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In this paper, we use microscopic maser theory developed by Filipovicz, Javanaien
and Meystre [Phys. Rev. A 34, 3077 (1986)] to investigate the properties of the
coherently pumped two-level micromasers. We find that under right conditions,
the initial atomic coherence locks the field phase and unlike ordinary lasers and
masers there is no longer threshold. Consequently, the population inversion is not
necessary.
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1. Introduction

Since the work of Jaynes and Cummings [1], the single-atom-cavity quantum
electrodynamics has been studied extensively, as this simple model is able to ex-
hibit clearly the discrete nature of light and quantum-mechanical aspects of its
interaction with atoms. One of the marvelous experimental and theoretical sys-
tems that fulfills the idealized conditions of the Jaynes-Cummings model is the
one-atom maser or micromaser [2-15]. An ordinary micromaser consists of a high-
Q microwave cavity and a stream of excited Rydberg atoms which drive the field
inside the cavity. The atomic beam is sufficiently sparse so that no more than one
atom is in the cavity at any time. Because of their large dipole moment, Rydberg
atoms couple strongly to the cavity mode. The single-atom maser oscillation has
been demonstrated experimentaly [3,4].

The photon statistics of a micromaser shows interesting quantum effects. Ex-
amples include sub-Poissonian photon statistics [2,3,5] to the extreme case of a
number state [9], quadrature noise reduction (squeezed state) [2,10–12] and trap-
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ping states [13]. The possibility of generating a coherent state of the micromaser
[8] with injected atoms in a coherent superposition of the upper and lower states
(atomic coherence), and the possibility of obtaining pure states of the field, the
so-called tangent and cotangent states [14] (if the initial conditions are properly
chosen), have also been predicted.

One of the key concepts in lasers and masers is population inversion. It is gener-
ally the case that a laser/maser requires population inversion in order to overcome
the absorption from the lower level, since the gain is proportional to the population
difference between the upper and lower levels of the lasing/masing transition. How-
ever, recent advances in the field of quantum optics and laser theory have shown
that some laser systems may operate in the absence of population inversion [16-21].
The essential point for this possibility is to modify the emissive and absorptive pro-
files, with the help of a quantum-interference effect. In these laser systems, if atomic
coherence is achieved, a kind of quantum interference is produced in lower levels,
which leads to an absorption cancellation. A small population in the excited state
can thus lead to net gain. Furthermore, micromaser, unlike conventional lasers and
maser, works without population inversion. Masiak et al. [22] have studied an ordi-
nary micromaser in which excited two-level atoms are injected into the micromaser
cavity. By using an approximate description of the Fokker-Planck equation, as well
as numerical calculations, they have shown that ordinary micromaser is a maser
working without mean population inversion (defined as time average inversion over
the interaction time). They believe that negative value of the mean inversion is a
consequence of a destructive interference between propability amplitudes of photon
emission for different Fock-states of the field in the cavity. Furthermore, they have
shown that this effect does not depend on pumping statistics and of the kind of
atomic transition (single or two photon).

The purpose of our paper is to study a micromaser with injected atomic co-
herence, i.e., a micromaser for which, unlike ordinary micromaser, active atoms
are prepared initially in a coherent superposition of the upper and lower levels of
the masing transition. Our approach is based on the microscopic maser theory de-
veloped by Filipovicz, Javanainen and Meystre [2]. We examine the steady-state
behaviour of the micromaser field and by using a simple method, we derive an
explicit expression describing steady-state field by which it is also possible to get
some information about the field phase. We show that the maser action is possible
even without population inversion. In fact, the initial atomic coherence leads to
micromaser phase locking and furthermore provides a driving force, so that there
is no threshold in the coherently pumped micromaser.

2. Basic equations

We consider a beam of monoenergetic two-level atoms injected at a rate r into
a microwave cavity in which the atoms interact with the cavity mode for a finite
time τ . It is assumed that 1/r follows a Poisson process (Poissonian pumping). The
micromaser is usually operated in the regime in which there is at most only one
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atom in the cavity at any time and also in which the cavity damping time (C−1)
is much longer than the atom – field interaction time τ ; that is the relaxation of
the resonator field mode can be ignored while an atom is inside the cavity. Let tN
and tN + τ be the entering and leaving times of N th atom. The interaction of the
cavity mode with the injected atom is described by the Hamiltonian

Ĥ = ĤA + ĤF + ĤA−F . (1)

Here, ĤA and ĤF describe the free atom and free field, respectively, and ĤA−F

describes the atom – field interaction in the dipole and rotating-wave approxima-
tions:

ĤA = h̄ω0σ̂
z
N ,

ĤF = h̄ωâ†â , (2)

ĤA−F = h̄g(σ̂+
N â+ σ̂−N â

†) ,

where â(â†) is the annihilation (creation) operator for the radiation field mode with
frequency ω, obeying the commutation relation [â, â†] = 1, σ̂zN and σ̂±N are the usual
Pauli spin operators for the two-level atom, g is the coupling constant and h̄ω0 is
the energy difference between the two atomic levels. For the sake of simplicity, in
this paper we assume that the frequency of the cavity mode coincides with the
atomic transition frequency. According to the microscopic maser theory [2], the
time evolution of the density matrix ρ̂

F
of the cavity mode, between two successive

atomic injection, is governed by the map

ρ̂
F
(tN+1) = exp(L̂tp)T̂ (τ)ρ̂F

(tN ) , (3)

where tp = tN+1 − tN = 1/r is the mean interval between two consecutive arrival

times of atoms in the cavity, and L̂ is the Liouvillian operator which describes the
coupling of the cavity mode to a thermal bath (cavity loss) and has the form [23]

L̂ρ̂
F

= −C
2
(nb + 1)(â†âρ̂F + ρ̂F â

†â− 2âρ̂F â
†)

−C
2
nb(ââ

†ρ̂F + ρ̂F ââ
† − 2â†ρ̂F â) . (4)

Here, nb is the average number of thermal photons in the cavity and C is the cavity
decay rate. In Eq. (3), the gain operator T̂ (τ) is given by

T̂ (τ)ρ̂
F
= TrA[Û(τ)ρ̂A(0)⊗ ρ̂F (0)Û+(τ)] , (5)

where ρ̂
F
(0) and ρ̂A(0) describe the initial density operator of the field and the

atomic system, respectively, TrA indicates partial trace over the Hilbert space of
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the two-level atom and Û(τ) ≡ exp(−iĤA−F τ/h̄) is the time evolution operator in
the interaction picture.

Now, we consider the following limits

Ctp ¿ 1, gτ ¿ 1 . (6)

The first condition in (6) means that the decrease in photon number in a time
between two successive atomic injection is very small. The second condition says
that atom-field interaction is weak. Let us now rewrite Eq. (3) as

ρ̂
F
(tN+1) = {1 + [exp(L̂tp)− 1]}{1 + [T̂ (τ)− 1]}ρ̂

F
(tN ) . (7)

In the limit (6), we can write

[exp(L̂tp)− 1] ≈ Ctp, [T̂ (τ)− 1] ≈ (gτ)2 .

Hence, by neglecting the product [exp(L̂tp)− 1][T̂ (τ)− 1], we obtain

ρ̂
F
(tN+1) = {1 + [exp(L̂tp)− 1]}+ [T̂ (τ)− 1]ρ̂

F
(tN ) . (8)

Next, we take into account the definition of the generator of the operator
exp(L̂tp)

L̂ = lim
tp→0

exp[(L̂tp)− 1]

tp
, (9)

which for Ctp ¿ 1 allows us to reformulate Eq. (8) as

ρ̂F (tN+1) = ρ̂F (tN ) + L̂tpρ̂F
(tN ) + [T̂ (τ)− 1]ρ̂

F
(tN ) . (10)

Under steady-state conditions, i.e. when ρ̂
F
(tN ) = ρ̂

F
(tN+1) ≡ ρ̂ss

F
, Eq. (10) takes

the following form

(1− L̂tp)ρ(ss)
F

= T̂ (τ)ρ(ss)
F

. (11)

This equation, which describes the behaviour of the micromaser field in the steady
state, is the basis of our considerations.

3. Coherently pumped micromaser

So far our considerations were rather general. We now concentrate on the co-
herently pumped micromaser. It is assumed that all atoms are initially prepared in
a same coherent superposition of the upper level | a〉 and the lower level | b〉. The
wave function of the N th atom has the form

∣

∣ψ
(N)
A 〉 = α exp(iϕ)

∣

∣aN 〉+ β
∣

∣bN 〉 , (12)
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where α, β and ϕ are real numbers and α2 + β2 = 1. According to Eq. (5), after
one atom has passed through the micromaser cavity, the gain term describing the
atom-field coupling reads

(T̂ (τ)ρ̂
F
)N=1 = TrA

[

ÛN=1(τ)ρ̂
(N=1)
A ⊗ ρ̂(N=0)

F
Û+
N=1(τ)

]

. (13)

For two atoms, we have

(T̂ (τ)ρ̂
F
)N=2 = TrA

[

ÛN=2(τ)ρ̂
(N=2)
A ⊗ ρ̂(N=1)

F
Û+
N=2(τ)

]

(14)

and generally, after N atoms have passed, we have

(T̂ (τ)ρ̂
F
)N = TrA

[

ÛN (τ)ρ̂
(N)
A ⊗ ρ̂(N−1)

F
Û+
N (τ)

]

. (15)

Since ρ̂
(N)
A =

∣

∣ψ
(N)
A 〉〈ψ(N)

A

∣

∣ and ρ̂
(N−1)
F =

∣

∣ψ
(N−1)
F 〉〈ψ(N−1)

F

∣

∣, we can rewrite Eq.
(15) in terms of the photon number state | n〉

(T̂ (τ)ρ̂
F
)N = (16)

TrA

[

∞
∑

m=0

∞
∑

n=0

{

ÛN (τ)
∣

∣ψ
(N)
A 〉 ⊗

∣

∣n〉〈n
∣

∣ψ
(N−1)
F 〉

}{

〈ψ(N−1)
F

∣

∣m〉〈m
∣

∣⊗ 〈ψ(N)
A

∣

∣Û+
N (τ)

}]

.

Here,
∣

∣ψ
(N−1)
F 〉 is the wave function of the micromaser field after passing of (N −1)

atoms through the cavity. It is easy to show that the time evolution operator ÛN (τ)
can be expressed in the form

ÛN (τ) ≡ exp

(

−iĤA−F τ

h̄

)

= exp[−igτ(σ̂+
N â+ σ̂−N â

†)] (17)

= cos(gτ
√

1/2 + σ̂zN + â†â)− i
sin(gτ

√

1/2 + σ̂zN + â†â)
√

1/2 + σ̂zN + â†â
(σ̂+

N â+ σ̂−N â
†) .

The matrix elements of this operator are

〈aN ;n | ÛN (τ) | aN ;m〉 = cos(gτ
√
n+ 1)δn,m

〈bN ;n | ÛN (τ) | bN ;m〉 = cos(gτ
√
n)δn,m (18)

〈aN ;n | ÛN (τ) | bN ;m〉 = −isin(gτ
√
n+ 1)δn,m−1

〈bN ;n | ÛN (τ) | aN ;m〉 = −isin(gτ
√
n)δn,m+1 .

By applying Eqs. (12) and (18) in Eq. (16), we can get the following relation for
the matrix elements of the gain term
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〈n
∣

∣(T̂ (τ)ρ̂F )N
∣

∣m〉 =
[

α2 cos(gτ
√
n+ 1) cos(gτ

√
m+ 1)

+ β2 cos(gτ
√
n) cos(gτ

√
m)
]

ρ
(N−1)
F (n,m) (19)

+ β2 sin(gτ
√
n+ 1) sin(gτ

√
m+ 1)ρ(N−1)

F
(n+ 1,m+ 1)

+ α2 sin(gτ
√
n) sin(gτ

√
m)ρ(N−1)

F
(n− 1,m− 1)

+ iαβ
[

exp(iϕ) cos(gτ
√
n+ 1) sin(gτ

√
m+ 1)ρ(N−1)

F
(n,m+ 1)

+ exp(−iϕ) cos(gτ
√
n) sin(gτ

√
m)ρ(N−1)

F
(n,m− 1)

− exp(−iϕ) cos(gτ
√
n+ 1) sin(gτ

√
m+ 1)ρ(N−1)

F
(n+ 1,m)

− exp(iϕ) sin(gτ
√
n) cos(gτ

√
m)ρ(N−1)

F
(n− 1,m)

]

.

On the other hand, according to Eq. (4), the matrix elements of the loss operator

L̂ρ̂
F
are

〈n
∣

∣L̂ρ̂
F

∣

∣m〉 = C(nb + 1)[
√

(n+ 1)(m+ 1)ρ
F
(n+ 1,m+ 1)− 1

2
(n+m)ρ

F
(n,m)]

+ Cnb[
√
nmρ

F
(n− 1,m− 1)− 1

2
(n+m+ 2)ρ

F
(n,m)] . (20)

By using Eqs. (11), (19) and (20), one finds

{α2
(

1− cos(gτ
√
n+ 1) cos(gτ

√
m+ 1)

)

+ β2(1− cos(gτ
√
n) cos(gτ

√
m)

+
Ctp
2
nb(n+m+ 2) +

Ctp
2

(nb + 1)(n+m)}ρ(ss)
F

(n,m) (21)

− {Ctpnb√nm+ α2 sin(gτ
√
n) sin(gτ

√
m)} ρ(ss)

F
(n− 1,m− 1)

− { Ctp(nb + 1)
√

(n+ 1)(m+ 1) + β2 sin(gτ
√
n+ 1) sin(gτ

√
m+ 1)}

ρ(ss)
F

(n+ 1,m+ 1)

− iαβ{ exp(iϕ) cos(gτ
√
n+ 1) sin(gτ

√
m+ 1)ρ(ss)

F
(n,m+ 1)

+ exp(−iϕ) cos(gτ
√
n) sin(gτ

√
m)ρ(ss)

F
(n,m− 1)

− exp(−iϕ) cos(gτ
√
m+ 1) sin(gτ

√
n+ 1)ρ(ss)

F
(n+ 1,m)

− exp(iϕ) cos(gτ
√
m) sin(gτ

√
n)ρ(ss)

F
(n− 1,m)} = 0 .

This equation describes the steady-state behaviour of a coherently pumped mi-
cromaser that operates on two level-atoms. It is clear that the coupling between the
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diagonal matrix elements ρ(ss)
F

(n, n) and the off-diagonal elements ρ(ss)
F

(n, n± 1) =

ρ(ss)∗
F

(n ± 1, n) occurs only when the atomic coherence αβ is present. If the mi-
cromaser is pumped by unpolarized atoms, (i.e., αβ = 0) then the off-diagonal
elements don’t occur, and consequently the field phase is always random. How-
ever, atoms prepared in a coherent superpostion of their states before entering the
micromaser cavity create nonvanishing off-diagonal elements, that is they create a
preferred field phase. Now, by setting n = m = n0 in Eq.(21), we obtain

{α2 sin2(gτ
√
n0 + 1) + β2 sin2(gτ

√
n0) + Ctpnb(n0 + 1) + Ctp(nb + 1)n0}

P (ss)
F

(n0)

− {Ctpnbn0 + α2 sin2(gτ
√
n0)}P (ss)

F
(n0 − 1) (22)

− {Ctp(nb + 1)(n0 + 1) + β2 sin2(gτ
√
n0 + 1)}P (ss)

F
(n0 + 1)

− iαβ{ exp(iϕ) cos(gτ
√
n0 + 1) sin(gτ(

√
n0 + 1)ρ(ss)

F
(n0, n0 + 1)

+ exp(−iϕ) cos(gτ√n0) sin(gτ
√
n0)ρ

(ss)
F

(n0, n0 − 1)

− exp(−iϕ) cos(gτ
√
n0 + 1) sin(gτ

√
n0 + 1)ρ(ss)

F
(n0 + 1, n0)

− exp(iϕ) cos(gτ
√
n0) sin(gτ

√
n0)ρ

(ss)
F

(n0 − 1, n0)} = 0 .

Here n0 and P
(ss)
F (n0) = ρ(ss)

F
(n0, n0) are the steady-state mean photon number,

and the normalized photon number and normalized photon number distribution,
respectively. It is easy to see from Eq. (22) that this is satisfied when

1

2
{ sin2(gτ

√
n0)
[

α2P (ss)
F

(n0 − 1)− β2P (ss)
F

(n0)
]

− Ctp(nb + 1)n0P
(ss)
F

(n0)

+ Ctpnbn0P
(ss)
F

(n0 − 1)}
− 1

2
iαβ exp[i(ϕ− θ0)] sin(2gτ

√
n0)

∣

∣ρ(ss)
F

(n0 − 1, n0)
∣

∣ = 0 , (23)

where θ0 is the steady-state micromaser field phase and ρ(ss)
F

(n0 − 1, n0) is defined
by

ρ(ss)
F

(n0 − 1, n0) =
∣

∣ρ(ss)
F

(n0 − 1, n0)
∣

∣ exp(−iθ0) . (24)

Equation (23) is just detailed balancing of the photon number flux (Fig. 1). Now
for the purpose of study the steady-state behaviour of the micromaser field, we
treat independently the field and atomic pumping of the field. In terms of atomic
and field operators, this means that we uncorrelate the field and atomic operators,
i.e., we make the approximation

〈σ̂zâ〉 ≈ 〈σ̂z〉〈â〉ss = (α2 − β2)
∑

n

√
nρ

(ss)
F (n, n− 1). (25)
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n+1

n

n–1?

?
6

6

6

61
2αβe

−iϕ

× sin(2gτ
√
n+ 1)

× ρ(ss)
F (n+ 1, n)

[Ctp(nb + 1)(n+ 1)

+ β2 sin2(gτ
√
n+ 1)]

× P (ss)
F (n+ 1)

1
2αβe

−iϕ

× sin(2gτ
√
n)

× ρ(ss)
F (n, n− 1)

[Ctp(nb + 1)n

+ β2 sin2(gτ
√
n)]

× P (ss)
F (n)

1
2 [Ctpnb(n+ 1)

+ α2 sin2(gτ
√
n+ 1)]

× P (ss)
F (n)

1
2 [Ctpnbn

+ α2 sin2(gτ
√
n)]

× P (ss)
F (n− 1)

Fig. 1. Flow of probability for finding n0 photons in a coherently pumped micro-
maser.

Physically, this corresponds to treating the field classically. When n0 À 1,
these are good approximations. In fact in this limit the dominant contribution to
the expression (25) comes from

(α2 − β2)
√
n0ρ

(ss)
F (n0, n0 − 1) = (α2 − β2)

√
n0e

−iθ0 | ρ(ss)
F (n0, n0 − 1) |

≈ (α2 − β2)e−iθ0
√
n0P

(ss)
F (n0) , (26)

where we have made use of

| ρ(ss)
F (n0, n0 − 1) |≈| ρ(ss)

F (n0 − 1, n0) |≈ P (ss)
F (n0) ≈ P

(ss)
F (n0 − 1) . (27)

(Note that the photon number distribution is normalized to unity). By using this
approximation, Eq. (23) takes the following form

(α2−β2) sin2(gτ
√
n0)−iαβ[cos(ϕ−θ0)+i sin(ϕ−θ0)] sin(2gτ

√
n0)−

C

r
n0 = 0 . (28)

This equation leads to two real equations in the steady-state

αβ cos(ϕ− θ0) sin(
√
N0) = 0; αβ /=0 (29a)

and

2√
N0

[(α2 − β2) sin2(

√
N0

2
) + αβ sin(ϕ− θ0) sin(

√

N0)] =
C

A

√

N0 , (29b)
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where N0 = 4g2τ2n0 and A = 2rg2τ2 are the normalized mean photon number and
linear gain coefficient, respectively. From Eq. (29a), we have

θ0 = ϕ± π

2
; sin(

√

N0) /=0 . (30)

With the positive sign, the stability of micromaser field is not satisfied. This means
that if we let θ0 = θ0 + δθ, only the solution

θ0 = ϕ− π

2
(31)

will satisfy d(δθ0)/dt < 0 and is thus stable. This shows that, because of the
presence of the initial atomic coherence, the micromaser phase is locked to a par-
ticular value and the maser becomes a phase sensitive device. It is improtant
to note that the phase locking occurs only for those values of

√
N0 such that√

N0 = 2gτ
√
n0 /=mπ (m integer). In other words, if

√
N0 = mπ, then the phases

of the micromaser field diffuse freely, even if there exists initial atomic coherence
(αβ /= 0). By substituting Eq. (31) into Eq. (29b), we obtain

2√
N0

[(α2 − β2) sin2(

√
N0

2
) + αβ sin(

√

N0)] =
C

A

√

N0 . (32)

This relation shows the role of the initial atomic coherence: αβ acts as a “driving
force” and, consequently, there is no longer a threshold in the coherently pumped
micromaser. This leads to an interesting phenomenon: population inversion (i.e;
α2 > β2) is not necessary. To see the threshold behaviour of a coherently pumped
micromaser more clearly, one can consider the following special case. If the initial
atomic variables are

β2 = 1− α2 = C/A, αβ = 0 (incoherently pumped micromaser) , (33)

then according to (32), we have

(

1− 2
C

A

)

sin2
(

√

N0/2
)

= (C/2A)N0 . (34)

This equation yields a positive nonzero solution for normalized mean photon num-
ber N0 if A > 2C (threshold condition). So according to (33), one sees that pop-
ulation inversion (β2 < 0.5) is necessary. But in the case of coherently pumped
micromaser (αβ /=0), Eq. (32) results in

(

1− 2
C

A

)

sin2(
√

N0/2) +

√

C

A
(1− C

A
) sin(

√

N0) = (C/2A)N0 , (35)

and in order to obtain a positive nonzero solution for N0 one should have

(

2
C

A
− 1
)

< 2

√

C

A
(1− C

A
) cot(

√

N0/2) . (36)
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As can be seen, in this case the requirement of threshold condition is removed since
even for A < 2C the inequality (36) is satisfied. Furthermore, we have β2 > 0.5.
This means that in the presence of atomic coherence, masing without inversion is
possible and there is no threshold .

In general, Eq.(32) can be solved graphically. Figure 2 plots its left-hand side
(representing the effect of the gain medium) as a function of

√
N0 for α2 > β2,

α2 = β2 and α2 < β2, and plots its right-hand side (representing cavity loss) as
a function of

√
N0 and for fixed value of C/A. N0’s are determined by the cross

Fig. 2. The left- and right-hand sides of equation (32) as functions of
√
N0, for

C/A = 0.1 and (a) α2 = 0.8, (b) α2 = 0.5, (c) α2 = 0.2 and (d) α2 = 0.05.

Fig. 3. (right). The left- and right-hand sides of equation (32) as functions of
√
N0,

for α2 = 0.2 and (a) C/A = 0.05, (b) C/A = 0.1, (c) C/A = 0.5, (d) C/A = 1 and
(e) C/A = 5.

point of a gain curve and the straight loss-line. As is seen, even without population
inversion (i.e. with α2 < β2), there exists a positive solution for

√
N0. Figure 3 plots

the left- and right-hand sides of Eq. (32) as a functions of
√
N0, for fixed value of α2,

but for various values of C/A. This shows that there is no threshold for coherently
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pumped micromaser. Here we want to point out that at
√
N0 = (2m + 1)π (m

integer), the second term in Eq. (32) becomes zero and this leads to recovery of
the maser threshold and, consequently, the population inversion is still required. In
other words, in the case of α2 < β2, the gain curve(s) and loss straight line(s) cross
each other at

√
N0 /=(2m + 1)π. This is shown in Figs. 2 and 3. Furthermore, at√

N0 = 2mπ (trapping state) the gain is always equal to zero since atoms neither
emit nor absorb photons (the intersection points of the gain curves with x-axis in
Fig. 2), while the right-hand side of Eq. (32) is not equal to zero (provided that
C /=0). Thus, we find that in the limit of n0 À 1 (coherent field) the trapping states
of the micromaser field don’t occur at all. This result is in full agreement with the
experimental result obtained by Weidinger et al. [24]. Of course, under the trapping
condition and the condition of weak interaction, a coherent state with amplitude
(2α/β)gτ can be reached in the steady-state regime of a lossless micromaser [14].

Finally, it should be noted that in Ref. [22] the criterion for masing without in-
version in an excited pumped micromaser is that the mean inversion as a function
of interaction time becomes negative, while in our treatment, the relevant criterion
is given on the basis of the existence of a positive solution for the steady-state
mean photon number in the absence of inversion. Of course, these two criteria are
conceptually similar. It is necessary to point out that, in agreement with Ref. [22],
we believe that the occurrence of masing without inversion is a consequence of a
kind of destructive interference. In our approach, this interference occurs between
the atomic dipole and the cavity field yielding a null of the transition probabil-
ity corresponding to photon absorption. This cancellation arises from the atomic
coherence.

4. Conclusion

We have studied the main properties of the field generated in a coherently
pumped micromaser cavity that operates on two-level atoms. The microscopic
maser theory has been applied to find the explicit expression of the detailed-balance
steady-state photon distribution. We have found that under certain conditions, the
initial atomic coherence locks the field phase and unlike ordinary lasers and masers,
there is no longer threshold and consequently, the population inversion is not nec-
essary.
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KOHERENTNO PUMPAN MIKROMASER KAO MASER BEZ INVERZIJE

Primijenjujemo mikroskopsku teoriju masera koju su razvili Filipovicz, Javanaien
i Meystre [Phys. Rev. A 34, 3077 (1986)] radi istraživanja svojstava koherentno
pumpanih dvorazinskih mikromasera. Nalazimo da u povoljnim uvjetima, početna
atomska koherencija veže fazu polja, te za razliku od običnih masera i lasera, ne-
mamo praga i stoga inverzija zaposjednutosti nije potrebna.
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