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Volatility analysis based on GARCH-type models: Evidence
from the Chinese stock market

Yuling Wanga,b , Yunshuang Xianga, Xinyu Leia and Yucheng Zhoua

aSchool of Economics, South-Central University for Nationalities, Wuhan, China; bHubei Moderately
Prosperous Society in all respects Construction Research Institute, South-Central University for
Nationalities, Wuhan, China

ABSTRACT
Volatility is integral for the financial market. As an emerging mar-
ket, the Chinese stock market is acutely volatile. In this study, the
data of the Shanghai Composite Index and Shenzhen Component
Index returns were selected to conduct an empirical analysis
based on the generalised autoregressive conditional heteroske-
dasticity (GARCH)-type model. We established the autoregressive
moving average (ARMA)-GARCH model with t-distribution for the
sample series to compare model effects under different distribu-
tions and orders. In contrast, we proposed threshold-GARCH
(TGARCH) and exponential-GARCH (EGARCH) models to capture
the features of the index. Additionally, the error degree and pre-
diction results of different models were evaluated in terms of
mean squared error (MSE), mean absolute error (MAE) and root-
mean-squared error (RMSE). The results denote that the ARMA
(4,4)-GARCH (1,1) model under Student’s t-distribution outper-
forms other models when forecasting the Shanghai Composite
Index return series. For the return series of the Shenzhen
Component Index, ARMA(1,1)-TGARCH(1,1) display the best fore-
casting performance among all models. This study could provide
an effective information reference for the macro decision-making
of the government, the operation of listed companies and invest-
ors’ investment decision-making.
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1. Introduction

The Chinese stock market is an emerging market that attracts investors globally but
is still in a nascent stage compared to its western counterparts. From the perspective
of market operation characteristics, emerging markets have high turnover rates, high
volatility and coexistence of high risk and high returns, showing strong speculation
and instability. With regards to market standardisation, there are many problems in
emerging markets, such as imperfect laws and regulations, inadequate law enforce-
ment, and underdeveloped regulatory technology. Moreover, insider trading, stock
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market manipulation, and fraud are relatively common, and the degree of standard-
isation is not high. Emerging markets are usually dominated by individual investors,
whose trading behaviour is often characterised by excessive trading, strong specula-
tion, lack of rationality and long-term investment philosophy. Conversely, a mature
stock market has a long history of development, and its legal system and market
mechanisms are more optimised and reasonable. Institutional investors are also a vital
constituent of a mature stock market, which is relatively more stable. Therefore,
investors tend to be cautious of the volatility risk associated with emerging markets
because of these differences between emerging and mature markets. Some scholars’
research may help investors understand the innovation and development capability of
enterprises in emerging markets and provide crucial insights for the management’s
investment decisions (Gil-Alana et al., 2020).

Emerging markets can promote the development of the economy, the horizontal
financing of capital and the horizontal connection of the economy to enhance the
overall efficiency of resource allocation. Besides, the scope of investment choices can
be expanded to satisfy the diversified investment motives and interests of investors.
Owing to uncertainty and high-speed international development, the Chinese stock
market is experiencing a period characterised by both opportunities and risks. An
accurate description of how stock prices fluctuate and how the future rate of stock
market returns can be determined has become a pressing issue; hence, studying the
volatility of the Chinese stock market is imperative.

2. Literature review

In the field of financial econometrics, the study of volatility in the financial market
has garnered much attention. Bollerslev (1986) developed a model that encompasses
the autoregressive conditional heteroscedasticity (ARCH) model, which he named the
generalised autoregressive conditional heteroskedasticity (GARCH) model. The
GARCH model has evolved into many GARCH-type models such as the exponential
(EGARCH) model (Nelson, 1991), the GJR model (Glosten et al., 1993), and the peri-
odic (PGARCH) model (Bollerslev & Ghysels, 1996). Even if the return series are sig-
nificantly skewed (Gokcan, 2000), the GARCH model happens to be the most
efficient tool for modelling. Engle (2002) introduces the GARCH extended (GARCH-
X) model, which includes realised variance as an exogenous variable in the volatility
dynamics equation. Ling and Li (2003) developed a limiting theory for unit root
processes with GARCH disturbances. Berkes and Horv�ath (2004) introduced general-
ised non-Gaussian quasi-maximum likelihood (gQML) estimation of GARCH models.
Wilhelmsson (2006) demonstrated the predictive power of the GARCH (1,1) model
through returns from Standard & Poor’s (S&P) 500 index futures. To estimate the
volatility of Taiwan Stock Index option prices, Tseng et al. (2008) integrated an
EGARCH model and a feedforward neural network, whereas Xiao and Koenker
(2009) studied the quantile regression for the linear GARCH model by utilising a
truncated ARCH (1) representation of volatilities.

Tan et al. (2010) implemented the wavelet tool in conjunction with the autoregres-
sive integrated moving average (ARIMA) and the GARCH model to predict future
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prices accurately. Shephard and Sheppard (2010) proposed another extension of the
GARCH-X model, called the high-frequency-based volatility (HEAVY) model. The
multiplier methodology was extended to pseudo-observations by R�emillard (2012),
including residuals of GARCH models. Klar et al. (2012) outlined that the specifica-
tion of error distribution has a big impact on the efficiency of estimators despite hav-
ing no effect on its asymptotic normality. The GARCH model with the error density
approximated by the rational function with one parameter was found to fit the data
better than the model with the Gaussian error density during the endeavour to find a
rational approximation of the error density of the GARCH model (Chen & Takaishi,
2013; Takaishi & Chen, 2012). Li et al. (2014) characterise the asymptotic behaviours
of volatilities in non-stationary GARCH (1,1) models. This characterisation provides
more insight into the dynamics of volatilities in non-stationary GARCH models. Sun
and Zhou (2014) denote how the tail index for GARCH models with a (1,1) lag struc-
ture can be calculated analytically for both the normal and Student’s t-conditional
distribution assumptions. Hansen et al. (2014) developed a bivariate version of the
realised GARCH to model the conditional variance and conditional beta of stock
returns. Hansen et al. (2015) extended this process to the realised EGARCH model
by employing a more flexible leverage function and enabling multiple realised meas-
ures. The model is extended to support a Constant Conditional Correlation (CCC)-
GARCH structure and its usability was demonstrated by modelling and forecasting
the return series comprising the Dow Jones Industrial Average (DJIA). Ismail, Audu,
and Tumala (2016) have diligently applied their unique algorithm, the maximal over-
lap discreet wavelet transform (MODWT)-GARCH (1,1) model, and subsequently
used it for comparisons with the performance of the traditional linear GARCH (1,1)
model. Ismail et al. (2016) utilised the daily returns of four African countries’ stock
market indices from January 2, 2000, to December 31, 2014. The authors found that
the linear MODWT-GARCH (1,1) provides an accurate forecast value of the returns.

Narayan et al. (2016) put forward a GARCH (1,1) unit root model flexible enough
to accommodate two endogenous structural breaks to test for unit roots among
156US stocks listed on the New York Stock Exchange (NYSE) from 1980 to 2007.
The mean recovery rate of most stocks was found to be better than that of non-sta-
tionary stock prices. Takaishi (2017) used a rational approximation for the volatility
function in the GARCH model because it seemed to be a more promising approxima-
tion technique in comparison to the polynomial approximation used in other ARCH-
type models. Realised GARCH models were applied by Jiang et al. (2018) to model
the daily volatility of the E-mini S&P 500 index’s future returns. The authors con-
firmed that models using the generalised realised risk measures provide better volatil-
ity estimation for the in-sample, and that future volatility may be more attributable
to present losses (i.e. risk measures). Gulzar et al. (2019) investigated the spillover
effects of the global financial crisis on emerging Asian stock markets. Bivariate
GARCH BEKK (Baba, Engle, Kraft, and Kroner) models confirmed the presence of
spillover effects from the NYSE on emerging economies in all three cases (i.e. before,
during and after the financial crisis). Milo�sevi�c et al. (2019) used the ARCH and
GARCH models to quantify the impact of the holiday effect on the rates of return
from investing activities in the observed financial markets.
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Using univariate asymmetric GARCH models, Aliyev et al. (2020) modelled and
estimated the volatility of the Nasdaq-100 and found persistent volatility shocks on
index returns, a leveraging effect on the index and asymmetric impact of shocks.
�Zivkov et al. (2021) evaluated the multiscale bidirectional volatility spillover effect
between national stocks and exchange rate markets among four African countries
using the MS-GARCH model. Some scholars have also analysed the relationship
between financial (i.e. gold returns) and social (i.e. worldwide Google attention on
coronavirus) variables and the returns offered by the ESPO (the videogame and
eSports exchange-traded fund). They revealed that the influence of social variables is
weaker than that of financial variables (L�opez-Cabarcos et al., 2020). Hongwiengjan
and Thongtha (2021) assessed an analytical approximation of option prices using the
TGARCH model. For empirical practice, a new efficient method for pricing options
in the case of an in-the-money (ITM) option is provided. Kim et al. (2021) utilised
the standard GARCH and various asymmetric GARCH models to compute the vola-
tility of corporate bond yield spreads. Xu et al. (2021) proposed a novel quantile-
based GARCH-MIDAS model to examine the influence of monthly economic policy
uncertainty on the daily value-at-risk in the West Texas Intermediate crude oil spot
and futures markets. Notably, a rise in eco-economic policy uncertainty was found to
drive greater WTI crude oil market risk.

In the analysis of financial market volatility, previous researchers have applied
many pioneering theories and methods, laying a solid foundation for later research.
Primarily, scholars have used GARCH-type models to analyse the volatility of finan-
cial markets from different perspectives and determine the best model to describe
characteristics of financial market volatility. Accordingly, this study analyses the fluc-
tuation characteristics of the Chinese stock market. Investors need to better under-
stand and grasp the operation law of the stock market and the fluctuation law of
stock prices to reduce the blindness of investment. Such awareness will also help poli-
cymakers to better grasp the transmission mechanism of monetary policy and select
and implement effective monetary policy.

The remainder of this paper is organised as follows. In Section 3, we briefly intro-
duce the GARCH-type models used in this study. Section 4 contains the descriptive
statistics of the samples, and Section 5 presents the results of the empirical analysis
and the forecasting comparison of different estimation models. Lastly, the concluding
remarks and implications are provided in Section 6.

3. Methodology

3.1. The ARMA model

The ARMA model, also known as the stationary time series model, is a combination
of the AR and MA models. The basic expression is as follows:

yt ¼ a0 þ
Xp
i¼1

aiyt�i þ et þ
Xq
i¼1

biet�i (1)
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yt represents the variable observed at period t, et is the independent error term,
and a and b are undetermined non-zero coefficients. The ARMA model can calculate
variables influenced by both the past state and random factors existing in the present
and the future. This characteristic makes the ARMA model suitable for research and
prediction of long-term time series. The autoregression and trend of the time series
can be easily deciphered by the ARMA model; however, it only performs well on sta-
tionary time series.

3.2. The ARCH model

The variance of a random variable is often assumed to be constant in traditional econo-
metrics. In reality, financial time series have heteroscedasticity, which means that the
data is stable in the long run, but unstable in the short term. To estimate the time vari-
ation, Engel proposed the ARCH model in 1982, which was used to model the mean
and variance of sequences. The general expression of the ARCH model is as follows:

yt ¼ /xt þ lt (2)

r2t ¼ Eðl2t jlt�1, lt�2:::Þ ¼ a0 þ a1l
2
t�1 þ ::::::þ apl

2
t�p ¼

Xp
i¼1

ail
2
t�i (3)

In the mean equation, xt is the independent variable observed in period t, / is a
non-zero undetermined coefficient, and lt is a random error term, which is assumed
to follow a normal distribution in the general model. The basic principle of the
ARCH model is that the variance of the residual sequence fltg at time t is related to
the square of the error term at time t-1. The ARCH model assumes that positive and
negative volatility have the same impact on the response variable; hence, it cannot be
employed to study series with asymmetric effects.

3.3. The GARCH model

Bollerslev (1986) proposed an important generalisation of the ARCH model, called
the GARCH model, which can describe the tendency for volatility clustering in finan-
cial time series more precisely. Additionally, conditional variance is considered a
GARCH process in this model to estimate time-varying volatility. The equations are
defined as follows:

yt ¼ /xt þ lt , l�Nð0, r2t Þ (4)

r2t ¼ xþ
Xp
i¼1

ail
2
t�i þ

Xq
i¼1

bir
2
t�i (5)

where l2t�i is the ARCH parameter, and r2t�i is the GARCH parameter. The
coefficients of the ARCH and GARCH terms are denoted by a and b, respectively,
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and p and q are the lag order of the model. Thus, the ARCH model can be regarded
as a special type of GARCH model. In the following research, we mainly undertake
the GARCH-type model with one lag (i.e. GARCH (1,1) model) to estimate the sam-
ple series. The advantage of the GARCH model is that heteroscedasticity can be
reflected and interpreted in the model; yet, it still fails to capture asymmetry.

3.4. The PARCH model

Taylor (1986) and Schwert (1989) proposed a standard deviation GARCH model.
Compared with Bollerslev’s GARCH model, this model is used to fit the standard
deviation to reduce the impact of large shocks on the conditional variance. Ding
et al. (1993) further generalised the standard deviation GARCH model, naming it the
power autoregressive conditional heteroscedasticity model (PARCH), with the follow-
ing variance equation:

rdt ¼ xþ
Xq
j¼1

bjr
d
t�j þ

Xp
i¼1

aiðjut�ij � ciut�iÞd (6)

where d is the power parameter of the estimated standard deviation, which is gener-
ally used to evaluate the magnitude of the impact on the conditional variance d>0: c
is an asymmetric coefficient that comprehends the asymmetric effect up to the order
r: When i ¼ 1, 2, :::, r, cij j � 1, and when i>r, ci ¼ 0, r � p: Compared with the
GARCH model, the PARCH model cuts the restriction of non-negative parameters.
The GARCH model cannot explain the negative correlation between the return on
financial assets and the fluctuation of returns. As evident in Equation (5), the
response of conditional variance to the change in positive and negative impacts is
consistent, which is inconsistent with reality.

3.5. The component ARCH model

From the above subsection, we learn that the conditional variance GARCH (1,1)
model is defined as:

r2t ¼ xþ a� u2t�1 þ b� r2t�1 (7)

- is the long-term volatility. Assumex ¼ -ð1�a�bÞ so that the equation can be
obtained as:

r2t ¼ -þ aðu2t�1�-Þ þ bðr2t�1�-Þ (8)

The mean of the conditional variance in Equation (8) converges to a constant -:
Subsequently, we replace - with a variable value qt , making it the equation for the
component ARCH (CARCH) model:

r2t�qt ¼ aðu2t�1�qt�1Þ þ bðr2t�1�qt�1Þ (9)
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qt ¼ xþ qðqt�1�xÞ þ /ðu2t�1�r2t�1Þ (10)

The mean of the GARCH model is time-varying; in this case, qt is the long-term
volatility changing over time. In Equation (9), the left side of the equation r2t�qt is
the short-term component, which converges to zero with action, while the left side in
Equation (10) represents the long-term component, which moves towards x under
the influence of the coefficient q: The following equations are obtained when an
asymmetric effect is introduced into the short-term equation:

qt ¼ xþ qðqt�1�xÞ þ /ðu2t�1�r2t�1Þ þ h1z1t (11)

r2t�qt ¼ aðu2t�1�qt�1Þ þ bðr2t�1�qt�1Þ þ cðu2t�1�qt�1Þdt�1 þ h2z2t (12)

where q, /, are h non-zero undetermined coefficients, z is an exogenous variable
vector, dt is a dummy variable, and c is an asymmetric coefficient. When there is a
positive impact, ut�1 � 0, dt�1 ¼ 0: When a negative impact is observ-
able, ut�1<0, dt�1 ¼ 1:

3.6. The TGARCH model

Zakoian (1994) proposed the TGARCH model to further study the asymmetry of
volatility. By introducing virtual variables into the original model, the following equa-
tion is obtained:

dt�1 ¼ 1, lt�1<0
0, lt�1 � 0

�
(13)

The TGARCH variance equation is defined as:

r2t ¼ xþ
Xp
i¼1

ail
2
t�i þ

Xq
j¼1

bjr
2
t�j þ

Xr

k¼1

ckl
2
t�kdt�k (14)

Equation (14) signifies that the value of r2t depends on that of the squared residual
l2t�1 and the conditional variance of the previous period r2t�1: Furthermore, good and
bad market news have different effects on the model. The asymmetric effect in the
model is denoted by ckl

2
t�kdt�k: As long as the asymmetry coefficient c is not zero,

there is an asymmetry in the time series. When negative news appears, lt�1<0 and
dt�1 ¼ 1: When positive news emerges, lt�1 � 0 and dt�1 ¼ 0: If c>0, there is a lever-
age effect in the sequence. However, if c<0, the asymmetric effect reduces volatility.

3.7. The EGARCH model

Nelson proposed the EGARCH model in 1991, providing the variance equation in
logarithmic form. The EGARCH model is more convenient for estimating the param-
eters of r2t as it does not place any restrictions on the parameters of the model.
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ln ðr2t Þ ¼ xþ
Xp
i¼1

ai
lt�i

rt�i
� E

lt�i

rt�i

� ������
�����þ

Xq
j¼1

bj ln ðr2t�jÞ þ
Xr

k¼1

ck
lt�k

rt�k
(15)

r2t is always positive regardless of whether the coefficient on the right side of
Equation (15) is positive or not. Therefore, compared with the GARCH model, the
logarithmic conditional variance on the left side of the equation allows the coefficient
to be negative, which makes the solution process more flexible. As long as there are
unsymmetrical terms c 6¼ 0 in the equation of the EGARCH model, its effect is meas-
ured by an exponential form rather than a quadratic form.

4. Descriptive statistics analysis

4.1. Data acquisition

The research was based on the daily closing prices of the Shanghai Composite Index
and Shenzhen Component Index. Our dataset was obtained from the Guotai’an finan-
cial database, which contains data from 4 January 2000 to 4 March 2020. Each sub-
sample covers 4885 trading days. The reasons for this dataset selection are as follows:
first, the Shanghai Composite Index and the Shenzhen Component Index are repre-
sentative stock indices in the Chinese stock market, which can reflect the overall per-
formance and fluctuation pattern of stock prices. Second, the number of individual
stocks during the initial stage (i.e. before 2000) of the Chinese stock market was
rather small. A sample dataset covering this early period does not fulfil the require-
ments of the time series model. Furthermore, the daily price limit was not officially
imposed in China until 1996. Hence, frequent abnormal fluctuations in the stock
index in the previous period may affect the results of the model fitting. Third, most
of the current studies concerning the volatility of the Chinese stock market are con-
ducted with short time span data. Therefore, we decided to use a long time span
sequence for modelling because the amount of time series data will impact the fit-
ting results.

To better fit the model, log-returns of stock market index prices are used, as
shown in Equation (16):

Rt ¼ ln ðptÞ� ln ðpt�1Þ ¼ ln
pt
pt�1

� �
(16)

where pt is the closing price observed in period t, pt�1 is the daily closing price
observed at period t�1, and Rt is the daily return of period t: In the remainder of
this paper, SH represents the Shanghai Composite Index return, and SCF represents
the Shenzhen Component Index return.

4.2. Basic statistical analysis

The two samples shown in Figure 1 have high volatility and large amplitude, and
generally, display the characteristics of volatility clustering. Besides, Figure 1 exhibits
three large-range volatilities experienced by the Chinese stock in the past 20 years,
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appearing in 2001–2002, 2006–2009 and 2014–2016. Among these durations, the vola-
tility that occurred between 2006–2009 is exceptionally violent, with high returns and
risks, but fluctuations in the other two durations are relatively small. Comparing the
two plots, it is clear that SH and SCF share a similar trend; still, the volatility of the
latter is more significant.

Figure 2 shown that the distributions of the SH and SCF return series are almost
the same, demonstrating that the Shanghai and Shenzhen stock markets are highly
correlated. The descriptive statistics depicted in Table 1 show that the mean returns
of both samples are positive and close to zero, while the SCF series portrays a rela-
tively higher level of return. Additionally, the standard deviation value of SH is
0.0156, and that of SCF is 0.0176, implying that the risk level of the Shanghai stock
market is lower than that of the Shenzhen stock market and that the former market
is more stable than the latter.

The p-values of the J–B normality test for the two return series are both 0, con-
firming that the null hypothesis of normality is rejected at the 5% level of signifi-
cance, and the return series of the SH and the SCF are not normally distributed.
Likewise, the skewness of the two series is negative and close to 0, and kurtosis is
greater than 3, verifying that the return of the Chinese stock market is leptokurtic
and thick-tailed. Moreover, the SCF has a smaller degree of skewness than the SH;
thus, we can assume that the distribution of the SH return series is
more imbalanced.

Figure 3 displays the Q-Q plots of the SH and the SCF series. The presence
of scattered points deviating from normal distribution at both the left end
and the right tail is a strong confirmation of the findings obtained and dis-
played above.

Through the above descriptive statistical analysis, we found that the return
series of Shanghai and Shenzhen stock markets show characteristics of volatil-
ity clusters, peaks and fat tails. The return series of SH and SCF are highly
similar, which indicates that there is a strong correlation between the
Shanghai and Shenzhen stock markets, and neither of them follows a normal
distribution. The risk level of the Shanghai and Shenzhen stock markets is
lower from the perspective of volatility risk, however, the former is more sta-
ble than the latter.

Figure 1. The daily indexes.
Source: statistical software EViews.
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Figure 2. Descriptive statistics of index returns.
Source: statistical software EViews.

Table 1. Descriptive statistics.
Sample Size Mean Std. Skewness Kurtosis J–B Statistics P-value

SH 4883 0.000156 0.0156 �0.3741 7.9809 5161.656 0.0000
SCF 4883 0.000244 0.0176 �0.3509 6.6087 2749.914 0.0000

Source: statistical results.

Figure 3. Q-Q plots of return series.
Source: statistical software EViews.
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4.3. Preparation before modelling

Pre-processing of the time series is required before modelling. The stationarity of the
sequence must be confirmed to avoid spurious regression in model estimation.
Subsequently, we need to find the optimal lag order of the ARMA (p,q) model
through an autocorrelation test to attain the best fitting results. Finally, the GARCH
model’s validity is affirmed by testing the ARCH effect of the sequence.

4.3.1. Unit root test
The Augmented Dickey–Fuller (ADF) test method is employed to test the return ser-
ies of SH and SCF, and the outcomes are presented in Table 2. The findings prove
that the t-statistics of the two series are far less than critical values at the 1%, 5% or
10% significance levels, outlining that there is no unit root in the sample series, and
they are stationary time series.

4.3.2. Autocorrelation test
In this subsection, Ljung–Box Q (LBQ) statistics, autocorrelation (AC) graph, and par-
tial autocorrelation (PAC) graph are utilised to determine the optimal lag order of the
ARMA model. The area between the dotted lines in Table 3 is twice the estimated
standard deviation, and the grey area depicts the AC and PAC coefficients of the return
series. We can conclude that there is no significant difference between the coefficients
and 0 at the 5% significance level provided these coefficients lie between the dotted
lines. If they are beyond the dotted line, there is autocorrelation in the return series.

Tables 3 and 4 verify that the AC and PAC coefficients of the two return series
fluctuate around 0, which can be ignored. The probability value of SH is less than 5%
after the lag order is greater than 3, while the probability value of SCF is always less
than 5%. Therefore, both return series have significant autocorrelation.

Table 3 exhibits that the correlation coefficients of the SH series are relatively sig-
nificant when the lag order is 4 or 6. Thus, we established four models for the SH
series, namely ARMA (4,4), ARMA (4,6), ARMA (6,4), and ARMA (6,6). Table 4
provides the correlation coefficients of the SCF series, which are significant at lags 1
and 7. Moreover, four models are established based on ARMA (1,1), ARMA (1,7),
ARMA (7,1), and ARMA (7,7).

The lag order was related to the reliability of the model. Improper selection of lag
order results in the omission of relevant information accommodation. Table 5 illus-
trates the estimation results of the different ARMA models. We employed ARMA
(4,4) to approximate the SH return series and ARMA (1,1) to compute the SCF
return series based on the Akaike information criterion (AIC) and Schwarz criter-
ion (SC).

Table 2. ADF test results.

T-statistics
The Significance
Level of 1%

The Significance
Level of 5%

The Significance
Level of 10% P-value

SH �68.3937 �3.4315 �2.8619 �2.5670 0.0001
SCF �66.7596 �3.4315 �2.8619 �2.5670 0.0001

Source: statistical results.
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4.3.3. The test of ARCH effect
The Shanghai and Shenzhen stock markets exhibit the characteristics of volatility clus-
tering, signifying that two return series may have an ARCH effect. We investigated the
ARCH effect of two return series to measure heteroscedasticity more accurately. A test
was used for the correlogram of squared residuals based on the LBQ statistics.

Table 3. The autocorrelation test results in SH.
Autocorrelation Partial Autocorrelation AC PAC Q-statistics P-value

1 0.021 0.021 2.1861 0.139
2 �0.022 �0.022 4.5307 0.104
3 0.028 0.029 8.2587 0.041
4 0.048 0.047 19.684 0.001
5 �0.004 �0.005 19.771 0.001
6 �0.051 �0.050 32.638 0.000
7 0.031 0.031 37.358 0.000
8 0.009 0.004 37.758 0.000
9 0.004 0.008 37.830 0.000
10 �0.002 0.002 37.842 0.000

Source: statistical results.

Table 4. The autocorrelation test results in SCF.
Autocorrelation Partial Autocorrelation AC PAC Q-statistics P-value

1 0.045 0.045 10.038 0.002
2 �0.023 �0.025 12.598 0.002
3 0.028 0.030 16.429 0.001
4 0.034 0.030 21.970 0.000
5 �0.007 �0.009 22.222 0.000
6 �0.025 �0.024 25.348 0.000
7 0.042 0.043 34.095 0.000
8 0.011 0.005 34.666 0.000
9 0.001 0.005 34.675 0.000
10 �0.004 �0.004 34.742 0.000

Source: statistical results.

Table 5. ARMA model estimation results of SH and SCF return series.
SH AIC SC Mean

ARMA (4,4) �5.4893 �5.4787 �5.4840
ARMA (4, 6) �5.4899 �5.4766 �5.4833
ARMA (6,4) �5.4887 �5.4783 �5.4835
ARMA (6,6) �5.4885 �5.4725 �5.4805

SH AIC SC Mean

ARMA (1,1) �5.2388 �5.2362 �5.2375
ARMA (1, 7) �5.2410 �5.2304 �5.2357
ARMA (7,1) �5.2427 �5.2313 �5.2370
ARMA (7,7) �5.2450 �5.2263 �5.2356

Source: statistical results.
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Q-Statistics are considered in Tables 6 and 7 for detecting autocorrelation and are
associated with probability values. The null hypothesis is rejected if the probability
value is less than 0.05, and the sequence has autocorrelation. The test results of Q-sta-
tistics in the table above confirms that the probability p-values are all less than 5%,
signalling that the two squared residual series have autocorrelation, and the SH and
SCF return series have a significant ARCH effect.

Some preparations are introduced before the modelling procedure in Section 4.3.
First, we test the stationarity of time-series data and certify that the revenue series
of SH and SCF are stationary. Then, the optimal lag order of the ARMA (p, q)
model is determined by an autocorrelation test. Based on the AIC and SC criteria,
we find that the ARMA (4,4) and ARMA (1,1) models are best for estimating the
return series of SH and SCF. Lastly, we conclude that the SH and SCF return series
have a significant ARCH effect by testing the squared residual correlation graph of
the LBQ statistic.

Table 7. The autocorrelation test results of SCF’s squared residual.
Autocorrelation Partial Autocorrelation AC PAC Q-statistics P-value

1 0.152 0.152 112.70 0.000
2 0.168 0.148 250.80 0.000
3 0.173 0.134 396.31 0.000
4 0.157 0.102 516.67 0.000
5 0.127 0.060 595.90 0.000
6 0.128 0.058 676.05 0.000
7 0.138 0.069 769.67 0.000
8 0.148 0.076 876.71 0.000
9 0.091 0.009 917.53 0.000
10 0.150 0.075 1027.1 0.000

Source: statistical results.

Table 6. The autocorrelation test results of SH’s squared residual.
Autocorrelation Partial Autocorrelation AC PAC Q-statistics P-value

1 0.160 0.160 124.52 0.000
2 0.141 0.119 221.83 0.000
3 0.180 0.147 380.18 0.000
4 0.151 0.098 492.11 0.000
5 0.130 0.068 574.76 0.000
6 0.120 0.051 644.76 0.000
7 0.131 0.064 729.12 0.000
8 0.119 0.048 798.73 0.000
9 0.090 0.016 838.09 0.000
10 0.146 0.081 942.65 0.000

Source: statistical results.
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5. Empirical analysis

5.1. Garch model selection

GARCH (1,1), GARCH (1, 2) and GARCH (2, 1) were established for the SH and
SCF sample data, respectively. The fitting results were compared and the most suit-
able model was selected for the return time series under normal distribution,
Student’s t-distribution and generalised error distribution. The estimation results of
empirical analysis in this section are given in Tables 8-28 in the Appendix.

According to the values of AIC and SC, the GARCH (1,1) model with the
Student’s t-distribution is the most suitable model for the SH and SCF samples.
Therefore, we establish ARMA (4,4)-GARCH (1,1) with the Student’s t-distribution
to estimate the SH return series, and ARMA (1,1)-GARCH (1,1) with the Student’s
t-distribution to compute the SCF return series.

5.2. Estimation results

The findings acquired by EViews 8.0 are expressed in Tables 10 and 11. The variance
equation of the GARCH (1,1) model for the SH is as follows:

r2t ¼ 1:25� 10�6 þ 0:0644l2t�1 þ 0:935r2t�1 (17)

The variance equation of the GARCH (1) model for SCF is expressed as:

r2t ¼ 2:95� 10�6 þ 0:0666l2t�1 þ 0:9262r2t�1 (18)

We can observe from the estimation outcomes that the coefficients, the p-values of
the ARCH and GARCH terms are all close to 0, verifying that the model fits well at
the 1% significance level.

Second, the results of the ARCH-LM test for sequence residuals are presented in
Table 12. The F-statistic reveals the joint significance of the squares of residuals for
all lag orders. The T � R2 statistic represents the product of the sample sizes T and
R2: The p-values are all greater than 0.05, allowing us to accept the null hypothesis.
This evidence substantiates the applicability of the GARCH (1,1), and that the ARCH
effect is eliminated.

For the SH series, the sum of the GARCH and ARCH parameters was 0.9994, and
the sum of the two parameters was 0.9928 in the case of the SCF sequence. Both
numbers are less than but close to 1, satisfying the constraint condition of the param-
eter and highlighting that the impact of the volatility is continuous but may weaken
over time.

Overall, the GARCH (1,1) model with Student’s t-distribution outperforms other
models in capturing the volatility of the Chinese stock market, but it cannot be
employed to explain the asymmetric effect of the stock market because of the limita-
tion of the model itself. Therefore, in the next two subsections, we use the TGARCH
and EGARCH models to further elucidate the volatility characteristics of the Chinese
stock market.
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5.3. Estimation analysis based on PARCH model

We established the power ARCH (1,1) model to estimate the sample series. The out-
comes are displayed in Tables 13 and 14, where the variance equation of the SH ser-
ies can be obtained as follows:

r1:045t ¼ 9:81� 10�5 þ 0:08ð ut�1j j�0:183ut�1Þ1:045 þ 0:934r1:045t�1 (19)

The estimated variance equation for the SCF sequence is:

r0:922t ¼ 2:53� 10�4 þ 0:079ð ut�1j j�0:202ut�1Þ0:922 þ 0:931r0:922t�1 (20)

According to the p-values of the coefficients in Table 15 and the ARCH-LM test
results, heteroscedasticity was eliminated. Thus, this model can explain the asymmetry
of the Shanghai and Shenzhen stock markets. From the results of the equation, the
asymmetric coefficient is 0.0183 in SH and 0.202 in SCF, establishing the existence of
the “leverage effect”. This effect is more potent on the Shenzhen Component Index
than on Shanghai Composite Index and outlines that when the Chinese stock market
is subjected to the same bad news, the price fluctuation response of the Shenzhen
Component Index is greater than that of the Shanghai Composite Index.

5.4. Estimation analysis based on the CARCH model

In this subsection, we use the asymmetric CARCH (1,1). The findings are outlined in
Tables 16 and 17. The variance equation for the SH sequence can be obtained
as follows.

Short term equation:

qt ¼ 4:638� 10�3 þ 0:9997ðqt�1�4:638� 10�3Þ þ 0:688ðu2t�1�r2t�1Þ (21)

Long term equation:

r2t�qt ¼ 0:64ðr2t�1�qt�1Þ þ ð0:0731dt�1�0:0629Þðu2t�1�qt�1Þ (22)

The short-term equation estimated from the SCF sequence:

qt ¼ 4:12� 10�4 þ 0:992ðqt�1�4:12� 10�4Þ þ 0:0693ðu2t�1�r2t�1Þ (23)

The long-term equation:

r2t�qt ¼ �0:2328ðr2t�1�qt�1Þ þ ð0:0141dt�1�0:039Þðu2t�1�qt�1Þ (24)

Table 18 exemplifies that the significant p-values are all greater than 0.05; hence,
the CARCH model has an excellent fitting performance. Besides, the asymmetric
coefficients of the SH and SCF equations were 0.0731 and 0.01414, respectively. We
can conclude that the negative shock is larger than the positive shock in the SH and
SCF series because the dummy variable in CARCH denotes the negative shock, and
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the asymmetry effect is transient from the estimation results. Additionally, the long-
term volatility of the two sequences converged slowly at a similar rate.

5.5. Estimation based on the TGARCH model

As proposed in the second section, we introduce a dummy variable into the GARCH
model and determine the TGARCH (1,1) model with the Student’s t-distribution. The
estimation results are provided in Tables 19 and 20, and the variance equation of the
SH sequence is expressed as:

r2t ¼ 1:44� 10�6 þ 0:0526l2t�1 þ 0:0287l2t�1dt�1 þ 0:9316r2t�1 (25)

The variance equation for the SCF sequence is expressed as:

r2t ¼ 3:23� 10�6 þ 0:05l2t�1 þ 0:0366l2t�1dt�1 þ 0:9234r2t�1 (26)

Tables 19 and 20 illustrate that the p-values of the equation coefficients are close
to 0, suggesting that the model excels in capturing volatility. Moreover, the ARCH-
LM test in Table 21 authenticates that the p-value of the F-statistic and T � R2 statis-
tic is greater than 0.05, proving the applicability of the TGARCH (1,1) model.

Correspondingly, we discovered that the coefficients of the asymmetric parameter
are 0.0287 and 0.0366, respectively, which reveals the presence of the “leverage effect”
in the Chinese market. Additionally, the coefficients are all positive, indicating that
good news exerts a more substantial effect on the market than bad news.

In terms of the parameters of the model, the outcome of the SH series reveals that
positive news will impact a ¼ 0:0526 times on returns, while negative news will bring
cþ a ¼ 0:0526þ 0:0287 ¼ 0:0813 times the impact. As for the SCF series, the impact
brought by good news is a ¼ 0:05 times, and that of bad news is cþ a ¼ 0:05þ
0:0366 ¼ 0:0866 times. These statistics corroborate that the volatility of the Shanghai and
Shenzhen stock markets is much more responsive to negative news than positive news.

5.6. Estimation based on the EGARCH model

We conduct the EGARCH model to further estimate the asymmetry of the return ser-
ies, and the results are exhibited in Tables 22 and 23. The variance equation of the
SH series is as follows:

ln ðr2t Þ ¼ �0:1942þ 0:153
lt�1

rt�1

����
�����0:0287

lt�1

rt�1
þ 0:9903 ln ðr2t�1Þ (27)

The variance equation of the SCF series would be:

ln ðr2t Þ ¼ �0:2074þ 0:1502
lt�1

rt�1

����
�����0:0287

lt�1

rt�1
þ 0:9884 ln ðr2t�1Þ (28)

Table 24 shows the results of the ARCH-LM test using the EGARCH model. The
p-values are all greater than 0.05, which proves the efficiency of the EGARCH model
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in eliminating heteroscedasticity. The coefficients a of the two variance equations were
0.1531 and 0.1502, respectively, and the asymmetric coefficients k were �0.02865 and
�0.02872, respectively. The “leverage effect” is verified in both sequences once again.

We evaluate the EGARCH model’s parameters. For the SH series, when positive
news spreads in the market, the parameter lt�1>0 has 0:153�0:0287 ¼ 0:1243 times
the impact on the conditional variance. Contrariwise, when there is negative news in
the market, the parameter lt�1<0 has 0:153þ ð�0:0287Þ � ð�1Þ ¼ 0:1817 times the
impact. In case of the SCF series, the multiple of influence via positive news is
0:1502�0:0287 ¼ 0:1215 times, while that of the negative news is 0:1502þ
ð�0:0287Þ � ð�1Þ ¼ 0:1789 times.

In summary, what we obtained from the TGARCH model is further confirmed by
the EGARCH model. The influence of negative news is more powerful than that of
positive news in the Chinese stock market.

5.7. Forecasting comparison

Based on the 20-year data period samples, we employ the ARMA model as the mean
value equation and establish the GARCH (1,1), PARCH (1,1), CARCH (1,1), TGARCH
(1,1), and EGARCH (1,1) models with Student’s t-innovation. Thereafter, predictions on
the SH and SCF series were conducted from March 5, 2020, to March 18, 2020, using
the model above. The 10-day forecasting outcomes of the return series are exhibited in
Tables 25 and 26.

For better efficiency measurement of the model prediction, three loss functions
were used to evaluate the error degree and prediction results of different models.
These functions are mean squared error (MSE), mean absolute error (MAE), and
root-mean-squared error (RMSE) and can be expressed as follows:

MSE ¼ 1
N

XN
i¼1

ðr̂ i � riÞ2 (29)

MAE ¼ 1
N

XN
i¼1

r̂2i � r2i
�� �� (30)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðr̂ i�riÞ2
vuut (31)

where N is the sample number, r is the actual return, and r̂ is the forecast return.
The loss function values of the five GARCH models are as follows.

The MSE and MAE values of the five models were all minimal. Therefore, we can
assume that the ARMA (p,q)-GARCH (m,n) can accurately predict the returns of the
Shanghai and Shenzhen stock markets, and the predictions are relatively accurate. The
value of the loss function represents the difference between the predicted and real values.
The lower the loss function value, the higher the prediction accuracy of the model.
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By comparing these values between different models, the ARMA (4,4)-GARCH
(1,1) model under Student’s t-distribution outperforms other models in forecasting
the Shanghai Composite Index return series, while the ARMA (4,4)-EGARCH (1,1)
model has the worst prediction accuracy. For the return series of the Shenzhen
Component Index, ARMA (1,1)-TGARCH (1,1) displays the best forecasting perform-
ance among all the models, followed by the ARMA (1,1)-EGARCH (1,1) model, while
ARMA (1,1)-CARCH (1,1) has the most significant error.

6. Conclusions

In this paper, we describe the volatility characteristics of the Shanghai Composite
Index and the Shenzhen Component Index based on the GARCH model, which can
help us correctly understand the operational law and price fluctuation law of the
Chinese stock market, and provide a certain reference value for investors and policy-
makers. From the analysis above, we can draw the following conclusions.

The Chinese stock market is frequently volatile and fluctuates widely. During the
past two decades, the three largest fluctuation periods were witnessed in 2001–2002,
2006–2009, and 2014–2016. Combining events that occurred in the international
financial market, the stock market in China is likely to be affected by the US stock
bubble burst in 2001 and the sub-prime mortgage crisis that caused the international
financial crisis in 2008. The significant fluctuation in the stock market in 2015 is
related to excessive liquidity and investor composition in the stock market.

GARCH-type models can be applied to the Chinese stock market and can reflect the
change rule of volatility with high accuracy. From the perspective of time series, the vola-
tility of Shanghai and Shenzhen stock markets expresses features of significant time-vari-
ation and clustering. Both the Shanghai Composite Index and the Shenzhen Component
Index have stationarity and a significant ARCH effect; thus, the ARMA-GARCH model
can fit well with the index return series. The fitting results of the models are compared
by establishing ARMA-GARCH models with different distributions and orders. The mod-
els under the Student’s t-distribution were found to exhibit the best fitting performance.

The estimation results of GARCH-type models show that the volatility of the
Chinese stock market is persistent, with gradually declining influence over time.
Furthermore, a significant “leverage effect” was noticeable in the stock market, implying
severe information asymmetry. The ARMA (4,4)-GARCH (1,1) model under Student’s
t-distribution surpasses other models in forecasting the Shanghai Composite Index
return series. The ARMA (1,1)-TGARCH (1,1) model has the best forecasting perform-
ance among all the models for the return series of the Shenzhen Component Index.

According to the results of asymmetric GARCH family models, we can conclude
that news in the market has less influence on the Shanghai Composite Index than on
the Shenzhen Component Index. This weakened leverage effect indicates that the
return concerning the Shenzhen Component Index is more sensitive to market infor-
mation. Based on the results of this study and the actual situation of the Chinese
stock market, this study puts forward the following suggestions.

First, the management systems need to be strengthened. The Chinese stock market
has been developing for more than 30 years, with numerous achievements. Still, the
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development of the Chinese stock market is imperfect and immature compared to
developed capital markets. With the continuous development of financial and eco-
nomic globalisation, international financial risk transmission speed will rapidly
increase. For instance, in the financial crisis of 2001 and 2008, the shock to inter-
national stock markets had a great impact on the domestic stock market. Perfecting a
risk monitoring system can effectively prevent the risk of international financial fluc-
tuations and minimise its impact on the Chinese stock market.

Secondly, the supervision of the market and law enforcement with regard to illegal
behaviour in the information disclosure process needs to be bolstered. The volatility of
the Chinese stock market is more sensitive to negative news but resilient to positive
news, implying that investors are more likely to be affected by bad news in the market
than good news. Once the price of the stock market falls, more investors will sell off
stocks, causing the price to fluctuate violently. Hence, the information disclosure sys-
tem must be perfected to solve information asymmetry between listed companies and
investors. The supervisory department should strengthen the supervision and law
enforcement of illegal behaviours in the information disclosure process of listed compa-
nies and enhance the authenticity and effectiveness of information disclosure.

Volatility has a strong guiding significance for the actual economic operation, and it
provides an ideal tool for the government and investors to perceive different risks. Yet,
the univariate GARCH model employed in this study has difficulty interpreting the
volatility spillover relationship between financial markets and does not comprehensively
consider the entire financial environment. Correspondingly, the next step should be to
build a multivariate GARCH model to inspect the entire financial system.
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Appendix

Table 8. Summary statistics in SH.
SH-GARCH AIC SC Mean

Normal distribution GARCH (1,1) �5.775053 �5.760415 �5.767734
GARCH (1, 2) �5.774783 �5.758814 �5.7667985
GARCH (2,1) �5.773185 �5.757216 �5.7652005

Student’s t-distribution GARCH (1,1) �5.859664 �5.843695 �5.8516795
GARCH (1, 2) �5.859736 �5.842437 �5.8510865
GARCH (2,1) �5.860116 �5.842817 �5.8514665

Generalised error distribution GARCH (1,1) �5.859201 �5.843233 �5.851217
GARCH (1, 2) �5.858948 �5.841648 �5.850298
GARCH (2,1) �5.859036 �5.841736 �5.850386

Source: statistical results.
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Table 9. Summary statistics in SCF.
SCF-GARCH AIC SC Mean

Normal distribution GARCH (1,1) �5.468396 �5.461746 �5.465071
GARCH (1, 2) �5.467996 �5.460016 �5.464006
GARCH (2,1) �5.466064 �5.458084 �5.462074

Student’s t-distribution GARCH (1,1) �5.530729 �5.522748 �5.5267385
GARCH (1, 2) �5.53053 �5.521219 �5.5258745
GARCH (2,1) �5.526506 �5.517196 �5.521851

Generalised error distribution GARCH (1,1) �5.52948 �5.5215 �5.52549
GARCH (1, 2) �5.529154 �5.519844 �5.524499
GARCH (2,1) �5.52922 �5.51991 �5.524565

Source: statistical results.

Table 10. Estimation for ARMA (4,4)-GARCH (1,1) in SH.
SH Variables Coefficient Std. Z-statistics P-value

Mean equation AR (1) 0.677042 0.382763 1.768827 0.0769
(ARMA) AR (2) 0.124923 0.258004 0.484192 0.6282

AR (3) �0.550004 0.216142 �2.544645 0.0109
AR (4) 0.134562 0.256962 0.523665 0.6005
MA (1) �0.662400 0.381017 �1.738506 0.0821
MA (2) 0.128068 0.248170 �0.516050 0.6058
MA (3) 0.583425 0.208923 2.792540 0.0052
MA (4) �0.165291 0.261328 �0.632503 0.5271

Variance equation x 1.25E-06 3.59E-07 3.497888 0.0005
(GARCH) ARCH parameter 0.064365 0.004988 9.210643 0.0000

GARCH parameter 0.935054 0.006344 147.3881 0.0000

Source: statistical results.

Table 11. Estimation for ARMA (1,1)-GARCH (1,1) in SCF.
SCF Variables Coefficient Std. Z-statistics P-value

Mean equation AR (1) �0.777718 0.156431 �4.971648 0.0000
(ARMA) MA (1) 0.798818 0.149967 5.326618 0.0000
Variance equation x 2.95E-06 7.13E-07 4.137136 0.0000
(GARCH) ARCH parameter 0.066557 0.007421 8.969182 0.0000

GARCH parameter 0.926246 0.007579 122.2111 0.0000

Source: statistical results.

Table 12. Results of ARCH-LM test.
F-statistics Probability T � R2 Statistics Probability

SH 0.829600 0.5061 3.319546 0.5058
SCF 0.053695 0.8168 0.053716 0.8167

Source: statistical results.

Table 13. Estimation for PARCH (1,1) in SH.
SH Variables Coefficient Std. Z-statistics P-value

Variance equation x 9.81E-05 8.01E-05 1.223889 0.2210
(PARCH) a 0.080390 0.007609 10.56515 0.0000

c 0.183320 0.054283 3.377141 0.0007
b 0.933875 0.006341 147.2709 0.0000
d 0.044826 0.179298 5.827307 0.0000

Source: statistical results.
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Table 15. Results of the ARCH-LM test for the PARCH model.
F-statistics Probability T � R2 Statistics Probability

SH 0.726645 0.3940 0.726834 0.3939
SCF 0.289720 0.5904 0.289822 0.5903

Source: statistical results.

Table 16. Estimation results of CARCH (1,1) for SH.
SH Variables Coefficient Std. Z-statistics P-value

Variance equation x 0.004638 0.011617 0.399226 0.6897
(CARCH) q 0.999722 0.000710 1407.496 0.0000

/ 0.068794 0.006517 10.55607 0.0000
a �0.062890 0.020310 �3.096562 0.0020
c 0.073117 0.028678 2.549594 0.0108
b 0.640358 0.196195 3.263879 0.0011

Source: statistical results.

Table 17. Estimation results of CARCH (1,1) for SCF.
SCF Variables Coefficient Std. Z-statistics P-value

Variance equation x 0.000412 0.000173 2.386235 0.0170
(CARCH) q 0.992354 0.004110 241.4322 0.0000

/ 0.069251 0.007643 9.060927 0.0000
a �0.039013 0.024711 �1.578804 0.1144
c 0.014143 0.032789 0.431318 0.6662
b �0.232817 0.561740 �0.414458 0.6785

Source: statistical results.

Table 18. Results of the ARCH-LM test for the CARCH model.
F-statistics Probability T � R2 Statistics Probability

SH 1.520640 0.2176 1.520790 0.2175
SCF 1.997023 0.1577 1.997024 0.1576

Source: statistical results.

Table 19. Estimation results of TGARCH (1,1) for SH.
SH Variables Coefficient Std. Z-statistics P-value

Variance equation x 1.44E-06 3.81E-07 3.770795 0.0002
(TGARCH) a 0.052649 0.008181 6.435696 0.0000

k 0.028738 0.010537 2.727310 0.0064
b 0.931614 0.006491 143.5330 0.0000

Source: statistical results.

Table 14. Estimation for PARCH (1,1) in SCF.
SCF Variables Coefficient Std. Z-statistics P-value

Variance equation x 0.000253 0.000200 1.266037 0.2055
(PARCH) a 0.079024 0.007573 10.43472 0.0000

c 0.201582 0.054292 3.712925 0.0002
b 0.930792 0.006829 136.3005 0.0000
d 0.922191 0.181949 5.068395 0.0000

Source: statistical results.
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Table 20. Estimation results of TGARCH (1,1) for SCF.
SCF Variables Coefficient Std. Z-statistics P-value

Variance equation x 3.23E-06 7.40E-07 4.362482 0.0000
(TGARCH) a 0.050050 0.008197 6.105689 0.0000

k 0.036598 0.010735 3.409107 0.0007
b 0.923446 0.007620 121.1859 0.0000

Source: statistical results.

Table 22. Estimates of EGARCH (1,1) for SH.
SH Variables Coefficient Std. Z-statistics P-value

Variance equation x �0.194159 0.025892 �7.498868 0.0000
(EGARCH) a 0.153050 0.013938 10.98043 0.0000

k �0.028658 0.007799 �3.674773 0.0002
b 0.990301 0.002467 401.4211 0.0000

Source: statistical results.

Table 21. Results of the ARCH-LM test for the TGARCH model.
F-statistics Probability T � R2 Statistics Probability

SH 0.532270 0.7120 2.130335 0.7118
SCF 0.094907 0.7580 0.094944 0.7580

Source: statistical results.

Table 23. Estimates of EGARCH (1,1) for SCF.
SCF Variables Coefficient Std. Z-statistics P-value

Variance equation x �0.207422 0.027986 �7.411757 0.0000
(EGARCH) a 0.150245 0.013806 10.88240 0.0000

k �0.028715 0.007515 �3.821092 0.0001
b 0.988419 0.002804 352.5051 0.0000

Source: statistical results.

Table 24. Results of the ARCH-LM test for the EGARCH model.
F-statistics Probability T � R2 Statistics Probability

SH 0.975060 0.4198 3.901122 0.4196
SCF 0.236844 0.6265 0.236929 0.6264

Source: statistical results.

Table 25. Forecast values of the SH series.
Date Real Return GARCH (1,1) TGARCH (1,1) EGARCH (1,1) PARCH (1,1) CARCH (1,1)

2020-03-05 �0.012173 0.002141 0.002155 0.001054 0.001337 0.001316
2020-03-06 �0.030522 0.000218 0.000264 0.001264 0.000604 0.000438
2020-03-09 0.018004 0.000934 0.001006 0.000544 0.000920 0.000811
2020-03-10 �0.009470 �0.000839 �0.000803 �0.000406 �0.000764 �0.000807
2020-03-11 �0.015286 �0.000284 �0.000248 �0.000486 �0.000160 �0.000092
2020-03-12 �0.012411 �0.000781 �0.000777 �0.000134 �0.000239 �0.000186
2020-03-13 �0.034592 0.000023 0.000042 0.000229 0.000543 0.000563
2020-03-16 �0.003452 �0.000039 �0.000044 0.000161 �0.000023 �0.000071
2020-03-17 �0.018476 0.000368 0.000369 0.000026 0.000022 �0.000015
2020-03-18 �0.009805 0.000126 0.000105 �0.000118 �0.000297 �0.000301

Source: statistical results.
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Table 26. Forecast values of the SCF series.

Date Real Return
ARMA (1,1)-
GARCH (1,1)

ARMA (1,1)-
TGARCH (1,1)

ARMA (1,1)-
EGARCH (1,1)

ARMA (1,1)-
PARCH (1,1)

ARMA (1,1)-
CARCH (1,1)

2020-03-05 �0.011038 0.001045 0.001110 0.001074 0.001051 0.000991
2020-03-06 �0.041808 �0.000813 �0.000861 �0.000834 �0.000814 �0.000781
2020-03-09 0.026203 0.000632 0.000667 0.000647 0.000631 0.000615
2020-03-10 �0.017999 �0.000492 �0.000517 �0.000502 �0.000489 �0.000484
2020-03-11 �0.023400 0.000382 0.000401 0.000390 0.000379 0.000381
2020-03-12 �0.010094 �0.000297 �0.000311 �0.000303 �0.000293 �0.000300
2020-03-13 �0.054826 0.000231 0.000241 0.000235 0.000227 0.000237
2020-03-16 �0.004941 �0.000180 �0.000187 �0.000182 �0.000176 �0.000186
2020-03-17 �0.017120 0.000140 0.000145 0.000141 0.000136 0.000147
2020-03-18 �0.000969 �0.000109 �0.000112 �0.000110 �0.000106 �0.000116

Source: statistical results.

Table 27. Loss function values of the forecasting of SH return series.
ARMA (4,4)-
GARCH (1,1)

ARMA (4,4)-
TGARCH (1,1)

ARMA (4,4)-
EGARCH (1,1)

ARMA (4,4)-
PARCH (1,1)

ARMA (4,4)-
CARCH (1,1)

MSE 0.000354 0.000354 0.000360 0.000357 0.000357
MAE 0.016419 0.016425 0.016524 0.016429 0.016423
RMSE 0.018814 0.018823 0.018984 0.018907 0.018894
MEAN 0.011862 0.011867 0.011956 0.011898 0.011891

Source: statistical results.

Table 28. Loss function values of the forecasting of SCF return series.
ARMA (1,1)-
GARCH (1,1)

ARMA (1,1)-
TGARCH (1,1)

ARMA (1,1)-
EGARCH (1,1)

ARMA (1,1)-
PARCH (1,1)

ARMA (1,1)-
CARCH (1,1)

MSE 0.000680 0.000680 0.000680 0.000680 0.000680
MAE 0.020767 0.020764 0.020766 0.020768 0.020767
RMSE 0.026079 0.026073 0.026076 0.026078 0.026085
MEAN 0.015842 0.015839 0.015841 0.015842 0.015844

Source: statistical results.
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