of φ′
j. Then by the pullback lemma βj ◦ φ′

i

classifies 0 ↣ X ′
i. Because ∆ is L∆-complete, βj has an extension βj which

classifies φj, so we have the equality:

αi ◦ xi = βj ◦ (i× idB) ◦ φ′
i

= βj ◦ φi ◦ xi.

From Lemma 4.1.4, ∆ is right-orthogonal to xi, so it must be the case

that:

αi = βj ◦ φi.
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This means that Y ↣ Xi and 0 ↣ Xi have the same classifying map, so

they must be isomorphic subobjects. Hence, φi and φj are disjoint.

Lemma 4.1.8. Assume that ∆ is L∆-complete, and that
∐

j∈J 1 is in O⊥
∆.

A J-indexed join of disjoint ∆-subobjects of ω∆ × A is a ∆-subobject if and

only if the join of their pullbacks along i × idA : ω∆ × A → ω∆ × A is a

∆-subobject.

Proof. Let (fj : Xj ↣ ω∆ × A)j∈J be a family of disjoint ∆-subobjects. Let

(f ′
j : X

′
j ↣ ω∆ × A)j∈J be their pullback along i× idA : ω∆ × A→ ω∆ × A.

The left to right implication is true because taking the join of (fj : Xj ↣

ω∆×A)j∈J then pulling back along i×idA gives the same subobject as pulling

back and then taking the join (see Section 2.2).

For the right to left implication, assume that the join of (f ′
j : X ′

j ↣

ω∆ × A)j∈J is a ∆-subobject. By Lemma 2.2.2, (f ′
j : X

′
j ↣ ω∆ × A)j∈J is a

disjoint family of subobjects, so its join is the co-pairing:

[f ′
j]j∈J :

∐
j∈J

X ′
j ↣ ω∆ × A.

Because ∆ is L∆-complete, there is a ∆-subobject φ : Z ↣ ω∆×A which

pulls back to [f ′
j]j∈J , as in the following diagram:

∐
j∈J X

′
j ω∆ × A

Z ω∆ × A

[f ′j ]j∈J

z i×idA

φ

The strategy is to show that the join [fj]j∈J :
∐

j∈J Xj ↣ ω∆ × A is an

isomorphic subobject to φ and hence a ∆-subobject.

We know that
∐

j∈J 1 is in O⊥
∆, so

∐
j∈J 1 is right-orthogonal to z. There-
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fore, the map
∐

j∈J ! :
∐

j∈J X
′
j →

∐
j∈J 1 has a unique extension α to z:

X ′
i 1

Zi
∐

j∈J X
′
j

∐
j∈J 1

Z

∐
j∈J !

z
α

From [Joh02], we know that a Grothendieck topos is infinitary extensive,

meaning that for any family of commutative squares:

Xj B

Aj
∐

i∈I Ai

f

where f is fixed and each Aj →
∐

i∈I Ai is the respective coproduct inclusion,

B is the coproduct
∐

i∈I Xi if and only if all the squares are pullbacks. It

also follows that coproduct inclusions are disjoint.

We now use the fact that our category is infinitary extensive: pulling back

α along the coproduct inclusions 1 ↣
∐

j∈J 1 we get a coproduct decompo-

sition of Z:

Z ∼=
∐
j∈J

Zj.

The map X ′
i → Zi is the comparison map that comes from the universal

property of Zi as a pullback, so the left square starting at X ′
i commutes.

The top square starting at X ′
i is also a pullback so by the pullback lemma

the left square is a pullback as well.
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We now have the following two pullback squares:

X ′
i

∐
j∈J X

′
j ω∆ × A

Zi Z ω∆ × A

f ′i

[f ′j ]j∈J

z i×idA

φ

The map φ ◦ inci : Zi ↣ Z ↣ ω∆ × A is a ∆-subobject because coproduct

inclusions are ∆-subobjects (Proposition 2.3.8) and it pulls back along i×idA
to f ′

i . But fi : Xi ↣ ω∆ × A also pulls back to f ′
i , so because ∆ is L∆-

complete, fi and φ ◦ inci are isomorphic subobjects.

The isomorphism holds for any i in J , so the co-pairings:

[fj]j∈J and [φ ◦ incj]j∈J = φ

are isomorphic subobjects as well, hence the join [fj]j∈J is a ∆-subobject.

Now we give a sufficient condition for the orthogonality class O⊥
∆ to be

closed under I-indexed coproducts. We will use the proposition below in the

proof of Proposition 4.3.4 to show that sum types in PCFv are interpreted

as complete objects, by instantiating the coproduct
∐

J 1 to be the natural

numbers NatE ∼=
∐

N 1.

Proposition 4.1.9. Assume that ∆ is L∆-complete. Then O⊥
∆ is closed

under I-indexed coproducts if and only if the coproduct of the terminal object∐
J 1 is in O⊥

∆ for some J with |I| ≤ |J |.

Proof. The left to right direction is immediate because we can choose J to

be I, and 1 is in O⊥
∆ because it is the terminal object.

For the right to left direction, consider a coproduct
∐

i∈I Ai where each

Ai is in O⊥
∆. Consider a ∆-subobject m : X ′ ↣ ω∆×B and let the pullback

of i × idB : ω∆ × B → ω∆ × B along m be x : X → X ′. Consider a map
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Aj

Xj

∐
i∈I Ai

X

ω∆ ×B

∐
i∈I X

′
i X ′

X ′
j ω∆ ×B

ιj

zj

fj

xj x

m′

f

x′

i×idB

φ

f

m

α

φj

fj

Figure 4.2: Diagram for the proof of Proposition 4.1.9.

f : X →
∐

i∈I Ai. We need to show that f has a unique extension to X ′.

The situtation is depicted in Figure 4.2.

Consider one of the coproduct inclusions ιj : Aj ↣
∐

i∈I Ai. We know

from Proposition 2.3.8 that coproduct inclusions are ∆-subobjects. Therefore

zj, the pullback of ιj along f , is also a ∆-subobject.

∆-subobjects are closed under composition so m′ ◦ zj is a ∆-subobject.

Therefore, it has a classifying map βj : ω∆ × B → ∆. Because ∆ is L∆-

complete, βj has a unique extension βj : ω∆×B → ∆. Let φj : X
′
j ↣ ω∆×B

be the ∆-subobject classified by βj.

It follows by the pullback lemma that m′ ◦ zj is the pullback of φj along

i × idB. Because Aj is in O⊥
∆ it means that Aj is right-orthogonal to xj, so

fj has a unique extension f j : X
′
j → Aj.

From [Joh02], we know that the topos E we are working in is infinitary

extensive. Therefore, X is the coproduct
∐

i∈I Xi and f is
∐

i∈I fi. Moreover,

we know that the coproduct inclusions ιj are all pairwise disjoint.

The aim is to show that X ′ is actually the coproduct
∐

i∈I X
′
i and that

f =
∐

i∈I f i : X
′ →

∐
i∈I Ai is an extension of f .
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Notice that all the φj’s are pairwise disjoint because they pull back to a

pairwise disjoint family of subobjects, (m′ ◦ zi)i∈I (Lemma 4.1.7). Therefore,

their union:

φ = [φi]i∈I :
∐
i∈I

X ′
i → ω∆ ×B

is still a monomorphism. Now we can apply Lemma 4.1.8 to deduce that ϕ is

a ∆-subobject, because the join of (m′ ◦ zi)i∈I is m′ which is a ∆-subobject.

Let x′ =
∐

i∈I xi : X →
∐

i∈I X
′
i. Then (x′,m′) is the pullback of ϕ and

i× idB, because taking pullback of a family of subobjects and then taking the

union is the same as taking the union followed by pullback (see Section 2.2).

We know that both φ and m are ∆-subobjects and their pullback along

i× idB is m′. Because ∆ is L∆-complete, they must have the same classifying

map and so they are isomorphic subobjects. Let α : X ′ →
∐

i∈I X
′
i be the

isomorphism such that:

m = φ ◦ α α ◦ x = x′.

Because f =
∐

i∈I fi, f =
∐

i∈I f i and x
′ =

∐
i∈I xi, and because each f i

extends fi along xi we get that:

f = f ◦ x′ = f ◦ α ◦ x.

Therefore f ◦ α extends f along x. It remains to show this is the unique

extension.

Assume there is another g : X ′ :→
∐

i∈I Ai such that f = g ◦ x. We can

pull back g along ιj to get another coproduct decomposition of X ′ ∼=
∐

i∈I Yi,

because a Grothendieck topos is infinitary extensive [Joh02], as shown in Fig-

ure 4.3.

Ignoring the isomorphisms
∐

i∈I X
′
i
∼= X ′ ∼=

∐
i∈I Yi we need to show that

g = f . We know that:

g =
∐
i∈I

gi f =
∐
i∈I

f i
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Aj

Xj

∐
i∈I Ai

Yj X

X ′ ∼=
∐

i∈I X
′
i
∼=
∐

i∈I Yi

ιj

zj

fj

yj

gj

x

f

g

Figure 4.3: Diagram for the proof of Proposition 4.1.9.

so it is enough to show that for each j, Yj is isomorphic to X ′
j and gj = f j

(up to isomorphism).

Let yj : Xj → Yj be the comparison map that comes from the universal

property of Yj as the pullback of g and ιj. Then by the pullback lemma, we

see that the inclusion map Yj ↣ X ′ pulls back to zj, along x.

The inclusion map X ′
j ↣ X ′ also pulls back to zj along x, because φj

pulls back along i × idB to m′ ◦ zj, and m pulls back to m′. Both inclusion

maps Yj ↣ X ′ and X ′
j ↣ X ′ are ∆-subobjects by Proposition 2.3.8.

By assumption ∆ is L∆-complete, so by Lemma 4.1.4 ∆ is inO⊥
∆, therefore

it is right-orthogonal to x. Therefore Yj ↣ X ′ and X ′
j ↣ X ′ are isomorphic

subobjects, so Yj ∼= X ′
j.

By a diagram chase:

ιj ◦ fj = ιj ◦ gj ◦ yj

so because ιj is mono, we have that fj = gj ◦ yj. Therefore, gj and f j both

extend fj along the same map (up to isomorphism), so they must be equal

because fj has a unique extension.
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4.2 PCFv: a higher-order language with recur-

sion

Traditionally, PCF [Plo77] is a call-by-name lambda-calculus with one or two

base types and a fixed point combinator for each type. PCF has been used

extensively as a basis for studying denotational semantics of programming

languages. This section introduces PCFv, a (fine-grain) call-by-value version

of PCF, whose models will be studied in the rest of the thesis.

4.2.1 Typing rules and operational semantics

PCFv has as base types unit, empty and natural numbers; it also has binary

products and sums, and function types. The grammar of PCFv types is

defined as follows:

Types: τ ::= 0 | 1 | nat | τ + τ | τ × τ | τ → τ

The ground types are 0, 1 and nat.

The calculus is fine-grain call-by-value [LPT03], meaning there is a syn-

tactic distinction between values and computations.

Values: v, w ::= x | ⋆ | inl v | inr v | (v, v) | 0 | S(v) | λx. t | rec f x. t

Computations: t ::= return v | case v of {inlx→ t, inr y → t′} | π1v | π2v

| v w | case v of {0�t, S(x)�t′} | letx = t in t′

Each type comes with the usual constructors (values) and destructors

(computations). The value S(v) is thought of as successor of the natural

number v. In addition, we can define recursive functions (recx f. t) which

should be thought of as a definition f(x) = t where both f and x can appear

free in t. Values can be embedded into computations using return v and

computations can be sequenced using let.

There are two typing judgements, ⊢v for values, and ⊢c for computations,

shown in Figure 4.4. The big-step operational semantics is defined as a

relation ⇓ between closed computations and values; it is the least relation
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Γ ⊢v ⋆ : 1
Γ ⊢v v : τ

Γ ⊢v inl v : τ + τ ′
Γ ⊢v v : τ ′

Γ ⊢v inr v : τ + τ ′

Γ, x : τ,Γ′ ⊢v x : τ Γ ⊢v 0 : nat

Γ ⊢v v : nat

Γ ⊢v S(v) : nat

Γ, x : τ ⊢c t : τ ′

Γ ⊢v λx. t : τ → τ ′
Γ, f : τ → τ ′, x : τ ⊢c t : τ ′

Γ ⊢v rec f x. t : τ → τ ′

Γ ⊢v v : τ Γ ⊢v v′ : τ ′

Γ ⊢v (v, v′) : τ × τ ′
Γ ⊢v v : τ × τ ′

Γ ⊢c π1v : τ

Γ ⊢v v : τ × τ ′

Γ ⊢c π2v : τ ′

Γ ⊢v v : τ + τ ′ Γ, x : τ ⊢c t : σ Γ, y : τ ′ ⊢c t′ : σ
Γ ⊢c case v of {inlx→ t, inr y → t′} : σ

Γ ⊢v v : 0

Γ ⊢c case v of {} : τ
Γ ⊢v v : τ → τ ′ Γ ⊢v w : τ

Γ ⊢c v w : τ ′

Γ ⊢v v : nat Γ ⊢c t : τ Γ, x : nat ⊢c t′ : τ
Γ ⊢c case v of {0�t, S(x)�t′} : τ

Γ ⊢v v : τ

Γ ⊢c return v : τ

Γ ⊢c t : τ Γ, x : τ ⊢c t′ : τ ′

Γ ⊢c letx = t in t′ : τ ′

Figure 4.4: Typing rules for PCFv.

closed under the rules in Figure 4.5.

We now sketch an extension of PCFv with new type and term constants.

Denote by α, β the existing ground types 1, 0, nat and the type constants

we wish to add, which will also be treated as ground types.

To be able to extend the operational semantics, assume that each new

type constant α comes equipped with a set Valα of values of type α. The

existing ground types already have such sets of values:

Val1 ∼= 1 Val0 = ∅ Valnat ∼= N.

For each element u in Valα, we add to the calculus a term constant u of type

α. To add term constants of type (α1 × . . . × αn) → β, assume that each
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return v ⇓ v π1(v, v
′) ⇓ v π2(v, v

′) ⇓ v′

t[v/x] ⇓ w
case inl v of {inlx→ t, inr y → t′} ⇓ w

t′[v/x] ⇓ w
case inr v of {inlx→ t, inr y → t′} ⇓ w

t[(rec f x. t)/f, v/x] ⇓ w
(rec f x. t) v ⇓ w

t[v/x] ⇓ w
(λx. t) v ⇓ w

t ⇓ v t′[v/x] ⇓ w
letx = t in t′ ⇓ w

t ⇓ w
case 0 of {0�t, S(x)�t′} ⇓ w

t′[v/x] ⇓ w
case S(v) of {0�t, S(x)�t′} ⇓ w

Figure 4.5: Operational semantics of PCFv.

τ ::= . . . | α
v, w ::= . . . | u | f

where u ∈ Valα, and f represents the new term constants

Γ ⊢v u : α Γ ⊢v f : (α1 × . . .× αn)→ β f v ⇓ w
if f(v) = w ∈ Valβ

Figure 4.6: Extension of PCFv with new type and term constants.

such term constant f : (α1× . . .×αn)→ β is associated to a partial function

f : (Valα1 × . . .× Valαn)⇀ Valβ.

We add all elements of Valα and the term constants f : (α1×. . .×αn)→ β

as values, and implement an operational semantics based on the underly-

ing function of each term constant. The additions to PCFv are summarised

in Figure 4.6:

In Section 7.2, we study sheaf models for languages that are richer than

PCFv, like the ω-quasi-Borel spaces model for a probabilistic language [VKS19],

or the ω-diffeological spaces model for differentiable programming [Vák20].

Our aim in the thesis is to show that these models use the same recipe for

modelling PCFv with type and term constants (even though the language

modelled in each case is even richer), which is why we add such constants to
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our calculus. Below are some examples of new constants we might want to

add.

Example 4.2.1. For all the examples in Section 7.2 we can add a type real

with Valreal ∼= R. In each case, and for each n ∈ N, there would be a term

constant f : (real× . . .× real︸ ︷︷ ︸
n times

)→ real corresponding to:

� each measurable function f : Rn → R, for the ω-quasi-Borel spaces

example;

� each smooth function f : Rn → R, for the ω-diffeological spaces exam-

ple; for example sin : R→ R;

� each PAP [LYRY20] function f : Rn → R, for the ωPAP exam-

ple [LHM21]; for example a piecewise smooth function f : R → R
like:

f(x) =

0 if x < 0

x otherwise.

4.2.2 Contextual equivalence

Using the operational semantics, we can define the usual notion of contextual

equivalence (e.g. [Pit11, Section 5.6]). Intuitively, a context is a term with a

hole; we define the grammar of contexts in Figure 4.7.

Because of our distinction between values and computations, the grammar

of contexts is made up of four different syntactic classes depending on whether

the hole in the contexts needs to be filled in with a value or a computation,

and on whether the filled in context produces a value or a computation. For

example, we denote by Cc
v a context which takes in a value and produces a

computation.

Definition 4.2.2. Two computations Γ ⊢c t : τ and Γ ⊢c t′ : τ are contex-

tually equivalent, written as

Γ ⊢c t ≃ t′ : τ,
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Cc
v ::= returnCv

v | caseCv
v of {inlx→ t, inr y → t′} |

case v of {inlx→ Cc
v, inr y → t′} | case v of {inlx→ t, inr y → Cc

v} |

π1C
v
v | π2Cv

v | Cv
v w | v Cv

v | caseCv
v of {0�t, S(x)�t′} |

case v of {0�Cc
v, S(x)�t

′} | case v of {0�t, S(x)�Cc
v} |

letx = Cc
v in t

′ | letx = t inCc
v

Cc
c ::= □ | returnCv

c | caseCv
c of {inlx→ t, inr y → t′} |

case v of {inlx→ Cc
c , inr y → t′} | case v of {inlx→ t, inr y → Cc

c} |

π1C
v
c | π2Cv

c | Cv
c w | v Cv

c | caseCv
c of {0�t, S(x)�t′} |

case v of {0�Cc
c , S(x)�t

′} | case v of {0�t, S(x)�Cc
c} |

letx = Cc
c in t

′ | letx = t inCc
c

Cv
v ::= □ | inlCv

v | inrCv
v | (Cv

v , v) | (v, Cv
v ) | S(Cv

v ) | λx.Cc
v | rec f x. Cc

v

Cv
c ::= inlCv

c | inrCv
c | (Cv

c , v) | (v, Cv
c ) | S(Cv

c ) | λx.Cc
c | rec f x. Cc

c

Figure 4.7: Grammar of PCFv contexts.
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if for any context Cc
c such that Cc

c [t] and C
c
c [t

′] are well-typed closed compu-

tations of ground type (in this case 0, 1 or nat or one of the type constants):

Cc
c [t] ⇓ v if and only if Cc

c [t
′] ⇓ v.

The definition for values is analogous, using contexts of the form Cc
v.

4.3 Denotational semantics of PCFv

We now describe the denotational semantics of PCFv with type constants

in a Grothendieck topos. This denotational semantics is not new, it follows

the same pattern as Moggi’s [Mog91] interpretation of the computational

lambda-calculus in a cartesian closed category with a monad. The notion of

normal model of PCFv defined below is very closely related to the notion of

natural model of synthetic domain theory studied by Simpson [Sim98]; the

connection is discussed in Section 7.4.

Definition 4.3.1. A normal model of PCFv with type constants is a Grothen-

dieck topos E (Definition 2.1.4) with a dominance ∆ (Definition 2.3.2), which

classifies 0 ↣ 1, such that:

� L∆(NatE) is L∆-complete (Definition 3.2.2), where NatE =
∐

N 1.

� For each type constant α, there is an object Aα in E such that there

is a mapping from Valα to the set of points 1 → Aα of Aα. Moreover,

L∆(Aα) is L∆-complete.

� For each term constant f : (α1 × . . .× αn)→ β, there is a morphism

ϕf : (Aα1 × . . .× Aαn)→ L∆(Aβ)

which agrees with f : (Valα1 × . . . × Valαn) ⇀ Valβ on points. This

means that:

– if f(v) = u, then

1
pv−→ (Aα1 × . . .× Aαn)

ϕf−→ L∆(Aβ) = 1
pu−→ Aβ

η−→ L∆(Aβ)
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– if f(v) is undefined, then

1
pv−→ (Aα1 × . . .× Aαn)

ϕf−→ L∆(Aβ) = 1
⊥Aβ−−→ L∆(Aβ),

where ⊥ is the point of L∆ constructed in Lemma 2.4.12.

Remark 4.3.2. Notice that for the existing ground types of PCFv (1, 0, nat)

we always have a corresponding object Aα in E . For example, Anat is
∐

N 1.

Lemma 4.3.3. In a normal model, the dominance ∆ is L∆-complete.

Proof. As we know from Remark 2.4.7, ∆ ∼= L∆1. L∆1 is a retract of

L∆(NatE) because:(
L∆1

L∆inc0−−−−→ L∆

(∐
N

1

)
L∆!−−→ L∆1

)
= idL∆1.

Given a map f : ω∆×A→ L∆1, the composite (L∆inc0)◦ f has a unique

extension h : ω∆×A→ L∆(NatE), because L∆(NatE) is L∆-complete. Hence,

we obtain a unique extension of f :

(L∆!) ◦ h.

A normal model E has the cartesian closed structure and the lifting monad

L∆ needed to interpret PCFv types. The interpretation of types, including

type constants, is:

JnatK =
∐
N

1 J0K = 0 J1K = 1 JαK = Aα Jτ + τ ′K = JτK + Jτ ′K

Jτ × τ ′K = JτK× Jτ ′K Jτ → τ ′K =
(
JτK⇒ L∆Jτ ′K

)
.

A typing context Γ = x1 : τ1, . . . , xn : τn is interpreted using product in E :

JΓK = Jτ1K× . . .× JτnK.
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In Figure 7.1, we will spell out the interpretation of types explicitly for a

special class of normal models.

A value Γ ⊢v v : τ is interpreted as a morphism:

JvK : JΓK→ JτK

in E , and a computation Γ ⊢c t : τ as a morphism

JtK : JΓK→ L∆JτK.

A term constant Γ ⊢v u : α, u ∈ Valα, where α is one of the type constants,

is interpreted by the corresponding point of Aα which is part of the definition

of normal model:

JΓ ⊢v u : αK = JΓK !−→ 1
pu−→ Aα.

Similarly, a term constant Γ ⊢v f : (α1 × . . .× αn)→ β is interpreted as:

JΓ ⊢v f : (α1 × . . .× αn)→ βK =

JΓK !−→ 1
curry(ϕf )−−−−−→

(
(Aα1 × . . .× Aαn)⇒ L∆(Aβ)

)
.

For the other values and computations, the interpretation uses the structure

of the category E and the strong monad L∆ in a standard way (e.g. [Mog91]).

Figures 4.8 and 4.9 contain this interpretation.

The only interesting case is the interpretation of fixed points which uses Corol-

lary 3.2.5. To apply this result we need to show that for every type τ1 → τ2,

L∆

(
Jτ1K ⇒ (L∆Jτ2K)

)
is L∆-complete. We prove the following more general

statement. In this proof we use the orthogonality class O⊥
∆ to strengthen the

induction hypothesis.

Proposition 4.3.4. For any PCFv type τ , L∆JτK is L∆-complete.

Proof. We prove by induction on τ that JτK ∈ O⊥
∆. Because in a normal

model ∆ is L∆-complete we have:

� 0 ∈ O⊥
∆ by Proposition 4.1.6.
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JΓ ⊢v ⋆ : 1K = JΓK !−→ 1

JΓ, x : τ,Γ′ ⊢v x : τK = JΓK× JτK× JΓ′K πx−→ JτK

JΓ ⊢v inl v : τ + τ ′K = JΓK
JvK−→ JτK

inj0−−→ JτK + Jτ ′K

JΓ ⊢v inr v : τ + τ ′K = JΓK
JvK−→ Jτ ′K

inj1−−→ JτK + Jτ ′K

JΓ ⊢v (v, v′) : τ × τ ′K = JΓK
⟨JvK,Jv′K⟩−−−−−→ JτK× Jτ ′K

JΓ ⊢v 0 : natK = JΓK
inj0−−→

∐
N

1

JΓ ⊢v S(v) : natK = JΓK
JvK−→
∐
N

1
[injn+1]n∈N−−−−−−→

∐
N

1

JΓ ⊢v λx. t : τ → τ ′K = JΓK
curry(JtK)−−−−−→ (JτK⇒ L∆Jτ ′K)

JΓ ⊢v rec f x. t : τ → τ ′K = JΓK
recJtK−−−→ (JτK⇒ L∆Jτ ′K)

where JtK : JΓK× (JτK⇒ L∆Jτ ′K)× JτK→ L∆Jτ ′K

JΓ ⊢v u : αK = JΓK !−→ 1
pu−→ Aα

JΓ ⊢v f : (α1 × . . .× αn)→ βK =

JΓK !−→ 1
curry(ϕf )−−−−−→

(
(Aα1 × . . .× Aαn)⇒ L∆(Aβ)

)
Figure 4.8: Interpretation of PCFv values in a normal model.

72



JΓ ⊢c π1v : τK = JΓK
JvK−→ JτK× Jτ ′K π1−→ JτK

ηJτK−−→ L∆JτK

JΓ ⊢c π2v : τ ′K = JΓK
JvK−→ JτK× Jτ ′K π2−→ Jτ ′K

ηJτ ′K−−→ L∆Jτ ′K

JΓ ⊢c case v of {inlx→ t, inr y → t′} : σK

= JΓK
⟨idJΓK,JvK⟩−−−−−→ JΓK× (JτK + Jτ ′K) ∼= (JΓK + JτK)× (JΓK + Jτ ′K)

⟨JtK,Jt′K⟩−−−−→ L∆JσK

JΓ ⊢c case v of {} : τK = JΓK
JvK−→ 0

!−→ L∆JτK

JΓ ⊢c v w : τ ′K = JΓK
⟨idJΓK,JwK⟩
−−−−−−→ JΓK× JτK

uncurry(JvK)−−−−−−→ L∆Jτ ′K

JΓ ⊢c case v of {0�t, S(x)�t′} : τK

= JΓK
⟨idJΓK,JvK⟩−−−−−→ JΓK× (1 +

∐
n≥1,n∈N

1) ∼= JΓK + (JΓK×
∐
N

1)
[JtK,Jt′K]−−−−→ L∆JτK

JΓ ⊢c return v : τK = JΓK
JvK−→ JτK

ηJτK−−→ L∆JτK

JΓ ⊢c letx = t in t′ : τ ′K

= JΓK
⟨idJΓK,JtK⟩−−−−−→ JΓK× L∆JτK str−→ L∆(JΓK× JτK)

Jt′K−−→ L∆Jτ ′K

Figure 4.9: Interpretation of PCFv computations in a normal model.
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� L∆(NatE) being L∆-complete implies that NatE ∈ O⊥
∆ by Proposi-

tion 4.1.5.

For the type constants, we assumed in the definition of normal model that

L∆(JαK) = L∆(Aα) is an L∆-complete object. For the unit type, 1 ∈ O⊥
∆

because 1 is the terminal object. Therefore, we have proved the base cases

of the induction.

If Jτ1K, Jτ2K ∈ O⊥
∆, then we can use Proposition 4.1.9 and

∐
N 1 ∈ O⊥

∆ to

deduce that Jτ1+ τ2K ∈ O⊥
∆. Also, Jτ1× τ2K ∈ O⊥

∆ because O⊥
∆ is closed under

limits, as we noted at the beginning of Section 4.1.

To show (L∆Jτ2K)Jτ1K ∈ O⊥
∆, note that Jτ2K ∈ O⊥

∆ implies by Proposi-

tion 4.1.5 that L∆Jτ2K ∈ O⊥
∆. We can then use the fact that O⊥

∆ is an

exponential ideal (Lemma 4.1.3).

Finally, by Proposition 4.1.5, JτK ∈ O⊥
∆ implies that L∆JτK is L∆-complete.

To connect the interpretation of PCFv in a normal model with the op-

erational semantics from Section 4.2.1, we prove the following soundness

theorem. We will later prove adequacy (Theorem 7.1.3) for a more restricted

class of models rather than for all normal models, which nevertheless covers

all our examples of models (from Sections 4.4 and 7.2 and Chapter 8).

Theorem 4.3.5 (Soundness). For any closed computation t of type τ , if t

reduces to a value v, t ⇓ v, then the denotation of t is:

JtK = ηJτK ◦ JvK : 1→ L∆JτK.

Proof sketch. The proof is by induction on the rules for the reduction relation

⇓, following the usual strategy from ωCPO (e.g [Win93, Lemma 11.11]). All

the cases work because the interpretation of PCFv is defined compositionally

using the categorical structure.

We spell out the case of the term constants f : (α1 × . . . × αn) → β.

Recall that the reduction rule is

f v ⇓ w
if f(v) = w ∈ Valβ.
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The interpretation of (f v) is:

Jf vK = 1
pv−→ (Aα1 × . . .× Aαn)

ϕf−→ L∆(Aβ)

and we already know from the definition of normal model that this must be

interpretation of ηJβK ◦ JwK as well.

4.4 Example: presheaves on the vertical nat-

ural numbers

In this section we introduce the category vSet, a first example of a nor-

mal model of PCFv with ground types 1, 0, nat, that is, without any type

constants. The category vSet will be a running example for our recipe of

constructing normal models:

� In Section 5.3, we will show that vSet is equivalent to a category of

sheaves on a concrete site, and that the dominance ∆V we define

here (Definition 4.4.5) can also be constructed from a class of pre-

admissible monos in the site, via Theorem 5.1.6.

� In Section 6.2, we show that this class of monos is in fact an example of

a class of admissible monos. This allows us to show Proposition 6.2.6:

that the lifted natural numbers in vSet, LV(NatV) ∼= LV
(∐

N 1
)
, is an

LV-complete object, via Theorem 6.2.5.

� In Section 7.1, we will show that vSet is an adequate model of PCFv

via Theorem 7.1.3.

The vSet model is also the simplest example of normal model we discuss.

The other examples include ω-quasi-Borel spaces and ω-diffeological spaces,

in Section 7.2, and a fully abstract model of PCFv without type constants

in Chapter 8.
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4.4.1 Defining the category vSet

The category vSet is almost the same as the category H from [FR97, FR01],

which was considered as a model of synthetic domain theory, except we omit

their coverage which we do not need.

Consider the poset of vertical natural numbers with a top element:

V = {0 ≤ 1 ≤ . . . ≤ n ≤ . . . ≤ ∞}.

Let V be the category with one object V, such that V is a full subcategory of

ωCPO. This means that the maps in V are the continuous endomorphisms

of V, in the ωCPO sense. So we can think of a map e : V→ V as a monotone

increasing chain valued in N ∪ {∞}, with a least upper bound.

Definition 4.4.1. vSet is the category PSh(V) of presheaves on V.

We can understand an object of PSh(V) as a right-action of the monoid

of endomorphisms of V.

For a presheaf X ∈ vSet, let its set of global elements, which we think of

as the set of its points, be denoted by:

|X| = vSet(1, X).

We can also describe |X| as those elements x ∈ X(V) such that for any

e ∈ V(V,V):
X(e)(x) = x.

Every element s ∈ X(V) can be thought of as an abstract chain with a

supremum, which gives an actual chain of points of X with a supremum:

X(c0)(s), X(c1)(s), . . . , X(c∞)(s),

where

cn = λx. n : V→ V

is intuitively the constant n chain. Notice that each X(cn)(s) is invariant

under the action of any X(e) because cn ◦ e = cn.
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The category V cannot be part of a concrete site in the sense of Defini-

tion 2.1.6 because it does not have a terminal object. Nevertheless, given the

discussion above we can define a notion of concrete presheaf on V analogous

to the one from Definition 2.1.8.

Definition 4.4.2. A concrete presheaf X on V is one for which the function:

X(V)→ Set(N ∪ {∞}, |X|)

s 7→ λn.X(cn)(s)

is injective.

Remark 4.4.3. A concrete presheaf X ∈ vSet (in the sense of Defini-

tion 4.4.2) is a set |X| together with a set X(V) of actual chains with a

sup valued in |X|. By functoriality, X(V) must be closed under precom-

position with any e ∈ V(V,V), and must contain all constant chains. A

morphism of concrete presheaves is a function between their sets of points

that preserves all chains.

Remark 4.4.4. The category ωCPO embeds fully and faithfully into vSet.

The embedding sends an ωcpo D to the presheaf X such that X(V) is the

set of ω-chains in D together with their least upper bound. Notice that the

image of an ωcpo D is a concrete presheaf (in the sense of Definition 4.4.2)

whose set of points is D. A continuous function between ωcpo’s f : D → E

is mapped to the same function between the sets of points D and E. This

embedding was already noted in [FR01].

4.4.2 Dominance in vSet

For vSet to be a normal model according to Definition 4.3.1 we need to

define a dominance ∆V. Let LV be the resulting lifting monad according

to Theorem 2.4.9.
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Consider the idempotent r1 : V→ V such that:

r1(0) = 0

r1(x) = 1 if x ≥ 1.

Definition 4.4.5. Define ∆V in vSet to be the splitting of the idempotent

map y(r1) : y(V)→ y(V).

Remark 4.4.6. To see what ∆V looks like more concretely, notice the fol-

lowing equalities:

V(V,V) r1◦(−)−−−−→ ∆V(V)
⊆−→ V(V,V) =

(
y(r1)

)
V

∆V(V)
⊆−→ V(V,V) r1◦(−)−−−−→ ∆V(V) = id∆V(V).

This means that we can think of ∆V(V) as containing those continuous en-

domorphisms of V that have image {0, 1}; or equivalently, as containing the

monotone binary sequences N→ {0, 1}.
We can also regard ∆V(V) as a collection of sieves on V (see Section 2.1.2).

The monotone sequence s : N → {0, 1} which becomes 1 at position n

corresponds to the sieve generated by the λy. y+n endomorphism of V. The

sequence which is always 0 corresponds to the empty sieve.

Proposition 4.4.7. The object ∆V is a dominance in vSet and classifies the

subobject 0 ↣ 1.

Proof. According to Definition 2.3.2, three things are needed to show that

∆V is a dominance:

1. that ∆V is a subobject of the subobject classifier Ω in vSet;

2. that ⊤ : 1→ Ω factors through ∆V;

3. and that subobjects classified by ∆V are closed under composition.

For Item 1, notice that the definition of Ω is:

Ω(V) = {S | S a sieve on V},
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and the action of Ω(e : V→ V) is:

Ω(e)(S) = {f : V→ V | (e ◦ f) ∈ S}.

So we can already see that ∆V(V) ⊆ Ω(V).

To show that ∆V(V) is closed under the action of Ω(e), consider the sieve

Sn generated by λy. y + n. If there exists some k ∈ N such that:

e({0, . . . , k − 1}) ⊆ {0, . . . , n− 1} e(k) ≥ n,

then Ω(e)(Sn) = Sk ∈ ∆V(V). Otherwise, the image of e lies entirely inside

{0, . . . , n− 1}, so Ω(e)(Sn) is the empty sieve, which is in ∆V(V). If we start

from the empty sieve, then Ω(e)(∅) is again the empty sieve.

For Item 2, notice that ⊤V : 1 → Ω(V) picks out the sieve generated by

identity on V, which is also a sieve in ∆V(V).

For Item 3, consider two subobjects m : B ↣ A and n : C ↣ B both

classified by ∆V. Let their classifying maps be χm : A → ∆V and χn : B →
∆V respectively. Both m and n are classified by Ω as well, and since ∆V(V)

is included in Ω(V), it must be the case that χm and χn have the same form

as the classifying maps into Ω. For example, for some x ∈ A(V):

(χm)V(x) = {σ : V→ V | A(σ)(x) ∈ B(V)},

and similarly for χn.

Next, we will show that the classifying map χ : A→ Ω of (m◦n) : C ↣ A,

given by:

(χ)V(x) = {σ : V→ V | A(σ)(x) ∈ C(V)}

factors through ∆V.

The condition A(σ)(x) ∈ C(V) can be rephrased as: A(σ)(x) ∈ B(V)

and A(σ)(x) ∈ C(V). So we know that each σ in (χ)V(x) is also part of

(χm)V(x).

If (χm)V(x) is generated by λy. y + p1, then each σ in (χ)V(x) factors
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through λy. y + p1. So (χ)V(x) is isomorphic to:

{σ′ : V→ V | A(σ′)
(
A(λy. y + p1)(x)

)
∈ C(V)}.

But A(λy. y + p1)(x) is in B(V), so (χ)V(x) is isomorphic to

(χn)V
(
A(λy. y + p1)(x)

)
.

If (χn)V
(
A(λy. y + p1)(x)

)
is generated by λy. y + p2, then it follows that

(χ)V(x) is generated by λy. y + (p1 + p2), so it is part of ∆V(V).

If either (χm)V(x) or (χn)V
(
A(λy. y + p1)(x)

)
are the empty sieve, then

(χ)V(x) is also the empty sieve, so it is part of ∆V(V).

∆V classifies 0 ↣ 1. The classifying map of 0 → 1 is the map χV : 1 →
∆V(V) which picks out the empty sieve. It is natural because the empty

sieve pulls back to the empty sieve along any endomorphism of V; and the

pullback of χ along ⊤ is indeed 0.

Remark 4.4.8. The lifting monad LV given by the dominance ∆V (Defini-

tion 4.4.5) has the following explicit description:

(LVX)(V) ∼= {⊥}+
∑
n∈N

(
X(V)

)
.

An abstract chain in (LVX)(V) is either the always ⊥ chain, or is a chain

from X(V) with n ⊥’s added at the beginning, hence the sum over n ∈ N.
The action of an endomorphism e : V → V for s ∈

(
X(V)

)
n
is given

explicitly as:

(LVX)(e)(s) =


⊥ if im(e) ⊆ {0, . . . , n− 1}

X(e′)(s) ∈
(
X(V)

)
k

if e({0, . . . , k − 1}) ⊆ {0, . . . , n− 1},

e(k) ≥ n, e′(i) = e(k + i)− n

(LVX)(e)(⊥) = ⊥.

In case X is a concrete presheaf (in the sense of Definition 4.4.2), the action
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of (LVX)(e) has a more intuitive description. An element in
(
X(V)

)
n
is a

sequence s of points from |X| to which n ⊥’s are added at the beginning; the

action of e is sequence reindexing by function composition:

(⊥, . . . ,⊥, s) ◦ e.

Remark 4.4.9. The poset of vertical natural numbers V is closely connected

to ω∆V , the vertical natural numbers defined in Assumption 3.1.1, which is

an object in vSet. More precisely the Yoneda embedding of V into vSet is

isomorphic to ω∆V :

y(V) ∼= ω∆V .

4.4.3 vSet as a normal model of PCFv

After defining a dominance ∆V in vSet, to conclude that vSet is a normal

model, it remains to show that LV(NatV) is an LV-complete object. Here

NatV ∼=
∐

N 1 is the natural numbers in vSet. We defer this proof until Sec-

tion 6.2 where it will be a consequence of Theorem 6.2.5.

The interpretation of PCFv in vSet is the same as the interpretation in

any normal model, described in Section 4.3. From soundness for normal

models (Theorem 4.3.5) we can deduce soundness of the vSet model. In Sec-

tion 7.1, we will show that vSet is also an adequate model as a consequence

of Theorem 7.1.3.

The next proposition says that the model of PCFv in vSet is essentially the

ωCPO model. Thus, even though ωCPO is not a Grothendieck topos, it can

be regarded as a normal model via the embedding in vSet. We will later show

that normal models encompass ideas going beyond ωCPO, through examples

such as ω-quasi-Borel spaces (Section 7.2) and a fully abstract model of

PCFv (Chapter 8).

Proposition 4.4.10. There is a full and faithful functor F : ωCPO→ vSet

which preserves products, coproducts and exponentials, and commutes with
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the lifting monads on each category:

FL = LVF,

where the monad L adds a bottom element to each ωcpo. Moreover, F com-

mutes with the interpretation of PCFv in ωCPO and vSet, including the in-

terpretation of fixed points.

Proof. The functor F is the one defined in Remark 4.4.4. Using the fact

that the image of F lands inside the subcategory of concrete presheaves on V
(in the sense of Definition 4.4.2) and using the description of LV for concrete

presheaves (Remark 4.4.8), we can see that LV also adds a bottom element to

the underlying set |X| of a concrete presheaf X. From here we can check that

FL = LVF . We omit checking that F preserves products, coproducts and

exponentials, which involves spelling out the categorical structure of both

categories.

To show that F preserves the interpretation of PCFv types, we proceed

by induction on types. The only interesting case is nat. In ωCPO, nat

is interpreted as the natural numbers N with the discrete ordering and by

calculating the coproduct
∐

N 1 in vSet we can see that it is indeed the image

of N. For the other types, the proof goes through because F preserves the

necessary categorical structure.

To prove that F preserves the interpretation of PCFv values and compu-

tations, proceed by induction on the typing rules. Most cases follow because

F preserves the relevant categorical structure.

The interesting case is Γ ⊢v (rec f x. t) : τ → τ ′, which is interpreted as

a fixed point of the (curried) interpretation of t. In vSet it is the fixed point

constructed in Corollary 3.2.5 for the map

JtK∗ : JΓK× (JτK⇒ LVJτ ′K)→ (JτK⇒ LVJτ ′K).

In ωCPO it is the least fixed point constructed using Tarski’s fixed point

theorem. To show that the two fixed points agree, we will make extensive

use of the fact that F is full and faithful and commutes with lifting. We will
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sometimes denote a map or an object in the image of F by its counterpart

in ωCPO and vice-versa.

First, we show a more general fact. Consider a map h : Γ × A → A in

ωCPO, where A has a bottom element ⊥A. This means A has an L-algebra

structure α : LA→ A which sends⊥ from LA to⊥A, and this remains an LV-

algebra after applying F . (Notice that this is the same LV-algebra structure

used in the proof of Corollary 3.2.5.) Given this algebra structure, we can

construct a fixed point of Fh : FΓ×FA→ FA in vSet using Theorem 3.2.3;

denote this fixed point by:

ϕ : FΓ→ FA.

The corresponding map in ωCPO, ϕ : Γ → A, must also be a fixed point of

h : Γ× A→ A because F is full and faithful. We will show that:

in ωCPO, the map ϕ : Γ→ A is the least fixed point of h : Γ× A→ A,

(4.1)

and it is thus the one constructed in Tarski’s fixed point theorem. This fact

is enough to prove that F commutes with the interpretation of rec.

Because in vSet, ϕ : FΓ → FA is constructed using Theorem 3.2.3, it

must have the form

FΓ
ξ−→ LVF (A)

α−→ FA

where ξ is the fixed point calculated in Lemma 3.2.4 for the map:

g = FΓ× LVF (A)
id×α−−−→ FΓ× FA Fh−→ FA

η−→ LVF (A).

Since F is full, faithful and commutes with lifting, in ωCPO the map

ξ : Γ→ LA

is a fixed point of:

g = Γ× LA id×α−−−→ Γ× A h−→ A
η−→ LA,
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and

Γ
ϕ−→ A = Γ

ξ−→ LA
α−→ A.

It would be enough to prove that ξ : Γ → LA is the least fixed point of

g : Γ × LA → LA. Consider another fixed point ϕ′ : Γ → A in ωCPO of

h : Γ× A→ A. Then

Γ
ϕ′−→ A

η−→ LA

is a fixed point of g. Since ξ is the least fixed point of g we get:

Γ
ξ−→ LA ≤ Γ

ϕ′−→ A
η−→ LA.

Because α is monotone:

Γ
ξ−→ LA

α−→ A ≤ Γ
ϕ′−→ A

η−→ LA
α−→ A,

so we obtain ϕ ≤ ϕ′ as required. This concludes the proof of fact (4.1).

It remains to prove the following fact: in ωCPO, the map ξ : Γ → LA is

the least fixed point of g : Γ× LA→ LA, meaning that for any ρ ∈ Γ

ξ(ρ) ∈ LA is the least fixed point of g(ρ,−) : LA→ LA. (4.2)

For the rest of the proof we fix an element ρ ∈ Γ, which has a correspond-

ing map in vSet

ρ : 1→ FΓ.

In the proof of Lemma 3.2.4, the map ξ : FΓ → LVF (A) is constructed

in vSet by evaluating a map

apω : FΓ× ω → LVF (A)

at the point ∞ : 1→ ω (defined in Lemma 3.1.3). So in vSet:

ξ(ρ) = apω(ρ,∞) : 1→ LVF (A).

Because in vSet: ω ∼= y(V) (Remark 4.4.9), by Yoneda, apω(ρ,−) : ω →
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LVF (A) corresponds to an actual chain with a least upper bound valued

in the ωcpo LA. Moreover, using concreteness of LVF (A) (in the sense

of Definition 4.4.2), we can see that apω(ρ,∞) corresponds to the least upper

bound of this chain.

So, to show that ξ(ρ) is a least fixed point in ωCPO, it is enough to show

that any other fixed point a ∈ LA of g(ρ,−) : LA → LA is greater than

every element in the chain apω(ρ,−) (excluding the top element).

To describe the elements of the chain apω(ρ,−), we can look at the

points of ω in vSet, which are isomorphic to N + {∞}. Recall that in the

proof of Lemma 3.2.4, apω(ρ,−) is defined as the unique extension of a map

apω(ρ,−). So for each n ∈ N, we get the following commuting diagram:

ω LVF (A)

1 ω

apω(ρ,−)

i

n

n

apω(ρ,−)

Recall that ω was defined as a colimit (Assumption 3.1.4), and apω(ρ,−)
was defined as the comparison map into a cocone {apk : LkV1→ LVF (A)}k∈N.
Moreover, each n : 1→ ω factors through the colimit inclusion ιn : LnV1→ ω.

Therefore, we get the following commuting diagram:

ω LVF (A)

. . . LnV1 . . .

1

apω(ρ,−)

Ln−1
V (⊥1)

ιn apn(ρ,−)

Ln
V(⊥1)

n

It is thus enough to show that for any n ∈ N, the ωCPO map correspond-

ing to the vSet map:

1
n−→ LnV1

apn(ρ,−)−−−−−→ LVF (A)

is smaller than a ∈ LA. We will prove this by induction on n, using the

definition of apn in vSet from the proof of Lemma 3.2.4.
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In the base case, from the definition of ap0, we get the following map in

vSet:

⊥FA : 1→ LVF (A),

which is smaller than any a ∈ LA.
For the induction step, unwind the definition of apn+1 to get a commuting

diagram:

1 Ln+1
V 1 L2

VF (A) LVF (A)

LnV1 LVF (A) LVF (A)

n

n+1
L
(
g(ρ,−)◦apn(ρ,−)

)
apn+1(ρ,−)

µ

η

apn(ρ,−) g(ρ,−)

η

We know by induction hypothesis that in ωCPO:

apn(ρ, n) ≤ a.

Because g(ρ,−) is monotone:

g
(
ρ, apn(ρ, n)

)
≤ g(ρ, a).

Because a was assumed to be a fixed point of g(ρ,−) we get the required

inequality:

apn+1(ρ, n+ 1) = g
(
ρ, apn(ρ, n)

)
≤ a,

which concludes the proof of fact (4.2).
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Chapter 5

Building normal models:

dominance from a site

In this chapter and the next, we work towards a recipe for building nor-

mal models (Definition 4.3.1) of call-by-value PCF (PCFv) as categories of

sheaves. To do this, we identify sufficient structure on the site (C, J) of a

sheaf category to allow us to build a dominance (Definition 2.3.2) in Sh(C, J).
The structure that we ask for is the existence of a class of pre-admissible

monos (Definition 5.1.2) in the site; the dominance is built in Theorem 5.1.6.

The main contribution of this chapter is proving Theorem 5.1.6, which gen-

eralizes a result by Mulry [Mul94] about building dominances in categories

of presheaves.

In Section 5.2, under further concreteness assumptions, we prove some

results about the dominance and lifting monad obtained from a class of pre-

admissible monos. These results will be used in Chapters 6 and 7.

In Section 5.3, we revisit our running example of normal model, the cat-

egory vSet of presheaves on the vertical natural numbers, introduced in Sec-

tion 4.4. We show that the vSet model fits into our recipe of building a

dominance from a class of pre-admissible monos in a site (Proposition 5.3.5),

and that vSet satisfies the concreteness assumptions from Section 5.2.

The material in this chapter was published at LICS 2022 [MMS22, Sec-

tions 5.3, 6.3].
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In Chapter 6, we will continue our recipe for building normal models,

which will be summarized in Theorem 7.1.1. In Chapter 7 we will also prove

that the normal models we obtain with our recipe are adequate.

5.1 Dominance from a class of pre-admissible

monos

In this section, we explain how a class of monos M in a site (C, J) can be

organized as a presheaf ∆M (Definition 5.1.1), and we introduce the notion

of class of pre-admissible monos (Definition 5.1.2) in a site (C, J). The main

theorem (Theorem 5.1.6) is that such a class gives rise to a dominance in the

corresponding sheaf category. In Section 5.1.1, we give an explicit description

of the lifting monad obtained from this dominance via Theorem 2.4.9.

Definition 5.1.1. Given a small site (C, J) and a stable system of monos

M in C (Definition 2.4.1), define a presheaf ∆M : Cop → Set as follows:

∆M(c) := SubM(c)

∆M(f : a→ c) : ∆M(c)→ ∆M(a) given by pullback

where SubM contains theM-subobjects of c, that the monos fromM con-

sidered up to isomorphism as explained in Definition 2.2.1.

Definition 5.1.2. A stable system of monosM is a class of pre-admissible

monomorphisms in (C, J) if the presheaf ∆M is a J-sheaf.

Definition 5.1.3. Define the map ⊤ : 1 ↣ ∆M to be:

⊤c(⋆) = [idc] ∈ SubM(c).

Naturality follows because ∆M(f) acts by pullback.

The aim is to show that ∆M is a dominance (Definition 2.3.2) in Sh(C, J),
and that ⊤ : 1 ↣ ∆M is the map used to classify subobjects according

to Definition 2.3.1, i.e. the map through which ⊤ : 1 → ΩJ factors, where
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ΩJ is the subobject classifier. First we prove two lemmas that characterize

the subobjects classified by ∆M.

Lemma 5.1.4. Let (C, J) be a site withM a class of pre-admissible monos.

Given any map χ : ay(c)→ ∆M from a sheafified representable ay(c) (Propo-

sition 2.1.5) into ∆M, the pullback of ⊤ : 1 ↣ ∆M along χ has the form

ay(m) : ay(c′) ↣ ay(c) for some m ∈ ∆M(c).

Proof. The sheafification functor a : PSh(C) → Sh(C, J) is left adjoint to

inclusion, a ⊣ i, so because ∆M is a sheaf:

Sh(ay(c),∆M) ∼= PSh(y(c),∆M) ∼= ∆M(c) ∼= SubM(c).

So every map χ : ay(c)→ ∆M corresponds to anM-subobject m : c′ ↣ c.

First we show the analogous proposition for presheaves. Consider a map

θm : y(c) → ∆M corresponding to m : c′ ↣ c ∈ M. Let P ↣ y(c) be the

pullback of ⊤ along θm. Then for an object a in C:

P (a) ∼= PSh(C)(y(a), P ) ∼=
{
α : y(a)→ y(c)

∣∣ θm ◦ α = ⊤◦!
}
.

y(a)

P 1

y(c) ∆M

!

α

!

⊤

θm

By Yoneda, α must always be θf for some f ∈ C(a, c). So

(
θm ◦ y(f) = ⊤◦!

)
: y(a)→ ∆M

can be rewritten for any b ∈ C as:

(
λ(g : b→ a). (f ◦ g)∗(m)

)
= [idb]
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because by Yoneda θm(f ◦ g) = ∆M(f ◦ g)(m). Therefore:

P (a) ∼=
{
f ∈ C(a, c)

∣∣ ∀b.∀g : b→ a. (f ◦ g)∗(m) = [idb]
}

∼=
{
f ∈ C(a, c)

∣∣ f ∗(m) = [ida]
}

∼= C(a, c′)

So we obtain:

P ∼= y(c′).

Now we need to show P ↣ y(c) is y(m). According to the isomorphism

above idc′ gets mapped to m in P (c′) ⊆ C(c′, c). So by Yoneda the inclusion

P ∼= y(c′) ↣ y(c) is given by y(m).

Now to show the statement for sheaves, consider χm : ay(c) → ∆M.

This has a corresponding map θm : y(c) → ∆M in presheaves. Because

sheafification preserves limits, we can obtain the pullback of ⊤ along χm by

sheafifying the pullback along θm. And so we obtain the pullback diagram:

ay(c′) 1

ay(c) ∆M

ay(m)

!

⊤

χm

In the proof of the following lemma and of Theorem 5.1.6 we use the

topology T on C generated by the coverage J via Proposition 2.1.11.

Lemma 5.1.5. A subobject n : X ′ ↣ X in Sh(C, J) is classified by ∆M if

and only if n is representably in M, meaning that the pullback of n along

any map from a sheafified representable ay(c) → X has the form ay(m′) :

ay(c′) ↣ ay(c) for some m′ inM.

Proof. Recall that there is an isomorphism:

Sh(ay(c),∆M) ∼= SubM(c).
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For the left to right direction consider x : ay(c)→ X.

ay(c′) X ′ 1

ay(c) X ∆M

!

ay(m′) n

!

⊤

x χn

By Lemma 5.1.4, the pullback of ⊤ along χn ◦ x is a representable. Using

the pullback lemma we can deduce that is also the pullback of n along x.

For the right to left direction, we show that the classifying map of n

from sheaves χn : X → ΩT factors through ∆M. (Where ΩT is the subobject

classifier from sheaves, and is the same as ΩJ which we used before.)

For any b ∈ C and any x ∈ X(b), (χn)b(x) is defined to be the T -closed

sieve [MM92, Chapter III.7]:

(χn)b(x) = S =
{
f : b′ → b

∣∣ X(f)(x) ∈ X ′(b′)
}
.

Regarding the sieve S as a subobject of a representable, this means that S

is the pullback of ⊤ : 1→ ΩT along χn ◦ θx:

S X ′ 1

y(b) X ΩT

α

!

n

!

⊤

θx χn

because (χn ◦ θx)b′(f : b′ → b) = f ∗(S). For this to be the maximal sieve we

need f ∈ S. (See Section 2.1.2 for a definition of sieves and f ∗(S).)

The map α is defined as follows:

αb′(f : b′ → b) = X(f)(x) ∈ X ′(b′).

It is natural by functoriality of X, and it makes the left square commute

because by Yoneda (θx)b′(f) = X(f)(x). Thus, by the pullback lemma, the

left square is a pullback too.
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If we sheafify the previous diagram we obtain:

S a(S) ∼= ay(b′) X ′ 1

y(b) ay(b) X ΩT

η

ay(m)

a(α)

n

!

⊤

η

θx

a(θx)

χn

where the middle square is a pullback because sheafification preserves limits,

and a(S) ↣ ay(b) is by assumption ay(m) : ay(b′) ↣ ay(b) for some m :

b′ ↣ b ∈ M. The map η is the unit of the adjunction a ⊣ i, and therefore

η ◦ a(θx) = θx.

We now show that the sieve S is generated by m, so it is part of ∆M(b).

For this it is enough to show that S ↣ y(b) is equal to ay(m) : ay(b′)→ ay(b)

by showing they have the same classifying map into ΩT .

By the pullback lemma, the leftmost square is a pullback (it commutes

because ay(m) is the sheafification of S ↣ y(b)). So the classifying map of

S ↣ y(b) is (χn ◦ a(θx) ◦ η). The map ay(m), which is the sheafification

of y(m), has the unique classifying map (χn ◦ a(θx)). Because y(m) has a

classifying map and a preserves limits, this must be (χn ◦ a(θx) ◦ η).

The following theorem constructs a dominance from a class of pre-admiss-

ible monos. It generalizes [Mul94, Theorem 2.6] which only applies to cate-

gories of presheaves.

Theorem 5.1.6. Let (C, J) be a site withM a class of pre-admissible monos.

Then the object ∆M is a dominance in Sh(C, J), and ⊤ : 1 → ∆M (Defini-

tion 5.1.3) is the factoring of the map ⊤ : 1→ ΩJ through ∆M.

Proof. According to the definition of dominance (Definition 2.3.2) there are

three steps in the proof:

∆M is a subobject of ΩJ . First we need to show ∆M is a subobject of ΩT ,

the subobject classifier in Sh(C, J) ∼= Sh(C, T ). Recall that we denote by T
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the topology on C generated by the coverage J via Proposition 2.1.11. The

subobject classifier ΩT , which is the same as ΩJ , is [MM92, Chapter III.7]:

ΩT (c) = {S | S is a T -closed sieve on c}

where ΩT (f : d → c) takes the pullback f ∗(S) of a sieve S on c (see Sec-

tion 2.1.2). Being a T -closed sieve means that for any f : d→ c in C:

if f ∗(S) ∈ T (c), then f ∈ S.

Since ∆M(c) = SubM(c), we need to show that the sieve S generated by

eachm : c′ ↣ c ∈M is T -closed. Consider f : d→ c in C, and f ∗(S) ∈ T (c).
For all g ∈ f ∗(S), f ◦ g factors through m. Let:

m′ =
(
f ∗(m) : d′ ↣ d

)
∈ ∆M(d).

By the universal property of the pullback, every g ∈ f ∗(S) factors through

m′.

Notice that m′ is an amalgamation for the following matching family for

the sieve f ∗(S): (
∆M(g)(m′) = g∗(m′)

)
g∈f∗(S).

But each g factors through m′, so the matching family is in fact:

(
iddom(g)

)
g∈f∗(S)

and has amalgamation idd. We assumed f ∗(S) ∈ T (c) so there can be only

one amalgamation for this matching family, therefore:

m′ = idd.

The map m′ was defined to be the pullback of m along f , so it must be

the case that f factors through m. Thus f ∈ S.
To show ∆M is a subobject of ΩT , we also need to show that ∆M is closed

under the action of ΩT (f : d → c). We have already shown that every g in
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f ∗(S) factors through m′ : d′ ↣ d. For every g′ : d′′ → d′:

f ◦m′ ◦ g′ = m ◦m∗(f) ◦ g′

so (f ◦m′ ◦ g′) ∈ S, and therefore (m′ ◦ g′) ∈ f ∗(S). Thus f ∗(S) is the sieve

generated by m′ ∈M, so f ∗(S) is in ∆M(d).

⊤ : 1 → ΩT factors through ∆M. In sheaves, ⊤c : 1 → ΩT (c) picks out

the maximal sieve on c (generated by idc), so it factors through the map

⊤ : 1→ ∆M (Definition 5.1.3).

Subobjects classified by ∆M are closed under composition. Con-

sider two maps X ′′ ↣ X ′ and X ′ ↣ X classified by ∆M. In Lemma 5.1.5,

we have shown they are both representably inM. By the pullback lemma,

their composition is also representably inM, so by it is classified by ∆M.

5.1.1 Lifting from a class of pre-admissible monos

Definition 5.1.7. Given a site (C, J) with a class of pre-admissible monos

M, denote by LM the lifting monad on Sh(C, J) obtained from the domi-

nance ∆M using Theorem 2.4.9.

We now give an explicit description of the monad LM in terms ofM as

follows. Instantiate the formula for LM from Remark 2.4.10:

LM = Σ∆M ◦ Π⊤

where Π⊤ : Sh(C, J) → Sh(C, J)/∆M is left adjoint to the pullback func-

tor ⊤∗ and Σ∆M is the domain functor. We can then prove the following

proposition:

Proposition 5.1.8. For a sheaf A, the lifting monad LM can be described

as:

LM(A)(c) =
∑

(m:d↣c)∈SubM(c)

A(d).
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Proof.

LM(A)(c) ∼= (Σ∆M ◦ Π⊤)(A)(c)

∼= PSh
(
y(c), (Σ∆M ◦ Π⊤)(A)

)
by Yoneda

∼= Sh
(
ay(c), (Σ∆M ◦ Π⊤)(A)

)
by going across a ⊣ i

∼=
∑

χ:ay(c)→∆M

Sh(C, J)/∆M
(
χ, τ

)
where τ : Ã → ∆M is Π⊤(A), and the last isomorphism holds because for

every f : ay(c)→ Ã, we can choose χ = τ ◦ f to make the triangle commute:

ay(c) Ã

∆M

f

χ τ

Continuing the chain of isomorphisms:

LM(A)(c) ∼=
∑

χ:ay(c)→∆M

Sh(C, J)/∆M
(
χ, τ

)
∼=

∑
χ:ay(c)→∆M

Sh
(
⊤∗(χ), A

)
by going across ⊤∗ ⊣ Π⊤

∼=
∑

(m:d↣c)∈∆M(c)

Sh
(
ay(d), A

)
by Lemma 5.1.4

∼=
∑

(m:d↣c)∈∆M(c)

PSh
(
y(d), A

)
by going across a ⊣ i

∼=
∑

(m:d↣c)∈SubM(c)

A(d) by Yoneda.

We have used the result from Lemma 5.1.4 that says that the pullback of ⊤
along χ is a representable morphism ay(m) : ay(d)→ ay(c).
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Remark 5.1.9. For any map f : c′ → c in the site, the action of

LM(A)(f : c′ → c) :

 ∑
(m:d↣c)∈SubM(c)

A(d)

→
 ∑

(m′:d′↣c′)∈SubM(c′)

A(d′)


can be described as follows:

(a)m:d↣c 7→
(
A(f ′)(a)

)
m′:d′→c′

where the following diagram is a pullback

d′ c′

d c

m′

f ′ f

m

For any natural transformation α : A → B between sheaves, the action

of:

(
LM(α : A→ B)

)
c
:

 ∑
(m:d↣c)∈SubM(c)

A(d)

→
 ∑

(m:d↣c)∈SubM(c)

B(d)


is

(a)m:d↣c 7→
(
αd(a)

)
m:d↣c

.

5.2 Consequences of concreteness

In this section we make further assumptions about the class of pre-admissible

monosM and the dominance ∆M that we obtain from it via Theorem 5.1.6.

Most importantly, we assume that ∆M is a concrete sheaf. Recall from Sec-

tion 2.1.1 that a concrete sheaf X on a concrete site can be regarded as a set

|X| together with a set of functions into |X|, and a map α : Y → X into a

concrete sheaf is determined by the function α⋆ : |Y | → |X|.

Assumption 5.2.1. We make the following concreteness assumptions:

� (C, J) is a concrete site (Definition 2.1.6),
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� with an initial object covered by the empty set: ∅ ∈ J(0).

� M is a class of pre-admissible monos in (C, J),

� such that for all c ∈M, 0→ c is inM.

� ∆M is a concrete sheaf.

These are reasonable assumptions because all the models we consider

in Section 7.2 and Chapter 8, as well as the vSet example (Sections 4.4

and 5.3), satisfy them.

Using Assumption 5.2.1, we now prove some useful facts about the domi-

nance ∆M (Lemma 5.2.2) and the monad LM (Proposition 5.2.5 and Propo-

sition 5.2.6), and give an explicit description of the natural numbers object in

Sh(C, J) (Remark 5.2.7). These fact will be used later in Chapters 6 and 7.

Lemma 5.2.2. Under the conditions in Assumption 5.2.1, ∆M(⋆) has ex-

actly two elements:

∆M(⋆) = {[id⋆], [0→ ⋆]}.

Proof. BecauseM is a stable system of monos, [id⋆] must be part of ∆M(⋆);

[0→ ⋆] is part of ∆M(⋆) by assumption.

Now we show that ∆M(⋆) has at most two elements. Consider a subobject

d↣ ⋆ ∈M. If d has a point, then:

⋆→ d↣ ⋆ = id⋆

so d↣ ⋆ must be an isomorphism.

If d has no points, then because ∆M is concrete we have:

∆M(d) ⊆
(
[∅ → ∆M(⋆)] ∼= 1

)
.

We require that both [idd] and [0→ d] are in ∆M(d), so it must be the case

that d ∼= 0. Therefore ⋆ has exactly two subobjects, ⋆→ ⋆ and 0→ ⋆.

The next lemma shows thatM-subobjects are determined by their points:

Lemma 5.2.3. Under the concreteness conditions in Assumption 5.2.1:
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1. Each M-subobject (m : d ↣ c) of each c ∈ C is determined by the

subset |m| ⊆ |c| of points of c that factorize through it.

2. The order relation m ≤ m′ between M-subobjects is reflected by the

inclusion relation |m| ⊆ |m′|. In other words, to show m ≤ m′ it is

enough to show that the points of m factor through m′.

Proof. We prove each of the statements in turn:

1. Consider two M-subobjects m : d ↣ c and m′ : d′ ↣ c such that a

point p : ⋆→ c factors through m if and only if it factors through m′.

We need to show that m = m′.

Because ∆M is concrete, the map:

αc : ∆M(c)→
[
C(⋆, c)→ ∆M(⋆)

]
mapping each m to λ(p : ⋆→ c). p∗(m) is injective. So it is enough to

show that for all p:

p∗(m) = p∗(m′).

From Lemma 5.2.2, we see that p∗(m) : d′′ → ⋆ can either be id⋆ or

0 → ⋆. The first case is equivalent to p factoring through m, and the

second to p not factoring. A similar reasoning applies to p∗(m′). Thus,

by assumption, p∗(m) = p∗(m′).

2. ConsiderM-subobjectsm : d↣ c andm′ : d′ ↣ c such that the points

of m factor through m′. We need to show that m factors through m′,

which is equivalent to the pullback m∗(m′) being idd.

d′′ d′

⋆ d c

m∗(m′) m′

p m

Consider a point p : ⋆ → d of m (a point of m because m ◦ p factors

through m). By assumption m ◦ p must factor through m′. So taking

the pullback of m∗(m′) along p we must get d′′ → ⋆ = id⋆.
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This means that m∗(m′) ∈ ∆M(d) must be sent by αd to the function

λ(p : ⋆ → d). id⋆. But idd is sent to the same function, and because

∆M is concrete, α is injective, so indeed:

m∗(m′) = idd.

Because we assume that the initial object in (C, J) is covered by the

empty set, then for a sheaf A:

A(0) ∼= 1.

Remark 5.2.4. We can then calculate the underlying set of a sheaf LM(A)

using the formula from Proposition 5.1.8:

LM(A)(⋆) ∼=
∑

(d↣⋆)∈SubM(⋆)

A(d) ∼= A(⋆) + A(0) ∼= A(⋆) + 1.

Proposition 5.2.5. Under Assumption 5.2.1, the lifting monad LM induced

by the dominance ∆M preserves concreteness.

Proof. Let A be a concrete sheaf in Sh(C, J). We have shown in Proposi-

tion 5.1.8 that:

(LMA)(⋆) = A(⋆) + 1

(LMA)(c) =
∑

(m:d↣c)∈∆M(d)

A(d).

We need to show that the map:

αc : (LMA)(c)→
[
C(⋆, c)→ A(⋆) + 1

]
sending am (where m : d↣ c) to λp. (LMA)(p)(am) is injective.

For any am ∈ (LMA)(c) and any p : ⋆ → c, we see from Remark 5.1.9
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that the action of (LMA)(p)(am) is:

(LMA)(p)(am) =

A(p′)(am) if p factors through m via p′

1 otherwise.

Consider am and am′ in (LMA)(c) such that αc(am) = αc(am′). From the

formula above it follows that exactly the same points p : ⋆ → c must factor

through both m and m′. Therefore from Lemma 5.2.3 we have that m = m′.

This means that for all p′ : ⋆→ d:

A(p′)(am) = A(p′)(am′)

so because we assumed A is concrete we have am = am′ .

Proposition 5.2.6. Let (C, J) be a concrete site with an initial object covered

by the empty set, and a class of pre-admissible monos M, such that every

0 → c is in M. (These are the conditions in Assumption 5.2.1 without

the requirement that ∆M is concrete.) Then the dominance ∆M classifies

0→ 1 ∈ Sh(C, J). Hence the monad LM is pointed.

Proof. Because the initial object in C is covered by the empty set, for any

sheaf A, including the initial one, A(0) ∼= 1. For other objects c ∈ C,
0(c) = ∅.

We can construct a classifying map χ : 1→ ∆M for 0→ 1 as follows:

χc(∗) = [0→ c] ∈ ∆M(c).

Naturality follows because ∆M acts by pullback.

The pullback of χ with ⊤ : 1→ ∆M can be calculated componentwise in

Set. Since ⊤c(∗) = [idc], the pullback is empty except when c = 0, in which

case it has one element, so the pullback is indeed the initial object 0 from

Sh(C, J).
We can now deduce from Lemma 2.4.12 that the monad LM is pointed.
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Remark 5.2.7. Under Assumption 5.2.1, and assuming the coverage J sat-

isfies axioms (M) and (L) (introduced in Remark 2.1.2), we can calculate the

value of Nat ∼=
∐

N 1 in Sh(C, J) explicitly, for any object c in the site C. The
assumption on the coverage is reasonable because all examples in Section 7.2

and Chapter 8 satisfy it.

The coproduct
∐

N 1 in sheaves is obtained by sheafifying the coproduct∐PSh
N 1 in presheaves. In presheaves(∐

N

PSh
1

)
(c) ∼= N

including at 0, because it is calculated pointwise.

We assumed the coverage J is such that 0 is covered by the empty set.

Therefore, sheafifying with respect to J can be split into two stages:

� sheafifying with respect to a coverage J0, where J0(0) = {∅}, and for

c ̸= 0, J0(c) =
{
{idc}

}
;

� followed by sheafifying with respect to J .

Denote by
(∐PSh

N 1
)
J0

the result of sheafifying with respect to J0. Then:

(∐
N

PSh
1

)
J0

(c) ∼= N

for c ̸= 0, as was the case before sheafifying. At 0 however:(∐
N

PSh
1

)
J0

(0) ∼= 1

because the empty cover of 0 gives only one matching family, so the sheaf

must contain exactly one amalgamation.

Notice that
(∐PSh

N 1
)
J0

is concrete, because
(∐PSh

N 1
)
J0
(c) contains ex-

actly the constant functions |c| → N. Therefore, it is a subpresheaf of the
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following concrete sheaf:(∐
N

PSh
1

)
J0

↪→
[
|−| → N

]
.

The presheaf
(∐PSh

N 1
)
J0

is also separated for J because all its elements are

constant functions.

Therefore, to sheafify
(∐PSh

N 1
)
J0

with respect to J it suffices to add the

missing amalgamations from
[
|−| → N

]
, obtaining:

Nat(c) = {f : |c| → N | f locally constant on a cover of c}.

It is enough to add amalgamations in one step because the coverage J satisfies

axiom (L).

5.3 Example: presheaves on the vertical nat-

ural numbers – revisited

The category vSet = PSh(V) defined in Section 4.4, which is our running

example of normal model (Definition 4.3.1), has another description as a

category of sheaves on a concrete site with a class of pre-admissible monos,

more precisely, as a category that satisfies Assumption 5.2.1.

Definition 5.3.1. Let V0 be a three object category: one object is the

vertical natural numbers V and the others are a terminal and initial object,

such that V0 is a full subcategory of ωCPO. This means that there is a map

n : ⋆→ V for each n ∈ N ∪ {∞}.

Definition 5.3.2. Define a coverage JV0 on V0 as follows:

JV0(V) =
{
{idV}

}
JV0(⋆) =

{
{id⋆}

}
JV0(0) =

{
∅, {id0}

}
.

Unwinding the definitions, we can see that (JV0 ,V0) forms a concrete site

that satisfies axioms (M) and (L) (Remark 2.1.2).
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Proposition 5.3.3. There is an equivalence (−) : PSh(V) → Sh(V0, JV0),

given by:

X(V) = X(V) X(0) ∼= 1 X(⋆) = PSh(V)(1, X),

where X has the obvious action on maps, and (α : X → Y ) is defined as:

αV = αV

α0 = id1

α⋆(β : 1→ X) = α ◦ β.

Proof. We will show that (−) is full, faithful and essentially surjective. Con-

sider α = β. Then αV = βV, so α = β, and thus (−) is faithful.
For fullness, consider γ : X → Y , and choose α : X → Y such that

αV = γV. Then α is natural and α = γ.

To show (−) is essentially surjective, consider A ∈ Sh(V0, JV0), and define

X ∈ PSh(V) as:

X(V) = A(V) X(e : V→ V) = A(e).

We will show X ∼= A. The only interesting part is showing X(⋆) ∼= A(⋆).

Notice that:

X(⋆) = PSh(V)(1, X) ∼= {s ∈ X(V) | ∀e : V→ V. X(e)(s) = s}.

For any n ∈ N ∪ {∞}:

A(⋆)
A(!)−−→ A(V)

A(n)−−→ A(⋆) = id,

so A(!) is mono. Thus A(⋆) ∼= im
(
A(!)

)
.

For any e : V→ V:

A(⋆)
A(!)−−→ A(V)

A(e)−−→ A(V) = A(⋆)
A(!)−−→ A(V),
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so im
(
A(!)

)
⊆ X(⋆). For any x ∈ X(⋆), we also have A(n◦! : V→ V)(x) = x,

so x must be in the image of A(!), so we are done.

Definition 5.3.4. Consider the following class of pre-admissible monos in

V0:

MV0(V) = {(λx.x+ n) ∈ V0(V,V) | n ∈ N} ∪ {! : 0→ V}

MV0(0) = {! : 0→ 0} MV0(⋆) = {id⋆ : 1→ 1, ! : 0→ 1}.

It is easy to see that MV0 is a stable system of monos. Let ∆V0 be the

presheaf associated toMV0 , as explained in Definition 5.1.1. Then ∆V0 is a

JV0-sheaf because the sheaf condition only forces ∆V0(0)
∼= 1. Thus,MV0 is

indeed a class of pre-admissible monos and ∆V0 is a dominance. Denote by

LV0 the lifting monad given by ∆V0 .

Proposition 5.3.5. The dominance in PSh(V) corresponds to the one in

Sh(V0, JV0):

∆V ∼= ∆V0 .

Proof. We already know (see Remark 4.4.6) that ∆V(V) contains the sieves

generated by λx. x+ n, for each n ∈ N, and the empty sieve, so this gives a

direct correspondence toMV0(V). It remains to show that ∆V(⋆) ∼= 2. But

∆V(⋆) contains those sieves on V invariant under the action of any ∆V(e),

which means the total and empty sieve.
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Chapter 6

Building normal models:

conditions for completeness

In this chapter, as in the previous one, we continue to work towards a recipe

for building normal models (Definition 4.3.1). So far, we have shown how to

build a dominance in Sh(C, J) from a class M of pre-admissible monos in

(C, J) (Theorem 5.1.6).

Recall that to satisfy the definition of normal model, we also need the

lifted natural numbers object to be complete. This is to allow us to interpret

recursion in the model using Corollary 3.2.5. However, completeness of the

lifted naturals is not true in general for any site with a class of pre-admissible

monos. Thus, we make further assumptions, which can be roughly summa-

rized as:

� We impose some concreteness conditions, which include Assumption 5.2.1.

� We strengthen the notion of class of pre-admissible monosM to a class

of admissible monos (Definition 6.2.1).

� We combine a triple (C, J,M) with the vertical natural numbers site

(V0, JV0 ,MV0) from Section 5.3.

The chapter can be outlined as follows: in Section 6.1, we prove a useful

result that characterizes completeness in sheaves in terms of completeness

in the ambient presheaf category. In Section 6.2, we introduce the notion
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of admissible monos (Definition 6.2.1) and define what it means to combine

sites (Definition 6.2.3). Then we state the main theorem of the chapter, The-

orem 6.2.5, about the lifted naturals being complete. Section 6.3 is dedicated

to proving this theorem, and Section 6.3.6, to discussing more precisely where

each of the assumptions are used. The results in this chapter appeared at

LICS 2022 [MMS22, Section 7.1].

The main contributions of the chapter are:

� introducing the notion of class of admissible monos

� and proving the theorem about completeness of the lifted natural num-

bers (Theorem 6.2.5), which is spread over several sections.

Our running example of normal model, the category vSet, of presheaves

on the vertical natural numbers, appears again in this chapter. In Exam-

ple 6.2.2, we show that the dominance we defined in vSet arises from a class

of admissible monos. In Proposition 6.2.6, we show that the object of lifted

natural numbers in vSet is complete as a consequence of Theorem 6.2.5.

In Theorem 7.1.1, we will summarize the recipe for building normal mod-

els developed in this chapter and the previous one. We will then show that

the models we build with our recipe are adequate (Theorem 7.1.3) for inter-

preting call-by-value PCF (PCFv).

6.1 Completeness in sheaves and presheaves

Recall that by LM we denote the lifting monad obtained from a class of

monosM (Definition 5.1.7). To simplify the proof that LM(
∐

N 1) is an LM-

complete object, we prove that completeness in a sheaf category is equivalent

to completeness in the corresponding presheaf category (Proposition 6.1.1).

This makes sense because we could instantiate the definition of LM-

completeness (Definition 3.2.2) for both the presheaf category PSh(C) and

the sheaf category Sh(C, J). The instantiation for presheaves is possible be-

cause the dominance ∆M ↣ ΩJ ↣ Ω is also a dominance in PSh(C). Here

ΩJ is the subobject classifier in Sh(C, J), and Ω is the subobject classifier in

PSh(C).
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As noted in Remark 2.4.10, the lifting monad LM has the general de-

scription in a topos E :
LM := Σ∆M ◦ Π⊤,

where Π⊤ : E → E/∆M is the right adjoint to the pullback functor ⊤∗ :

E/∆M → E/1 ∼= E and Σ∆M : E/∆M → E maps f : A → ∆M to A. The

topos E can be instantiated with both Sh(C, J) and PSh(C), thus giving two

lifting monads.

In the presheaves case, the functor Π⊤ : PSh(C)→ PSh(C)/∆M preserves

sheaves, so we can regard the monad LM on PSh(C) as an extension of the

one on Sh(C, J). (We could prove that Π⊤ preserves sheaves by viewing

the sheaf condition as a family of orthogonality conditions with respect to

covering sieves, seen as subobjects of representables, and then using the

adjunction ⊤∗ ⊣ Π⊤.) From now on we will use LM to refer to both of the

monad on sheaves and presheaves depending on the context.

The constructions of vertical natural numbers ω and ω from Section 3.1

have versions both in presheaves and sheaves. Let ωP and ωS be the colimit

calculated in presheaves and sheaves respectively. Notice that they are both

colimits of the same diagram because each LnM1 is already a sheaf. We

therefore have:

ωS ∼= a(ωP ).

The limit ω is the same in both presheaves and sheaves. We also obtain the

following two inclusion maps in presheaves and sheaves respectively:

iP : ωP → ω iS : ωS → ω.

We can now state the lemma about completeness that we are interested

in: completeness in presheaves is equivalent to completeness in sheaves. This

lemma will make calculations easier because ωP has a simpler explicit descrip-

tion than ωS.

Proposition 6.1.1. Let Sh(C, J) be a sheaf category with a class of pre-

admissible monos M. Let X be an object in Sh(C, J). Then the following

are equivalent:
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1. For all A ∈ PSh(C), and all maps f : ωP × A → X, f has a unique

extension along iP × idA:

ωP × A X

ω × A

f

iP×idA ∃!

2. For all B ∈ Sh(C, J), and all maps g : ωS × B → X, g has a unique

extension along iS × idB:

ωS ×B X

ω ×B

g

iS×idB ∃!

3. For all c in C, and all maps f : ωP × y(c) → X, f has a unique

extension along iP × idy(c).

Proof. First we show we can identify a(iP ) : i(ωP ) → ω with iS : ωS ∼=
a(ωP )→ ω.

From Lemma 3.1.6 we see that both iP and iS are constructed from a

family of maps (between sheaves):

(LmM1→ LnM1)m,n∈N

such that for each m they form a cocone with apex LmM1 for the diagram:

1
⊥1−→ LM1

LM(⊥1)−−−−−→ L2
M1

L2
M(⊥1)−−−−−→ . . . .

Since ωS ∼= a(ωP ), we get comparison maps (fm : ωP → LmM1)m∈N and

(gm : ωS → LmM1)m∈N such that we can identify gm with a(fm).

Both (fm : ωP → LmM1)m∈N and (gm : ωS → LmM1)m∈N give cones for the

diagram:

1
!←− LM1

LM(!)←−−− L2
M1

L2
M(!)
←−−− . . .

for which ω is the limit, and comparison maps iP : ωP → ω and iS : ωS → ω.
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Because we know we can identify the cone (a(fm) : a(ωP )→ LmM1)m∈N with

the cone (gm : ωS → LmM1)m∈N, then we are able to identify the comparison

maps a(iP ) : a(ωP )→ ω and iS : ωS → ω as well.

Item 1 implies Item 2. Consider a sheaf B and a map g : ωS × B →
X. We can transform the extension problem into one for presheaves by

precomposing with the unit η of the adjunction a ⊣ i:

ωP ×B ωS ×B ∼= a(ωP )×B X

ω ×B

η×idB

iP×idB
iS×idB∼=a(iP )×idB

g

So we get a unique extension of g ◦ (η× idB). By naturality of η with respect

to a, we get that:

a(iP ) ◦ η = iP

so the left triangle commutes.

By using η to move across the isomorphism

PSh(ωP ×B,X) ∼= Sh(a(ωP )×B,X),

we deduce that the right triangle commutes as well, so we have an extension

of g. This extension is unique because the extension of g ◦ (η × idB) is too.

Item 2 implies Item 1. We start with an extension problem for presheaves

f : ωP ×A→ X. We can transform it into an extension problem for sheaves

by sheafifying f , as shown in Figure 6.1.

So we obtain a unique extension of a(f). The left square commutes by

naturality of η with respect to a. Therefore, we obtain an extension of f ,

which we can show is unique. If we have another extension of f , then by

sheafifying the triangle we get the unique extension of a(f), therefore this

second extension of f must be equal to the first.
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ωP × A a(ωP )× a(A) ∼= ωS × a(A) X

ω × A ω × a(A)

η

iP×idA

f

a(iP )×ida(A)
∼=iS×ida(A)

a(f)

η

Figure 6.1: Diagram for proof of Proposition 6.1.1.

Item 1 equivalent to Item 3. This is true because in presheaves every

object A is a colimit of representables.

6.2 Admissible monos

As we discussed at the beginning of the chapter, we define a strengthening

of the notion of class of pre-admissible monos. Each of the conditions in

the definition is explained in detail in Remark 6.3.12, but notice that they

include Assumption 5.2.1.

Definition 6.2.1. Let (C, J) be a concrete site (Definition 2.1.6), satisfying

axioms (M) and (L) (Remark 2.1.2), with an initial object covered by the

empty set, and a class of pre-admissible monosM (Definition 5.1.2). Then

M is a class of admissible monos if the following conditions are satisfied:

1. For every object c in C, the map 0→ c is inM.

2. ∆M is concrete. We saw in Lemma 5.2.3 that this meansM-subobjects

(m : c′ ↣ c) are determined by the set of points of c that factorize

through them, |m| ⊆ |c|, and the order m ≤ m′ is given by inclusion

|m| ⊆ |m′|.

3. For every increasing chain of monos on c, (mn : cn ↣ c)n∈N ∈ M, we

assume the subobject m∞ : c∞ ↣ c determined by the set of points
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⋃
n∈N|mn| exists and is inM.

4. Given an increasing chain of monos (mn : cn ↣ c)n∈N ∈ M, the

closure under precomposition (with any morphism) of the set {mn :

cn ↣ c∞}n∈N contains a covering family of c∞.

Example 6.2.2. The class of pre-admissible monosMV0 (Definition 5.3.4),

in the site of Sh(V0, JV0), is admissible. We omit checking that ∆V0 is con-

crete. Every increasing chain of monos inMV0 is eventually constant, so we

already know its least upper bound is in MV0 . Moreover, the cover of the

least upper bound needed for Item 4 is always {id}.
Recall from Section 5.3 that the Sh(V0, JV0) and vSet model of PCFv are

actually equivalent. Thus we can see that in our running example of normal

model, the presheaves on the vertical natural numbers vSet, the dominance

∆V is actually generated by a class of admissible monos.

Definition 6.2.3 (Combining concrete sites). Let (C1, J1,M1) and (C2, J2,M2)

be concrete sites, satisfying axioms (M) and (L), with initial objects covered

by the empty set, and with classes of admissible monosM1,M2.

Let C1 + C2 be the category obtained from C1 and C2 as follows:

� We identify their respective terminal objects and respective initial ob-

jects; we keep all other objects form C1 and C2 as distinct objects in

C1 + C2.

� The maps in C1 + C2 contain all the maps from C1 and C2, plus any

new maps of the form c→ ⋆→ c′ that have appeared. These are maps

going from an object of C1 to an object of C2 or vice-versa; we think

of them as constant maps.

From this description we define the obvious inclusion functors F1 : C1 →
C1 + C2 and F2 : C2 → C1 + C2.

Define the coverage J1 ∪ J2 on C1 + C2 to contain the images of all the

covers from C1 and C2 under the functors F1 and F2 respectively. Similarly,

define the class of monosM1 ∪M2 to contain the images under F1 and F2
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of all the monos in M1 and M2. (Hence our use of the union symbol is

intuitive.)

Define the combination of the sites (C1, J1,M1) and (C2, J2,M2) to be

(C1 + C2, J1 ∪ J2,M1 ∪M2).

Proposition 6.2.4. The combined site (C1+C2, J1∪J2,M1∪M2) is also a

concrete site with an initial object covered by the empty set, J1 ∪ J2 satisfies

axioms (M) and (L), andM1 ∪M2 is a class of admissible monos.

Proof. We need to check that (C1+C2, J1 ∪ J2) is a concrete site. When the

terminal objects of C1 and C2 are identified in C1 +C2, the resulting object

is still terminal. From this we can see that C1 + C2 is still a well-pointed

category.

The (M) and (L) axioms still hold because we have not introduced any

new objects or covering families. The initial object in C1 + C2 is the one

obtained by identifying the initial objects of C1 and C2, and it is still covered

by the empty set, like in J1 and J2. Moreover, every covering family still

contains all the points of the object it covers.

For axiom (C), we need to check it holds for each constant map f : d→ c

with d ∈ C2 and c ∈ C1. This works because by axiom (M), d is covered by

the identity, and any cover of c must contain all points of c by concreteness,

therefore f factors through such a cover.

We need to show thatM1 ∪M2 is a stable system of monos. Consider

a constant map f : d → c with d ∈ C2 and c ∈ C1, and an M-subobject

c′ ↣ c. If c = 0, then from Lemma 5.2.2 we know c′ ↣ c must be [id0] so

the pullback along f is 0→ d which is inM2 by assumption.

The presheaf ∆M1∪M2 is still a sheaf because ∆M1∪M2(c) = ∆M1(c) if

c ∈ C1, and similarly for C2, and the sheaf condition has not changed.

Therefore, M1 ∪ M2 is a class of pre-admissible monos. Concreteness of

∆M1∪M2 follows from concreteness of ∆M1 and ∆M2 .

The increasing chains of monos in M1 ∪ M2, on an object c, are the

chains fromM1 andM2 depending on whether c ∈ C1 or c ∈ C2, so the last

two conditions in the definition of class of admissible monos are still satisfied.

ThusM1 ∪M2 is a class of admissible monos.
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We can now state the main theorem of this chapter, which says that

using a site like the one we identified in Definition 6.2.1, we can obtain a

sheaf category with the right complete objects for modelling PCFv. The

proof of this theorem appears in the next section.

An additional premise of the theorem is that the site contains the triple

(V0, JV0 ,MV0) (see Section 5.3), which is a site that describes the category

of presheaves on the vertical natural numbers, vSet. This requirement is

discussed in Remark 6.3.13.

Theorem 6.2.5. Let (C, J,M) be a concrete site, satisfying axioms (M) and

(L), with an initial object covered by the empty set, and a class of admissible

monosM. In the sheaf category Sh(C+V0, J ∪JV0) the dominance ∆M∪MV0

and the lifted natural numbers LM∪MV0
(
∐

N 1) are LM∪MV0
-complete objects.

As a consequence of Theorem 6.2.5, we obtain a result about our running

example of normal model, the category vSet, first introduced in Section 4.4.

This result concludes the argument that vSet is indeed a normal model of

PCFv (Definition 4.3.1) without type constants:

Proposition 6.2.6. In vSet (Definition 4.4.1), the dominance ∆V and the

lifted natural numbers LV(NatV) are LV-complete objects.

Proof. In Theorem 6.2.5, choose C, J and M to be empty. Then we ob-

tain that the dominance ∆V0 and the lifted natural numbers LV0(NatV0) in

Sh(V0, JV0) are complete objects.

Using the equivalences of categories from Proposition 5.3.3, and ∆V ∼=
∆V0 from Proposition 5.3.5, it is easy to show that the maps ⊤ : 1→ ∆V and

⊤ : 1→ ∆V0 correspond to each other. Thus LV and LV0 also correspond to

each other because they are obtained from the respective dominances. Thus

LV(NatV) ∼= LV0(NatV0), and we can deduce that ∆V and LV(NatV) from vSet

are complete.
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6.3 Proving the dominance and lifted natu-

rals are complete (Theorem 6.2.5)

According to Proposition 6.1.1, to prove Theorem 6.2.5 it is enough to show

that ∆M∪MV0
and LM∪MV0

(
∐

N 1) are right-orthogonal to the map (iP ×
idy(c)) : ωP×y(c)→ ω×y(c) for every c ∈ C, where ωP is a colimit calculated

in PSh(C). Therefore we start this section by calculating ωP explicitly.

We then prove Lemma 6.3.3 which says that the maps ωP → ∆M∪MV0

are the infinite monotone binary sequences. This result is used to prove

that ∆M∪MV0
is orthogonal to iP : ωP → ω (Lemma 6.3.4). Lemma 6.3.4

is used to show that ∆M∪MV0
is orthogonal to (iP × idy(c)) : ωP × y(c) →

ω × y(c) (Lemma 6.3.7).

For the lifted naturals LM∪MV0
(
∐

N 1) we follow a similar pattern. We

first show LM∪MV0
(
∐

N 1) is orthogonal to iP : ωP → ω (Lemma 6.3.9) using

the analogous result for ∆M∪MV0
, Lemma 6.3.4. Then we use Lemma 6.3.9,

and crucially also Lemma 6.3.7 about ∆M∪MV0
, to show that LM∪MV0

(
∐

N 1)

is orthogonal to (iP × idy(c)) : ωP × y(c)→ ω × y(c) (Lemma 6.3.11).

6.3.1 Explicit description of ω and ω in presheaves

We defined ωP to be the colimit of:

1
⊥1−→ LM∪MV0

1
LM∪MV0

(⊥1)

−−−−−−−−→ L2
M∪MV0

1
L2
M∪MV0

(⊥1)

−−−−−−−−→ . . . . (6.1)

in presheaves.

The map ⊥1 : 1→ LM∪MV0
1 was defined in Lemma 2.4.12 to be the total

map corresponding to the partial map (0 ↣ 1, 0 → 1). In Remark 2.4.7,

we showed that LM∪MV0
1 ∼= ∆M∪MV0

, so ⊥1 must be the classifying map of

0 ↣ 1, which we constructed in the proof of Proposition 5.2.6. Therefore

⊥1 : 1→ LM∪MV0
1 is defined as:

(⊥1)c(∗) = [0→ c] ∈ ∆M∪MV0
(c) ∼= (LM∪MV0

1)(c).
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Applying the formula for the lifting monad from Proposition 5.1.8 we see

that:

(LnM∪MV0
1)(c) =

∑
(c1↣c)∈SubM∪MV0

(c)

. . .
∑

(cn↣cn−1)∈SubM∪MV0
(cn−1)

1(cn).

Using Remark 5.1.9, we see that the map
(
LnM∪MV0

(⊥1)
)
c
: LnM∪MV0

1 →
Ln+1
M∪MV0

1 sends (cn ↣ . . . c1 ↣ c) to

(0 ↣ cn ↣ . . . c1 ↣ c).

So the elements of ωP (c) can be thought of as eventually 0 infinite chains

of (M∪MV0)-subobjects

(. . .↣ cn ↣ . . . c1 ↣ c).

The action of ωP (f : d → c) is to pull back along f to obtain a chain of

(M∪MV0)-subobjects starting at d.

We can show that ωP is concrete. A chain (. . . ↣ cn ↣ . . . c1 ↣ c)

becomes a function which maps a point x : ⋆→ c to the pullback of the chain

along x. If two chains become the same function, they must be equal because

(M∪MV0)-subobjects are determined by their points (Lemma 5.2.3).

We can also explicitly calculate ω, the limit of the chain:

1
!←− LM∪MV0

1
LM∪MV0

(!)

←−−−−−−− L2
M∪MV0

1
L2
M∪MV0

(!)

←−−−−−−− . . .

Using Remark 5.1.9, we see that the map
(
LnM∪MV0

(!)
)
c
: (Ln+1

M∪MV0
1)(c) →

(LnM∪MV0
1)(c) sends (cn+1 ↣ cn ↣ . . . c1 ↣ c) to:

(cn ↣ . . . c1 ↣ c),

so we can think of the elements of ω(c) as infinite chains of (M∪MV0)-

subobjects (. . . ↣ cn ↣ . . . c1 ↣ c). The action of ω(f : d → c) is to pull

back a chain along f . Because ω is the limit of concrete objects it is also
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concrete, since concrete presheaves are a reflective subcategory of presheaves.

Remark 6.3.1. The concreteness assumptions from Assumption 5.2.1 are

satisfied by (C+V0, J ∪ JV0) andM∪MV0 , so from Lemma 5.2.2 the only

M ∪MV0-subobjects of ⋆ are [⋆ → ⋆] and [0 → ⋆]. Therefore, we will

often think of ωP (⋆) as the set of natural numbers N, where the number n is

represented by the chain of subobjects that becomes 0 after n steps:

(. . . 0 ↣ ⋆↣ . . .︸ ︷︷ ︸
n times

↣ ⋆)

Similarly, we think about ω(⋆) as the natural numbers with infinity N∪{∞},
where infinity is represented by the chain of subobjects that is constant id⋆.

6.3.2 The dominance ∆M∪MV0
is orthogonal to the map

iP : ωP → ω

Definition 6.3.2. Let a function

F : Hom(ωP ,∆M∪MV0
)→ [N→ 2]

between morphisms ωP → ∆M∪MV0
and infinite binary sequences be defined

by mapping α : ωP → ∆M∪MV0
to its component at the terminal object ⋆:

α⋆ :
(
ωP (⋆) ∼= N

)
→
(
∆M∪MV0

(⋆) ∼= 2
)
.

The definition above makes sense because the concreteness assumptions

from Assumption 5.2.1 hold, so we know from Lemma 5.2.2 that:

∆M∪MV0
(⋆) ∼= {[⋆→ ⋆], [0→ ⋆]} ∼= 2.

We explained in Remark 6.3.1 how an element in ωP (⋆), which is a chain of

subobjects (. . . 0 ↣ ⋆↣ . . .︸ ︷︷ ︸
n times

↣ ⋆), corresponds to n ∈ N.
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Lemma 6.3.3. The function

F : Hom(ωP ,∆M∪MV0
)→ [N→ 2]

from Definition 6.3.2 is injective and sends each map ωP → ∆M∪MV0
to an

infinite monotone binary sequence, where 2 = {0 ≤ 1}. Moreover, every

infinite monotone binary sequence N → 2 is the image of some map ωP →
∆M∪MV0

.

Proof. We know that ∆M∪MV0
is concrete so maps into it are uniquely de-

termined by their component at ⋆, therefore F is injective.

Showing that F(α) is monotone. We will show that for any n ≥ 1:

α⋆(. . . 0 ↣ 0 ↣ ⋆↣ . . .︸ ︷︷ ︸
n−1 times

↣ ⋆) = [⋆→ ⋆]

implies

α⋆(. . . 0 ↣ ⋆↣ ⋆↣ . . .︸ ︷︷ ︸
n−1 times

↣ ⋆) = [⋆→ ⋆].

The class of monos at V was defined in Section 5.3 to be:

MV0(V) = {(λx.x+ n) ∈ V0(V,V) | n ∈ N} ∪ {! : 0→ V},

and there is a point ⋆
n−→ V in the site for each n ∈ N ∪ {∞}.

Consider the chain of monos on V:

f = (. . . 0→ V
(+1)−−→ V

(+1)−−→ . . .︸ ︷︷ ︸
(n−1) times

V)

and the chain on ⋆:

dn−1 = (. . . 0→ 0→ ⋆→ . . .︸ ︷︷ ︸
(n−1) times

⋆).

Then dn−1 is the pullback of f along the map ⋆
n−1−−→ V.
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V 0

V ⋆

V ⋆

X ⋆

(+1)

!

(+1)

0

...
...

n−1

αV(f)

α⋆(dn−1)=[id⋆]

Figure 6.2: Diagram for proof of Lemma 6.3.3.

Because ωP and ∆M∪MV0
act by pullback, and α is natural, α⋆(dn−1) is the

pullback of αV(f) along (n− 1). Thus, we obtain the diagram in Figure 6.2

where all the squares are pullbacks.

By assumption α⋆(dn−1) = [id⋆], so it must be the case that:

αV(f) = V
(+k)−−→ V

for some k < n.

Now consider the diagram in Figure 6.3, where we let dn = (. . . 0 →
⋆→ . . .︸ ︷︷ ︸
n times

⋆) be the pullback of f along ⋆
n−→ V. Again all the squares in the

diagram are pullbacks. Because we know k < n, α⋆(dn) must equal [id⋆],

which we were trying to show.

Using the fact that we have just shown, namely that:

α⋆(dn−1) = [⋆→ ⋆] =⇒ α⋆(dn) = [⋆→ ⋆],

we can show by induction that once the infinite binary sequence F(α) = α⋆

becomes 1, it has to remain 1, so the sequence is monotone.

Showing that any infinite binary sequence is the image of a map

α : ωP → ∆M∪MV0
under F . Let the action of α⋆ be given by the binary
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V ⋆

V ⋆

V ⋆

V X

(+1)

0

(+1)

1

...
...

n

αV(f)=(+k)

α⋆(dn)

Figure 6.3: Diagram for proof of Lemma 6.3.3.

sequence. Since ∆M∪MV0
is concrete, the other components of α are uniquely

determined. We need to show that the induced α is natural.

Because ωP is concrete, we can think of a chain of subobjects in ωP (c)

as a function from points x : ⋆→ c to chains in ωP (⋆) obtained by pullback.

Similarly an (M∪MV0)-subobject in ∆M∪MV0
(c) is a subset of the points

of c. Checking naturality amounts to checking that when we postcompose a

function from ωP (c) by α⋆, we obtain an element of ∆M∪MV0
(c).

Consider a chain in ωP (c):

. . . 0 ↣ cn ↣ . . . c1 ↣ c.

If there exists 0 ≤ k ≤ n such that at position k the infinite monotone

binary sequence becomes 1, then x : ⋆→ c gets mapped to

� [⋆→ ⋆], if Xk = ⋆ (x ∈ |ck|);

� [0→ ⋆], if Xk = 0 (x ̸∈ |ck|)

where the Xk is part of the pullback diagram below:

Xn X1 ⋆

cn c1 c

...

x

...
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So the subobject of c being carved out is ck ↣ . . . c, which is an (M∪MV0)-

subobject because these subobjects are closed under composition.

Otherwise, if the sequence does not become 1 at an index less or equal to

n, every x : ⋆→ c is sent to [0→ ⋆], so the subobject of c being carved out

is 0→ c.

Lemma 6.3.4. The dominance ∆M∪MV0
is right-orthogonal to the compar-

ison map iP : ωP → ω.

Proof. In Definition 6.3.2 and Lemma 6.3.3, we showed that a map α : ωP →
∆M∪MV0

can be identified with a monotone binary sequence, which gives the

action of α⋆. The function (iP )⋆ is an inclusion, and the only element of ω(⋆)

that is not in its image is the constant ⋆ infinite sequence:

d∞ = (. . . ⋆↣ . . . ⋆↣ ⋆).

Since ∆M∪MV0
is concrete, in order to define an extension α : ω →

∆M∪MV0
of α, we only need to choose α⋆(. . . ⋆↣ . . . ⋆↣ ⋆), and the rest of

α⋆ is the same as α⋆. If the monotone binary sequence corresponding to α

becomes 1 at position n, then choose:

α⋆(. . . ⋆↣ . . . ⋆↣ ⋆) = [⋆→ ⋆].

If the sequence is always 0, choose:

α⋆(. . . ⋆↣ . . . ⋆↣ ⋆) = [0→ ⋆].

In both cases we need to prove naturality and uniqueness of the candidate

extension.

Case α⋆ becomes 1 at n. Uniqueness of α. Define a map β : LM∪MV0
1→

ω. The object ω is a limit of a diagram of concrete presheaves, so it is also
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concrete. Therefore it is enough to specify β⋆. Let:

β⋆([⋆→ ⋆]) = (. . . ⋆↣ . . . ⋆↣ ⋆) = d∞

β⋆([0→ ⋆]) = (. . . 0 ↣ ⋆↣ . . .︸ ︷︷ ︸
n times

↣ ⋆) = dn.

We defer showing naturality of β.

Consider the composite α ◦ β : LM∪MV0
1 → ∆M∪MV0

. This must be a

monotone map, like we showed in Definition 6.3.2 and Lemma 6.3.3. There-

fore:

[⋆→ ⋆] = α⋆(β⋆([0→ ⋆])) ≤ α⋆(β⋆([⋆→ ⋆])) = α⋆(. . . ⋆↣ ⋆).

So indeed, [⋆→ ⋆] is the only value we can choose for α⋆(. . . ⋆↣ ⋆).

Now we need to show that β : LM∪MV0
1→ ω is indeed natural. We can

obtain it as a comparison map into the limit ω, where the cocone:

(βk : LM∪MV0
1→ LkM∪MV0

1)k∈N

on the diagram:

1
!←− LM∪MV0

1
LM∪MV0

(!)

←−−−−−−− L2
M∪MV0

1
L2
M∪MV0

(!)

←−−−−−−− . . .

is defined below. Again we only need to give (βk)⋆ thanks to concreteness.

Let:

(βk)⋆([⋆→ ⋆]) = dk

(βk)⋆([0→ ⋆]) =

dn if n ≤ k

dk otherwise.

We can easily check that (βk)k∈N does form a cone because each
(
LkM∪MV0

(!)
)
⋆
:

(Lk+1
M∪MV0

1)(⋆) → (LkM∪MV0
1)(⋆) sends dk+1 to dk and is identity otherwise.

To show β is indeed the comparison map for this cone, use the fact that the

projections πk : ω → LkM∪MV0
1 truncate an infinite chain of monos to the
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first k monos.

Now, show that each βk : LM∪MV0
1→ LkM∪MV0

1 is natural. Notice that

it is a map between two concrete objects. If k ≤ n, then (βk)⋆ is constant,

so it “preserves the relations”, since concrete objects contain all constant

functions.

The map (βn+1) : LM∪MV0
1→ Ln+1

M∪MV0
1 is given by:

(βn+1)⋆(d0) = dn (βn+1)⋆(d1) = dn+1.

Observe that this is the same as:

(ηLn
M∪MV0

1)⋆ ◦ . . . (ηLM∪MV0
1)⋆

because, for example:

(ηLM∪MV0
1)⋆(d0) = d1 (ηLM∪MV0

1)⋆(d1) = d2.

So because η is natural, we obtain that βn+1 is as well.

The last case is (βn+p) : LM∪MV0
1→ Ln+pM∪MV0

1, with p > 1. This has the

form:

(βn+p)⋆(d0) = dn (βn+p)⋆(d1) = dn+p

so we can decompose it into:

LM∪MV0
1(⋆)

(βn+1)⋆−−−−→ Ln+1
M∪MV0

1(⋆)
(γp)⋆−−−→ Ln+pM∪MV0

1(⋆).

Where we have chosen (γp)⋆ to be:

(γp)⋆(dn+1) = dn+p

(γp)⋆(d(k≤n)) = dk.

But (γp)⋆ is actually equal to:

(
L
n+(p−1)
M∪MV0

(η1 : 1→ LM∪MV0
1)
)
⋆
◦ . . . ◦

(
Ln+1
M∪MV0

(η1 : 1→ LM∪MV0
1)
)
⋆
,
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so γp must be natural.

Case α⋆ is always 0. Uniqueness of α. We need to show that we cannot

choose α⋆(d∞) = [⋆→ ⋆], so it must be [0→ ⋆].

Consider a map δ : y(V)→ ω, defined as:

δ⋆(n) = dn

δ⋆(∞) = d∞,

since we know the points of V are N ∪ {∞}. We will show later that δ is

natural.

Consider the composite (α ◦ δ) : y(V)→ ∆M∪MV0
:

α⋆(δ⋆(n)) = [0→ ⋆]

α⋆(δ⋆(∞)) = [⋆→ ⋆].

By the Yoneda lemma (α ◦ δ) corresponds to a mono m : X ↣ V in

∆M∪MV0
(V). Also by Yoneda, precomposing (α◦ δ) by a point y(k) : y(⋆)→

y(V) is the same as taking pullback of m with k : ⋆→ V.

So we have the following two pullback squares that m : X ↣ V must

satisfy, for any k ∈ N:

X 0 X ⋆

V ⋆ V ⋆

m m

k ∞

However, m can be either V
(+p)−−→ V for some p ∈ N or 0 → V, and none if

them satisfies both these conditions. Therefore, we must choose α⋆(d∞) =

[0→ ⋆] instead.

Now we must show δ : y(V) → ω is natural. We will show it is the

comparison map into the limit ω.
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Consider a cone (δk : y(V)→ LkM∪MV0
1)k∈N given by:

(δk)⋆(n ≤ k) = dn

(δk)⋆(n > k) = dk

(δk)⋆(∞) = dk.

We can easily check that this forms a cone, given the action of LkM∪MV0
(!),

and that δ is indeed the comparison map for this cone, given the projections

πk : ω → LkM∪MV0
(1).

To show each δk : yV → LkM∪MV0
1 is natural, it is enough by Yoneda

to find a chain of subobjects of V, v ∈ LkM∪MV0
1(V). Because LkM∪MV0

1 is

concrete, v is determined by its pullback, living in LkM∪MV0
1(⋆), with each

n : ⋆→ V, and ∞ : ⋆→ V.

Again by Yoneda, taking such a pullback, with say n, is the same as

precomposing δk by y(n) : y(⋆) → y(V). This further corresponds to the

value of (δk)⋆(n) ∈ LkM∪MV0
1(⋆). Given the definition of (δk)⋆(n), we can see

that the chain that corresponds to it is:

v = (V
(+1)−−→ . . .︸ ︷︷ ︸
k times

V).

Case α⋆ is always 0. Naturality of α. Because ∆M∪MV0
is concrete,

we only need to show that each αc is valued in ∆M∪MV0
(c). We defined

α⋆ : ω(⋆) → ∆M∪MV0
(⋆) to be constant [0 → ⋆], so every element of ω(c)

gets mapped by αc to 0→ c, which is in ∆M∪MV0
(c).

Case α⋆ becomes 1 at n. Naturality of α. We have defined α⋆ : ω(⋆)→
∆M∪MV0

(⋆) to be:

α⋆(dk) =

[0→ ⋆] if k < n

[⋆→ ⋆] if k ≥ n

α⋆(d∞) = [⋆→ ⋆].
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ω(⋆) LnM∪MV0
1(⋆) ωP (⋆) ∆M∪MV0

(⋆)

d∞

dn+1 dn+1

dn dn dn [⋆→ ⋆]

dn−1 dn−1 dn−1

d0 d0 d0 [0→ ⋆]

(πn)⋆ (ιn)⋆ α⋆

...
...

...
...

...

Figure 6.4: Diagram for the proof of Lemma 6.3.4.

We can therefore obtain α⋆ as the composition of the three maps from Fig-

ure 6.4. In the figure, the first map is the projection from the limit ω, the

second map is the inclusion into the colimit ωP , and the third is α. We

already know all these maps are natural, so α must be natural too.

Corollary 6.3.5. Consider an infinite monotone binary sequence with a top

element, such that the sequence is continuous, that is:

� if the sequence is constant 0, then the top element is 0;

� if the sequence becomes 1 at position n, then the top element is 1.

Such a sequence determines a natural transformation ω → ∆M∪MV0
.

Proof. This follows immediately from the way the extension of α : ωP →
∆M∪MV0

along iP : ωP → ω is constructed in the proof of Lemma 6.3.4.

6.3.3 The dominance ∆M∪MV0
is orthogonal to the maps(

iP × y(c)
)
: ωP × y(c)→ ω × y(c)

Lemma 6.3.6. For any object c in C+V0, a map α : ωP × y(c)→ ∆M∪MV0

can be described as an increasing infinite chain of (M∪MV0)-subobjects of

125



c:

cn

c1 c

c0

...

...

Moreover, the maps ck ↣ ck+1 must be (M∪MV0)-subobjects as well.

Proof. Since ∆M∪MV0
is concrete, maps into it are determined by their com-

ponent at ⋆.

We can show that for any point x : ⋆→ c the function:

α⋆(−, x) : ωP (⋆)→ ∆M∪MV0
(⋆)

induces a natural transformation:

α(−, x) : ωP → ∆M∪MV0
.

Because ωP is also concrete it is enough to show that postcomposition by

α⋆(−, x) “preserves the relations”. By naturality of α, postcomposition by

α⋆(−, x) is actually the same as the action of αc′
(
−, λ( ∈ |c′|). (x ∈ |c|)

)
:

ωP (⋆) ∆M∪MV0
(⋆)

ωP (c
′) ∆M∪MV0

(c′)

α⋆(−,x)

(−)◦(y:⋆→c′)

αc′
(
−,λ( ∈|c′|). (x∈|c|)

)

and we know by its type that this gives a result in ∆M∪MV0
.

We have shown in Definition 6.3.2 and Lemma 6.3.3 that the map:

α(−, x) : ωP → ∆M∪MV0
.
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corresponds to an infinite monotone binary sequence.

Similarly, we can show that for any chain dk in ωP (⋆) the function:

α⋆(dk,−) : Hom(⋆, c)→ ∆M∪MV0
(⋆)

induces a natural transformation:

α(dk,−) : y(c)→ ∆M∪MV0
.

Notice that y(c) is concrete because the site C+V0 is concrete. To show that

α⋆(dk,−) preserves relations it is enough to notice that the following square

commutes by naturality of α:

Hom(⋆, c) ∆M∪MV0
(⋆)

Hom(c′, c) ∆M∪MV0
(c′)

α⋆(dk,−)

(−)◦(y:⋆→c′)

αc′ (...0↣c′↣...︸ ︷︷ ︸
k times

c′,−)

By the Yoneda lemma, for each k ∈ N, the map

α(dk,−) : y(c)→ ∆M∪MV0

corresponds to an (M∪MV0)-subobject:

mk : ck ↣ c,

which is the value of
(
α(dk,−)

)
c
at idc. We will now show that

(mk : ck ↣ c)k∈N

is the increasing chain of subobject that the map α determines.

From the naturality square above, we can see that any point y : ⋆ → c

factors through mk if and only if:

α⋆(dk, y : ⋆→ c) = [⋆→ ⋆].
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Because we have shown α⋆(dk, y : ⋆ → c) is a monotone binary sequence, it

follows that:

α⋆(dk+1, y : ⋆→ c) = [⋆→ ⋆]

as well, which is equivalent to y factoring throughmk+1. Hence by Lemma 5.2.3

we obtain that:

mk ≤ mk+1.

Finally, to show that each ck ↣ ck+1 is an (M∪MV0)-subobject, observe

that the following square is a pullback:

ck+1 c

ck ck

mk+1

id

mk∈(M∪MV0 )

Because (M∪MV0) is closed under pullback, it must be the case that (ck ↣

ck+1) ∈ (M∪MV0).

Lemma 6.3.7. The dominance ∆M∪MV0
is right-orthogonal to the compar-

ison map (iP × idy(c)) : ωP × y(c) → ω × y(c), for any object c in the site

C+ V0.

Proof. Consider a map α : ωP×y(c)→ ∆M∪MV0
. We know from Lemma 6.3.6

that α can be described as an increasing chain of (M∪MV0)-subobjects of

c:

cn

c1 c

c0

mn

...

...

m1

m0

From assumption (3) in the definition of class of admissible monos, we know
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that this chain has an upper bound:

m∞ : c∞ ↣ c.

This is an (M∪MV0)-subobject whose points are exactly the union of all

the points in the chain.

Define a candidate extension for α:

α⋆ : ω(⋆)× Hom(⋆, c)→ ∆M∪MV0
(⋆)

as:

α⋆(dk,−) = α⋆(dk,−)

α⋆(d∞, x) =

[⋆→ ⋆] if x ∈ |m∞|

[0→ ⋆] otherwise.

Naturality of α. Consider another object c′ in the site C + V0. We need

to show that given an element of ω(c′) × Hom(c′, c), which is a function

|c′| → ω(⋆)× |c|, postcomposing by α⋆ determines an (M∪MV0)-subobject

of c′.

Consider an element in ω(c′), which is an infinite decreasing chain of

subobjects of c′:

b = . . . c′2 ↣ c′1 ↣ c′.

This can be turned into a function by pulling back along each point x : ⋆→ c′:

X2 X1 ⋆

c′2 c′1 c′

...

x

...

And consider also a map h ∈ (C+ V0)(c
′, c).

The subset of |c′| determined by the function:

|c′| ⟨b,h⟩−−→ ω(⋆)× |c| α⋆−→ ∆M∪MV0
(⋆)
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can be described as:

S =
⋃
n∈N

{
x ∈ |c|

∣∣ x ∈ |c′n| and h(x) ∈ |mn|
}

which includes the case when b(x) = d∞ and h(x) ∈ |m∞|.
We can obtain the same subset of |c′| by taking the union for all k ∈ N

of the subsets:

Sk =
⋃
n≤k

{
x ∈ |c|

∣∣ x ∈ |c′n| and h(x) ∈ |mn|
}
.

It is clear that for any k:

Sk ⊆ Sk+1.

We will now show that each Sk determines an (M∪MV0)-subobject of c
′.

Consider the function (rk)⋆ : ω(⋆) → ωP (⋆), which truncates a chain to

its first k components:

(rk)⋆(dn) =

dn if n ≤ k

dk if n > k

(rk)⋆(d∞) = dk.

The function (rk)⋆ can be written in terms of the projection out of the limit

ω and the inclusion into the colimit ωP :

(rk)⋆ = ω(⋆)
(πk)⋆−−−→ LkM∪MV0

(⋆)
(ιk)⋆−−→ ωP (⋆).

This means (rk)⋆ must determine a natural transformation rk : ω → ωP ,

i.e. (rk)⋆ preserves the relations.

Now notice that Sk ⊆ |c′| is determined by the following function:

|c′| ⟨b,h⟩−−→ ω(⋆)× |c| (rk)⋆×|c|−−−−−→ ωP (⋆)× |c|
α⋆−→ ∆M∪MV0

(⋆).

Because we know both rk and α⋆ are natural, this function must determine
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an (M∪MV0)-subobject of c
′:

sk : Sk ↣ c′.

Thus, we have an increasing chain of (M∪MV0)-subobject of c
′:

(sk : Sk ↣ c′)k∈N.

Using assumption (3) for a class of admissible monos, the subobject deter-

mined by the union:

S =
⋃
k∈N

Sk

is also in (M∪MV0), so we are done.

Uniqueness of α. For any point x : ⋆→ c, the function:

α⋆(−, x) : ω(⋆)→ ∆M∪MV0
(⋆)

determines a natural transformation:

α(−, x) : ω → ∆M∪MV0

which is an extension of α(−, x) : ωP → ∆M∪MV0
. Thanks to Lemma 6.3.4

this must he the unique extension.

If we had another extension α′ of α, we would get that for all x : ⋆→ c:

α′(−, x) = α(−, x),

and so α′ = α, as required.
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6.3.4 The lifted naturals are orthogonal to the map

iP : ωP → ω

Lemma 6.3.8. Natural transformations of the form

ωP → LM∪MV0

(∐
N

1

)
∼= LM∪MV0

(Nat)

ω → LM∪MV0

(∐
N

1

)

factor through ∆M∪MV0
∼= LM∪MV0

(1).

Proof. First describe the elements of LM∪MV0
(Nat)(V). From Remark 5.2.7,

because V is only covered by identity:

Nat(V) = {f : |V| → N | f constant}

Nat(0) = {⊥}.

Using Proposition 5.1.8, we see that an element in LM∪MV0
(Nat)(V) is either

of the form

(V
(+p)−−→ V, n)

for some p, n ∈ N, or ⊥, which corresponds to the (M ∪MV0)-subobject

0 → V. The element (V
(+p)−−→ V, n) can be described as a function |V| →

N+ {⊥}, where:

k 7→

n if k ≥ p

⊥ otherwise

∞ 7→ n,

and ⊥ ∈ LM∪MV0
(Nat)(V) can be described as the constant ⊥ function.
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Every map α : ω → LM∪MV0
(Nat) factors through ∆M∪MV0

. Consider

the infinite chain in ω(V):

b = (. . .V
(+1)−−→ V

(+1)−−→ . . .V).

As a function |V| → ω(⋆), b can be described as:

b(k) = dk

b(∞) = d∞.

Because α is a natural transformation into a concrete object, the function

α⋆ ◦ b : |V| → LM∪MV0
(Nat)(⋆) must correspond to exactly one element of

LM∪MV0
(Nat)(V).

If α⋆ ◦ b corresponds to ⊥, then it must be the case that:

α⋆(dk) = α⋆(d∞) = ⊥.

Therefore, α⋆ factors as the constant 0 function:

ω(⋆)→ ∆M∪MV0
(⋆) ∼= LM∪MV0

(1)(⋆)

followed by any of the coproduct inclusions
(
LM∪MV0

(inck : 1→
∐

N 1)
)
⋆
:

LM∪MV0
(1)(⋆)→ LM∪MV0

(Nat)(⋆) ∼= N+ {⊥}.

A constant function always determines a natural transformation, so we have

found a factoring of α through ∆M∪MV0
.

If α⋆ ◦ b corresponds to (V
(+p)−−→ V, n), then:

α⋆(d∞) = n

α⋆(dq≥p) = n

α⋆(dq<p) = ⊥.
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We can then factor α⋆ as the function:

f : ω(⋆)→ ∆M∪MV0
(⋆) ∼= LM∪MV0

(1)(⋆)

where:

f⋆(d∞) = 1

f⋆(dq≥p) = 1

f⋆(dq<p) = 0,

followed by the inclusion map
(
LM∪MV0

(incn : 1 →
∐

N 1)
)
⋆
. We can see

that f has the form of an infinite continuous monotone binary sequence, so

by Corollary 6.3.5 it determines a natural transformation ω → ∆M∪MV0
.

Every map β : ω → LM∪MV0
(Nat) factors through ∆M∪MV0

. We will

use the description of ωP as the colimit of the objects LnM∪MV0
1. Each

LnM∪MV0
1 is a retract of ω because:

LnM∪MV0
1

inc−→ ω
πn−→ LnM∪MV0

1 = id.

Then every map LnM∪MV0
1 → LM∪MV0

(Nat) factors through ∆M∪MV0
, be-

cause we have already proved that maps from ω factor:

LnM∪MV0
1 ω LnM∪MV0

1 LM∪MV0
(Nat)

∆M∪MV0

inc πn

f LM∪MV0
(inck)

We know f is given by a monotone binary sequence, and inck is a coproduct

inclusion into
∐

N 1.

A map β : ωP → LM∪MV0
(Nat) determines a cocone over the diagram for
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ωP , such that every map in the cocone factors through ∆M∪MV0
:

ωP LM∪MV0
(Nat)

∆M∪MV0

1 LM∪MV0
1 L2

M∪MV0
1 . . .

β

γ

LM∪MV0
(inck)

⊥1

ι0

f0

LM∪MV0
(⊥1)

ι1

f1

L2
M∪MV0

(⊥1)

ι2

f2

We can easily see that all the maps β ◦ ιn in the cocone factor through the

same coproduct inclusion LM∪MV0
(inck) because of the shape of the diagram.

Each fn is given by a monotone binary sequence of length n + 1, such that

each sequence is an extension of the previous one.

Because LM∪MV0
(inck) is mono, (fn)n forms a cocone as well. So there is

a comparison map γ : ωP → ∆M∪MV0
.

Both LM∪MV0
(inck) ◦ γ and β are comparison maps for the cocone:

(
LM∪MV0

(inck) ◦ fn
)
n∈N = (β ◦ ιn)n∈N,

and so they must be equal. Thus we have a factoring of β through ∆M∪MV0
.

Lemma 6.3.9. The object of lifted natural numbers LM∪MV0
(Nat) is right-

orthogonal to the comparison map iP : ωP → ω.

Proof. Consider a map α : ωP → LM∪MV0
(Nat). From Lemma 6.3.8 we know

that it factors through ∆M∪MV0
:

ωP LM∪MV0
(Nat)

∆M∪MV0

ω ∆M∪MV0

α

f
LM∪MV0

(inci)

f

f
′

LM∪MV0
(incj)
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From Lemma 6.3.4, f has a unique extension f , so

LM∪MV0
(inci) ◦ f

is an extension of α. We need to prove that it is the unique extension.

Consider another extension ω → LM∪MV0
(Nat). From Lemma 6.3.8 it

must factor through ∆M∪MV0
as well, but possibly through a different co-

product inclusion incj.

In the proof of Lemma 6.3.8, we have shown f
′
must be either the constant

0 infinite binary sequence with top element 0, or a monotone binary sequence

which becomes 1 at some position n ∈ N and has top element 1. In both

cases, because both LM∪MV0
(inci) ◦ f and LM∪MV0

(incj) ◦ f
′
are extensions

of α, we see they must be equal.

6.3.5 The lifted naturals are orthogonal to the maps(
iP × y(c)

)
: ωP × y(c)→ ω × y(c)

Lemma 6.3.10. A map α : ωP × y(c) → LM∪MV0
(Nat) can be described as

an increasing chain of (M∪MV0)-subobjects of c:

cn

c1 c

c0

mn

...

...

m1

m0

together with a family of functions (gn : |cn| → N)n∈N which extend each

other, that is:

∀x ∈ |cn|. gn+1(x) = gn(x),

and such that each gn : |cn| → N is locally constant on a cover of cn.
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Proof. For each element dn ∈ ωP (⋆), α⋆(dn,−) determines a natural trans-

formation:

α(dn,−) : y(c)→ LM∪MV0
(Nat).

By the Yoneda lemma and using Remark 5.2.7, α(dn,−) corresponds to a

pair: (
mn : (cn ↣ c) ∈ ∆M∪MV0

(c), gn : |cn| → N
)

of an M∪MV0-subobject and a function gn locally constant on a cover of

cn.

If we fix a point x ∈ |c|, then we obtain a natural transformation:

α(−, x) : ωP → LM∪MV0
(Nat),

such that

α⋆(dn, x) =

gn(x) if x ∈ |cn|

⊥ otherwise.

From Lemma 6.3.8 we know α(−, x) factors through ∆M∪MV0
, as an

infinite monotone binary sequence ωP → ∆M∪MV0
followed by a coproduct

inclusion

LM∪MV0
(inck) : ∆M∪MV0

∼= LM∪MV0
1→ LM∪MV0

(Nat) ∼= LM∪MV0

(∐
N

1

)
.

Thus, we see that:

x ∈ |cn| =⇒ x ∈ |cn+1| gn(x) = gn+1(x),

so we get the increasing chain of subobjects and functions that we expect.

Lemma 6.3.11. The object of lifted natural numbers LM∪MV0
(Nat) is right-

orthogonal to the comparison map (iP × idy(c)) : ωP × y(c) → ω × y(c), for
any object c in the site C+ V0.

Proof. Consider a map α : ωP × y(c)→ LM∪MV0
(Nat). From Lemma 6.3.10,
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we can describe it as a chain of subobjects and functions:

(
mn : (cn ↣ c) ∈ ∆M∪MV0

(c), gn : |cn| → N
)
n∈N.

Defining a candidate extension α : ω×y(c)→ LM∪MV0
(Nat) of α. It is

enough to specify α⋆(d∞,−), while α⋆(dk,−) is determined by α. By Yoneda,

this means giving an element of LM∪MV0
(Nat)(c).

Consider the tuple:

(m∞ : c∞ ↣ c, g∞ : |c∞| → N)

where m∞ is the subobject determined by the set of points
⋃
n∈N|mn|, and

g∞ =
⋃
n∈N gn. By assumption (3) for a class of admissible monos, m∞ is

indeed anM∪MV0-subobject. We can show that g∞ is locally constant on

a cover of c∞, and thus the tuple is an element of LM∪MV0
(Nat)(c).

From assumption (4), we know that the closure under precomposition of

the set {mn : cn ↣ c∞}n∈N contains a covering family of c∞:

{c′k ↣ c∞}k∈I .

Each c′k ↣ c∞ must factor through some mik : cik ↣ c∞. Consider the cover

of cik on which gik is locally constant. Then g∞ is also locally constant on

this cover.

By axiom (C) of coverage, we obtain a cover of c′k on which g∞ is locally

constant:
c′k cik c∞

. . . . . .

Using this cover for each k ∈ N and using axiom (L), we can refine the

coverage {c′k ↣ c∞}k∈N of c∞ to one on which g∞ is locally constant.

Proving the candidate extension for α is natural. To show that the

function α⋆ : ω(⋆)× |c| → LM∪MV0
(Nat)(⋆) that we just defined determines
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a natural transformation, we will factorize it as:

ω(⋆)× |c|
⟨h⋆,id|c|◦π2⟩−−−−−−−→ ∆M∪MV0

(⋆)× |c| β⋆−→ N+ {⊥},

and show each of these two functions determines a natural transformation.

We choose h⋆ to be determined by the increasing chain of subobjects with

a top element

(mn : cn ↣ c)n∈N∪{∞},

and define β⋆ as:

β⋆(0, x) = ⊥

β⋆(1, x) =

g∞(x) if x ∈ |c∞|

⊥ if x ̸∈ |c∞|.

It is simple to see that α⋆ = β⋆ ◦ ⟨h⋆, id|c| ◦ π2⟩.
To show h⋆ is natural, notice that it is the unique extension constructed

in Lemma 6.3.7 of the map:

ωP (⋆)× |c|
α⋆−→ LM∪MV0

(Nat)(⋆)

(
LM∪MV0

(
∐

N 1
!−→1)
)
⋆−−−−−−−−−−−−−−→ ∆M∪MV0

(⋆)

The above map can be described by the increasing chain of subobjects (mn :

cn ↣ c)n∈N, according to Lemma 6.3.6. Thus h must be natural.

To show β⋆ preserves relations, consider an element of ∆M∪MV0
(c′) ×

Hom(c′, c):

(m : c′′ ↣ c′, f : c′ → c).

Thinking of the tuple above as a function, we need to show that the function:

|c′| ⟨m,f⟩−−−→ ∆M∪MV0
(⋆)× |c| β⋆−→ N+ {⊥}

1. determines an (M∪MV0)-subobject X ↣ c′,

2. and the restricted function |X| → N is locally constant on a cover of

X.
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Notice that x ∈ |X| if and only if x ∈ |c′′| and f(x) ∈ |c∞|. We can obtain

X by taking the following two pullbacks:

c′′ c′ c

X c∞

m f

m∞

Because (M∪MV0)-subobjects are closed under pullback and composition,

X ↣ c′ is also an (M∪MV0)-subobject.

Consider the cover of c∞ on which g∞ is locally constant. Using axiom

(C) of coverage we can obtain a cover of X that factors through this cover

of c∞, and hence g∞ is locally constant on this cover of X. Since β⋆ ◦ ⟨m, f⟩
restricted to |X| agrees with g∞, we are done.

Proving the extension of α : ωP ×y(c)→ LM∪MV0
(Nat) is unique. For

any extension α of α, and each x ∈ |c|, α(−, x) is an extension of α(−, x) :
ωP → LM∪MV0

(Nat). From Lemma 6.3.9 we know that such an extension of

α(−, x) is unique, so α must be unique.

6.3.6 Putting it all together

Finally, we can use all the results in this section to prove Theorem 6.2.5. We

also discuss where the conditions in the theorem are used precisely.

Theorem 6.2.5. Let (C, J,M) be a concrete site, satisfying axioms (M) and

(L), with an initial object covered by the empty set, and a class of admissible

monosM. In the sheaf category Sh(C+V0, J ∪JV0) the dominance ∆M∪MV0

and the lifted natural numbers LM∪MV0
(
∐

N 1) are LM∪MV0
-complete objects.

Proof. Using Proposition 6.1.1, we see that it is enough to show orthogonality

with respect to (iP × y(c)) : ωP × y(c) → ω × y(c), for every c ∈ C. For

∆M∪MV0
we showed this in Lemma 6.3.7, and for LM∪MV0

(Nat), where Nat ∼=∐
N 1, in Lemma 6.3.11.
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Remark 6.3.12. In the definition of admissible monos (Definition 6.2.1),

restricting (C, J) to be a concrete site and asking for the dominance to be

concrete (condition (2)) is crucial for proving Lemma 6.3.3, which describes

the maps ωP → ∆M∪MV0
as monotone binary sequences. We do not know a

proof of Theorem 6.2.5 without these assumptions.

Asking that J satisfies axioms (M) and (L) is a matter of convenience,

because we could always replace J with another coverage that satisfies these

axioms and determines the same sheaves.

Asking for all maps 0 → c to be in M (condition (1)), and for 0 to be

covered by the empty set, are both used to make the monad generated by

the dominance pointed (via Proposition 5.2.6). This is needed to satisfy As-

sumption 3.0.1, which allows us to define ω and ω and prove a fixed point

theorem.

Condition (3) from the definition of admissible monos was used in the

proofs of Lemma 6.3.7 and Lemma 6.3.11 to show ∆M∪MV0
and LM∪MV0

(Nat)

are orthogonal to iP × y(c). Intuitively, this condition can be explained by

thinking of anM-subobject m : c′ ↣ c as a semidecidable subset of c, in the

computability sense discussed at the beginning of Section 2.4, in which there

is a Turing machine that accepts the inputs from c′ and diverges otherwise.

Then condition (3) asks that the union of an increasing chain of semidecidable

subsets is also semidecidable, which intuitively should be true.

Condition (4) for admissible monos is used in the proof of Lemma 6.3.11.

Recall that the Yoneda embedding preserves monos but not general colimits.

By asking for a covering family for the union of an increasing chain of M-

subobjects, condition (4) ensures that this union remains the colimit of the

chain after applying the Yoneda embedding.

Remark 6.3.13. The proofs of Lemma 6.3.3 and Corollary 6.3.5, describing

maps into ∆M∪MV0
as monotone binary sequences, both rely on the fact that

the site contains (V0, JV0 ,MV0), defined in Section 5.3.

Recall that (V0, JV0 ,MV0) is a site that generates the category vSet, and

that there is an embedding from ωCPO into vSet (Proposition 4.4.10). In-

tuitively, adding (V0, JV0 ,MV0) to the site in Theorem 6.2.5 imposes a con-

dition analogous to the continuity of maps between ωcpos, and is thus an
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alternative to considering ωCPO-valued sheaves.
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Chapter 7

Adequate models for PCFv in

categories of sheaves

In this chapter, we combine the results from Chapters 5 and 6 to give a recipe

for building normal models (Definition 4.3.1) of call-by-value PCF (PCFv) in

categories of sheaves. This recipe is described in Theorem 7.1.1 and is the

most important contribution of the thesis. In Section 7.2 we show that this

recipe can be used to unify models of higher-order recursion that have so far

been developed separately.

Normal models are closely related to Simpson’s natural models [Sim98],

as explained in Section 7.4. This previous work, however, does not give ways

of building such models, hence our recipe is a contribution in that direction.

In the remainder of Section 7.1, we prove Proposition 7.1.2 which says

that the models we construct with our recipe land in the subcategory of

concrete sheaves (Definition 2.1.8). We use this fact to spell out explicitly

the interpretation of PCFv types, in Figure 7.1.

We then state an adequacy theorem (Theorem 7.1.3) for normal models

obtained from our recipe, with respect to the operational semantics of PCFv

with type and term constants, defined in Section 4.2.1. The proof of ade-

quacy is deferred to Section 7.3, where a logical relations argument is used.

Recall that we already proved normal models are sound in Theorem 4.3.5.

The material summarized so far was published at LICS 2022 [MMS22, Sec-
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tion 7.2].

In Example 7.1.5, we explain how our running example vSet, of presheaves

on the vertical natural numbers, can be built via the recipe for normal models

from Theorem 7.1.1. We then deduce via Theorem 7.1.3 that the vSet model

for PCFv is adequate.

In Section 7.2, we explain how three existing models are an instance of our

recipe for normal models (Theorem 7.1.1), and are thus adequate for PCFv.

The three models are the categories of ω-quasi-Borel spaces, ω-diffeological

spaces, and ωPAP spaces. These examples were sketched in [MMS22, Ex-

amples 3.6-3.8]. In Chapter 8, we will present yet another example of our

recipe, with a different flavour, a fully abstract model for PCFv.

Finally, in Section 7.4, we discuss related work.

7.1 A recipe for building adequate normal

models

In this section, we use the main theorems in the previous two chapters, The-

orem 5.1.6 and Theorem 6.2.5, to give a way of constructing normal mod-

els (Definition 4.3.1) for PCFv with type and term constants. Recall from Ex-

ample 4.2.1 that a type constant of interest might be real with a set of term

constants Valreal ∼= R and also with a term constant for each measurable

function Rn → R.
The most important data we need to be able to construct a normal model

is a triple (C, J,M) of a concrete site (Definition 2.1.6) with a class of ad-

missible monos (Definition 6.2.1). The construction of normal models is

detailed in Theorem 7.1.1 and its proof. It crucially relies on combining,

via Definition 6.2.3, the site (C, J,M) with the site for vertical natural num-

bers (V0, JV0 ,MV0), defined in Section 5.3. As explained in Remark 6.3.13,

adding the vertical natural numbers to the site is an, arguably more modu-

lar, alternative to considering ωcpo valued sheaves. We then prove in Theo-

rem 7.1.3 that the normal models we obtain in this way are adequate.
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Theorem 7.1.1 (Recipe for building normal models). Consider a concrete

site (C, J), satisfying the (M) and (L) axioms (Remark 2.1.2), with an ini-

tial object covered by the empty set, and with a class of admissible monos

M (Definition 6.2.1).

Assume that for each type constant α, there is a concrete sheaf Aα in the

category Sh(C, J), such that the points of Aα are in bijection with Valα (the

set of values of type α introduced in Section 4.2.1):

|Aα| ∼= Valα.

Assume that for each term constant f : (α1 × . . . × αn) → β, there is a

morphism of concrete sheaves

ϕf : (Aα1 × . . .× Aαn)→ LM(Aβ)

that agrees on points with the partial function f : (Valα1×. . .×Valαn)⇀ Valβ.

Here LM is the lifting monad on Sh(C, J) generated byM.

Then the category Sh(C+V0, J∪JV0) is a normal model (Definition 4.3.1)

of PCFv with the given type and term constants.

Proof. In this case, the Grothendieck topos from the definition of normal

model (Definition 4.3.1) is the category of sheaves Sh(C+ V0, J ∪ JV0).

BothM andMV0 are classes of admissible monos, so, by Proposition 6.2.4,

their combination M∪MV0 is also a class of admissible monos in the site

(C+V0, J ∪ JV0). Thus, Sh(C+V0, J ∪ JV0) has a dominance ∆M∪MV0
gen-

erated by M∪MV0 via Theorem 5.1.6. From Proposition 5.2.6, it follows

that the dominance ∆M∪MV0
classifies the subobject 0 ↣ 1.

Again thanks to Proposition 6.2.4, we can apply Theorem 6.2.5 to deduce

that the lifted natural numbers object LM∪MV0
(
∐

N 1) in Sh(C+V0, J ∪JV0)

is LM∪MV0
-complete, (where LM∪MV0

is the lifting monad obtained from the

dominance ∆M∪MV0
).

Now we deal with the requirements for type constants. For each type

constant α, we need to choose an object A′
α in Sh(C + V0, J ∪ JV0), and a

mapping of Valα into the points of A′
α. Define for any other object c in C+V0
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different from V:

A′
α(c) = Aα(c),

and

A′
α(V) =

{
h : |V| → |A′

α|
∣∣ h constant

}
.

To show that A′
α is a sheaf, it is enough to show it satisfies separately the

sheaf conditions given by J and JV0 respectively. The conditions for J are

satisfied because A′
α agrees with Aα. The condition for JV0 (Definition 5.3.2)

is trivial. Moreover, A′
α is a concrete sheaf because Aα is concrete. Therefore,

from the assumptions there is a bijection:

|A′
α| = |Aα| ∼= Valα.

It remains to show that LM∪MV0
(A′

α) is LM∪MV0
-complete. Recall that

from Proposition 6.1.1, it is enough to show that LM∪MV0
(A′

α) is orthogonal

to the maps ωP ×y(c)→ ω×y(c) from the ambient presheaf category. As an

intermediate step we show that LM∪MV0
(A′

α) is orthogonal to ωP → ω. This

is the same strategy we followed for LM∪MV0
(Nat) in Section 6.3, and indeed

the proof for LM∪MV0
(A′

α) that follows subsumes that proofs of Lemmas 6.3.9

to 6.3.11 for LM∪MV0
(Nat).

Showing LM∪MV0
(A′

α) is orthogonal to ωP → ω. Recall the isomor-

phism ωP (⋆) ∼= N (Remark 6.3.1), so maps from ωP into a concrete presheaf

can be thought of as sequences of points of that presheaf.

Consider a map f : ωP → LM∪MV0
(A′

α). If we postcompose by

LM∪MV0
(!) : LM∪MV0

(A′
α)→ LM∪MV0

(1)

we know that
(
LM∪MV0

(!) ◦ f
)
: ωP → LM∪MV0

(1) ∼= ∆M∪MV0
is an infinite

monotone binary sequence, from Definition 6.3.2 and Lemma 6.3.3. If the se-

quence is always 0, then f⋆ is always ⊥, so its extension to ω → LM∪MV0
(A′

α)

is also always ⊥. (Recall from Remark 6.3.1 that ω(⋆) ∼= N+ {∞}.)
If the sequence becomes 1, then f⋆ is a sequence made of a finite number

of ⊥’s followed by values from |A′
α|. We show that in fact the value from
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|A′
α| must be constant, so f has an obvious extension to ω → LM∪MV0

(A′
α),

with the same value from |A′
α|.

Consider the map:

f ′ : ωP → A′
α

obtained from f by removing the ⊥’s from the beginning of the sequence.

We show that f ′
⋆ is constant.

Recall from Section 6.3.1 that the elements of ωP (V) are eventually 0

infinite chains of (M∪MV0)-subobjects of V. Alternatively, because ωP is

concrete, they can be regarded as functions |V| → ωP (⋆). From the defini-

tion of MV0 (Definition 5.3.4), we can see that ωP (V) contains exactly the

eventually constant monotone sequences valued in N.
By concreteness, the action of f ′

V on a function |V| → ωP (⋆) is given by

post-composition with f ′
⋆. Because A′

α(V) contains only constant functions

|V| → |A′
α|, it must be the case that f ′

⋆ is constant.

Showing that maps α : ωP×y(c)→ LM∪MV0
(A′

α) are increasing chains.

Recall that an element of LM∪MV0
(A′

α) (c) is an (M∪MV0)-subobject c
′ ↣ c

together with a function h : |c′| → |A′
α| in A′

α(c
′). Therefore by Yoneda, for

each n ∈ ωP (⋆), α(n,−) is given by a pair:

(
mn : cn ↣ c, gn : |cn| → |A′

α|
)
.

Consider the following composite map:

ωP × y(c)
α−→ LM∪MV0

(A′
α)

LM∪MV0
(!)

−−−−−−−→ LM∪MV0
(1) ∼= ∆M∪MV0

.

For each n ∈ ωP (⋆), it is given by the subobject mn : cn ↣ c. We already

proved in Lemma 6.3.6 that these subobjects must form an increasing chain

{mn : cn ↣ c}n∈N.
If we fix a point x ∈ |c|, then we proved in the previous paragraph that

the map α(−, x) : ωP → LM∪MV0
(A′

α) is a chain that is either constant ⊥ or

a finite number of ⊥’s followed by a constant value from |A′
α|. This means
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that each function gn+1 : |cn+1| → |A′
α| must extend the previous one:

∀x ∈ |cn|. gn+1(x) = gn(x).

Thus the map α : ωP × y(c) → LM∪MV0
(A′

α) is actually an increasing

chain of tuples, each consisting of an (M∪MV0)-subobject and a function

from A′
α(cn): (

mn : cn ↣ c, gn : |cn| → |A′
α|
)
n∈N.

Showing LM∪MV0
(A′

α) is orthogonal to ωP ×y(c)→ ω×y(c). To define

a candidate extension α for α : ωP × y(c)→ LM∪MV0
(A′

α), we only need to

choose a value for α(∞,−). Let this be given by the tuple:

(
m∞ : c∞ ↣ c, g∞ : |c∞| → |A′

α|
)

where m∞ is the subobject determined by the points |c∞| =
⋃
n∈N|cn|; m∞ is

in (M∪MV0) by assumption (3) in the definition of admissible monos. The

function g∞ is defined as
⋃
n∈N gn.

To show that g∞ is in A′
α(c∞) we use the fact that A′

α is a sheaf. From

assumption (4) for admissible monos, we know that the sieve obtained by

closing under precomposition with any map the set {mn : cn ↣ c∞}n∈N
contains a covering family of c∞. Therefore, we know from Proposition 2.1.11

that the sheaf condition must hold for the whole sieve as well. The set

{gn : cn → |A′
α|}n∈N is a matching family for {mn : cn ↣ c∞}n∈N and hence

for the whole sieve. The amalgamation of this matching family is g∞, so

because A′
α is a sheaf, g∞ must be in A′

α(c∞).

We need to show that the proposed extension α is natural. Let h be the

unique extension calculated in Lemma 6.3.7 of the composite:

ωP × y(c)
α−→ LM∪MV0

(A′
α)

LM∪MV0
(!)

−−−−−−−→ LM∪MV0
(1) ∼= ∆M∪MV0

.

So h is described by the increasing chain with sup {mn : cn ↣ c}n∈N∪{∞}.
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Then α⋆ factorizes as:

|ω| × |c|
⟨h⋆,id|c|◦π2⟩−−−−−−−→ |∆M∪MV0

| × |c| β⋆−→ |LM∪MV0
(A′

α)|

where β⋆ is defined to be:

β⋆(0, x) = ⊥

β⋆(1, x) =

g∞(x) if x ∈ |c∞|

⊥ if x ̸∈ |c∞|.

Therefore, it is enough to show that β⋆ determines a natural transformation.

For this, consider a pair (m : c′′ ↣ c′, f : c′ → c) from ∆M∪MV0
(c′) ×

Hom(c′, c). It gets mapped by β⋆ to the pair

(
X ↣ c′, (g∞ ◦ f)

∣∣
|X| : |X| → |A

′
α|
)
,

where X ↣ c′ is the subobject obtained in the following pullback diagram:

c′′ c′ c

X c∞

m f

z2 z1

m∞

Because admissible monos are closed under pullback and composition we

know that X ↣ c′ is in (M∪MV0). The map (g∞ ◦f)
∣∣
|X| is obtained by ap-

plying the functorial action of A′
α(z1 ◦z2) to g∞; the action is precomposition

because A′
α is concrete. Thus (g∞ ◦ f)

∣∣
|X| is in A

′
α(X).

Next, we show that α is the unique extension of α. For any x ∈ |c|, we
proved already that the map α(−, x) : ωP → LM∪MV0

(A′
α) has a unique

extension. But α(−, x) is an extension, therefore α must be unique. This

concludes the proof that LM∪MV0
(A′

α) is an LM∪MV0
-complete object.
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The last requirement from the definition of normal model is to find, for

each term constant f : (α1 × . . .× αn)→ β, a morphism

ϕ′
f : (A

′
α1
× . . .× A′

αn
)→ LM∪MV0

(A′
β)

that agrees on points with the corresponding partial function

f : (Valα1 × . . .× Valαn)⇀ Valβ.

Let (ϕ′
f )⋆ = (ϕf )⋆; we already know (ϕf )⋆ agrees with f .

We already know ϕf is a natural transformation, and that for any c ∈ C:

LM∪MV0
(A′

β)(c) = LM(Aβ)(c),

so we only need to check that (ϕf )⋆ sends, by post-composition, elements

of A′
α1
(V) × . . . × A′

αn
(V) to elements of LM∪MV0

(A′
β)(V). From Proposi-

tion 5.1.8 and the fact that A′
β is concrete, we can see that LM∪MV0

(A′
β)(V)

contains functions |V| → |A′
β| ⊎ {⊥}, which are either constant ⊥ or a finite

number of ⊥’s followed by a value from |A′
β|. Because A′

α1
(V)× . . .×A′

αn
(V)

contains only constant functions |V| → |A′
α1
| × . . .× |A′

αn
| we are done.

The interpretation in the Sh(C + V0, J ∪ JV0) model of PCFv with new

type constants is the one described in Section 4.3, where the lifting monad

is LM∪MV0
. From Theorem 4.3.5, we know that this interpretation is sound.

We know from Proposition 4.3.4 that for any PCFv type τ , its (lifted) inter-

pretation LM∪MV0
JτK is an LM∪MV0

-complete object.

We can prove further that every type is interpreted as a concrete sheaf in

Sh(C + V0, J ∪ JV0). Therefore, we will sometimes (e.g in Section 7.2) refer

to the normal model from Theorem 7.1.1 as the model in the category of

concrete sheaves Conc(C+ V0, J ∪ JV0).

Proposition 7.1.2. Under the assumption in Theorem 7.1.1, in the normal

model Sh(C+V0, J ∪JV0), the sheaf JτK interpreting a PCFv type is concrete.
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Proof. The base type nat is interpreted as the infinite coproduct
∐

N 1. In Re-

mark 5.2.7 we described this explicitly as:

JnatK(⋆) = N

JnatK(c) = {f : |c| → N | f locally constant on a cover of c}.

So we can immediately see that JnatK is concrete. The initial and terminal

objects 0 and 1 are also concrete.

The type constants are interpreted as JαK = A′
α, where A′

α was con-

structed in the proof of Theorem 7.1.1 to be concrete.

We know from Proposition 5.2.5 that the lifting monad LM∪MV0
preserves

concreteness . It is a standard fact that concreteness is preserved by product

and coproduct, and that concrete sheaves are an exponential ideal (Proposi-

tion 2.1.9). Therefore, all PCFv types must be concrete.

Because types are concrete sheaves, they admit an explicit description

in terms of sets and relations, which is shown in Figure 7.1. The lifting

monad LM∪MV0
also has an explicit description, as in Figure 7.2, obtained

using Proposition 5.1.8. The strong monad structure at ⋆ is the same as that

of the lifting monad on Set.

Theorem 7.1.3 (Adequacy). Under the assumptions in Theorem 7.1.1, the

normal model Sh(C+V0, J ∪ JV0) (or Conc(C+V0, J ∪ JV0)) is an adequate

model for PCFv with type and term constants.

More precisely, if τ is a ground type (0, 1, nat or α), and t is a closed

computation of type τ , ⊢c t : τ , then

JtK = ηJτK ◦ JvK : 1→ LM∪MV0
JτK

implies that t reduces to v, t ⇓ v.

Remark 7.1.4. For ground types, adequacy implies that if t diverges, then

JtK corresponds to ⊥ from |LM∪MV0
JτK|. This is because of concreteness and

the fact that LM∪MV0
only adds a ⊥ element to the underlying set of each

ground type.
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|J1K| ∼= 1 J1K(c) ∼= 1

|J0K| = ∅ J0K(c ̸= 0) = ∅ J0K(0) ∼= 1

|JnatK| = N

JnatK(c) =
{
f : |c| → N

∣∣ ∃ {gi : ci → c}i∈I ∈ (J ∪ JV0)(c)

s.t. each f ◦ gi is constant
}

|JαK| ∼= Valα JαK(c′ ̸= V) = (Aα)(c
′)

JαK(V) =
{
h : |V| → Valα

∣∣ h constant
}

|Jτ → τ ′K| = Sh(JτK, LM∪MV0
Jτ ′K)

Jτ → τ ′K(c) =
{
f : |c| → Sh(JτK, LM∪MV0

Jτ ′K)
∣∣

∀h : d→ c ∈ (C+ V0), ∀g : |d| → |JτK| ∈ JτK(d).

λx ∈ |d|.
(
f(h(x)) g(x)

)
∈ LM∪MV0

Jτ ′K(d)
}

|Jτ × τ ′K| = |JτK| × |Jτ ′K|

Jτ × τ ′K(c) =
{
⟨f, g⟩ : |c| → |JτK| × |Jτ ′K|

∣∣ f ∈ JτK(c), g ∈ Jτ ′K(c)
}

|Jτ + τ ′K| = |JτK|+ |Jτ ′K|

Jτ + τ ′K(c) =
{
f : |c| → |JτK|+ |Jτ ′K|

∣∣ ∃{gi : ci → c}i∈I ∈ (J ∪ JV0)(c)

s.t. for each i, (f ◦ gi) ∈ JτK(ci) or (f ◦ gi) ∈ Jτ ′K(ci)
}

Figure 7.1: Explicit description of the interpretation of PCFv in the
category Sh(C+ V0, J ∪ JV0), where c is any object in C+ V0.
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|LM∪MV0
JτK| = |JτK| ⊎ {⊥}

(LM∪MV0
JτK)(c) =

{
g : |c| → |JτK| ⊎ {⊥}

∣∣ ∃c′ ↣ c ∈ (M∪MV0) s.t.

g−1(|JτK|) = Im(|c′|) and g|Im(|c′|) ∈ JτK(c′)
}
.

|ηJτK| : |JτK| → |LM∪MV0
JτK|

|ηJτK|(x) = x

|µJτK| : |L2
M∪MV0

JτK| → |LM∪MV0
JτK|

|µJτK|(x) = x |µJτK|(⊥1) = |µJτK|(⊥2) = ⊥

|strJτK,JσK| : |JτK| × |LM∪MV0
JσK| → |LM∪MV0

(JτK× JσK)|

|strJσK,JτK|(x, y) = (x, y), |strJσK,JτK|(x,⊥) = ⊥

Figure 7.2: Explicit description of the lifting monad on the interpretation of
PCFv types in Sh(C+ V0, J ∪ JV0).
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Example 7.1.5. The category Sh(V0, JV0) (defined in Section 5.3) is a nor-

mal model for PCFv without type constants obtained via the recipe in The-

orem 7.1.1 in a trivial way. To satisfy the premises of the theorem, we can

choose a trivial concrete site with an initial and terminal object only.

From Theorem 7.1.3 we can deduce that the Sh(V0, JV0) model is an

adequate model of PCFv without any type constants. Since Sh(V0, JV0) is

equivalent to the vSet model, defined in Section 4.4, vSet is also an adequate

model of PCFv. This is not surprising since we showed in Proposition 4.4.10

that the vSet model is essentially the traditional ωCPO model.

7.2 Examples of concrete sheaf models

In this section, we consider three examples of normal models which are al-

ready known and explain how they can each be seen as an instance of our

recipe from Theorem 7.1.1 of constructing normal models. The three exam-

ples are:

� the category of ω-quasi-Borel spaces, ωQbs [VKS19, HKSY17], a model

of probabilistic programming;

� the category of ω-diffeological spaces, ωDiff [HSV20, Vák20], a model

of differentiable programming;

� the category of ωPAP spaces [LHM21], a variation on ω-diffeological

spaces allowing some non-smoothness.

In all cases we consider the interpretation of PCFv with the additional type

constant real and appropriate term constants, as discussed in Example 4.2.1.

In each case, we prove that there is an embedding of the original model

into a category of concrete sheaves generated using our recipe (Proposi-

tions 7.2.9, 7.2.18 and 7.2.28). Therefore, we can deduce soundness and

adequacy for PCFv with real in the three original models via Theorem 4.3.5

and Theorem 7.1.3 respectively.

In all examples, the language being modelled is actually richer than PCFv

with real, so the models have additional structure that we do not discuss,
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such as a probability monad on ω-quasi-Borel spaces, or an AD macro in the

case of ω-diffeological spaces. Instead, our aim is to show that these three

examples all model higher-order recursion in essentially the same way.

7.2.1 ω-quasi-Borel spaces

We sketch how the category of ω-quasi-Borel spaces [VKS19, HKSY17], a

model for probabilistic computation, is an instance of our recipe for building

normal models from Theorem 7.1.1. The category of ω-quasi-Borel spaces

was introduced to model the combination of higher-order recursive programs

and programs that can express continuous distributions over types.

Definition 7.2.1. The concrete site (Sbs, JSbs) consists of the category of

standard Borel spaces, Sbs (e.g. [Kal02, Appendix A1]), which has objects

the Borel subsets of R and morphisms all measurable functions between them.

For each Borel subset U , the coverage JSbs(U) is made up of the countable

sets of measurable inclusion functions

{Ui ↪→ U}i∈I

such that U =
⋃
i∈I Ui and the Ui’s are disjoint.

Proposition 7.2.2. The pair (Sbs, JSbs) is indeed a concrete site with an

initial object covered by the empty set, and satisfies axioms (M) and (L) (Re-

mark 2.1.2) as well.

Proof. To prove the main coverage axiom consider a covering family {Ui}i∈I
of U and a measurable function f : V → U . The pullback of each :

Ui ↪→ U with f is f−1(Ui), as each f
−1(Ui) is a measurable subset of V , so

{f−1(U1), . . . , f
−1(Un)} is a covering family of V , where each f−1(Ui) → V

factors through Ui ↪→ U .

Axiom (M) is satisfied because {U ↪→ U} is a covering family of U .

Axiom (L) follows from the fact that composing measurable inclusions gives

a measurable inclusion. The initial object in Sbs is the empty set ∅ and so

it is indeed covered by the empty family.
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To prove that (Sbs, JSbs) is concrete notice that the terminal object is the

singleton set 1. It is easy to see that maps of the form Sbs(V, U)→ Set(V, U)

are injective because Sbs morphisms are functions. For every covering family

{Ui}i∈I of U the map ∐
i∈I

Sbs(1, Ui)→ Sbs(1, U)

is surjective because
⋃
i∈I Ui = U .

Definition 7.2.3. LetMSbs be the class of all monomorphisms in (Sbs, JSbs).

In fact, all monos in Sbs map Borel sets to Borel sets, so they are all

isomorphic to an inclusion. Therefore, we will treat any mono as an inclusion.

Proposition 7.2.4. The classMSbs is a class of admissible monos.

Proof. One can check that MSbs contains all isomorphisms and is closed

under composition. Pullbacks of monos are again monos soMSbs is a stable

class.

Denote by ∆Sbs the presheaf obtained from MSbs. To show ∆Sbs is a

sheaf for JSbs consider a covering family {Ui}i∈I of U , and a family of monos

{U ′
i ↣ Ui}i∈I . Assuming U ′

i is a Borel subset of Ui, then
⋃
i∈I U

′
i is also

a Borel subset, because they are closed under countable union. The mono⋃
i∈I U

′
i ↣ U is the unique amalgamation that we need.

It remains to check the conditions in Definition 6.2.1 for a class of admis-

sible monos. Every map ∅ → U is a mono so is part ofMSbs.

The map ∆Sbs(U)→ [U → ∆Sbs(⋆)] is an injection because ∆Sbs(⋆) has

exactly two elements and ∆Sbs(U) contains the Borel subsets of U . Hence

∆Sbs is concrete.

For the third condition, consider a countable chain of Borel subsets (Un ↪→
U)n∈N ∈MSbs. Then the union

⋃
n∈N Un is also a Borel subset. For the fourth

condition, notice that because Borel subsets are closed under complement the

following set is a cover of
⋃
n∈N Un:

{U0} ∪ {Ui+1 \ Ui | i ∈ N}.
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These subsets are part of the closure under precomposition of the set {Ui ↪→⋃
n∈N Un | i ∈ N}, as required.

Recall the type real from Example 4.2.1, with Valreal ∼= R, which we add

to PCFv in the ω-quasi-Borel spaces case.

Definition 7.2.5. Define the interpretation of the type constant real in the

category of sheaves Sh(Sbs, JSbs) to be:

Areal
∼= y(R).

For each term constant f : realn → real, corresponding to a measurable

function Rn → R, let

ϕf : (Areal × . . .× Areal)→ LMSbs
(Areal)

be given at ⋆ by this measurable function.

Proposition 7.2.6. The interpretation of real from Definition 7.2.5, given by

Areal and ϕf , satisfies the assumptions for type and term constants from The-

orem 7.1.1.

Proof. First of all, the representable y(R) is a concrete sheaf because y(R)(U)
contains all measurable functions U → R. Therefore ϕf is uniquely deter-

mined by its component at ⋆ and it is a morphism of concrete sheaves because

measurable functions are closed under composition. Moreover, we have iso-

morphisms:

|Areal| ∼= |y(R)| ∼= R ∼= Valreal

so all the assumptions in Theorem 7.1.1 are satisfied.

Proposition 7.2.7. The category Sh(Sbs+V0, JSbs∪JV0) is a normal model

of PCFv with real, obtained using the recipe from Theorem 7.1.1. The inter-

pretation of the language is contained in the subcategory of concrete sheaves

Conc(Sbs+ V0, JSbs ∪ JV0),
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Proof. Combining the results from Propositions 7.2.2, 7.2.4 and 7.2.6 we

see that the site (Sbs, JSbs), with the class of monos MSbs and the inter-

pretation of real from Definition 7.2.5, satisfies all the assumptions of The-

orem 7.1.1. We proved in Proposition 7.1.2 that in any model obtained

from Theorem 7.1.1, the interpretation actually lives in the subcategory of

concrete sheaves.

Recall from Figure 7.1 that in the Conc(Sbs+V0, JSbs ∪ JV0) model the

type JrealK at V contains only the constant functions |V| → R. This is

analogous to giving R the discrete ordering, if we were to use cpo-valued

sheaves instead of the vertical natural numbers site.

Proposition 7.2.9 makes precise the idea that the model of PCFv in ωQbs

is the same as the Conc(Sbs+V0, JSbs∪JV0) model, and therefore an example

of Theorem 7.1.1. We first recall the definition of ωQbs and of a lifting monad

L on ωQbs from [VKS19, Section 3].

Definition 7.2.8 ([VKS19]). A quasi-Borel space (qbs) X = (|X|,MX) con-

sists of a set |X| and a set of functions MX ⊆ [R → |X|] called random

elements, such that:

1. all constant functions are in MX ;

2. MX is closed under precomposition with measurable functions on R;

3. if R =
⋃
n∈N Un, where Un are pairwise disjoint and Borel measurable,

and (αn : R → |X|) ∈ MX for all n, then the co-pairing [αn|Un ]n∈N is

in MX .

A morphism f : X → Y between quasi-Borel spaces is a structure-preserving

function f : |X| → |Y |: if α ∈ MX then (f ◦ α) ∈ MY . Denote by Qbs the

category of qbses and their morphisms.

An ω-quasi-Borel space (ωqbs) X is a triple X = (|X|,MX ,≤X) where

(|X|,MX) is a qbs and (|X|,≤X) is an ωcpo, and MX , endowed with the

pointwise order, is closed under pointwise sups of ω-chains. A morphism

f : X → Y between ωqbses is a Scott-continuous function between their
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underlying ωcpos that is also a Qbs morphism between their underlying

qbses. Denote by ωQbs the category of ωqbses and their morphisms.

A lifting monad L on ωQbs is defined on objects to be

LX = (|LX|,MLX ,≤LX)

where:

|LX| = |X|+ {⊥}

MLX =
{
β : R→ |X|+ {⊥}

∣∣ U = β−1(|X|) is a Borel subset of R

and there exists α ∈MX such that α|U = β|U
}

and the order ≤LX extends the order on |X| by making ⊥ the bottom element

of |LX|.
For morphisms f : X → Y , Lf maps⊥ to⊥. The strong monad structure

of L is given by underlying functions between sets that act like those for the

(−) + 1 monad on Set.

Proposition 7.2.9. There is a functor F : ωQbs→ Conc(Sbs+V0, JSbs ∪
JV0) which is full, faithful, preserves products, coproducts and exponentials,

and commutes with the lifting monad:

FL = LMSbs∪MV0
F

ωQbs Conc(Sbs+ V0, JSbs ∪ JV0)
F

L
LMSbs∪MV0

Moreover, for every ωQbs object X, FX is a LMSbs∪MV0
-complete sheaf,

and F commutes with the interpretation of PCFv (with the type constant real)

in ωQbs and in Conc(Sbs+ V0, JSbs ∪ JV0).

Proof. We sketch the definition of the functor F and omit the proof that it

satisfies all the properties above. Consider an ωQbs object X with underly-

ing ωcpo structure |X| and random elements MX ⊆ [R→ |X|].

159



If |X| is non-empty, define the concrete sheaf FX at an object U in Sbs

to be:

FX(U) =
{
f : U → |X|

∣∣ ∃g ∈MX . g|U = f
}
.

At V, F is defined as:

FX(V) =
{
f : |V| → |X|

∣∣ f is an ω chain from |X| with its sup
}
.

If |X| is empty the definition of F is almost the same except we choose

FX(∅) ∼= 1. The action of a map FX(g : V → U) is precomposition.

When checking that F commutes with the interpretation of PCFv types,

the most interesting part is to check that it preserves fixed points. This can

be done the same way as in the proof that the ωCPO model embeds into the

vSet model (Proposition 4.4.10).

It is worth mentioning that there are other sites which give rise to a cate-

gory of sheaves equivalent to ωQbs. For example, we could consider the one

object category of the real numbers and all its measurable endomorphisms,

and a suitable coverage. However, this would not be a concrete site, and so

it would not immediately fit into our recipe of generating a normal model.

The role of the coverage JSbs from Definition 7.2.1 is to ensure that, for

example, given a measurable subset U of R, the coproduct
(
U+(R\U)

) ∼= R
is preserved when passing from Sbs to sheaves via the sheafified Yoneda

embedding ay (see Proposition 2.1.5). We would like such coproducts to be

preserved so that ay(R) has suitable structure for interpreting the type real.

The idea of using sheaf conditions to preserve colimits, that are then used

to interpret datatypes, goes back to Fiore and Simpson [FS99], who studied

full definability for a typed lambda-calculus with sums. The sheaf conditions

in the ω-diffeological spaces and ωPAP examples will play a similar role.

7.2.2 ω-diffeological spaces

We show how the category of ω-diffeological spaces [HSV20, Vák20], a model

of differentiable programming, is an instance of our recipe for building nor-

mal models (Theorem 7.1.1). This model was introduced in order to prove
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correctness of automatic differentiation methods on higher-order languages

with recursion.

Definition 7.2.10. Consider the site (Cart, JCart) where the objects of

Cart are the open subsets U ⊆ Rn for any n ∈ N, and the morphisms are

smooth maps between these open subsets. The coverage at an object U ,

JCart(U), contains all the countable sets of inclusion functions {Ui ↪→ U}i∈I
such that

U =
⋃
i∈I

Ui.

Proposition 7.2.11. The pair (Cart, JCart) is a concrete site with an ini-

tial object covered by the empty set, satisfying the (M) and (L) axioms (Re-

mark 2.1.2).

Proof. For the main coverage axiom consider a covering family {Ui}i∈I of

U and a smooth map f : V → U . The pullback of Ui ↪→ U along f is

f−1(Ui). Then {f−1(Ui)}i∈I covers V and that each f−1(Ui) factors through

Ui. Axioms (M) and (L) are satisfied because {U ↪→ U} is a cover and we

can compose inclusion functions.

In Cart, every object ∅ ⊆ Rn is an initial object, all isomorphic to each

other; they are all covered by the empty family according to Definition 7.2.10.

The terminal is the singleton set R0 ⊆ R0. The category Cart is well-pointed

and every covering family of U contains all the points of U , so the pair

(Cart, JCart) is a concrete site.

Definition 7.2.12. Let MCart be the class of monomorphisms in the site

(Cart, JCart) defined as:

MCart(U) = {m : U ′ ↣ U | m isomorphic to an open inclusion}.

Proposition 7.2.13. The classMCart is a class of admissible monos.

Proof. We can check that MCart is a stable system of monos, according

to Definition 2.4.1.

Let ∆Cart be the presheaf obtained fromMCart. To show ∆Cart is a sheaf,

consider a covering family {Ui}i∈I of U and a matching family {Vi ↪→ Ui}i∈I

161



for it. Notice that the Ui’s do not have to be disjoint, but they cover all of

U . The candidate amalgamation is

(
V =

⋃
i∈I

Vi
)
↪→ U,

which is an open set because it is the union of open subsets. When we pull

back V ↪→ U along Ui ↪→ U we get Vi thanks to the matching condition.

The proof that MCart satisfies the conditions of a class of admissible

monos is similar to the proof forMSbs from Proposition 7.2.4. One difference

is that when proving the fourth condition, given an increasing chain (Un ↪→
U)n∈N ∈ MCart, the covering family we choose for

⋃
n∈N Un is {Un | n ∈

N}.

Definition 7.2.14. Recall the type constant real from Example 4.2.1, with

Valreal ∼= R. Define the interpretation of real in the category of sheaves

Sh(Cart, JCart) to be:

Areal
∼= y(R).

For each term constant f : realn → real, corresponding to a smooth function

Rn → R, let
ϕf : (Areal × . . .× Areal)→ LMCart

(Areal)

be given at ⋆ by this smooth function.

Proposition 7.2.15. The interpretation of real from Definition 7.2.14 sat-

isfies the assumptions for type and term constants from Theorem 7.1.1.

Proof. The representable y(R) is a concrete sheaf because y(R)(U) contains
all smooth maps U → R. Therefore ϕf is uniquely determined by its com-

ponent at ⋆ and is a morphism of concrete sheaves. Moreover, we have an

isomorphism:

|Areal| ∼= Valreal

so all the assumptions in Theorem 7.1.1 are satisfied.

Proposition 7.2.16. The category Sh(Cart + V0, JCart ∪ JV0) is a normal

model of PCFv with real, obtained using the recipe from Theorem 7.1.1. The
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interpretation of the language is contained in the subcategory of concrete

sheaves Conc(Cart+ V0, JCart ∪ JV0).

Proof. By combining Propositions 7.2.11, 7.2.13 and 7.2.15, and finally us-

ing Proposition 7.1.2 for concreteness.

From Figure 7.1, we know that in the Conc(Cart+V0, JCart∪JV0) model,

the sheaf JrealK at V contains only the constant functions |V| → R, which is

analogous to equipping R with the discrete ordering.

Proposition 7.2.18 states that the model of PCFv in ωDiff is essentially

the same as the model in Conc(Cart+V0, JCart∪JV0), and thus is an example

of our recipe for building normal models (Theorem 7.1.1). First, we recall

the definition of ωDiff and the lifting monad L on it from [Vák20].

Definition 7.2.17 ([Vák20]). A diffeological space X = (|X|,PX) is a set

|X| together with, for each n ∈ N and each open subset U of Rn, a set of

functions PUX ⊆ [U → |X|] called plots, such that:

1. all constant functions are in PUX ;

2. if f : V → U is a smooth function and p ∈ PUX , then p ◦ f ∈ PVX ;

3. if
(
pi ∈ PUi

X

)
i∈I is a compatible family, meaning that

(
x ∈ Ui ∩Uj =⇒

pi(x) = pj(x)
)
, and U =

⋃
i∈I Ui, then the function p : U → |X|,

p(x ∈ Ui) = pi(x) is in PUX .

A morphism f : X → Y between diffeological spaces is a function f : |X| →
|Y | which preserves the structure: for all plots p in PUX , the composite f ◦
p is in PUY . Denote by Diff the category of diffeological spaces and their

morphisms.

An ω-diffeological space (ω-ds) is a triple X = (|X|,PX ,≤X) such that

(|X|,PX) is a diffeological space and (|X|,≤X) is an ωcpo, satisfying the

additional condition that, for any ω-chain
(
αi ∈ PUX

)
i∈N in the pointwise

order, its pointwise sup is in PUX . A morphism f : X → Y between ω-dses

is a function f : |X| → |Y | which is Scott-continuous and is a morphism of

diffeological spaces. Denote by ωDiff the category of ω-dses and morphisms

between them.
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A lifting monad L on ωDiff can be defined as follows. For an ω-ds X, let

LX have underlying ωcpo structure (|X| + {⊥},≤LX), where ≤LX extends

the order ≤X by making ⊥ the bottom element. The underlying diffeological

space structure (|X|+ {⊥},PLX) of LX is defined as:

PULX =
{
α : U → |X|+ {⊥}

∣∣ V = α−1(|X|) is an open subset of U

and α|V ∈ PVX
}
.

The strong monad structure of L is the same as that of the (−) + 1 monad

on Set.

Proposition 7.2.18. There is a functor F : ωDiff → Conc(Cart+V0, JCart∪
JV0) which is full, faithful, preserves products, coproducts and exponentials,

and commutes with the lifting monad:

FL = LMCart∪MV0
F

ωDiff Conc(Cart+ V0, JCart ∪ JV0)
F

L
LMCart∪MV0

Moreover, for every ωDiff object X, FX is a LMCart∪MV0
-complete sheaf,

and F commutes with the interpretation of PCFv (with the type constant real)

in ωDiff and in Conc(Cart+ V0, JCart ∪ JV0).

Proof. Again, we only sketch the definition of F and omit the other details.

An object X in ωDiff comes with an underlying ωcpo |X| and a set of plots

PU
X ⊆ [U → |X|] for each open subset U of each Rn. Therefore we can define

F to be:

FX(U) = PU
X .

The definition of FX(V) is similar to the ωQbs case (Proposition 7.2.9).
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7.2.3 ωPAP spaces

The category of ωPAP spaces is a variation of ω-diffeological spaces, pro-

posed in [LHM21] to allow a certain degree of non-smoothness to be mod-

elled. Some non-smoothness is desirable to accommodate programs that are

not differentiable but widely used, like the ReLU function used in neural net-

works, f(x) = max(0, x), or an if-then-else construct. The category of ωPAP

spaces can also be seen as extending the work in [LYRY20] from first-order

to higher-order programs; [LYRY20] were the first to introduce the notion of

PAP function.

We now sketch how ωPAP spaces are an instance of our recipe for build-

ing normal models (Theorem 7.1.1).

Definition 7.2.19. Define the site (PAP, JPAP) to have as objects c-analytic

subsets U ⊆ Rn, for any n ∈ N. A c-analytic subset is a countable union of

analytic subsets. An analytic set is a subset of an open set carved out using

a finite number of analytic inequalities [LHM21]. Stated differently, analytic

sets are obtained by closing under finite intersections the following sets:

{x ∈ U | f(x) ≤ 0 for some analytic f : U → R}.

Notice that this includes open subsets.

Morphisms in PAP are functions f : V → U between c-analytic sets,

meaning that the domain V has a disjoint partition of analytic subsets

{Ai}i∈I and each f |Ai
is analytic [LYRY20, LHM21].

The coverage JPAP(U) is defined to contain the countable sets of (PAP)

inclusions {Ai ↪→ U}i∈I such that U =
⋃
i∈I Ai and the Ai’s are disjoint

c-analytic sets.

Remark 7.2.20. It can be shown that any c-analytic set is covered by a

disjoint partition of analytic subsets [LH21]. Therefore, any inclusion Ai ↪→
U of c-analytic sets is PAP.

Proposition 7.2.21. The pair (PAP, JPAP) is a concrete site with an ini-

tial object covered by the empty set, satisfying the (M) and (L) axioms (Re-

mark 2.1.2).
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Proof. For the main coverage axiom consider a cover {Ai ↪→ U}i∈I of U ,

where the Ai’s are c-analytic, and consider a PAP function f : V → U .

Because f is a co-pairing of analytic functions, and analytic functions pull

back analytic subsets to analytic subsets, then f−1(Ai) is the union of analytic

subsets, and hence is c-analytic. So the cover of V that we are looking for is

{f−1(Ai)}i∈I . The function f−1(Ai)→ Ai isPAP because it is the restriction

of f to a c-analytic subset.

Axioms (M) and (L) are easy to check.

Both the empty set ∅ ⊆ Rn, for any n, and the singleton R0 ⊆ R0

are c-analytic subsets, so they are the initial and terminal object respec-

tively. Notice that the empty set is covered by the empty family. Showing

that (PAP, JPAP) is a concrete site is then done similarly to the ωQbs

case (Proposition 7.2.2).

Definition 7.2.22. LetMPAP be the class of monos in (PAP, JPAP) where:

MPAP(U) = {m : U ′ ↣ U | U ′ c-analytic, m isomorphic to an inclusion}.

Proposition 7.2.23. The classMPAP is a class of admissible monos.

Proof. Like in the ωQbs and ωDiff cases, one can check that MPAP is a

stable system of monos. Let ∆PAP be the presheaf obtained from MPAP.

Showing the sheaf condition holds for ∆PAP is similar to the ωQbs case,

using the fact that c-analytic sets are closed under countable unions.

We omit the proof thatMPAP satisfies the first three conditions needed

for it to be a class of admissible monos. To show the fourth condition,

given an increasing chain of monos (Un ↪→ U)n∈N from MPAP, the cover

of
⋃
n∈N Un that we need to consider is the one from Remark 7.2.20 i.e. the

disjoint partition by analytic subsets that every c-analytic set admits.

Definition 7.2.24. Recall the type constant real from Example 4.2.1, with

Valreal ∼= R. Define the interpretation of real in the category of sheaves

Sh(PAP, JPAP) to be:

Areal
∼= y(R).
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For each term constant f : realn → real, corresponding to a PAP function

Rn → R, let
ϕf : (Areal × . . .× Areal)→ LMPAP

(Areal)

be given at ⋆ by this PAP function.

Proposition 7.2.25. The interpretation of real from Definition 7.2.24 sat-

isfies the assumptions for type and term constants from Theorem 7.1.1.

Proof. The proof is similar to the ωQbs case (Proposition 7.2.6). It is enough

to notice that y(R) is a sheaf and is concrete, and that |Areal| ∼= Valreal.

Proposition 7.2.26. The category Sh(PAP + V0, JPAP ∪ JV0) is a normal

model of PCFv with real, obtained using the recipe from Theorem 7.1.1. The

interpretation of the language is contained in the subcategory of concrete

sheaves Conc(PAP+ V0, JPAP ∪ JV0).

Proof. By combining Propositions 7.2.21, 7.2.23 and 7.2.25, and finally us-

ing Proposition 7.1.2 for concreteness.

From Figure 7.1, we know that in the Conc(PAP+V0, JPAP∪JV0) model,

the sheaf JrealK at V contains only the constant functions |V| → R, equipping
R with the discrete ordering.

As we did in the ωQbs and ωDiff cases, we can now state (Proposi-

tion 7.2.28) that the model of PCFv in the category ωPAP [LHM21] is es-

sentially the Conc(PAP+V0, JPAP ∪ JV0) model, and therefore an instance

of our recipe for building normal models (Theorem 7.1.1). First, we recall

the definition of ωPAP from [LHM21] and of the lifting monad L on ωPAP

used there.

Definition 7.2.27 ([LHM21]). An ω-pap space X = (|X|,PX ,≤X) is a

triple where |X| is a set, (|X|,≤X) is an ω-cpo and, for each n ∈ N and each

c-analytic subset U of Rn, PUX ⊆ [U → |X|] is a set of functions such that:

1. all constant functions are in PUX ;

2. for any c-analytic set V ⊆ Rm, and any PAP morphism f : V → U , if

ϕ is in PUX , then the composite ϕ ◦ f is in PVX ;
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3. if {Ai}i∈I is a countable disjoint c-analytic partition of U , and given(
ϕi ∈ PAi

X

)
i∈I , the co-pairing [ϕi]i∈I : U → |X| is in PUX ;

4. given an ω-chain in PUX with respect to the pointwise order, its pointwise

sup is in PUX .

A morphism f : X → Y between ω-pap spaces is a function f : |X| → |Y |
which is Scott-continuous and structure-preserving: if ϕ ∈ PUX , then f ◦ ϕ ∈
PUY . Denote by ωPAP the category of ω-pap spaces and morphisms between

them.

To define a lifting monad L on ωPAP, let LX have underlying ω-cpo

(|X| + {⊥},≤LX) where ≤LX extends the order on |X| by adding ⊥ as the

bottom element. For each c-analytic subset U , PULX is defined as:

PULX =
{
α : U → |X|+ {⊥}

∣∣ V = α−1(|X|) is a c-analytic subset of U

and α|V ∈ PVX
}
.

The strong monad structure of L is the same as that for the (−) + 1 monad

on Set.

Proposition 7.2.28. There is a functor F : ωPAP→ Conc(PAP+V0, JPAP∪
JV0) which is full, faithful, preserves products, coproducts and exponentials,

and commutes with the lifting monad:

FL = LMPAP∪MV0
F

ωPAP Conc(PAP+ V0, JPAP ∪ JV0)
F

L
LMPAP∪MV0

Moreover, for every ωPAP object X, FX is a LMPAP∪MV0
-complete

sheaf, and F commutes with the interpretation of PCFv (with the type con-

stant real) in ωPAP and in Conc(PAP+ V0, JPAP ∪ JV0).

Proof notes. The functor F is constructed exactly like in the ωDiff case (Propo-

sition 7.2.18). We omit the details.
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7.3 Proving adequacy (Theorem 7.1.3)

From Section 7.1, it remains to prove that the model in Sh(C+V0, J ∪ JV0)

is adequate with respect to the operational semantics of PCFv:

Theorem 7.1.3 (Adequacy). Under the assumptions in Theorem 7.1.1, the

normal model Sh(C+V0, J ∪ JV0) (or Conc(C+V0, J ∪ JV0)) is an adequate

model for PCFv with type and term constants.

More precisely, if τ is a ground type (0, 1, nat or α), and t is a closed

computation of type τ , ⊢c t : τ , then

JtK = ηJτK ◦ JvK : 1→ LM∪MV0
JτK

implies that t reduces to v, t ⇓ v.

We proved in Proposition 7.1.2 that every type is interpreted as a concrete

sheaf. This means that morphisms between types are determined by their

underlying function at the terminal ⋆. We have also seen in Figure 7.1 that

at ⋆, the denotation of types has the same structure as in Set or ωCPO,

e.g. |Jτ + τ ′K| = |JτK|+ |Jτ ′K|, |LM∪MV0
JτK| = |JτK|+ {⊥}.

Using these observations, we prove adequacy using a logical relations

approach, similar to the usual proof of adequacy for the traditional ωCPO

model (e.g. [Win93, Lemma 11.14]). One difference is that, for us, the logical

relation deals with the underlying sets of concrete sheaves, rather than with

cpos. Another difference appears in the proof of the fundamental property,

where we have to deal with fixed points constructed by Corollary 3.2.5, rather

than by Tarski’s fixed point theorem.

Denote by Valτ the set of all closed values of type τ and similarly by

Compτ the set of closed computations. Recall from Section 4.2.1 that for

type constants α, there is a new value constant for each element of Valα.

Therefore, we get an isomorphism:

Valα ∼= Valα ∼= |JαK|.
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◁vnat = {(n, n) | n ∈ N}

◁v1 = {(∗, ⋆)}

◁v0 = ∅

◁vα = {(u, u) | u ∈ Valα}

◁vτ×τ ′ = {(d, v)
∣∣ ∃v1, v2. v = (v1, v2) and

π1(d) ◁
c
τ (return v1) and π2(d) ◁

c
τ ′ (return v2)}

◁vτ+τ ′ = {(d, v)
∣∣ either d = inl a, v = inlw and a ◁vτ w,

or d = inr a, v = inrw and a ◁vτ ′ w}

◁vτ→τ ′ =
{
(d, v)

∣∣ ∀a ∈ |JτK|, w ∈ Valτ . a ◁
v
τ w =⇒ (d a) ◁cτ ′ (v w)

}
◁cτ =

{
(d, t)

∣∣ ∀d′ ∈ |JτK|. (d = (ηJτK)⋆(d
′) =⇒ ∃w. t ⇓ w and d′ ◁vτ w

)}
.

Figure 7.3: Definition of the logical relation for adequacy.

Definition 7.3.1. Define a logical relation

◁vτ ⊆ |JτK| × Valτ

◁cτ ⊆ |LM∪MV0
JτK| × Compτ

between the underlying set of each type and the sets of terms as shown

in Figure 7.3.

In the definition of ◁cτ in Figure 7.3, recall that (ηJτK)⋆ is a function of

type |JτK| → |LM∪MV0
JτK|.

Consider a typing context Γ = x1 : τ1, . . . xn : τn. Denote by ValΓ the set

of closed values that the variables in Γ can take:

ValΓ = Valτ1 × . . .× Valτn .

Recall that JΓK = Jτ1K× . . .× JτnK. Then we can extend the logical relation
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to Γ as:

◁vΓ ⊆ |JΓK| × ValΓ

◁vΓ = ◁vτ1 × . . .× ◁
v
τn .

If σ ∈ ValΓ and Γ ⊢v v : τ is a value, we denote by v[σ] the closed value

obtained by substituting in v the values from σ.

We will prove the fundamental property of the logical relation which states

that, given related contexts, every term is related to its denotation:

Lemma 7.3.2 (Fundamental property). For any ρ ∈ |JΓK| and σ ∈ ValΓ:

� For values: ρ ◁vΓ σ =⇒ JΓ ⊢v v : τK⋆(ρ) ◁vτ v[σ];

� For computations: ρ ◁vΓ σ =⇒ JΓ ⊢c t : τK⋆(ρ) ◁cτ t[σ].

Using the fundamental property we can prove adequacy. Consider each

ground type in turn. For type nat, assume there is a value − ⊢v v : nat such

that JtK = ηJnatK ◦ JvK. From the description of JnatK in Remark 5.2.7, we

know that |JnatK| ∼= N, so we can see that JvK⋆(∗) must be some n ∈ N, so
we know that:

JtK⋆(∗) = (ηJnatK)⋆(n).

By the fundamental property, we obtain JtK⋆(∗) ◁cnat t. So by the definition

of the logical relation for computations, there must exist a value w such that

n ◁vnat w and t ⇓ w. By the definition of the logical relation for nat, w must

be n, so we obtain t ⇓ v as required.

For type constants α, the proof is analogous to the nat case because of the

bijection |JαK| ∼= Valα and because ◁vα was defined to be the identity relation.

For type 1, the proof is similar, but v can only be ⋆. For type 0, J0K(⋆) = ∅
so there is no value v to consider.

Proof of the fundamental property (Lemma 7.3.2). The proof is by induction

on the typing rules of PCFv. Most cases are proved easily using the induction

hypothesis and the definition of the logical relation. We will focus on a few

interesting cases.
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Case Γ ⊢v u : α. Assume that ρ ◁vΓ σ. We need to prove that:

JΓ ⊢v u : αK⋆(ρ) ◁vα u[σ].

Because α is a type constant, the only values of type α are u ∈ Valα. So the

denotation of u is u ∈ |JαK| and we are done because ◁vα was defined to be

the identity relation.

Case Γ ⊢v f : (α1 × . . .× αn)→ β. Assume that ρ ◁vΓ σ. We need to prove

that:

JΓ ⊢v fK⋆(ρ) ◁v(α1×...×αn)→β f [σ].

Recall that the interpretation of f is:

JΓK !−→ 1
curry(ϕf )−−−−−→

(
(Jα1K× . . .× JαnK)⇒ LM∪MV0

(JβK)
)
.

From the definition of the logical relation for function types, it is enough to

prove that for any {ai ◁vαi
wi}i=1,n:

|ϕf | (a1, . . . , an) ◁cβ f (w1, . . . , wn).

If |ϕf | (a1, . . . , an) = ⊥, then we are done.

If |ϕf | (a1, . . . , an) = ηJβK(d), we need to prove that there exists a value

w such that f (w1, . . . , wn) ⇓ w and d ◁vβ w. Because ◁vαi
was defined to be

the identity relation, we can identify ai and wi. We know that ϕf agrees

with f : (Valα1 × . . . × Valαn) → β on points. So it must be the case that

f (w1, . . . , wn) = w ∈ Valβ where d ◁vβ w. By the reduction rules, this means

that f (w1, . . . , wn) ⇓ w as well.

Case Γ ⊢c case v of {} : τ . Assume that ρ ◁vΓ σ. By induction hypothesis

JΓ ⊢v vK⋆(ρ) ◁v0 v[σ].
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But we defined ◁v0 = ∅, so we get a contradiction from which we can deduce

JΓ ⊢c case v of {}K⋆(ρ) ◁cτ (case v of {})[σ].

Case Γ ⊢c letx = t in t′ : τ ′. Assume that ρ ◁vΓ σ. Assume further that

Jletx = t in t′K⋆(ρ) = (ηJτ ′K)⋆(d1)

for some d1 ∈ Jτ ′K(⋆).
As mentioned in Section 4.3, the interpretation of let using the categorical

structure is:

JΓK
⟨id,JtK⟩−−−−→ JΓK× LM∪MV0

JτK str−→ LM∪MV0
(JΓK× JτK)

LM∪MV0
Jt′K

−−−−−−−→ L2
M∪MV0

Jτ ′K µ−→ LM∪MV0
Jτ ′K.

Because at ⋆ the monad LM∪MV0
acts like the lifting monad on Set (see Fig-

ure 7.2), it must be the case that:

JtK⋆(ρ) = (ηJτK)⋆(d2)

for some d2 ∈ JτK(⋆). Using the induction hypothesis for τ , there must exist

a value w such that t[σ] ⇓ w and d2 ◁
v
τ w.

Now we know that (ρ, d2) ◁
v
Γ,τ (σ,w), and we can see from the interpreta-

tion of let that

Jt′K⋆(ρ, d2) = (ηJτ ′K)⋆(d1).

From the induction hypothesis for τ ′ we deduce that there must be a value

u of type τ ′ such that t′[σ,w] ⇓ u and d1 ◁
v
τ ′ u. This implies that (letx =

t in t′)[σ] ⇓ u, so we are done.

Case Γ ⊢v (rec f x. t) : τ → τ ′. Assume that ρ ◁vΓ σ and a ◁vτ w. We need to

prove that

Jrec f x. tK⋆(ρ)(a) ◁cτ ′ (rec f x. t[σ])w.

All PCFv types are interpreted as well-complete sheaves, and the deno-
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tation Jrec f x. tK : JΓK → (JτK ⇒ LM∪MV0
Jτ ′K) is the fixed point of the

map

JtK : JΓK× (JτK⇒ LM∪MV0
Jτ ′K)× JτK→ LM∪MV0

Jτ ′K

constructed in Corollary 3.2.5.

Like in the proof of Corollary 3.2.5 and Theorem 3.2.3, we use the fact

that LM∪MV0
is a strong monad to get an algebra structure

α : LM∪MV0
(JτK⇒ LM∪MV0

Jτ ′K)→ (JτK⇒ LM∪MV0
Jτ ′K)

which we then use to get a map

JtK∗ : JΓK× LM∪MV0
(JτK⇒ LM∪MV0

Jτ ′K)→ LM∪MV0
(JτK⇒ LM∪MV0

Jτ ′K).

Then

Jrec f x. tK = α ◦ apω(−,∞)

where apω : Γ × ω → LM∪MV0
(JτK ⇒ LM∪MV0

Jτ ′K) is a chain, with a sup,

of approximations of the fixed point of JtK∗, constructed in Lemma 3.2.4.

Here ω is the extended vertical natural numbers calculated as a limit, as in

Assumption 3.1.1, where the lifting monad used is LM∪MV0
.

We are going to show that the fixed point (rec f x. t) is related to each of

its finite approximations. More precisely, show by induction on n that for all

a and w such that a ◁vτ w:

ev
(
(α ◦ apω)⋆(ρ, n), a

)
◁cτ ′ (rec f x. t[σ])w, (7.1)

where apω : Γ× ω → LM∪MV0
(JτK⇒ LM∪MV0

Jτ ′K) was defined in the proof

of Lemma 3.2.4, and is the same chain as apω but without the sup (i.e. apω

is the unique extension of apω). Here ω is the vertical natural numbers

constructed as in Assumption 3.1.4 using the lifting monad LM∪MV0
.

In the base case we know by definition that

(apω)⋆(ρ, 0) = ⊥|LM∪MV0
(JτK⇒LM∪MV0

Jτ ′K)|
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so ev
(
(α ◦ apω)⋆(ρ, n), a

)
= ⊥|LM∪MV0

Jτ ′K|. By the definition of the logical

relation for computations, we have that

⊥|LM∪MV0
Jτ ′K| ◁

c
τ ′ (rec f x. t[σ])w.

For the induction step, we know that

(apω)(ρ, n+ 1) = (JtK∗)⋆(ρ, apω(ρ, n))

from Equation (3.5) in the proof of Lemma 3.2.4. By calculating, we obtain

that:

ev
(
(α ◦ apω)⋆(ρ, n+ 1), a

)
= JtK⋆

(
ρ, (α ◦ apω)⋆(ρ, n), a

)
. (7.2)

By induction hypothesis for n, we get that:

ev
(
(α ◦ apω)⋆(ρ, n), a

)
◁cτ ′ (rec f x. t[σ])w

for any related a and w, so

(α ◦ apω)⋆(ρ, n) ◁vτ→τ ′ (rec f x. t[σ]).

Using the above, we can apply the induction hypothesis for t to get

JtK⋆
(
ρ, (α ◦ apω)⋆(ρ, n), a

)
◁cτ ′ t[σ, (rec f x. t[σ])/f, w/x].

By Equation (7.2), this is enough to conclude the induction step because

t[σ, (rec f x. t[σ])/f, w/x] and (rec f x. t[σ])w reduce to the same value ac-

cording to the operational semantics.

Now that we have shown Equation (7.1), we need to show that the sup

of the chain of approximations of (rec f x. t[σ])w is also related to it, namely

that:

(α ◦ apω)⋆(ρ,∞)(a) ◁cτ ′ (rec f x. t[σ])w.

To deduce this we prove a more general fact first, which in the adequacy proof

for ωCPO corresponds to showing that the logical relation is an admissible

subset.
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Denote by γv : {(−) ◁vτ v} ↣ JτK the greatest subobject of JτK whose

points are those elements in |JτK| related to v. Greatest here means that

the subobject has all the relations of JτK with values in {(−) ◁vτ v}. Because
JτK is concrete, the domain of the subobject γv : {(−) ◁vτ v}↣ JτK is also a

concrete presheaf. For a computation t of type τ we can analogously define

a subobject of LM∪MV0
JτK.

The following two facts are enough to conclude the proof of the funda-

mental property in the rec case:

Lemma 7.3.3. For any type τ :

1. For values: given a chain f : ω → JτK that factors through the subobject

{(−) ◁vτ v}↣ JτK, its extension f : ω → JτK also factors.

2. For computations: the statement is analogous but instead of JτK we use

LM∪MV0
JτK.

The statement for values makes sense because, not only every type is well-

complete (Proposition 4.3.4), but it is also LM∪MV0
-complete using Proposi-

tion 4.1.5 and its preceding discussion in Section 4.1.

So far in this proof of the fundamental property, we have used ω (As-

sumption 3.1.4) to denote a colimit calculated in the category of sheaves

Sh(C + V0, J ∪ JV0). From Proposition 6.1.1 we know that for any type τ ,

JτK and LM∪MV0
JτK are right-orthogonal to ωP → ω as well, where ωP is the

colimit calculated in PSh(C+ V0).

It is in fact sufficient to prove Lemma 7.3.3 above for ωP rather than ω,

as the following lemma shows.

Lemma 7.3.4. Assume that given any map from presheaves g′ : ωP → X,

where X is a complete sheaf, such that g′ factors through a subobject X ′ ↣ X,

then the unique extension g′ : ω → X of g′ also factors through X ′ ↣ X.

Then, for any map from sheaves g : ω → X, where X is complete, and

that factors through a subobject X ′ ↣ X, the extension g : ω → X factors

through X ′ ↣ X as well.
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Notice that the assumption in the lemma above makes sense because

according to Proposition 6.1.1, completeness in sheaves is equivalent to com-

pleteness in presheaves.

Proof of Lemma 7.3.4. Recall that ω is the sheafification of a(ωP ). Start

with a map g : ω → X that factors through X ′ ↣ X. Using the unit of

the adjunction a ⊣ i, construct a map g′ : ωP → ω → X that also factors

through X ′ ↣ X. Then the extension g′ : ω → X factors as well. From the

proof of Proposition 6.1.1 (Item 1 implies Item 2) we know that g′ is also the

unique extension of g, so we are done.

Now we prove Lemma 7.3.3 above with ω replaced by ωP , simultaneously

by induction on types:

Case α, nat (Values). Consider a map f : ωP → JαK that factors through
the subobject {(−) ◁vα u} ↣ JαK. Because ◁vα ⊆ JαK × Valα was defined

to be the identity relation, the subobject {(−) ◁vα u} has exactly one point.

Therefore, because it is concrete, it must be the terminal object. Thus f

factors through ωP → 1, so it is a constant map. Its unique extension to ω

is also constant with the same value, so it factors as required.

Case α, nat (Computations). Consider a map f : ωP → LM∪MV0
JαK

that factors through the subobject

{(−) ◁cα t}↣ LM∪MV0
JαK.

If t diverges, then {(−) ◁cα t} has exactly one point, ⊥. So the proof that the

unique extension f factors is the same as in the previous case.

If t converges, it must converge to a unique value u by soundness. Because

◁vα was defined to be the identity relation, this value u is related only to itself.

Therefore, {(−)◁cα t} has exactly two points, one of which is ⊥ and the other

is u ∈ |JαK|.
Recall the explicit description of ωP from Section 6.3.1. We will use it to

show that f is an eventually constant sequence with values in |LM∪MV0
JαK|.
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Thus, its extension to ω is also eventually constant with the same value and

factors as required.

Consider the composite map:

ωP
f−→ LM∪MV0

JαK
LM∪MV0

(!)

−−−−−−−→ LM∪MV0
(1) ∼= ∆M∪MV0

.

We know from Definition 6.3.2 and Lemma 6.3.3 that this map is an infinite

monotone binary sequence. If the sequence is always 0, then f must be the

always ⊥ sequence. If the sequence becomes 1, f must be a finite number

of ⊥’s followed only by values from |LM∪MV0
JαK|. In the latter case, recall

that f factors through the subobject {(−) ◁cα t} ↣ LM∪MV0
JαK which has

two points, ⊥ and u ∈ |JαK|. Therefore, f must be eventually constant with

value u.

Case 1 (Values). The subobject we need to consider is {(−) ◁v1 ⋆} ↣ 1

which has only one point. All maps f : ωP → 1 and f : ω → 1 are constant

and therefore factor as expected.

Case 1 (Computations). Consider the subobject {(−)◁c1t}↣ LM∪MV0
1 ∼=

∆M∪MV0
. From Definition 6.3.2 and Lemma 6.3.3, a map f : ωP → LM∪MV0

1

is an infinite monotone binary sequence.

If the sequence is always 0, then f ⋆(∞) is also 0 (i.e. ⊥), so f factors

because ⊥ is related to every computation. If the sequence is eventually

1 then f ⋆(∞) is also 1. This point is part of the subobject {(−) ◁c1 t} ↣

LM∪MV0
1 ∼= ∆M∪MV0

because f factors, so f factors as well.

Case 0 (Values). In this case |J0K| is empty so there are no maps f : ωP →
J0K to consider.

Case 0 (Computations). From the definition of the logical relation we

can see that the subobject {(−) ◁c0 t}↣ LM∪MV0
J0K has exactly one point,

⊥, so any extension f must factor.
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Case σ → τ (Values). Consider a map f : ωP → (JσK ⇒ LM∪MV0
JτK)

which factors through the subobject {(−) ◁vσ→τ v} → (JσK ⇒ LM∪MV0
JτK).

We need to show that the extension f : ω → (JσK ⇒ LM∪MV0
JτK) of f also

factors, which means showing:

f ⋆(∞) ◁vσ→τ v.

Consider the uncurrying of f :

f ′ : ωP × JσK→ LM∪MV0
JτK.

This factors through the map:

β : {(−) ◁vσ→τ v} × JσK→ LM∪MV0
JτK.

For any a ∈ |JσK| the map f ′(−, a) factors through β(−, a).
For any closed value w of type σ such that a◁vσw, β(−, a) factors through

{(−) ◁cτ (v w)}↣ LM∪MV0
JτK

by mapping each d ∈ {(−) ◁vσ→τ v} to (d a). So f ′(−, a) also factors through

the same subobject. Applying the induction hypothesis for computations of

type τ , we get that

f ′(−, a) : ω → LM∪MV0
JτK

factors as well, and thus

f ′(−, a)⋆(∞) ◁cτ (v w).

By uniqueness of extensions, we get the following equalities:

f ′(−, a)⋆(∞) = f ′
⋆(∞, a) =

(
f ⋆(∞)

)
(a).

Since a and w were arbitrary we can deduce the required result:

f ⋆(∞) ◁vσ→τ v.
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Case σ× τ (Values). Consider f : ωP → JσK× JτK which factors through

{(−) ◁vσ×τ (v1, v2)} ↣ JσK × JτK. We can use the definition of the logical

relation and the induction hypothesis to prove that:

π1(f ⋆(∞)) ◁vσ v1

and similarly for π2. Then deduce that

f ⋆(∞) ◁vσ (v1, v2).

Case σ + τ (Values). Consider without loss of generality the subobject

{(−) ◁vσ+τ inlw} ↣ JσK + JτK and a map f : ωP → JσK + JτK that factors

through it. (The proof for inr is similar.)

Because of the factoring we can see that for any n ∈ ωP (⋆):

f⋆(n) = inl an

where an ∈ |JσK| and an ◁vσ w. Therefore, we can form a map f1 : ωP → JσK
where:

(f1)⋆(n) = an.

The map f1 factors through {(−) ◁vσ w} ↣ JσK, so using the induction

hypothesis for σ, we see that:

(f1)⋆(∞) ◁vσ w

and so (
f ⋆(∞) = inl (f1)⋆(∞)

)
◁vσ inlw.

Case τ1 → τ2, τ1× τ2, τ1+ τ2 (Computations). Consider a type σ which

can be any of the above. Assume that a map f : ωP → LM∪MV0
JσK factors

through the subobject {(−) ◁cσ t} ↣ LM∪MV0
JσK. We need to show that

f ⋆(∞) ◁cσ t.

Consider d ∈ |JσK| such that f ⋆(∞) = η⋆(d). Then it cannot be the case

that f⋆ is constant ⊥. Because f factors, by the definition of the logical
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relation for computations, there must be a value w such that t ⇓ w.
Recall from Section 6.3.1 that the elements of ωP (⋆) can be thought of

as the natural numbers. Like in Case α, we can prove that once f⋆ takes a

non-⊥ value it cannot become ⊥ again.

Let k ∈ ωP (⋆) be the point where f⋆ stops being ⊥. We can form a map

f ′ : ωP → JσK such that:

f ′
⋆(k

′ < k) = f⋆(k)

f ′
⋆(k

′ ≥ k) = f⋆(k
′).

We omit the proof that f ′ is natural. In the usual ωCPO proof, this step

corresponds to removing a finite number of elements from the beginning of

a chain.

Since for all n:

η⋆(f
′
⋆(n)) ◁

c
σ t,

we can deduce that f ′ factors through {(−) ◁vσ w} ↣ JσK. We have proved

the cases for values already, so we can deduce that f ′ : ω → JσK also factors,

and therefore (
(f ′)⋆(∞) = d

)
◁vσ w.

This concludes the proof of both Lemma 7.3.3 and of the fundamental

property (Lemma 7.3.2).

7.4 Related work

Our general adequacy theorem (Theorem 7.1.3) is closely related to other

adequacy results in the axiomatic and synthetic domain theory literature, for

example by Fiore and Plotkin [Fio94, Chapter 9], [FP94] and Simpson [Sim98,

Sim04]. More broadly, another related strand of research is that of topological

domain theory (e.g. [Bat06]). It provides a cartesian closed category which

can model recursive types and computational effects, including probabilistic

computation, and which makes a connection to computability; see [BSS07]
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for an overview. Our work is most closely related to that of Simpson [Sim98]

as we explain in detail.

Simpson [Sim98] considers the notion of natural model of synthetic domain

theory, which is an elementary topos with a dominance and a natural numbers

object which is well-complete [Sim98, Definition 2]. He then considers the

interpretation of call-by-value PCF in natural models. He proves that this

interpretation is adequate if and only if the topos is 1-consistent [Sim98,

Theorem 2]. Being 1-consistent is a statement about the internal logic of the

topos explained in [Sim98, Section 6].

Natural models of synthetic domain theory are very similar to our notion

of normal model (Definition 4.3.1). Two differences are that we consider

only Grothendieck toposes, rather than elementary toposes, and we allow

the extension of PCFv with type and term constants, to accommodate the

examples in Section 7.2.

Similarities include the fact that Simpson uses the dominance to construct

a lifting monad L in the same way as we do in Theorem 2.4.9. In his case,

the initial algebra I and final coalgebra F of L play the role of ω and ω

from Section 3.1. Well-completeness is defined similarly to the way we define

it in Definition 3.2.2 and is used to prove a fixed point theorem ([Sim98,

Proposition 2]) corresponding to our Theorem 3.2.3.

We do not know whether our adequacy theorem (Theorem 7.1.3), for the

normal model Sh(C+ V0, J ∪ JV) obtained via the recipe in Theorem 7.1.1,

is in fact an instance of adequacy for natural models ([Sim98, Theorem 2]).

When we proved our adequacy theorem, we were not aware of this result

for natural models. A fact which suggests that our adequacy theorem might

follow from adequacy for natural models is that any non-trivial Grothendieck

topos, and hence Sh(C + V0, J ∪ JV0), is 1-consistent. However, we do not

know if using our assumptions we can deduce that ω is an initial algebra; we

discussed this issue in more detail in Section 3.3 in connection with existing

work in axiomatic domain theory. For the same reason, we do not know

whether the fact that normal models have the necessary structure to interpret

PCFv (Proposition 4.3.4) follows from the equivalent statement for natural

models.
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Despite the strong similarity between normal and natural models, a main

novelty of our work is the method of constructing normal models summarized

in Theorem 7.1.1, by specifying a concrete site (Definition 2.1.6) and a class

of admissible monos (Definition 6.2.1). This recipe is important because it

unifies the treatment of higher-order recursion in several examples which have

not been discussed together before: the vSet model (Section 4.4), the three

models from Section 7.2, and the fully abstract model of PCFv from Chap-

ter 8. The previous work of Simpson [Sim98, Sim04] does not show how to

obtain models that satisfy the conditions of a natural model, so our recipe is

a contribution in this direction.

Moreover, I think that our recipe is useful because the input data needed

to specify a model (the concrete site with admissible monos) is easy to present

in many cases, like in the examples from Section 7.2. In any case, this data

is at least easier to present than describing the objects and morphisms of the

model directly, like in the case of the fully abstract model in Chapter 8.

Proving adequacy (Theorem 7.1.3) for a restricted class of normal models

only, namely the models Sh(C+V0, J∪JV0) obtained from our recipe, is justi-

fied because, as we have shown through our examples, it covers many cases of

interest. Our adequacy proof is significantly different from Simpson’s [Sim98]

proof of adequacy for natural models. As explained in Section 7.3, we are

able to use the same proof outline as for adequacy in ωCPO, replacing cpos

with concrete sheaves. Simpson gives a proof of adequacy in the internal

logic of the topos used to model the language, which requires an encoding of

the operational semantics in the internal logic using Gödel numbering.
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Chapter 8

A fully abstract model of PCFv

In this chapter, we give another example of a normal model (Definition 4.3.1)

built using the recipe from Theorem 7.1.1, starting from a concrete site (Def-

inition 2.1.6) with admissible monos (Definition 6.2.1). In Section 8.2, we

show that this model, which we call G, is fully abstract (see e.g. [Win93, Sec-

tion 11.10]) for call-by-value PCF (PCFv) without any type or term constants.

Soundness follows from soundness for normal models (Theorem 4.3.5) and

adequacy follows from Theorem 7.1.3.

A consequence of soundness and adequacy is that denotational equal-

ity of programs implies contextual equivalence. A model is fully abstract if

denotational equality coincides with contextual equivalence. Thus for the

model G we define, it remains to show the converse: that contextual equiv-

alence implies denotational equality (Theorem 8.2.11). This is usually much

harder to achieve, for example the traditional ωCPO model of PCF is not

fully abstract [Plo77].

Unlike the previous examples of our recipe, those from Section 7.2 and

the category vSet from Section 4.4, this fully abstract model G of PCFv is

new. This shows the wide applicability of our method for building normal

models: the method helps explain the connection between existing models

and it also facilitates the discovery of new models.

The model in this chapter is inspired by the fully abstract models for

PCF of O’Hearn, Riecke and Sandholm [OR95, RS02] and Streicher and
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Marz [Mar00a, Mar00b, Str06], who used logical relations. Initially, our aim

was to organize their models using concrete sheaves, starting from the obser-

vation that logical relations can be seen as concrete presheaves. While trying

to do this however, we defined a different category which is not straight-

forward to relate formally to the previous models because of the technical

differences discussed in Section 8.3.

We argue that our fully abstract model is easier to present than the pre-

vious logical relations models because it uses the recipe for building normal

models from Theorem 7.1.1. The input data for this recipe is easier to specify

than describing the objects and morphisms in the model directly as the pre-

vious work does [OR95, RS02, Mar00a, Mar00b, Str06]. Moreover, by being

an instance of our recipe, we can easily deduce that the model is sound and

adequate.

The outline of the chapter is as follows. In Section 8.1, we define a

collection of concrete sites with admissible monos, then use them to instan-

tiate Theorem 7.1.1 to build a normal model G.
Section 8.2 is devoted to the proof that G is a fully abstract model. A

crucial step in the proof is to show that enough morphisms in G are definable

by PCFv programs, and that hence, to prove equality of denotations of terms,

we only need to compare them on definable inputs. In Section 8.2.1, we

make precise what these inputs are, and in Section 8.2.2 we show they are

definable, Corollary 8.2.10. In Section 8.2.3, we state the full abstraction

theorem (Theorem 8.2.11) and prove it using Corollary 8.2.10.

Finally, in Section 8.3 we discuss the connection with related work. The

material in this chapter appeared at FSCD 2021 [MMS21, Sections 6.3, 7].

We note that G is a slight simplification over the fully abstract model pub-

lished in [MMS21], as explained at the end of Section 8.3.

8.1 Defining the model

We start this section by recalling the concept of structural system of parti-

tions of a finite set (Definition 8.1.1 and Definition 8.1.3), which was used

in previous work on the full abstraction problem for PCF [Mar00a, Mar00b,
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Str06].

To define the sheaf category that will be our fully abstract model, we

define a collection of concrete sites. For this, we use structural systems of

partitions. The sites are introduced in Definition 8.1.4, with the coverage

being described in Definition 8.1.6 and the class of admissible monos in Def-

inition 8.1.10. We combine this collection of sites using Definition 6.2.3, and

use it to instantiate our recipe for normal models from Theorem 7.1.1 to

obtain a sheaf category G. Definition 8.1.12 states what G is precisely and

in Proposition 8.1.13 we prove that it is indeed a normal model.

8.1.1 Structural systems of partitions

To define the site of our fully abstract model G we use the notion of a struc-

tural system of partitions (SSP) which is due to Marz and Streicher [Mar00a,

Mar00b, Str06] In Definition 8.1.3, we recall the definition of the category

SSP.

Definition 8.1.1. Given a finite set w, a structural system of partitions Sw

is a set containing sets of disjoint subsets of w, that is, (partial) partitions

of w, and satisfying the following axioms:

1. {w}, ∅ ∈ Sw.

2. (Refinement) P, Q ∈ Sw and U ∈ P imply that:

(P \ {U}) ∪ ({U ∩ V | V ∈ Q} \ {∅}) ∈ Sw.

3. (Union) U, V ∈ P ∈ Sw implies that (P \ {U, V }) ∪ {U ∪ V } ∈ Sw.

Remark 8.1.2. Using the refinement axiom and the ∅ ∈ Sw axiom we can

deduce a further SSP axiom which appeared in [Str06]:

4. (Dropping) P ∈ Sw and U ∈ P imply that (P \ {U}) ∈ Sw.

Definition 8.1.3. The category SSP has objects pairs (w, Sw), of a finite

set w and a system of partitions Sw on it. A morphism f : (v, Sv) →
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(w, Sw) is a function between sets f : v → w such that partitions in Sw

pull back to partitions in Sv. More precisely, if P = {w1, . . . , wn} ∈ Sw,

then {f−1(w1), . . . , f
−1(wn)} \ {∅} ∈ Sv. Composition is given by function

composition.

We will denote {f−1(w1), . . . , f
−1(wn)} \ {∅} by f−1(P ).

As explained in [Str06, Chapter 11], the intuition is that an object (w, Sw)

is a finite datatype with underlying set w together with partitions of w in-

duced by partial functions

f : w ⇀ N.

Intuitively, the only partial functions considered are those that are definable

by sequential functional programs. So the SSP axioms are meant to reflect

closure properties of such programs.

For example, consider the type unit→ unit. A program of this type either

terminates with value ⋆ or diverges, therefore w has two elements, ⊤ and ⊥.
The partitions in Sw are ∅, {⊤,⊥} and {⊤}; {⊥} is not a partition because

we cannot observe divergence.

8.1.2 Defining sites and admissible monos

We now define a collection of concrete sites IC,F that we will use to define

the fully abstract model G (Definition 8.1.12).

Definition 8.1.4. For any small category C and any faithful functor F :

C → SSP, define the category IC,F to have:

� as objects pairs (c, U) of an object c from C and a set U such that

U =
⋃
P for some P ∈ SF (c); and also a distinguished terminal object

denoted by ⋆;

� as morphisms X → Y certain functions |X| → |Y |, where |(c, U)| = U

and |⋆| ∼= 1. If X = (c, U) and Y = (d, V ), take those functions

f : U → V such that either f is constant, or there exists a morphism

ϕ : c→ d in C such that the image of F (ϕ) : F (c)→ F (d) restricted to

U is included in V . If either X or Y is ⋆, take all functions.
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Remark 8.1.5. Notice that for (c, U) to be an object in IC,F it is enough to

ask that either {U} ∈ SF (c), by the union axiom, or that U = ∅.

Informally,the category IC,F is a “totalization” of F : C → SSP in the

sense that it adds enough objects such that the partial maps between objects

in the image of F can now be represented as total maps.

The intuition is that an object in the image of F is a prediction of what the

points of finite PCFv types are, together with a prediction of the admissible

domains of partial maps going out of this finite type (given by the SSP

structure). Morphisms are a prediction of certain definable functions between

types. When proving full abstraction, we will choose to use certain functors

F : C → SSP (Definition 8.2.5) that are in fact a correct prediction.

Now we define a coverage on IC,F that will ensure that the natural num-

bers object
∐

N 1, which interprets the type nat in the sheaf category G (Def-

inition 8.1.12), has the correct structure to allow us to prove that G is a fully

abstract model. This approach of using a coverage to obtain suitable colimits

appears in previous work of Fiore and Simpson [FS99] about full definability

for a simply-typed lamba-calculus with sums.

Definition 8.1.6. For a faithful functor F : C → SSP, define a coverage

JC,F on IC,F as follows:

� An object (c, U) is covered by the families of partial identity maps

{(c, Ui)→ (c, U)}1≤i≤n such that {U1, . . . , Un} ∈ SF (c) and
⋃

1≤i≤n Ui =

U . If U = ∅, then (c, ∅) is also covered by the identity {(c, ∅)→ (c, ∅)}.

� The terminal object ⋆ is covered only by the set containing the identity,

{⋆→ ⋆}.

Roughly speaking, this coverage ensures that in the category of sheaves

on IC,F , the object ay(c, U) is a coproduct of {ay(c, Ui)}1≤i≤n, as the set-

theoretic intuition suggests, despite the fact that IC,F might not have co-

products.

Remark 8.1.7. For any partition {U1, . . . , Un} ∈ SF (c) whose union is U ,

each (c, Ui) is a an object in IC,F by the dropping SSP axiom (4). Therefore,
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we will often denote a cover {(c, Ui) → (c, U)}1≤i≤n by its corresponding

partition {U1, . . . , Un} ∈ SF (c).

Remark 8.1.8. Notice that in IC,F , the objects of the form (c, ∅), corre-
sponding to any c in C and ∅ ∈ SF (c), are isomorphic and initial. According

to the definition of JC,F , (c, ∅) is covered by the empty family.

Because we want to use Theorem 7.1.1 to obtain a normal model, we prove

that the sites (IC,F ,JC,F ) we have just defined are concrete, and choose a class

of admissible monos (Definition 6.2.1) for each of them in Definition 8.1.10.

Proposition 8.1.9. Each (IC,F ,JC,F ) is a concrete site satisfying the (M)

and (L) axioms. Moreover, it has an initial object covered by the empty set.

Proof. Recall the definition of coverage and concrete site from Section 2.1.

To prove the main coverage axiom, consider a cover P = {U1, . . . , Un} ∈ SF (c)

of (c, U) and a map f : (d, V ) → (c, U). Then P pulls back to a partition

f−1(P ) ∈ SF (d), so we get a cover of (d, V ). For each Vi ∈ f−1(P ) there is a

Uj ∈ P which is its image under f , so there is a map f |Vi : (d, Vi) → (c, Uj)

in IC,F , as required by the coverage axiom.

Axiom (L) follows by applying the refinement axiom (2) repeatedly. To

deduce axiom (M), use the union axiom (1) to see that for any object (c, U)

with U ̸= ∅, {U} ∈ SF (c). If U = ∅, we assumed explicitly that (c, U) is

covered by identity.

To prove concreteness, notice that IC,F
(
⋆, (d, V )

) ∼= V . Then maps of the

form

IC,F
(
(d, V ), (c, U)

)
→ Set(V, U)

are injective because morphisms in IC,F are defined to be certain functions.

For any cover P = {U1, . . . , Un} of (c, U), the map∐
1≤i≤n

IC,F
(
⋆, (c, Ui)

)
→ IC,F

(
⋆, (c, U)

)
is surjective because

⋃
1≤i≤n Ui = U .
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Definition 8.1.10. LetMC,F be the class of monos in IC,F given by:

MC,F (c, U) = {m : X ↣ (c, U) | m isomorphic to (c, U ′)→ (c, U)

for some U ′ ⊆ U}

MC,F (⋆) = {m : X ↣ ⋆ | m isomorphic to 0→ ⋆ or ⋆→ ⋆},

where (c, U ′)→ (c, U) is a partial identity map.

Proposition 8.1.11. The classMC,F is a class of admissible monos in the

concrete site (IC,F ,JC,F ).

Proof. First show that MC,F is a stable system of monos. One can check

that it contains all identities and is closed under composition. To show it is

closed under pullback with arbitrary maps consider, (c, U ′) → (c, U) ∈ M
and a map f : (d, V ) → (c, U). The pullback of f is a map f |V ′ : (d, V ′) →
(c, U ′) where V ′ is f−1(U ′). The pair (d, V ′) is a valid object in IC,F because

{U ′} ∈ SF (c) and f pulls back partitions to partitions, and (d, V ′) → (d, V )

is inMC,F by definition.

To show that MC,F is a class of pre-admissible monos we need to show

that ∆MC,F is a JC,F -sheaf. Let P = {U1, . . . , Un} be a covering family of

(c, U). Then consider a family ofMC,F -subobjects of the form

{(c, U ′
i)→ (c, Ui) | 1 ≤ i ≤ n}.

Because the Ui’s are disjoint, this will always be a matching family.

We know that P ∈ SF (c) and {U ′
i} ∈ SF (c) for 1 ≤ i ≤ n. We can use the

refinement axiom (2) repeatedly for each Ui ∈ P and {U ′
i} ∈ SF (c) to deduce

that {U ′
1, . . . , U

′
n} ∈ SF (c). Therefore, (c,

⋃
1≤i≤n U

′
i) is a valid object in IC,F

and (c,
⋃

1≤i≤n U
′
i)→ (c, U) is the unique amalgamation we are looking for.

Now, we check the conditions for a class of admissible monos. Every map

0→ (c, U) is inMC,F because 0 ∼= (c, ∅). To show ∆MC,F is concrete consider

the maps:

∆MC,F (c, U)→ Set(U,∆MC,F (⋆)
∼= 2).

They are injective because each MC,F -subobject (c, U ′) → (c, U) can be

191



identified with a subset U ′ ⊆ U .

Consider an increasing chain of MC,F -subobjects {(c, Ui) → (c, U)}i∈N.
The set U is finite so the chain must be eventually constant. Therefore we

already know (c,
⋃
i∈N Ui)→ (c, U) is inMC,F .

Let (c, Uk) be the object where the chain becomes constant. We know

{Uk} ∈ SF (c), so {(c, Uk) → (c, Uk)} is a covering family of (c, Uk) which is

included in the closure under precomposition of the set {(c, Ui) → (c, Uk) |
i ∈ N}.

We can now define a combined site using Definition 6.2.3, and define a

sheaf category G. In the next section, we will prove that G is a fully abstract

model of PCFv without any type or term constants.

Definition 8.1.12. Let (IG,JG,MG) be the concrete site with admissible

monos obtained by combining the sites (V0,JV0 ,MV0) and (IC,F ,JC,F ,MC,F )

for each faithful functor F : C → SSP, according to Definition 6.2.3. Let G
be the category of sheaves on (IG,JG).

Proposition 8.1.13. The sheaf category G is a normal model of PCFv with-

out any type or term constants, obtained by the recipe from Theorem 7.1.1.

Proof. This is a straightforward application of our recipe for building normal

models from Theorem 7.1.1. We instantiate the recipe for the site obtained

by combining (IC,F ,JC,F ,MC,F ) for each faithful functor F : C → SSP.

By combining Proposition 8.1.9, Proposition 8.1.11 and Proposition 6.2.4,

we deduce that this combined site is a concrete site, satisfying axioms (M)

and (L), with an initial object covered by the empty set and with a class

of admissible monos. Thus, it satisfies the assumptions of Theorem 7.1.1.

Since we are not considering any type constants the rest of the assumption

in Theorem 7.1.1 are not relevant.

Because G = Sh(IG,JG) is obtained using our recipe for normal models,

we can deduce that the interpretation of PCFv actually lives in the sub-

category of concrete sheaves of G, as explained in Section 7.1. Thus, the

interpretation of types has the explicit description from Figure 7.1.
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From Theorem 4.3.5 we know G is a sound model of PCFv, and from The-

orem 7.1.3 we know it is adequate. In Theorem 8.2.11 we will prove it is also

fully abstract. From now on, denote by LG the lifting monad on G generated

byMG.

8.2 G is a fully abstract model of PCFv

The strategy we will use for proving full abstraction is to show that enough

maps in the normal model G are PCFv-definable (Corollary 8.2.10). Roughly,

this would mean we only need to compare denotations on definable elements

of their domain, thus making it easier to prove that contextual equivalence

implies denotational equality (Theorem 8.2.11). The converse can be deduced

from soundness and adequacy, thus completing the proof of full abstraction.

We cannot expect to show that all maps in G are definable because,

for example, there are uncountably many maps of type Nat → Nat. To

get around this problem we use the same method that Milner [Mil77] used

when presenting a syntactic fully abstract model of PCF. We consider finite

approximations of the sets of points of each type and show that all maps

between these are definable.

In Section 8.2.1, we define finite approximations of the interpretation of

types in Definition 8.2.1 and Proposition 8.2.2. Then in Proposition 8.2.3 we

show that for each type these approximations form a chain, with the least

upper bound being the type itself.

In Section 8.2.2 we first choose a collection {ICn,Fn}n∈N of the concrete

sites used to define the normal model G (Definition 8.1.12). The categories Cn
are defined in Definition 8.2.4, and the functors Fn in Definition 8.2.5. Using

these sites we state and prove our main definability result, Proposition 8.2.9,

followed by Corollary 8.2.10. Section 8.2.3 is dedicated to proving the full

abstraction result, Theorem 8.2.11.
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ψnat
n = “if x ≤ n then x else diverge”,

ψ1
n = returnx,

ψ0
n = returnx,

ψσ→τ
n = returnλu. let v = ψσn[u/x] in letw = x v inψτn[w/x],

ψσ+τn = casex of {inl y → letx′ = ψσn[y/x] in return (inlx
′),

inr z → letx′ = ψτn[z/x] in return (inr x
′)},

ψσ×τn = let y = π1x in let z = π2x in let

y′ = ψσn[y/x] in let z
′ = ψτn[z/x] in return (y

′, z′).

Figure 8.1: Definition of terms that truncate types.

8.2.1 Finite approximations of types

Definition 8.2.1. For each type σ and n ∈ N, define a computation

x : σ ⊢c ψσn : σ

by recursion on σ as shown in Figure 8.1 1.

Let hσn be the denotation of ψσn in the normal model G (Definition 8.1.12):

hσn = JψσnK : JσK→ LGJσK.

The intuition is that the map hσn truncates the interpretation of a type

σ to level n, as we prove in the next proposition. In the proof of our main

definability result (Proposition 8.2.9), it will be crucial that the hσn maps are

1The term ψnat
n can be written explicitly as:

ψnat
n = casex of {0→ returnx,

S(x1)→
. . . casexn of {0→ returnx,

S(xn+1)→ (rec f y. f y) 0}
}

194



definable.

Proposition 8.2.2. Each map hσn is idempotent in the Kleisli category of

LG, more precisely:

(hσn)
† ◦ hσn = hσn.

Moreover, hσn fixes finitely many points from |JσK|, where a point x ∈ |JσK|
is fixed if:

(hσn)⋆(x) = (ηJσK)⋆(x).

Let JσKn be the greatest subobject of JσK, such that |JσKn| contains the

points fixed by hσn. This means that the relations of JσKn are all the relations

of JσK which are valued in |JσKn|. Then we get the following isomorphisms:

JnatKn ∼= J1+ . . .+ 1︸ ︷︷ ︸
n+1 times

K J0Kn ∼= J0K J1Kn ∼= J1K

Jσ → τKn ∼=
(
JσKn ⇒ LGJτKn

)
Jσ × τKn ∼= JσKn × JτKn Jσ + τKn ∼= JσKn + JτKn.

Proof. The proof is by induction on σ. To show that hσn is idempotent it is

enough to show that (hσn)⋆ is, because hσn is a natural transformation into a

concrete presheaf.

Case nat. The underlying set of JnatK is N, so we can see that:

(hnatn )⋆(k) =

k if k ≤ n

⊥ otherwise.

The Kleisli extension
(
(hnatn )†

)
⋆
sends ⊥ to ⊥, so we can immediately see that

(hnatn )⋆ is idempotent.

The set of points |JnatKn| fixed by hnatn is

{0, 1, . . . , n}.

Since JnatKn ↣ JnatK is the greatest subobject with these points, we can see,
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from the description of JnatK and of coproduct in G (Figure 7.1), that:

JnatKn ∼= J1+ . . .+ 1︸ ︷︷ ︸
n+1 times

K ∼= 1 + . . .+ 1︸ ︷︷ ︸
n+1 times

.

Case 0. In this case

h0n = ηJ0K : J0K→ LGJ0K.

Because of the sheaf condition, J0K(0) ∼= 1 and for any other object Y in the

site, J0K(Y ) = ∅. So h0n is clearly idempotent and does not fix any points.

Case 1. Again h1n = ηJ1K. For any object Y in the site J1K(Y ) ∼= 1, so h1n is

idempotent and fixes one point.

Case σ → τ . We can see that hσ→τ
n has type:

hσ→τ
n = Jψσ→τ

n K : (JσK⇒ LGJτK)→ LG(JσK⇒ LGJτK).

For any point of JσK⇒ LGJτK, that is, a morphism f : JσK→ LGJτK (see Fig-
ure 7.1), hσ→τ

n is defined as:

hσ→τ
n (f) = ηJσK⇒LGJτK

(
(hτn)

† ◦ f † ◦ hσn
)
.

To show hσ→τ
n is idempotent consider the chain of equalities from Fig-

ure 8.2.

To show that hσ→τ
n fixes finitely many points it is enough to show that

there are finitely many maps f : JσK→ LGJτK, which will be the elements of

|Jσ → τKn|, that satisfy:
f = (hτn)

† ◦ f † ◦ hσn

because the unit of LG is monic.

Because hτn is idempotent, its image must be included in |JτKn| ∪ {⊥},
where |JτKn| is the set of points fixed by hτn; and so does the image of f . We
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(hσ→τ
n )†

(
hσ→τ
n (f)

)
= (hσ→τ

n )†
(
ηJσK⇒LGJτK

(
(hτn)

† ◦ f † ◦ hσn
))

= (hσ→τ
n )†

(
(hτn)

† ◦ f † ◦ hσn
)

= (hτn)
† ◦
(
(hτn)

† ◦ f † ◦ hσn
)† ◦ hσn

= (hτn)
† ◦ (hτn)† ◦ f † ◦ (hσn)† ◦ hσn
using (g†1 ◦ g2)† = g†1 ◦ g

†
2 twice

= (hτn)
† ◦ f † ◦ hσn
hτn, h

σ
n idempotent by induction hypothesis

= hσ→τ
n (f).

Figure 8.2: Proving that hσ→τ
n is idempotent.

can rewrite the equation above as:

f = f † ◦ hσn.

Similarly, the image of hσn is included in |JσKn| ∪ {⊥}. This means that f

is determined by its action on |JσKn|. Since both |JτKn| and |JσKn| are finite

by induction hypothesis, there are a finite number of possibilities for f .

To show the isomorphism:

Jσ → τKn ∼=
(
JσKn ⇒ LGJτKn

)
,

it is enough to show that the two sides have the same points and the same

relations. To show they have the same points, start with a map

g : JσKn → LGJτKn.

Because

LGJτKn ⊆ LGJτK,

we can extend g to the map

g† ◦ hσn : JσK→ LGJτK.
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We can then show g† ◦ hσn is a point of Jσ → τKn because it is fixed by hσ→τ
n :

hσ→τ
n (g† ◦ hσn) = ηJσK⇒LGJτK

(
(hτn)

† ◦ (g† ◦ hσn)† ◦ hσn
)

= ηJσK⇒LGJτK
(
(hτn)

† ◦ g† ◦ (hσn)† ◦ hσn
)

= ηJσK⇒LGJτK
(
(hτn)

† ◦ g† ◦ hσn
)

because hσn idempotent

= ηJσK⇒LGJτK
(
g† ◦ hσn

)
the image of g† is already in JτKn ∪ {⊥}.

For the reverse inclusion, start with a map f : JσK→ LGJτK that is fixed

by hσ→τ
n , so we know:

f = (hτn)
† ◦ f † ◦ hσn.

This means that the image of f is included in LGJτKn, so by restricting we

can get a map on points:

(
f |JσKn

)
⋆
: |JσKn| → |LGJτKn|.

This map preserves the relations of JσKn because they are a subset of the

relations of JσK, and f preserves those.

Next, we show that Jσ → τKn and
(
JσKn ⇒ LGJτKn

)
agree at any object

Y in the site, other than ⋆, (i.e. V, (c, U) or 0). According to Figure 7.1,

their respective values at Y are:

(
JσKn ⇒ LGJτKn

)
(Y ) =

{
f : |Y | → G(JσKn, LGJτKn)

∣∣
∀h : X → Y. ∀g ∈ JσKn(X).

(
λx ∈ |X|. f(h(x)) g(x)

)
∈ LGJτKn(X)

}
and

(
Jσ → τKn

)
(Y ) =

{
f : |Y | → |Jσ → τKn| ⊆ G(JσK, LGJτK)

∣∣
∀h : X → Y. ∀g ∈ JσK(X).

(
λx ∈ |X|. f(h(x)) g(x)

)
∈ LGJτK(X)

}
.

Start with f ∈
(
Jσ → τKn

)
(Y ). To get a function in

(
JσKn ⇒ LGJτKn

)
(Y ),
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it is enough to restrict each f(y) to f(y)|JσKn , as we did at ⋆. To see that for

any g ∈ JσKn(X)

(
λx ∈ |X|. f(h(x))|JσKn g(x)

)
∈ LGJτKn(X)

we use the description of
(
Jσ → τKn

)
(Y ), the fact that the image of f(h(x))

is already included in JτKn ∪ {⊥}, and the fact that JτKn is the greatest

subobject of JτK.
Conversely, start with f ∈

(
JσKn ⇒ LGJτKn

)
(Y ). To get an element of(

Jσ → τKn
)
(Y ) it is enough to precompose each f(h(x)) with hσn. Then we

need to show that for any g ∈ JσK(X):

(
λx ∈ |X|. f(h(x))† hσn(g(x))

)
∈ LGJτK(X).

Because hσn : JσK→ LGJσK is a morphism in G, it preserves relations, so

(hσn ◦ g) ∈ LGJσK(X).

But the image of hσn is JσKn ∪ {⊥}, so

(hσn ◦ g) ∈ LGJσKn(X).

From the description of the action of the lifting monad on relations (Fig-

ure 7.2), we see that there must be a mono X ′ ↣ X ∈MG such that:

(hσn ◦ g)|X′ ∈ JσKn(X ′).

From the explicit description of
(
JσKn ⇒ LGJτKn

)
(Y ) applied to X ′ ↣

X
h−→ Y and (hσn ◦ g)|X′ we get that:

(
λx ∈ |X ′|. f(h(x)) hσn(g(x))

)
∈ LGJτKn(X ′).

So there must be a mono X ′′ ↣ X ′ ∈MG such that

(
λx ∈ |X ′|. f(h(x)) hσn(g(x))

)
|X′′ ∈ JτKn(X ′′).
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Using the mono X ′′ ↣ X ′ ↣ X ∈MG we can see that

(
λx ∈ |X|. f(h(x))† hσn(g(x))

)
∈ LGJτKn(X) ⊆ LGJτK(X).

Case σ + τ . The map

hσ+τn = Jψσ+τn K : JσK + JτK→ LG(JσK + JτK)

is equal to

hσ+τn = [LG(injJσK) ◦ hσn, LG(injJτK) ◦ hτn].

It follows that hσ+τn is idempotent because hσn and hτn are by induction hy-

pothesis. Similarly, hσ+τn fixes the points

|Jσ + τKn| = |JσKn|+ |JτKn|.

To show the isomorphism

Jσ + τKn ∼= JσKn + JτKn

it remains to show that the two sides have the same relations. This follows

from the fact that Jσ + τKn is a greatest subobject of Jσ + τK, and from the

description of coproducts in G (Figure 7.1).

Case σ × τ . In this case

hσ×τn = Jψσ×τn K : JσK× JτK→ LG(JσK× JτK)

is equal to

hσ×τn = µJσK×JτK ◦ str2 ◦ ⟨hσn ◦ π1, hτn ◦ π2⟩.

Notice that at ⋆, µJσK×JτK ◦ str2 identifies the two ⊥ elements (see Figure 7.2).

Then hσ×τn is idempotent because both hσn and hτn are. The points fixed by

hσ×τn are |JσKn| × |JτKn|. The isomorphism

Jσ × τKn ∼= JσKn × JτKn
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is showed similarly to the coproduct case.

Recall the vertical natural numbers ω (Assumption 3.1.4), and the ex-

tended vertical natural numbers ω (Assumption 3.1.1), which are calcu-

lated as a colimit and limit respectively, either in a category of sheaves or

presheaves. From the discussion in Section 6.1, recall that when talking

about completeness, it is sufficient to consider the colimit ω calculated in

PSh(IG), rather than in G. We will adopt this simplification in the rest of

this chapter. The limit ω is the same in both categories.

Recall from Remark 6.3.1 that the elements of ω(⋆) are eventually 0,

infinite chains of subobjects starting at ⋆:

. . . 0 ↣ 0 ↣ ⋆↣ . . . ⋆,

so they can be identified with the natural numbers. The set ω(⋆) contains

the same points plus the always ⋆ chain, which we denote by ∞.

The intuition behind the maps hσn : JσK→ LGJσK, made precise in Propo-

sition 8.2.2, is that for a point x ∈ |JσK|, hσn(x) is in some sense an approxi-

mation of x to level n. The next proposition shows that indeed the hσn(x)’s

form a chain, and that the least upper bound of this chain is x.

Recall from Proposition 4.3.4 that in a normal model, so also in G, the
interpretation of every type is a well-complete object (Definition 3.2.2). This

justifies the existence of the unique extension Hσ in the statement of the

next proposition.

Proposition 8.2.3. The function on points:

(hσ)⋆(n, x) = (hσn)⋆(x)

defines a morphism

hσ : ω × JσK→ LGJσK

in G, whose unique extension Hσ : ω × JσK→ LGJσK satisfies

(Hσ)⋆(∞, x) = (ηJσK)⋆(x).
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Proof. The proof is by induction on σ.

Case nat. In a normal model JnatK ∼=
∐

N 1, so

ω × JnatK ∼=
∐
N

ω

and we can rewrite (hnat)⋆ as:

(hnat)⋆
(
(n)i

)
= (hnatn )⋆(i) =

i if i ≤ n

⊥ otherwise.

Notice that (hnat)⋆ can be written as the co-pairing of the following func-

tions (fi)⋆ : ω(⋆)→ (LGJnatK)(⋆), for each i ∈ N:

(fi)⋆(n) =

i if i ≤ n

⊥ otherwise.

Because LGJnatK is concrete, if we show fi : ω → LGJnatK is a well-defined

morphism in G, then this is enough to show that hnat is the co-pairing [fi]i∈N,

and is thus a well-defined morphism.

The function (fi)⋆ factors as:

ω(⋆)
(gi)⋆−−→ LG1(⋆)

(LG inc)⋆−−−−−→ (LGJnatK)(⋆)

where

(gi)⋆(n) =

∗ if i ≤ n

⊥ otherwise.

To show gi : ω → LG1 is a well-defined morphism, consider a chain

b = (. . . 0 ↣ Xk ↣ . . . X1 ↣ X) in ω(X). For each point p : ⋆→ X, denote

by p∗(b) the chain in ω(⋆) which is the pullback of b along p. Then:

(gi)X(b) = λp ∈ |X|.

∗ if p∗(b) ≥ i

⊥ otherwise.
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To show (gi)X(b) ∈ LG1(⋆), we need to show it corresponds to an admissible

mono X ′ ↣ X. If k < i, then the mono is 0→ X. Otherwise, it is Xi ↣ X.

Next, calculate the extension of hnat. Because in a normal model LGJnatK
is complete, this extension must be unique.

From Lemma 6.3.9 we know that the unique extension of each fi : ω →
LGJnatK is fi : ω → LGJnatK such that:

(fi)⋆(∞) = (ηJnatK)⋆(i).

So we can let

Hnat = [fi]i∈N,

which has the desired property at ∞. Because hnat = [fi]i∈N, it is clear that

Hnat is its extension.

Case 0. We know that J0K(0) ∼= 1 and for any other object X in the site

J0K(X) = ∅. And ω(0) ∼= 1. Therefore

h0 : ω × J0K→ LGJ0K

is the empty function for any object X other than 0, and at 0 maps the only

input element to the top element of LGJ0K(0). Therefore, h0 is a well-defined

morphism. The extension H0 is defined in the same way.

Case 1. We know that

h1 : ω × J1K→ LGJ1K

is defined as

(h1)⋆(n, ∗) = (ηJ1K)⋆(∗),

so it is a well-defined morphism. Its extension H1 is defined similarly, and

satisfies:

(H1)⋆(∞, ∗) = ∗.
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Case σ → τ . In this case we want to show there is a morphism

hσ→τ : ω × (JσK⇒ LGJτK)→ LG(JσK⇒ LGJτK)

which is defined on points as:

(hσ→τ )⋆(n, f) = (ηJσK⇒LGJτK)⋆
(
(hτn)

† ◦ f † ◦ hσn
)
.

To do this, start from an arbitrary morphism

x : X → ω × (JσK⇒ LGJτK)

and construct a morphism

X → LG(JσK⇒ LGJτK),

such that the construction is natural in X.

Let x1 : X → ω and x2 : X × JσK → LGJτK be the two maps obtained

from x. By the induction hypothesis, we have two maps:

hσ : ω × JσK→ LGJσK

hτ : ω × JτK→ LGJτK.

Then we can form the following map:

X × JσK
∆X×idJσK−−−−−−→ X ×X × JσK

idX×x1×idJσK−−−−−−−−→ X × ω × JσK idX×hσ−−−−→ X × LGJσK
∆X×idLGJσK
−−−−−−−→ X ×X × LGJσK idX×str−−−−→ X × LG(X × JσK)

idX×x†2−−−−→ X × LGJτK
x1×idLGJτK
−−−−−−→ ω × LGJτK str−→ LG(ω × JτK)

(hτ )†−−−→ LGJτK,

where ∆X is the copying map. By currying the map above and postcompos-

ing with η we obtain

α = X → (JσK⇒ LGJτK) η−→ LG(JσK⇒ LGJτK).
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If we let X = ω × (JσK ⇒ LGJτK) and x = idω×(JσK⇒LGJτK) we obtain a

map α1 with the correct type for hσ→τ . We need to show that at ⋆, α1 agrees

with (hσ→τ )⋆.

For this, let X = 1 and let x = ⟨n, f⟩ : 1 → ω × (JσK ⇒ LGJτK), where
n ∈ ω(⋆) and f : JσK → LGJτK, and consider the induced map α2 : 1 →
LG(JσK⇒ LGJτK). Then by construction of α, (α2)⋆ is (h

σ→τ )⋆(n, f).

Now define the extension of hσ→τ :

Hσ→τ : ω × (JσK⇒ LGJτK)→ LG(JσK⇒ LGJτK).

This will be the unique extension because in a normal model the interpreta-

tion of any type is well-complete.

From the induction hypothesis we have maps Hσ and Hτ which are the

extensions of hσ and hτ respectively. We can construct Hσ→τ starting from

an arbitrary map

x : X → ω × (JσK⇒ LGJτK)

in the same way we constructed hσ→τ , because no properties of ω were needed.

Then for any n ∈ ω(⋆) and any f : JσK→ LGJτK:

(Hσ→τ )⋆(n, f) = (ηJσK⇒LGJτK)⋆
(
(Hτ (n,−))† ◦ f † ◦Hσ(n,−)

)
.

So it is clear that Hσ→τ is the extension of hσ→τ , thanks to concreteness.

To show

(Hσ→τ )⋆(∞, f) = (ηJσK⇒LGJτK)⋆(f)

it is enough to notice that by induction hypothesis

(
(Hτ (n,−))†

)
⋆
◦ (f †)⋆ ◦

(
Hσ(n,−)

)
⋆
= f⋆.

Case σ + τ . We know that

(hσ+τ )⋆(n, x) = (hσ+τn )⋆(x) = [LGincJσK ◦ hσn, LGincJτK ◦ hτn]⋆(x).
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To obtain a morphism that agrees on points with the above, notice that:

ω × (JσK + JτK) ∼= (ω × JσK) + (ω × JτK),

so we can define

hσ+τ = [LGincJσK ◦ hσ, LGincJτK ◦ hτ ],

and by induction hypothesis we are done.

Similarly, define

Hσ+τ = [LGincJσK ◦Hσ, LGincJτK ◦Hτ ],

which by induction hypothesis is the extension of hσ+τ , and has the required

value at ∞.

Case σ × τ . We know

(hσ×τ )⋆(n, x) = (hσ×τn )⋆(x) =
(
µ ◦ str2 ◦ ⟨hσn ◦ π1, hτn ◦ π2⟩

)
⋆
(x).

To get the same behaviour on points, define

hσ×τ = ω × (JσK× JτK)
⟨hσ◦(idω×π1), hτ◦(idω×π2)⟩−−−−−−−−−−−−−−−−→

LGJσK× LGJτK µ◦str2−−−→ LG(JσK× JτK).

using the induction hypothesis. The extension Hσ×τ can be defined similarly

using Hσ and Hτ , and has the required properties by induction hypothesis.

8.2.2 Finite approximations are definable

We now choose a collection of sites ICn,Fn , one for each n ∈ N, from among

the sites of G, and use them to show that all points of truncated types JσKk
(introduced in Proposition 8.2.2) are definable (Corollary 8.2.10).
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To extend the truncated interpretation to typing contexts Γ = x1 :

τ1, . . . , xl : τl, we define:

JΓKk = Jτ1Kk × . . .× JτlKk.

Define Cn and Fn as follows:

Definition 8.2.4. Let Cn be the category where objects are typing contexts

Γ and maps
(
(Γ,∆)→ Γ

)
correspond to projections:

JΓ,∆Kn ∼= JΓKn × J∆Kn → JΓKn.

By projection we mean the morphism in G with underlying function:

π1 : |JΓKn| × |J∆Kn| → |JΓKn|.

Therefore, there can be at most one map between two objects of Cn. Com-

position is given by composition in G and identities occur when the second

component of the domain, ∆, is the empty context.

Definition 8.2.5. Let Fn : Cn → SSP be the functor defined by

Fn(Γ) = (|JΓKn|, SΓ,n),

where P ∈ SΓ,n if and only if there exists a computation

Γ ⊢c t : nat

such that P is the set of non-empty fibres of the map

JΓKn ↣ JΓK
JtK−→ LGJnatK

at ⋆, (excluding the fibre of ⊥).
On maps, Fn sends (Γ,∆)→ Γ from Cn to the Set projection:

Fn((Γ,∆)→ Γ) = (|JΓ,∆Kn|, S(Γ,∆),n)→ (|JΓKn|, SΓ,n),
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which makes sense because |JΓ,∆Kn| ∼= |JΓKn|×|J∆Kn| from Proposition 8.2.2.

Remark 8.2.6. The definition above implies that {U} ∈ SΓ,n if and only if

U is the domain of some computation Γ ⊢c t : 1 restricted to JΓKn. By the

union axiom of SSP this is also equivalent to U ∈ P for some P ∈ SΓ,n.

Lemma 8.2.7. The mapping Fn from Definition 8.2.5 is a well-defined faith-

ful functor.

Proof. We need to show that SΓ,n satisfies the SSP axioms. The partition

{|JΓKn|} is in SΓ,n because it corresponds to the computation:

Γ ⊢c return 0 : nat.

The empty partition corresponds to, for example, the diverging computation:

Γ ⊢c (rec f x. f x) 0 : nat.

To show SΓ,n satisfies the refinement axiom, suppose that P,Q ∈ SΓ,n

and that U ∈ P . Suppose further that Γ ⊢c tP : nat and Γ ⊢c tQ : nat are

the terms representing P and Q respectively. Let k1 ≤ k2 ≤ . . . ≤ kn ∈ N be

the values whose fibres give P , and suppose kU among then is the image of

U . Then to represent the partition (P \ {U}) ∪ ({U ∩ V | V ∈ Q} \ {∅}) we
can form the computation:

Γ ⊢c letx = tP in if x = kU then let y = tQ in return (y + kn) else returnx : nat.

For the axiom about unioning partition classes, suppose U, V ∈ P ∈ SΓ,n.

Let Γ ⊢c t : nat be the computation that represents P and let kU and kV be

the images of U and V respectively. To represent (P \ {U, V }) ∪ {U ∪ V }
consider the computation:

Γ ⊢c letx = t in if x = kV then return kU else returnx : nat.

To show the projection (|JΓ,∆Kn|, S(Γ,∆),n)→ (|JΓKn|, SΓ,n) is a valid SSP

map, we need to show that it pulls back partitions to partitions. Let P ∈ SΓ,n
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be represented by the computation Γ ⊢c t : nat. Then P pulls back to:

{
U × |J∆Kn|

∣∣ U ∈ P}
which is induced by the term Γ,∆ ⊢c t : nat.

We omit the proof that Fn is functorial. It is faithful because there is at

most one map between any two objects of Cn.

Remark 8.2.8. We can describe the site ICn,Fn explicitly. The objects are

either the terminal ⋆, or of the form (Γ, U) where Γ is a typing context and

U ⊆ |JΓKn| where {U} ∈ SΓ,n or U = ∅. Morphisms
(
(Γ,∆), U

)
→ (Γ, V )

are Set projections U → V .

Now we prove the most important result about definability. It will allow

us to deduce Corollary 8.2.10, which in turn plays a crucial role in the proof

of full abstraction Theorem 8.2.11.

Proposition 8.2.9. Consider the interpretation of PCFv in the normal model

G (Definition 8.1.12). For any type σ, for any n ∈ N, and for any object

(Γ, U)Cn,Fn in ICn,Fn, a function

g : U → |JσKn|

is in JσKn(Γ, U)Cn,Fn if and only if there exists a computation

Γ ⊢c t : σ

such that the domain at ⋆ of

α = JΓKn ↣ JΓK
JtK−→ LGJσK

(hσn)
†

−−−→ LGJσKn

is U and α⋆|U = g.

When writing (hσn)
† : LGJσK→ LGJσKn we mean the map (hσn)

† : LGJσK→
LGJσK with codomain restricted to LGJσKn, which is possible because we know

its image lies inside LGJσKn. Notice that the right-to-left implication makes
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sense because {dom(α⋆)} ∈ SΓ,n since it is represented by the computation:

Γ ⊢c let z = t in let y = ψσn[z/x] in return ⋆ : 1.

Proof of Proposition 8.2.9. The proof is by induction on σ.

Case nat. Consider g ∈ JnatKn(Γ, U)Cn,Fn . We proved in Proposition 8.2.2

that

JnatKn = 1 + 1 + . . .+ 1︸ ︷︷ ︸
n+1 times

so by the description of coproduct in G (Figure 7.1) it must be the case that

the non-empty fibres of g : U →
∑

n+1 1 form a partition P ∈ SΓ,n, where⋃
P = U .

Notice that P has at most n+ 1 elements.

By the definition of SΓ,n, there must be a computation Γ ⊢c t : nat such
that the non-empty fibres of

JΓKn ↣ JΓK
JtK−→ LGJnatK

form P . Because P has finitely many elements, we can rearrange the output

values of t to match those of g, and obtain another computation Γ ⊢c t′ : nat.
Then

JΓKn ↣ JΓK
Jt′K−−→ LGJnatK

(hnatn )†−−−→ LGJnatKn

has domain U and its restriction to U equals g. The postcomposition by (hσn)
†

does nothing because the image of JΓKn under Jt′K is already in {0, . . . , n}.
For the converse, start with a term Γ ⊢c t : nat. We need to show that

the function

g =
(
JΓKn ↣ JΓK

JtK−→ LGJΓK
(hnatn )†−−−→ LGJnatKn

)
⋆

∣∣
U

is in JnatKn(Γ, U)Cn,Fn , where U is the domain of definition of the function in

brackets.

Recall the description of coproduct in concrete sheaves from Figure 7.2,
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where c is any object in the site:

Jτ + τ ′K(c) =
{
f : |c| → |JτK|+ |Jτ ′K|

∣∣ ∃{gi : ci → c}i∈I ∈ JG(c)

s.t. for each i, (f ◦ gi) ∈ JτK(ci) or (f ◦ gi) ∈ Jτ ′K(ci)
}
.

It is then enough to show that the non-empty fibres of g (excluding that of

⊥) form a partition in SΓ,n. For this, notice that the fibres of g are realised

by the following computation restricted to JΓKn:

Γ ⊢c let z = t inψnat
n [z/x] : nat.

Case 0. We know that J0Kn ∼= J0K. If U ̸= ∅, then J0Kn(Γ, U)Cn,Fn = ∅ so
there is no function g in J0Kn(Γ, U)Cn,Fn to consider.

If U = ∅ then by the sheaf condition J0Kn(Γ, ∅)Cn,Fn has exactly one

element, the empty function g : ∅ → |JσKn| ∼= ∅. The following diverging

computation corresponds to g:

Γ ⊢c (rec f x. f x) 0 : 0

because at ⋆ the morphism

JΓKn ↣ JΓK
J(rec f x. f x) 1K−−−−−−−−→ LGJ0K

h0n−→ LGJ0Kn

must be undefined everywhere since |J0Kn| = ∅.
For the converse, start with a computation Γ ⊢c t : 0. Because |J0Kn|

is empty, the underlying function of the following morphism must be every-

where undefined:

JΓKn ↣ JΓK
JtK−→ LGJ0K

(h0n)
†

−−−→ LGJ0Kn

so t corresponds to the unique element of J0Kn(Γ, ∅)Cn,Fn .

Case 1. We know J1Kn ∼= J1K. This means that J1Kn(Γ, U)Cn,Fn has exactly

one element, the constant function g : U → |J1Kn| ∼= 1.
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For the left to right implication, notice that there must be a term Γ ⊢c

tU : 1 whose domain when restricted to JΓKn is U . This term also corresponds

to g, because postcomposition by h1n does nothing.

For the converse, consider a computation Γ ⊢c t : 1. It is clear that it

corresponds to the unique element of J1Kn(Γ, U)Cn,Fn , where U is the domain

of

JΓKn ↣ JΓK
JtK−→ LGJ1K

(h1n)
†

−−−→ LGJ1Kn.

Case σ → τ , left to right implication. Let g ∈ Jσ → τKn(Γ, U)Cn,Fn , so

g has type

g : U → |JσKn ⇒ LGJτKn|

where U ⊆ |JΓKn|.
Recall the description of function space in concrete sheaves from Fig-

ure 7.2, where c is any object in the site:

Jτ → τ ′K(c) =
{
f : |c| → Sh(JτK, LGJτ ′K)

∣∣
∀h : d→ c ∈ IG, ∀g : |d| → |JτK| ∈ JτK(d).

λx ∈ |d|.
(
f(h(x)) g(x)

)
∈ LGJτ ′K(d)

}

We will instantiate the description of Jσ → τKn(Γ, U)Cn,Fn for

π1 :
(
(Γ, x : σ), U × |JσKn|

)
Cn,Fn

→ (Γ, U)Cn,Fn

from ICn,Fn , and for

π2 ∈ JσKn
(
(Γ, x : σ), U × |JσKn|

)
Cn,Fn

, π2 : U × |JσKn| → |JσKn|.

To show that {U × |JσKn|} ∈ S(Γ,σ),n, let Γ ⊢c tU : 1 be any computation

which when restricted to JΓKn has domain U . Then

Γ, x : σ ⊢c tU : 1
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restricted to JΓKn × JσKn has domain U × |JσKn|.
To show π2 ∈ JσKn

(
(Γ, x : σ), U×|JσKn|

)
Cn,Fn

use the induction hypothesis

for σ. Consider the computation:

Γ, x : σ ⊢c let y = tU in returnx : σ.

When restricted to JΓKn× JσKn it has domain U × |JσKn| and its postcompo-

sition with hσn (which does nothing) gives π2.

So from the fact that g ∈ Jσ → τKn(Γ, U)Cn,Fn we can deduce that:

A = λ(ρ1 × ρ2) ∈
(
U × |JσKn|

)
. g(π1(ρ1, ρ2)) π2(ρ1, ρ2)

∈ LGJτKn
(
(Γ, x : σ), U × |JσKn|

)
Cn,Fn

.

By the definition of LG, there exists V ⊆ U × |JσKn| such that
(
(Γ, x :

σ), V
)
Cn,Fn

is an object in ICn,Fn and

A|V ∈ JτKn
(
(Γ, x : σ), V

)
Cn,Fn

.

We can use the induction hypothesis for τ to get a computation

Γ, x : σ ⊢c tA : τ

such that the map

JΓKn × JσKn ↣ JΓK× JσK
JtAK−−→ LGJτK

(hτn)
†

−−−→ LGJτKn

has domain V and its restriction to V equals A|V . We can curry this map to

get:

B : JΓKn → (JσKn ⇒ LGJτKn)

whose domain is U and B|U = g.

Consider the computation

Γ ⊢c tg
def
= (let y = tU in returnλx. tA) : σ → τ.
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The map

C = JΓKn ↣ JΓK
JtgK−−→ LG(JσK⇒ LGJτK)

(hσ→τ
n )†−−−−→ LG(JσKn ⇒ LGJτKn)

has domain U and we can show its restriction to U equals B|U and hence g.

Unwinding the definition of hσ→τ
n we get that:

C = λu ∈ |JΓKn|.

η
(
(hτn)

† ◦ JtAK(u,−)† ◦ hσn
)

if u ∈ U

⊥ if u ̸∈ U.

Because the input u comes from |JΓKn|, hσn has no effect so we can see C

equals B.

Case σ → τ , right to left implication. Consider a computation Γ ⊢c

t : σ → τ . Let U ⊆ |JΓKn| be its domain when restricted to JΓKn and

postcomposed by (hσ→τ
n )†. Let

g =
(
JΓKn ↣ JΓK

JtK−→ LG(JσK⇒ LGJτK)
(hσ→τ

n )†−−−−→ LG(JσKn ⇒ LGJτKn)
)∣∣
U
.

We need to prove that

g ∈ Jσ → τKn(Γ, U)Cn,Fn .

Consider π1 :
(
(Γ,∆), V

)
Cn,Fn

→ (Γ, U)Cn,Fn from ICn,Fn , so π1(V ) ⊆ U ,

and a ∈ JσKn
(
(Γ,∆), V

)
Cn,Fn

. By induction hypothesis for σ, there must be

a computation

Γ,∆ ⊢c ta : σ

such that when restricted to JΓKn × J∆Kn and LGJσKn its domain is V and

a =
(
JΓKn × J∆Kn ↣ JΓK× J∆K

JtaK−−→ LGJσK
(hσn)

†

−−−→ LGJσKn
)∣∣
V
.

It is enough to prove that

λv ∈ V. g(π1(v)) a(v) ∈ (LGJτKn)
(
(Γ,∆), V

)
Cn,Fn

.
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Using the description of the lifting monad LG (Figure 7.2), we see that

it suffices to find a subset V ′ ⊆ V , defined by some computation Γ,∆ ⊢c

tV ′ : 1 when restricted to JΓKn × JσKn, such that V ′ is the domain of λv ∈
V. g(π1(v)) a(v) and

λv ∈ V ′. g(π1(v)) a(v) ∈ JτKn
(
(Γ,∆), V ′)

Cn,Fn
.

To define tV ′ use the fact that there is a term Γ,∆ ⊢c tV : 1 that defines V .

Then consider the following term which is roughly ψσ→τ
n (t) ψσn(ta):

Γ,∆ ⊢c tV ′
def
= let y = tV in

let z1 = t in let z2 = ψσ→τ
n [z1/x] in let z3 = ta in let z4 = ψσn[z3/x] in

let z5 = (z2 z4) in return ⋆ : 1.

Using the induction hypothesis for τ , the last step is to find a computation

Γ,∆ ⊢c t′ : τ such that the following map has domain V ′:

JΓKn × JσKn ↣ JΓK× JσK
Jt′K−−→ LGJτK

(hτn)
†

−−−→ LGJτKn.

and equals λv ∈ V ′. g(π1(v)) a(v).

Define t′ similarly to tV ′ :

Γ,∆ ⊢c t′ def
= let y = tV in

let z1 = t in let z2 = ψσ→τ
n [z1/x] in let z3 = ta in let z4 = ψσn[z3/x] in

(z2 z4) : τ.

Notice that the image of (z2 z4) is already in LGJτKn.

Case σ+τ . For the left to right implication consider a function g ∈ (JσKn+
JτKn)(Γ, U)Cn,Fn . This means that there exists a cover P of U such that

P ∈ SΓ,n and
⋃
P = U , and for each V ∈ P either g|V ∈ JσKn(Γ, V )Cn,Fn or

g|V ∈ JτKn(Γ, V )Cn,Fn .

By definition, P ∈ SΓ,n means that there is a computation Γ ⊢c tP : nat
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such that the non-empty fibres of

JΓKn ↣ JΓK
JtP K−−→ LGJnatK

(excluding that of ⊥) give P .
For each V ∈ P we can use the induction hypothesis for either σ or τ as

appropriate. Assume without loss of generality that g|V ∈ JσKn(Γ, V )Cn,Fn .

Then there is a computation Γ ⊢c tgV : σ such that the domain of the

following map is V

JΓKn ↣ JΓK
JtgV K
−−−→ LGJσK

hσn−→ LGJσKn

and it equals g|V .
Now we can construct the term that corresponds to g. There is a finite

number of V ∈ P ; let nV ∈ N be the image of V under tP . We can form the

following computation written informally as:

Γ ⊢c let y = tP in {if y = nV then let z = tgV in

return (inl z, if tgV : σ, or inr z, if tgV : τ)}V ∈P : σ + τ.

It has domain U because tP does, and behaves as expected when postcom-

posed by hσ+τn because hσ+τn is defined componentwise using hσn and hτn.

For the right to left implication, start with a term Γ ⊢c t : σ+ τ . We can

form two terms:

Γ ⊢c t1
def
= letx = t in casex of {inl y → return y, inr y → Ωσ} : σ

Γ ⊢c t2
def
= letx = t in casex of {inl y → Ωτ , inr y → return y} : τ,

where Ωσ and Ωτ are non-terminating computations, for example Ωσ
def
=

(rec f x. f x) 0.
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Consider the following morphisms:

g1 = JΓKn ↣ JΓK
Jt1K−−→ LGJσK

(hσn)
†

−−−→ LGJσKn

g2 = JΓKn ↣ JΓK
Jt2K−−→ LGJτK

(hτn)
†

−−−→ LGJτKn

g = JΓKn ↣ JΓK
JtK−→ LGJσ + τK

(hσ+τ
n )†−−−−→ LGJσ + τKn.

The domain of g is the union of the domains of g1 and g2 and g can be seen

as the union of g1 and g2.

By induction hypothesis for σ and τ , we get that

g1|dom(g1) ∈ JσKn(Γ, dom(g1))Cn,Fn

and similarly for g2. We need to show that

g|dom(g) ∈ Jσ + τKn(Γ, dom(g))Cn,Fn

For this, it’s enough to show that {dom(g1), dom(g2)} is a cover for

(Γ, dom(g)), or equivalently that {dom(g1), dom(g2)} ∈ SΓ,n. This follows

by considering the computation:

Γ ⊢c let z = t in let y = ψσ+τn [z/x] in

case y of {inlw → return 0, inrw → return 1} : nat.

Case σ× τ . Let g ∈ (JσKn× JτKn)(Γ, U)Cn,Fn . This means g = ⟨g1, g2⟩ with
g1 ∈ JσKn(Γ, U)Cn,Fn and g2 ∈ JτKn(Γ, U)Cn,Fn .

By induction hypothesis, there must be two computations Γ ⊢c t1 : σ and

Γ ⊢c t2 : τ such that the domain of

JΓKn ↣ JΓK
Jt1K−−→ LGJσK

(hσn)
†

−−−→ LGJτKn

is U , and its restriction to U equals g1, and similarly for t2 and g2.
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The following computation then corresponds to g:

Γ ⊢c letx = t1 in let y = t2 in return (x, y) : σ × τ

because hσ×τn is defined using both hσn and hτn.

For the converse, start with a term Γ ⊢c t : σ × τ . Let

g = JΓKn ↣ JΓK
JtK−→ LG(JσK× JτK)

(hσ×τ
n )†−−−−→ LG(JτKn × JσKn)

and let its domain be U . We need to show that g|U ∈ (JσKn×JτKn)(Γ, U)Cn,Fn .

Form the term Γ ⊢c letx = t in π1(x) : σ which by induction hypothesis

gives a function g1 ∈ JσKn(Γ, U)Cn,Fn . We can do the same for π2 to get

g2 ∈ JτKn(Γ, U)Cn,Fn . Then it is enough to notice that g|U = ⟨g1, g2⟩.

Corollary 8.2.10. Consider the interpretation of PCFv in the normal model

G (Definition 8.1.12). For any type σ and for any n ∈ N, every point of JσKn
is definable. More precisely, for each point p : 1 → JσKn there is a closed

computation

− ⊢c t : σ

with denotation JtK : 1→ LGJσK, such that JtK⋆(∗) = p⋆(∗).

Proof. Use Proposition 8.2.9 in the case where (Γ, U)Cn,Fn is the empty con-

text (−), modelled by 1, and U ∼= 1 is a one element set. Then JσKn
(
(−), 1

)
Cn,Fn

contains all the constant functions p : 1 → |JσKn|, and for each p there is a

computation ⊢c tp : σ, such that the following map picks out p:

1 ↣ 1
JtpK−−→ LGJσK

(hσn)
†

−−−→ LGJσKn.

The computation t that we need can be constructed as:

− ⊢c let z = tp inψ
σ
n[z/x] : σ.
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8.2.3 Full abstraction

Using the definability results from the previous section (Corollary 8.2.10) we

can show that contextual equivalence implies denotational equality (Theo-

rem 8.2.11). The converse follows from soundness and adequacy, thus com-

pleting the proof that the normal model G (Definition 8.1.12) is a fully ab-

stract model of PCFv without any type or term constants.

Theorem 8.2.11 (Full abstraction). Consider the interpretation of PCFv

without type or term constants in the normal model G. This interpretation

is fully abstract with respect to the operational semantics from Section 4.2 in

the following sense:

� If two values v1 and v2 are contextually equivalent, Γ ⊢v v1 ≃ v2 : σ,

then their denotations are equal:

Jv1K = Jv2K : JΓK→ JσK.

� If two computations t1 and t2 are contextually equivalent, Γ ⊢c t1 ≃ t2 :

σ, then their denotations are equal:

Jt1K = Jt2K : JΓK→ LGJσK.

Proof. The proof is by induction on σ, for values and computations simul-

taneously. The proof crucially relies on the fact that types are interpreted

as concrete sheaves, so morphisms between them are determined by their

underlying function at ⋆, i.e. by their action on points.

Case nat for values. Let Γ ⊢v v1 ≃ v2 : nat be two contextually equivalent

values. Then either v1 and v2 are both the same variable from Γ, or they are

the same natural number.

Case nat for computations. Consider two contextually equivalent com-

putations Γ ⊢c t1 ≃ t2 : nat. We will show first that for any n ∈ N:

JΓKn ↣ JΓK
Jt1K−−→ LGJnatK = JΓKn ↣ JΓK

Jt2K−−→ LGJnatK.
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From Corollary 8.2.10, we know that for each point p : 1→ JΓKn there is

a computation − ⊢c tp : Γ, so JtpK : 1→ LGJΓK, such that

p⋆(∗) = JtpK⋆(∗).

Assume that Γ = x1 : τ1, . . . xk : τk. For every point p we can consider

the following context of ground type:

Cp = let (x1, . . . , xk) = tp in□.

Then by definition of contextual equivalence we know that

Cp[t1] ⇓ l if and only if Cp[t2] ⇓ l.

If both computations diverge, then both 1
p−→ JΓKn ↣ JΓK

Jt1K−−→ LGJnatK and

1
p−→ JΓKn ↣ JΓK

Jt2K−−→ LGJnatK pick out ⊥. This follows from adequacy as

explained in Remark 7.1.4, because if Cp[t1] diverges, there can be no closed

value v of type nat such that JCp[t1]K = ηJnatK◦JvK. Since |LGJnatK| = N+{⊥},
JCp[t1]K must be ⊥.

The other case is when both computations return l ∈ N. By soundness

both denotations pick out l ∈ |LGJnatK|. So this suffices to show that Jt1K
and Jt2K agree on JΓKn.

Because the image of hΓn is LGJΓKn, we can deduce that for any n ∈ N:

Jt1K† ◦ hΓn = Jt2K† ◦ hΓn : JΓK→ LGJnatK

and further, by concreteness, that

Jt1K† ◦ hΓ = Jt2K† ◦ hΓ : ω × JΓK→ LGJnatK.

Because LGJnatK is complete, the two maps above must have a unique exten-

sion, which must be

Jt1K† ◦HΓ = Jt2K† ◦HΓ : ω × JΓK→ LGJnatK,
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since HΓ is the extension of hΓ.

Finally, we can evaluate both maps above at ∞ ∈ ω(⋆), and by Proposi-

tion 8.2.3 obtain that, for any x ∈ |JΓK|:

Jt1K⋆(x) = Jt2K⋆(x).

So by concreteness Jt1K = Jt2K.

Case 1. In the value case, both values are either the same variable or ⋆, so

they must have equal denotations. The computation case is exactly like the

nat case for computations, because the only property of nat that we used is

that it is a ground type.

Case 0. For values, they must both be the same variable from the con-

text. For computations, suppose t1 and t2 are contextually equivalent, where

Jt1K, Jt2K : JΓK → LGJ0K. By concreteness we only need to compare the

two denotations at ⋆, but |LGJ0K| ∼= 1, so Jt1K and Jt2K must have the same

underlying constant function.

Case σ → τ for values. Let Γ ⊢v v1 ≃ v2 : σ → τ . By congruence of

contextual equivalence:

Γ, x : σ ⊢c (v1 x) ≃ (v2 x) : τ.

Now apply the induction hypothesis for τ to deduce that the following two

maps are equal:

uncurryJv1K = uncurryJv2K : JΓK× JσK→ LGJτK,

so by currying we get that Jv1K = Jv2K.

Case σ → τ for computations. Let Γ ⊢c t1 ≃ t2 : σ → τ . By congruence

of contextual equivalence we can form the following two pairs of contextually
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equivalent terms:

Γ ⊢c t′1
def
= letx = t1 in return ⋆ : 1 Γ ⊢c t′2

def
= letx = t2 in return ⋆ : 1

and

Γ ⊢v v1
def
= λx. let f = t1 in f x : σ → τ

Γ ⊢v v2
def
= λx. let f = t2 in f x : σ → τ.

Because we have already proved the 1 case and the σ → τ case for values,

we can deduce that the following denotations are equal:

Jt′1K = Jt′2K : JΓK→ LGJ1K

and

Jv1K = Jv2K : JΓK→ (JσK⇒ LGJτK).

Consider the terms

Γ ⊢c t′′1
def
= let y = t′1 in return v1 : σ → τ

Γ ⊢c t′′2
def
= let y = t′2 in return v2 : σ → τ.

Because the denotational interpretation is compositional we can see that:

Jt′′1K = Jt′′2K

but also that Jt′′1K = Jt1K and Jt′′2K = Jt2K. So Jt1K = Jt2K and we are done.

Case σ × τ for values. Let Γ ⊢v v1 ≃ v2 : σ × τ . Then the following two

pairs of terms are contextually equivalent:

Γ ⊢c π1(v1) ≃ π1(v2) : σ Γ ⊢c π2(v1) ≃ π2(v2) : τ.
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By induction hypothesis, we get that

JΓK
Jv1K−−→ JσK× JτK π1−→ JσK η−→ LGJσK = JΓK

Jv2K−−→ JσK× JτK π1−→ JσK η−→ LGJσK

and similarly for π2. Because π1 and π2 are jointly monic, and η is monic,

we get that Jv1K = Jv2K.

Case σ × τ for computations. Let Γ ⊢c t1 ≃ t2 : σ × τ . The proof is

similar to the value case, but it uses terms of the form:

Γ ⊢c letx = t1 in π1(x) : σ

and the induction hypothesis for σ and τ .

Case σ+τ for values. Let Γ ⊢v v1 ≃ v2 : σ+τ , and consider the following

two pairs of contextual equivalent terms:

Γ ⊢c t1
def
= case v1 of {inlx→ returnx, inr x→ Ωσ} : σ

Γ ⊢c t2
def
= case v2 of {inlx→ returnx, inr x→ Ωσ} : σ

and

Γ ⊢c t′1
def
= case v1 of {inlx→ Ωτ , inr x→ returnx} : τ

Γ ⊢c t′2
def
= case v2 of {inlx→ Ωτ , inr x→ returnx} : τ.

By induction hypothesis we get that Jt1K = Jt2K and Jt′1K = Jt′2K. So Jv1K =

Jv2K because Jv1K and Jv2K induce the same coproduct decomposition of JΓK
and agree on each component of that decomposition.

Case σ + τ for computations. Let Γ ⊢c t1 ≃ t2 : σ + τ . The proof is

similar to the value case, using the induction hypothesis for σ and τ . But

instead it uses computations of the form:

Γ ⊢c let z = t1 in case z of {inlx→ returnx, inr x→ Ωσ} : σ.
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8.3 Related work

In this chapter, we defined a normal model G for PCFv (without type and

term constants), via the recipe from Theorem 7.1.1, using concrete sites and

admissible monos. We then showed that G is a fully abstract model.

The first fully abstract model of PCF was a syntactic model given by

Milner [Mil77]. Milner also showed that under mild assumptions extensional

fully abstract models of PCF are unique up to isomorphism (see e.g. [Str06,

Theorem 10.12]). Therefore, subsequent research has focused on finding bet-

ter presentations of this fully abstract model that do not rely on the syntax

of the language.

Game semantics models [AJM00, HO00] are one approach to solving the

full abstraction problem. A different approach, by which our work is inspired,

is to try to cut out non-definable maps from the cpo model (which is not fully

abstract [Plo77]) by asking that they preserve certain logical relations. This

approach has led to a lot of work attempting to capture definable or “se-

quential” functions using logical relations e.g. [Plo73, Sie92, JT93, KKS22].

Fully abstract models of PCF and FPC constructed using this method have

been presented by O’Hearn, Riecke and Sandholm [OR95, RS02] and Stre-

icher and Marz [Mar00a, Mar00b, Str06]. At the beginning of the chapter we

discussed the relation between these models and our work in general terms,

we now focus on some technical differences.

O’Hearn and Riecke [OR95] and Streicher [Str06] study call-by-name PCF,

so their model is different from ours, although we did adopt the use of SSP

from [Str06].

The model closest to ours is probably that by Riecke and Sandholm [RS02]

who deal with FPC. Here are some of the similarities: our sites IC,F corre-

spond to the varying arities in [RS02]; the index category C corresponds to

their C from [RS02, Section 3.4]; the SSP structure SF (c) corresponds to their

path theory Sw; and our sheaf condition corresponds to the structure of a

computational relation. Overall the Kleisli category of LG plays the same

role as the partial cartesian-closed category RCPO from [RS02].

There are however some technical differences. The objects in our model G
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have the structure of presheaves on V0, and since ωCPO embeds in vSet (Propo-

sition 4.4.10), some of them, but not all, have the strucure of an ωcpo. The

objects in RCPO however are dcpo’s, with relations. We argue that our

treatment of recursion in G is more modular: it requires combining the sites

for full abstraction, (IC,F ,JC,F ), with an additional site, (V0, JV0), rather

than considering cpo-valued relations.

Another difference is that in the constructions of RCPO, morphisms

f : v → w from C are not required to pull back a partition from Sw to a

partition from Sv. Roughly, this means that objects in RCPO are equipped

with more relations than in G. Thus, it is not straightforward to relate

RCPO to the Kleisli category of LG, for example via an embedding like

in Proposition 4.4.10. We conjecture that, at most, we could find a common

subcategory of the two.

More recent work on full abstraction using logical relations is that by

Kammar, Katsumata and Saville [KKS22]. We thank them for suggesting

this topic of research to us. They present a method of constructing fully ab-

stract models for languages with computational effects but without recursion.

We do not know yet what the formal connection to our model is.

On a technical note, the model in this chapter is slightly different from the

one in our published work [MMS21]. For defining the sites IC,F of G, [MMS21]

considers functors F : C → SSP⊥, where SSP⊥ is the Kleisli category for a

suitable lifting monad on SSP, rather than functors F : C → SSP as we did

in Section 8.1.2. This means that more sites are used in the definition of G
in [MMS21] compared to Section 8.1.2. The proof of definabilty in [MMS21]

proceeds differently, taking advantage of these extra sites. In [MMS21], each

Cn is defined to contain as objects all types, and morphisms are all the defin-

able partial maps JσKn → LGJτKn. In Section 8.2.2 however, Cn was defined to

only contain contexts and projections (Definition 8.2.4). Overall, the model

G in this chapter is a slight simplification over [MMS21] because it requires

fewer sites.
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Chapter 9

Conclusion

In this thesis we built models of higher-order recursive programs that have

the form of a category of concrete sheaves with a monad. The main contribu-

tion is a general method (Theorem 7.1.1) for obtaining such adequate models

starting from a concrete site and a class of admissible monomorphisms (Def-

inition 6.2.1) in the site. We showed how this method can be applied as a

basis for modelling languages that combine higher-order recursion with other

features, such as probability and differentiability.

More precisely, the examples of our method discussed in the thesis are:

� the usual ωCPOmodel of call-by-value PCF (e.g. [Win93, Section 11.3]);

� the ω-quasi-Borel spaces model of probabilistic programming [VKS19];

� the ω-diffeological spaces model of differentiable programming [Vák20];

� the ωPAP model [LHM21], a variation of ω-diffeological spaces allow-

ing some non-smoothness;

� a fully abstract model of call-by-value PCF [MMS21].

Our method makes precise the idea that in all these models, which so far have

been studied separately, the structure needed to model higher-order recursion

can be obtained in the same way. This is non-trivial because in each case

higher-order recursion interacts differently with the additional features of
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the language, or, in the last case, because we wish to capture a notion of

“sequential” program.

The fully abstract sheaf model we presented in Chapter 8, although in-

spired by the work on full abstraction of O’Hearn and Riecke [OR95, RS02],

is new. This model is an important contribution in itself because it explains,

in terms of sheaves and admissible monos, some of the ideas about logical

relations used by O’Hearn and Riecke. A similar goal was stated for example

by Fiore and Simpson [FS99] in their work about using sheaf conditions to

model sum types.

In designing our general method for building models, we used ideas from

axiomatic and synthetic domain theory, such as the notion of dominance

(e.g. [Ros86]). The synthetic domain theory literature studies toposes with a

dominance, which are more general than the models obtained via our method.

Nevertheless, our method is a contribution towards obtaining such toposes

starting from more elementary data, a concrete site with admissible monos.

Future work

A next step is to investigate whether the sheaf models obtained using our

method can interpret recursive types. There is evidence to suggest this might

be possible: several of the examples of our method, such as the category of

ω-quasi-Borel spaces and the category of ω-diffeological spaces, can already

deal with recursive types; the fully abstract model of FPC of Riecke and

Sandholm [RS02] includes recursive types. We conjecture that we can ob-

tain an interpretation of recursive types in our sheaf categories by adapting

the standard embedding-projection pairs argument from domain theory (see

e.g. [AJ94]).

Recall that our recipe for constructing models interprets all types as con-

crete sheaves. This means that the models are well-pointed: all maps between

types are determined by their action on the points of their domain. Possible

future work is to relax the concreteness assumptions from the definition of

admissible monos in order to allow models that are not well-pointed to be

generated with our recipe. Examples of such models could include nominal
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sets [Pit13] and models of local state [PP02, KLMS17].

Another direction for future work would be to extend the fully abstract

model from Chapter 8 with other computational effects beyond divergence,

such as printing, global state or probabilistic choice. We expect this would

require changing the sites IC,F to account for the new notion of observa-

tion that a particular effect brings. In this context, it would be interesting

to understand the connection with the work of Kammar, Katsumata and

Saville [KKS22] on full abstraction for effects.

We think, however, that full abstraction for effects might be difficult to

prove. Firstly, because the proof of full abstraction (Theorem 8.2.11) relies on

the types being interpreted as concrete sheaves. Recall also that in the proof

of Theorem 8.2.11, in the case of computations of type σ → τ , we proved

Jt′′1K = Jt1K using the fact that it does not matter whether an application of

t′′1 runs t1 twice. This is a special property of non-termination, that might

not hold for other effects. Even though we might not be able to achieve full

abstraction for other effects by adapting our fully abstract model for PCF,

exploring the space of models is still interesting because we might find models

that validate more contextual equivalences than existing models.
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