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An attempt is made to study the gate capacitance of MOS structure of p-channel
inversion layers on tellurium in the presence of a quantizing magnetic field by
considering all types of anisotropies of the valence bands of tellurium within the

framework of ~k · ~p theory. We have derived an analytical expression of the surface
electron concentration in low electric field limit in the presence of a quantizing
magnetic field. We have then formulated a model expression of the magneto-gate
capacitance with the proper use of the electron concentration. For the purpose of
relative comparison, we have also derived the same capacitance by including the
broadening effects and without any approximations of low or high electric field lim-
its. It has been observed that the gate capacitance of p-channel inversion layers on
tellurium exhibits spiky oscillations with changing magnetic field. The correspond-
ing well-known results for p-channel inversion layers on parabolic energy bands
have also been obtained under certain limiting conditions from the generalized ex-
pressions.
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1. Introduction

In recent years, there has been considerable interest in the study of semiconduc-
tor inversion layers which are formed at the surfaces of semiconductors in devices
under the influence of a sufficiently strong electric field, applied perpendicularly to
the surface in the presence of a large gate bias [1]. In such layers, the carriers form a
two-dimensional gas and are free to move parallel to the surface while their motion
is quantized in a direction perpendicular to it, leading to the formation of electric
sub-bands. This quantized motion gives rise to many special features of MOSFET
devices. One such important feature is the capacitance of MOS structures, since
its dependence on the surface electric field becomes oscillatory in the presence of
a quantizing magnetic field. The fact that the gate capacitance can be easily con-
trolled by varying the gate voltage is of much importance from the point of view of
technical considerations. Incidentally, it may be stated in this context that, though
there has been considerable work on the magneto-transport in inversion layers in
MOS structure of tellurium [1], the gate capacitances in these structures have yet
to be investigated. It would, therefore, be of much interest to study the effect of
magnetic quantization on the gate capacitance of MOS structures of tellurium by
using the generalized band model, since the above class of materials is increasingly
used for different technical applications [2].

In what follows, we shall first derive the model expressions for gate capaci-
tance of MOS structures of p-type Te under magnetic quantization. This will make
our study a generalized one, since we can obtain the corresponding expressions
for p-channel inversion layers on parabolic semiconductors under certain limiting
conditions. However, we shall consider the low-electric-field limit since the creation
of large surface field is experimentally difficult. Besides, we shall also derive the
gate capacitance by including the broadening effects. We shall then investigate,
theoretically, the effect of a quantizing magnetic field on the gate capacitance.

2. Theoretical background

In MOS structures, the gate capacitance per unit area is given by

C−1
g = C−1

ins + C−1
sc , (1)

where Cins = ǫins/dins, ǫins and dins are the permittivity and the thickness of the
insulating layer, respectively,

Csc = e
d

dV0

[Ns] = e
dps
dVg

(

1− edins
ǫins

dps
dVg

)−1

. (2)

e is the magnitude of the carrier charge, ps is the hole concentration per unit
area, V0 = Vg − (epsdins/ǫins) is the surface potential and Vg is the gate voltage.
It appears, therefore, that the derivation of the magneto-gate capacitance, with
the help of Eq. (1), requires an expression of the total hole concentration under
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magnetic quantization as a function of the gate voltage which, in turn, is determined
by the corresponding two-dimensional hole-energy spectra. Incidentally, it may be
noted in this context that the detailed structure of the energy bands nearH point of

Te was derived by many authors [2]. All of them used a ~k·~p perturbation considering
the coupling of the upper two branches of the valence band. Non–parabolic valence
band terms (∼ k4) are given by a second order interaction between the vH4, vH5,
vH61, vH62 states.

The energy spectra of the holes in valence bands of bulk specimens of Te can
be expressed as [2]

E = Ak2⊥ +Bk2z + βk4⊥ + β′k2⊥k
2
z − 2|∆1|±

[

(2|∆1|+ ηk2⊥ + ζk4⊥ + ζ ′k2⊥k
2
z)

2 + S2k2z
]1/2

, (3a)

where E is the total hole energy as measured from the top of the upper valence band
in the downward direction in the absence of any quantization, S is the first-order
~k · ~p term, |∆1| is the first-order spin–orbit term, A, B, β, β′, η, ζ and ζ ′ contain

different contributions of first- and second-order ~k · ~p, first-order spin–orbit and

second-order spin–orbit ~k · ~p interaction with ~k–independent spin–orbit interaction
terms, and k2⊥ = k2x + k2y. Thus, in the presence of a quantizing magnetic field B0

applied along the crystal axis, the modified hole energy spectra can be written as

En = a(n) + b(n)k2z ±
√

[c(n) + d(n)k2z ]
2
+ e1k2z , (3b)

where En is the total energy in the presence of magnetic field as measured from
the top of the upper valence band in the downward direction in the absence of any
quantization,

a(n) = −2eB0A

h̄

(

n+
1

2

)

− 2(|∆1|) + β

[

2eB0

h̄

(

n+
1

2

)]2

.

e is the carrier charge, h̄ = h/2π, h is the Planck’s constant, n(= 0, 1, 2, ...) is the
magnetic quantum number,

b(n) = B − 2eB0

(

n+ 1

2

)

β′

h̄
,

c(n) = 2|∆1| −
2ηeB0

h̄

(

n+
1

2

)

+ ζ

[

2eB0

h̄

(

n+
1

2

)]2

,

e1 = S2 and d(n) = −2eB0ζ
′

h̄

(

n+
1

2

)

.
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Thus, the carrier energy spectra in p–channel inversion layers of the above class
of materials in the presence of a uniform DC quantizing magnetic field, B0, along
c–axis can be expressed, in low electric field limit, as

α1(n)

3

[

T1(n)± 2α2(n)
√

T1(n) + α3(n)
]3/2

±α1(n)α2(n)

2

[

(

√

T1(n)± α3(n)
)(

T1(n)± 2α2(n)
√

T1(n) + α3(n)
)1/2

+α4(n)
2 log

∣

∣

∣

∣

(
√

T1(n)± α2(n)) +
(

T1(n)± 2α2(n)
√

T1(n) + α3(n)
)1/2

∣

∣

∣

∣

]

−α1(n)

3

[

T3(n)± 2α2(n)
√

T3(n) + α3(n)
]3/2

∓α1(n)α2(n)

2

[

(

√

T3(n)± α3(n)
)(

T3(n) + α3(n)±
√

T3(n)2α2(n)
)1/2

+α4(n)
2 log

∣

∣

∣

∣

(
√

T3(n)± α2(n)) +
(

T3(n)± 2α2(n)
√

T3(n) + α3(n)
)1/2

∣

∣

∣

∣

]

=
2S

3/2
i

3
, (4)

where

α1(n) =
p2(n)

T2(n)3/2eFs
.

Fs is the surface electric field, p2(n) = b(n)[−b2(n) + d2(n)]−1, T2(n) =
t2(n)[−4b2(n) + 4d2(n)]−1, t2(n) = 2e1b(n) − 4b(n)c(n)d(n) + 4d2(n)a(n) −
4d2(n)Eni, Eni is the hole energy under magnetic quantization as measured from
the edge of the valence band at the surface in the absence of any quantization,

α2(n) =
T2(n)

2p2(n)
, T1(n) =

t1(n)

4b2(n)− 4d2(n)
,

t1(n) = [e21 + 4a(n)b(n)e1 − 8a(n)b(n)c(n)d(n)− 4e1c(n)d(n)

+4b2(n)Enia(n)− 2e1Enib(n) + 4b(n)c(n)d(n)Eni + 4Eni2d
2(n)

+4a2(n)d2(n)− 8d2(n)a(n)Eni + 4b2(n)c2(n)],
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α3(n) =
p1(n)T2(n)− p2(n)T1(n)

p2(n)
,

p1(n) =
a(n)b(n) + (e1/2)− c(n)d(n)− b(n)Eni

b2(n)− d2(n)
,

α2
4(n) = α3(n)− 4α2

2(n),

T3(n) =
p21(n)T2(n)− 2p1(n)p2(n)T1(n)

T2(n)− 2p1(n)p2(n)
.

i = 0, 1, 2, ... is the electric sub–band index and si are the zeros of Airy function.

Under the conditions A = B = h̄/2m∗ (m∗ is the effective mass at the band
edge), β = 0, β′ = 0, |∆1| = 0, η = 0, ζ = 0, ζ ′ = 0 and s = 0, Eq. (4) assumes the
form

Eni =

(

n+
1

2

)

h̄ω0 + Si

(

h̄eFs√
2m∗

)2/3

(5)

where ω0 = eB0/m
∗. We wish to note that Eq. (5) is the well–known relation for

the carrier energy in inversion layers on parabolic semiconductors under magnetic
quantization [1].

Therefore, the density–of–states function can be written as

D(E) =
eB0gsgv

h

∑

n,i

δ′(ǫ− Eni), (6)

where gs is the spin degenerancy, gv is the valley degenerancy and δ′ is the Dirac’s
delta function. Combining Eq. (6) with the Fermi–Dirac occupation probability
factor and using the property of delta function, the surface hole concentration per
unit area can be expressed as

ps =
eB0gsgv

h

∑

n,i

[

1 + exp

(

Eni − E′
FBO

kBT

)]−1

, (7)

where kB is the Boltzmann constant, T is the temperature, E′
FBO is the Fermi

energy under magnetic quantization as measured from the edge of the valence
bands at the surface in the absence of any quantization and is given by

E′
FBO = eVg − pse

2 dins
ǫins

− EfbB0
, (8)

in which EfbB0
represents the energy separation between the Fermi level at the edge

of the valence band in the bulk of the n–type substrate material in the presence of
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a quantizing magnetic field. Equation (7) can be written as

ps =
eB0gsgv

h

∑

n,i

F−1(η), (9)

where η = (E′
FB0

−Eni)/kBT and Fj(η) is the one–parameter Fermi–Dirac integral
of order j [3].

Thus, combining Eqs. (1) and (9), the generalized expression for the gate of
MOS structures of p–type Te under magnetic quantization can be written as

cg(B0) =
e2ζ0

∑

n,i F−2(η)

1 + ζ0
∑

n,i p(n)F−2(η)
, (10)

where

ζ0 =
eB0gsgv
hkBT

,

pn = ρ(n) + e2
dins
ǫins

and

ρ(n) =
∂

∂ps
(Eni),

which can be obtained by using Eq. (4).

It may be noted that under the conditions A = B = h̄2/2m∗, β = 0, β′ = 0,
|∆1| = 0, η = 0, ζ = 0, ζ ′ = 0 and S = 0, the form of the magneto-gate capacitance
for p–channel inversion layers of parabolic semiconductors is expressed by the same
Eq. (10), where

ρ(n) =
2

3
p−1/3
s

(

h̄e2

ǫsc
√
2m∗

)2/3

Si.

Incidentally, in the presence of broadening effects the density-of-states function of
the carriers in 2D inversion layers on semiconductors can, in general, be expressed
[1]

D(ǫ) =
eB0gsgv

h

√

2

π

∑

n,i

Γ−1
n exp

(−2(ǫ− ǫ′)2

Γ2
n

)

, (11)

where Γn is the line width of the broadened Landau levels and ǫ′ is the unperturbed
energy eigenvalue which in the present case can be determined from the equation

ǫ′ = a(n)± c(n). (12)
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Thus, combining Eq. (11) with the Fermi–Dirac occupation probability factor, the
surface hole concentration can be expressed as

ps = K0

∑

ni

X0

Γn
, (13)

where

K0 =
eB0gsgv

h

√

2

π
kBT,

X0 =

∞
∑

t=0

Y+(t) +

∞
∑

t=1

Y−(t)−
γ
√
π

2
(1− erf(U)) ,

Y±(t) =
√
2π

γ

2
exp(Y ′±)L

(

1∓ erf(Y
2
′±)

)

,

L = (−1)t exp(−U2), U =
η′

γ
, γ =

Γn

kBT
√
2
,

η′ =
E′

FBO − ǫ′

kBT
, Y ′± =

γ

2
(2Uγ−1 ± t)

and erf denotes the error function [4]. Thus, using the appropriate equation, the
magneto-gate capacitance for p–channel inversion layers on Te can be expressed
including broadening effects as

cg(B0) =
α0

∑

n,i β0(Γn)
−1

1 + (eα0dins/ǫins)
∑

n,i β0(Γn)−1
, (14)

where

α0 =
eK0

kBT
, β0 = exp(−U2) +

∞
∑

t=0

Q1,+ +

∞
∑

t=1

Q1,−

and

Q1,± = Lγ2
√
π(1∓ erf(Y ′±))Y ± ∓ Lγ2 − UL exp(Y

2
′±)(1∓ erf(Y ′±)).

It may also be noted that the general expression for the carrier statistics and the
gate capacitance in inversion layers on parabolic semiconductors under magnetic
quantization, including broadening effects, will be given by Eqs. (13) and (14),
where

ǫ′ =

(

n+
1

2

)

h̄ω0. (15)
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3. Results and discussion

Using Eqs. (9) and (10) and taking the parameters [2] A = −2.57× 1019 eVm2,
B = −4.09 × 10−19 eVm2, β′ = 0, gs = 2, gv = 2, β = 1.1 × 10−37 eVm4,
2|∆|| = 6.315 × 10−2 eV, η = −1.18 × 10−19 eVm2, ζ = 4 × 10−32 eVm, ζ ′ = 0,

|S| = 2.62×10−10 eVm, ǫsc = 30 ǫ0, dins = 15 µm as appropriate for p-Te together
with Fs = 5.6×104 V/m and ǫins = 2.8 ǫ0 (the permittivity of Mylar, for example,
which is commonly used as the equivalent of the oxide layer in non-parabolic MOS
structures), we have plotted -Cg(B0)/Cg(0) versus 1/B0 at 4.2 K as shown in plot
A of Fig. 1. Plot B shows the same dependence in accordance with the parabolic
band model.

Using the same parameters as used in obtaining Fig. 1 together with Γn =
10−3

√

B0(T) [1], and using Eqs. (13) and (14), we have plotted Cg(B0)/Cg(0)
by including broadening effects, shown in plot A of Fig. 2. The plot B in Fig. 2
exhibits the same dependence for the parabolic model. The depths of the spikes
increase with increasing magnetic field. With varying magnetic field, each time a
Landau level crosses the Fermi level, a change occurs in the capacitance through
redistribution of the carriers among the Landau levels. It may be noted that the
3D quantization, in the absence of broadening of Landau levels, leads to the dis-
crete energy levels, somewhat like atomic energy levels in steps produce very sharp
changes. This follows from the inherent feature of the 3D quantization of the 2D
hole gas delt with here. Under such quantization, there remains no free hole state
in between any two successive Landau levels, unlike that found for 3D hole gases

of semiconductors under 2D quantization in the ~k space in the presence of a quan-
tizing magnetic field. Consequently, the crossing of the Fermi level by the Landau
level under 3D quantization would have much greater impact on the redistribu-
tion of the holes amongst the available states, as compared to that found for 2D
quantization. It is basically this impact which results in the increased sharpness of
the oscillatory spikes for both models of Te. Incidentally, the collision broadening
effects which have been neglected in the theoretical formulation shown in Fig. 1,
would, really, reduce the sharpness of the oscillatory spikes. Thus, to assess the
influence of broadening, we have plotted the same dependence in Fig. 2. In the
presence of broadening, the basic physics behind 3D quantization is not applicable.
Hole motion becomes possible in broadened sub-bands and thus the broadening pa-
rameter changes the analytical expressions of the hole statistics and magneto-gate
capacitance, respectively.

It may be noted that Eqs. (8), (9), (13) and (14) are the generalized expressions
for the hole statistics and the magneto-gate capacitance, both in the presence and
absence of broadening effects, respectively, in p-channel inversion layers on Te un-
der magnetic quantization. For inversion layers on parabolic semiconductors, the
general forms of the above equations will be unaltered. The above facts are true
only for 2D hole gases in inversion layers under magnetic quantization. Since the
basic physics behind the broadening of Landau levels in inversion layers under mag-
netic quantization is radically different as compared to 3D quantization, we can not
obtain the results valid for 3D quantization from the corresponding expressions for
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broadening under the condition Γn → 0. That the above conclusion is not true for
bulk semiconductors under magnetic quantization has been shown in Ref. 5. Thus,
the results which are valid for Γn /=0 are not valid for Γn = 0, and are true only
for 2D carrier gases in inversion layers under magnetic quantization. It appears
from Fig. 2 that even in the presence of broadening, the numerical magnitude of
the magneto-gate capacitance in p-channel inversion layers of Te are larger as com-
pared to parabolic model, and the nature of oscillations is found to be somewhat
similar to that observed experimentally in Te MOS structures having p-channel
inversion layers [2].

Fig. 1. Plot A shows the magnetic-field dependence of the normalized gate capac-
itance of MOS structures having p-channel inversion layers under magnetic quan-
tization in the absence of broadening. The plot B corresponds to the parabolic
model.

Fig. 2. Plot A shows the magnetic field dependence of the normalized gate ca-
pacitance of MOS structures of Te having p-channel inversion layers under mag-
netic quantization in the presence of broadening effects. The plot B corresponds to
parabolic energy bands (right).

It may also be noted that, as far as the determination of the effective mass
under degenerate carrier distribution at the surface is concerned, the measurement
of magneto-gate capacitance, as compared to that of the conductivity or cyclotron
resonance, would not be more advantageous regarding the experimental facilities
required or accuracies achieved. Nevertheless, it is felt that the theoretical in-
vestigation presented here would be of much significance, as the interest on gate
capacitance has been growing very much in recent years from the point of view of
technical applications and of exploration of fundamental aspects of semiconductor
surfaces in MOS structures. It may be noted that since the many-body effects,
the carrier-spin, the arbitrary orientation of the quantizing magnetic field, the for-
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mation of band-tails, the hot-electron effects and the dependence of Γn on other
various physical parameters have not been considered in obtaining both plots, there-
fore, the essential meaning of comparison of the gate-capacitance between the two
models would not be meaningless, and this simplified analysis exhibits the basic
qualitative features of the oscillatory magneto-gate capacitance in p-channel MOS
structures of Te. For a more accurate derivation, the modifications as mentioned
above should be taken into account, which present formidable problems due to the
lack of analytical techniques. Finally, it may be noted that the basic purpose of
the present work is not solely to demonstrate the effects of magnetic quantization
on the gate capacitance, but also to formulate the carrier statistics for p-channel
inversion layers of Te, since the various transport phenomena and the derivation
of the expressions for many important physical parameters of 2D semiconductors
devices are based on the carrier statistics in such materials.

References

1) T. Ando, A. B. Fowler and F. Stern, Rev. Mod. Phys. 54 (1982) 437;

2) M. Lutz, Optical Activity - de Haas-van Alphen Oscillations and Conduction Band Pa-
rameters of Tellurium in the Physics of Selenium and Tellurium, edited by G. Gerlach
and P. Gosse, Springer-Series in Solid State Sciences 1979, p. 86;

3) K. P. Ghatak and B. Mitra, Internat. J. Electronics 72 (1992) 541;

4) M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publi-
cations, New York, 1965;

5) M. Mondal and K. P. Ghatak, Phys. Stat. Sol.(b) 123 (1984) K143.

JEDNOSTAVNA TEORIJSKA ANALIZA KAPACITANCIJE MAGNETSKIH
VRATA U MOS STRUKTURI p-KANALNOG INVERZIJSKOG SLOJA NA

TELURU

Proučavaju se kapacitancija vrata MOS strukture p–kanalnih inverzijskih slojeva

na teluru u magnetskom polju na osnovi ~k · ~p teorije. Pokazuje se da kapacitancija
vrata mijenja periodički s rastućim magnetskim poljem. Dobiveni rezultati svode
se u modelu paraboličkih vrpci, uz odredene uvjete, na poznate izraze.
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