
Effective Memory Diversification in Legacy
Systems

321

Original Scientific Paper

Heesun Yun
Sungshin Women’s University
Department of Convergence Security Engineering
02844, Seoul, South Korea
yunheesun718@gmail.com

Daehee Jang
Sungshin Women’s University
Department of Convergence Security Engineering
02844, Seoul, South Korea
djang@sungshin.ac.kr

Abstract – Memory corruption error is one of the critical security attack vectors against a wide range of software. Addressing this
problem, modern compilers provide multiple features to fortify the software against such errors. However, applying compiler-based
memory defense is problematic in legacy systems we often encounter in industry or military environments because source codes are
unavailable. In this study, we propose memory diversification techniques tailored for legacy binaries to which we cannot apply state-of-
the-art compiler-based solutions. The basic idea of our approach is to automatically patch the machine code instructions of each legacy
system differently (e.g., a drone, or a vehicle firmware) without altering any semantic behavior of the software logic. As a result of our
system, attackers must create a specific attack payload for each target by analyzing the particular firmware, thus significantly increasing
exploit development time and cost. Our approach is evaluated by applying it to a stack and heap of multiple binaries, including PX4
drone firmware and other Linux utilities.

Keywords: Legacy System, Diversification, Memory Layout Randomization, UAV Firmware

1. INTRODUCTION

Memory corruption vulnerabilities are caused by
unexpected changes or reference of memory values,
and there are various categories of them [1,2]. Gener-
ally, the existence and detailed structures of specific
memory regions vary by application, but the stack and
heap memory regions of most applications, including
legacy binaries, are composed based on a general and
common memory layout; thus, its exploitation steps
are fairly similar from one to another [3-5].

For instance, memory corruption vulnerabilities in a
stack such as buffer overflow vulnerability often target
to corrupt a specific/common data so-called return ad-
dress. Defending such memory corruption-based ex-
ploitation is also well established by security research-
ers: use stack canary and check if the canary value has
changed [6]. However, such defense (stack canary) is
applied by compilers; thus, it is difficult to apply such
defense to legacy binary which cannot be re-compiled.

Various vulnerabilities are also likely to exist in the
heap memory area as the heap is dynamically allocat-

ed at runtime and it is usually more complicatedly con-
structed than the stack memory buffers [7]. Similarly,
to stack situations, multiple defense systems including
address space layout randomization (ASLR) are pro-
posed as a part of the compiler feature or heap-alloca-
tor’s runtime verification logic [8].

All such state-of-the-art defenses are inapplicable
to legacy binaries as they cannot be re-compiled [9].
However, we claim that applying the ASLR effects (even
partially) to stack and heap memory regions would ap-
ply to some extent solely based on binary analysis and
in-place instruction patching [10,11]. This is the part
where our idea comes in.

To apply the memory diversification effect to legacy
binaries, we use binary analysis techniques and in-place
instruction patching to change the runtime memory
layout of binary without re-compiling the source code.

The goal is to create different memory layouts for each
physical device, without altering the original functional-
ity. More specifically, we patch the binary/firmware to
differentiate the size/distance of unused memory pad-

Volume 14, Number 3, 2023

322 International Journal of Electrical and Computer Engineering Systems

dings in stack and heap. As a result, when our diversi-
fication technology is applied to drones, even if the
software system is prone to memory corruption, the
attacker must adjust the attack payload differently each
time when attacking an instance because diversification
renders the memory layout of each physical instance
differently. As a result, an attacker must create multiple
attack payloads by analyzing the instance of each ma-
chine, which significantly increases attack time and cost.

Several related works also consider the lack-of-
source-code situation. For example, [9] also fortifies
the binary to prevent exploitation. The key idea of such
work is to patch the ROP-gadget instruction instead of
changing the memory layout as our system does. We
have surveyed previous studies to this end and sum-
marized more details in section 2.

In short, we proposed binary-patch-based memory
layout randomization technique that does not require
source code and is thus suitable for legacy systems. The
main contributions of this paper are as follows.

1. Our system provides a way to change the memory
layout without re-compiling the binary. This is use-
ful to fortify outdated system binaries when their
source code is intentionally or unintentionally un-
available.

2. Our system effectively raises the bar of applying
memory corruption attacks against multiple physi-
cal devices using the same firmware. Because our
approach diversifies the memory layout of each
target, the attacker must develop different exploit
payloads (e.g., ROP payload for buffer overflow vul-
nerability) for each target device.

3. We implemented and deployed our idea against
commercial-off-the-shelf (COTS) software such as
Intel PX4 aero drone firmware and popular Binutils
binaries in the Linux system.

4. We provide academic analysis and discussion that
our approach must consider data alignment issues
and code/data interleaving problems in ARM-like
CPU architectures. This is a thought-provoking dis-
cussion for additional future research to this end.

The rest of the paper is structured as follows. Section
2 covers various related works regarding our research
direction. Section 3 proposes a system theory about
the legacy system and memory safety. Next, we de-
scribe the design of our framework in section 4, and the
implementation of algorithms in section 5. Afterward,
we present the evaluation results in section 6. Finally,
we summarize our paper and conclude in section 7.

2. RELATED WORK

2.1. BINARY PATCH

Because many commercial software applications are
developed based on closed-source code, it is difficult to
apply security patches to their vulnerable parts. Various

researches are addressing this limitation. [12] conducted
a study to prevent return-oriented programming (ROP)
attacks based on the return instruction without based on
debugging symbol information in a Linux 64-bit environ-
ment without source code. [13] conducted a patch for a
buffer overflow vulnerability by automating the secu-
rity patch for the Windows x86 binary without the use of
source code, debugging information or human interven-
tion. [14] considers a closed-source code patching envi-
ronment in PowerPC-based binaries. [9] achieves security
effectiveness by patching the binary to prevent code re-
use attacks. [15] identified vulnerabilities in closed-source
code software based on the bug signature. [16] per-
formed a static binary patch to prevent vulnerabilities in
ARM-based Internet of Things (IoT) device firmware.

Additionally, many studies aim to better identify the
causes of security vulnerabilities in binary. [17], [18]
enabled finding similar patches or vulnerabilities in dif-
ferent binaries by identifying code portions changed
by a binary patch through basic block analysis. [19]
detected software vulnerabilities in the binary codes
of patched and unpatched programs using the patch
diffing technology. Previous studies primarily aimed
at preventing specific security vulnerabilities in an en-
vironment with binary-only approach without source
code. To some extent, our study is similar to these stud-
ies in that patch is performed in a binary-only environ-
ment, but our framework is mainly focused on diversi-
fying the memory layout and hindering memory cor-
ruption exploitation for physical instances (e.g., each
drone machine).

2.2. MEMORY RANDOMIZATION

As attacks that exploit memory corruption vulnerabili-
ties have been launched against several commercial
software applications, the latest security technolo-
gies for memory protection, such as ASLR, have been
implemented in most software applications. ASLR is
a technology that can defend against attacks using a
fixed address by randomly changing the address of the
data area whenever a binary is executed. Thus, research
to prevent external attacks by randomizing part of the
memory is being actively conducted. [20] proposed a
technology to randomize the stack layout based on the
LLVM compiler to prevent memory corruption vulner-
abilities. The position of each object was randomized
using source code information so that attackers cannot
predict the stack layout. [8] performed randomization
for the entire heap memory area by proposing a ran-
dom memory block allocation algorithm. It is similar
to our study in that randomization is performed in the
heap memory area, but the detailed process to obtain
the randomization effect is different. [21] proposed a
solution to prevent just-in-time (JIT) code reuse attacks
using memory randomization technology that is subdi-
vided for each process so that code sharing is not dis-
turbed. [22] conducted a study on the kernel defense
mechanism by performing device driver randomiza-

323Volume 14, Number 3, 2023

tion and proposed a solution to prevent ROP attacks
on the Linux kernel by increasing the KASLR entropy.
[11] proposed a method for randomizing the memory
layout in user-end machines to prevent buffer overflow
attacks. As shown in the above examples, memory ran-
domization to reinforce security is being extensively
researched. Although some studies do not use source
code and symbols, many studies perform memory ran-
domization using the source code information. Our
study performed effective memory randomization
only for binaries without source code information.

2.3. LEGACY SYSTEM

A legacy system is one that uses software applications
from older versions or works in uncommon ways. Cur-
rently, the latest software updates and distributions are
done quickly based on open sources, but many legacy
systems are still being used in military or space explora-
tion systems. Because these legacy systems are mostly
based on closed-source code, it is difficult to apply se-
curity patches to them. In this situation, research into
the reinforcement of the security of legacy systems is in-
dispensable. [23] generates randomized instruction ad-
dresses whenever a legacy x86 binary is executed with-
out source code or symbol information. [9] proposed a
binary-based rewriting technology for patching legacy
binary to prevent code reuse attacks. [24] proposed a so-
lution for detecting control flow integrity (CFI) attacks,
such as buffer overflow and ROP attacks. It detected CFI
attacks with high accuracy by inserting performance
counters and instrumentation hooks through binary ed-
iting in the ELF file, which is legacy software.

3. PROPOSED SYSTEM THEORY

3.1. LEGACY SYSTEM

A legacy computer system in this paper refers to a
computer device with old software application/firm-
ware that differs from the recent standard. Currently,
the development and distribution of software are done
quickly based on state-of-the-art compilers, yet many
legacy systems are still used as old version binaries in
various fields. Because most legacy systems are closed-
sourced, and not properly updated, they can be a good
target for attackers to abuse system vulnerabilities such
as memory errors.

3.2. ASLR

ASLR is a memory layout diversification technology
that changes the address of the data whenever a pro-
gram is executed by randomly placing memory layouts
such as stack, heap, and library codes in the unpredict-
ed address space to make memory exploitation attacks
difficult. As memory exploitation technologies such
as return oriented programming (ROP) are becoming
more popular, memory protection techniques such as
ASLR are now widely used in most software systems.

3.3. BASIC BLOCK

A basic block in computing is a straight-line code se-
quence with no branches other than the entry and exit.
Because of this characteristic, computer science re-
searchers often analyze binaries based on basic blocks
as a unit of algorithm testing/measure.

3.4. MEMORY ALIGNMENT

When data structures or classes are stored in mem-
ory in programming languages such as C++, paddings
are sometimes inserted in between variables. These
paddings are dummy values added by the compiler.
The memory is aligned in 4-byte units to optimize the
performance when the CPU accesses the memory. Be-
cause of the data bus structure between the CPU and
memory, all variables that enter the memory must be
placed in consideration of memory alignment to im-
prove system performance [25]. In some cases, if data
is accessed to an address without considering memory
alignment, it can cause an alignment fault rather than
causing a performance issue [26]. In our paper, we con-
sider memory alignment problems while applying our
patch for memory diversification.

4. DESIGN

4.1. OvERvIEW

The overall framework of this study is shown in Fig.
1. The firmware binary of the legacy system is ①disas-
sembled using the Capstone [27] library and ②func-
tions are extracted based on binary analysis. Afterward,
③ we analyze basic blocks in the function to run our
code detection algorithm for proper diversification
patch. For the next step, ④ our patch tool performs
a diversification patch to the corresponding assembly
instructions to adjust the memory layout. After our al-
gorithm is applied, ⑤ all the basic blocks are reassem-
bled into a diversified version of binary. We applied this
approach to PX4 drone firmware to confirm its effec-
tiveness and stability. However, in the case of Windows
CE binaries, we could not apply the final re-assembly
step because the underlying tool only considers Linux-
based binary. In such a case, we applied in-place binary
patching directly against machine codes with addition-
al heuristics.

4.2. STACK DIvERSIFICATION

The overall methodology for stack memory diversi-
fication is to insert a random-sized dummy padding
inside each stack frame. Because each binary might
have unique compiler options, the details of the stack
memory layout may differ from one instance to anoth-
er. However, the main structure of the stack frame and
its uses are mostly similar. To launch a successful attack
via buffer overflow vulnerability in the stack; the return
address, buffer position, layouts, and offsets among lo-
cal variable data must be precisely calculated. A general

324 International Journal of Electrical and Computer Engineering Systems

defense technology against such attacks is to place a stack
canary between a local variable and the return address,
then check whether the stack canary has been changed

before exiting the function. If the canary value has been
changed, it indicates that unintended data overwrites oc-
curred during the execution of the function.

Fig. 1. System Overview. Analysis module spots patch targets based on various pattern detection
algorithms. Binary patcher is responsible for modifying and re-assembling the target binary.

Fig. 2. demonstrates how our patch algorithm checks whether the function's prologue and epilogue match
each other. If the condition is satisfied, the patch module performs randomization patch. The patch module

extracts the operand from the assembly

However, without re-compiling, the source code,
adding stack canary features to legacy systems is dif-
ficult. Fig. 3 and 4 show the codes before and after ap-
plying the stack canary. Lines 81 to 90 in Fig. 4 repre-
sent the stack canary part. The figure shows the same
program, but with/without additional assembly codes
as the stack canary defense feature. The problem with
legacy systems is that it is difficult to insert additional
assembly code without breaking the other codes. How-
ever, it is feasible to in-place modify the assembly codes
without breaking other codes. Therefore, instead of us-
ing a stack canary; in this study, we diversify the dis-
tance between the local variable of the stack and the
return address via inserting a random-sized padding by

modifying the stack-offset related variables embedded
in the assembly instruction. This can be done relatively
simply based on a binary patch, considering how the
compiler allocates the stack frame.

The compiler adds the stack allocation and deallo-
cation codes as function prologue and epilogue. Our
algorithm detects this code via binary analysis and
randomly modifies the size of the stack frame dummy
padding differently for each legacy instance. The point
of our idea is that we can make this modification solely
based on in-place binary patching. To build our system,
our patch framework analyzes each binary architecture
of the target binary, such as ARM and Intel, and applies

325Volume 14, Number 3, 2023

a tailored algorithm to each CPU architecture. For ex-
ample, ARM uses fixed-length instruction encoding,
while Intel uses variable-length instruction encoding.

Fig. 3. Typical disassembly result w/o stack canary

Fig. 4. Typical disassembly result w/o stack canary.

Fig. 5. Typical function's prologue and epilogue
code (Binutils cxxfilt). Such code patterns can

change depending on compiler options.

The compiler adds the stack allocation and deallo-
cation codes as function prologue and epilogue. Our
algorithm detects this code via binary analysis and
randomly modifies the size of the stack frame dummy
padding differently for each legacy instance. The point
of our idea is that we can make this modification solely
based on in-place binary patching. To build our system,
our patch framework analyzes each binary architecture
of the target binary, such as ARM and Intel, and applies
a tailored algorithm to each CPU architecture. For ex-
ample, ARM uses fixed-length instruction encoding,
while Intel uses variable-length instruction encoding.

Fig. 5 shows the general function prologue and epi-
logue for stack frame allocation and de-allocation. In
Fig. 5, the size of the local variable is 0x10. Because
0x10 is part of the 32-bit operand encoding (10 00 00
00) of the instruction, this instruction can be changed
in-place without reducing or expanding the code. The
essence of our idea is to randomly increase this size
to make the distance between the stack buffer and
the return address unpredictable. The unnecessarily

The patch appears simple if the stack frame alloca-
tion and de-allocation code are symmetric (e.g., add
a value and subtract the same value later). However,
there are cases where the stack allocation codes are
more complicated. For example, when a stack frame of
size 100 is allocated by subtracting 100 from to stack
pointer and then de-allocated twice with the size of 50,
it is difficult to determine which value is the stack frame
size because the correspondence of allocation and de-
allocation codes do not match based on the same op-
erand size. Therefore, we use additional heuristics to
filter out exceptional cases of stack frame allocation.

Furthermore, an additional check is performed to
determine whether the changed size is appropriate
for the diversification patch. The stack size must be in-
creased with 4-byte granularity considering the CPU
word alignment, which improves performance when
the CPU accesses the memory and prevents alignment
faults [25,28].

4.3. HEAP DIvERSIFICATION

The overall concept of applying diversification to
heap memory is similar to the previous stack case (bina-
ry analysis and finding the appropriate patch call site),
but the detailed method is quite different. Heap mem-
ory corruption vulnerabilities are generally related to
use-after-free and type confusion. Use-after-free refers
to a vulnerability that can occur when a dynamically al-
located heap space is freed and reused, whereas type
confusion refers to a vulnerability that occurs when
the instance of an object confuses the type. The heap
is a memory segment with complex data dependency

increased buffer size can be considered as a dummy
padding inside memory space which has no harm to
program execution. However, if this value is decreased,
the program may be damaged as the original buffer
cannot hold the given data.

326 International Journal of Electrical and Computer Engineering Systems

based on multiple pointer chains. The code pointer in
the stack only needs to consider the return address,
whereas, in the heap, it is relatively difficult to find a
code pointer based on their memory location. Hence,
even slight diversification of the heap memory layout
can have a significant impact on exploit development.

Our binary analysis algorithm for heap memory di-
versification differs from the stack analysis. Generally,
heap layout can be dynamically changed using stan-
dard methods such as IAT hooking in Windows and
LD_PRELOAD in Linux. However, this approach is only
possible for dynamically linked binaries. However most
legacy binaries are based on static linking. This raises
the question of how the heap allocation call site can
be detected based on a generic algorithm. In this pa-
per, we consider the binary has symbols to indicate the

heap allocation function. Based on such a premise, our
algorithm tracks down heap memory allocation sites
in the legacy binary by parsing the symbol table. Then,
the call site is backtracked to find the memory alloca-
tion size parameter (to modify it). However, a few prob-
lems occur while finding this size information.

The first is the data interleaving problem. In Fig. 7, the
address 0x807f378 represents a heap allocation call site
(malloc). To find the allocation size parameter, the in-
struction must be backtracked, but there are interleaved
data inside the code (0x807f370). This data can be mis-
interpreted as instruction and hinder the analysis. To
solve this problem, our algorithm additionally traces the
boundary of each basic-blocks and runs backtrace only
within the scope inside the block. However, even within
the same basic block, there are exceptional cases.

Fig.6. shows the malloc symbol and basic block information extracted from the symbol table in the header
of the binary. After extracting the symbol information, the call site information is obtained from the symbol,

and the parameter information is obt.

Fig. 7. Example case of data interleaving in ARM
binary.

Fig. 8 shows two function parameters in the same ba-
sic block. Because function parameters are stored in a
stack and restored immediately before they are used, it
is difficult to determine which parameter is the actual
size parameter based on static code analysis.

5. IMPLEMENTATION

To implement our algorithms, we use Patchkit [29],
for ELF binary patch, and Capstone [27], Radare2 [30],
and Keystone [31] tools for binary analysis and disas-
sembly/reassembly. Overall, implementations are writ-
ten in 979 lines of Python and 1,495 lines of additional
Docker/management codes.

5.1. ARM STACK

Algorithm 1 – The ARM Stack pseudo code. Prefixes/
Postfixes such as “BB” denotes the basic block of func-
tion, “dis” denotes the dissemble result of the Capstone
library, “ins” denote each instruction, and “SP” denotes
the stack pointer.

0: function PATCH(binary)

1: for func in binary_funcs() do

Fig. 8. Exceptional case for tracking function
parameter. In the example, it is ambiguous to

determine which R0 is the actual parameter for the
function fat_checkmount.

327Volume 14, Number 3, 2023

2: startBB ← func_startBB_dis

3: for ins in startBB do

4: if ins_OpcodeName = “sub” then

5: src, dst ← ins_operands

6: else

7: Skip

8: end if

9: if src = SP_reg & dst = stack_size then

10: prologue ← ins_addr

11: end if

12: end for

13: for ins in reversed(endBB) do

14: if ins_OpcodeName = “add” then

15: src, dst ← ins_operands

16: else

17: Skip

18: end if

19: if src = SP_reg & dst = stack_size then

20: epilogue ← ins_addr

21: end if

22: end for

23: if prologue = epilogue then

24: function RANDOMIZE(stack_size)

25: get (alignment info)

26: ran_num ← random.randrange(0, 0x10)

27: new_stack_size ← stack_size +ran_num

28: Patch()

29: end function

30: end if

31: end for

32: end function

The overall flow of the stack randomization for ARM
32bit is shown in Algorithm 1. The disassembly result
for the first basic block of each function is initially pro-
cessed, and this result includes instructions such as
push and mov. To find the address of the subtraction
instruction of the stack (e.g., memory allocation), each
instruction in the basic block is analyzed, and if the op-
code is sub, the operand is remembered. If this value
is constant (e.g., immediate type value), we conclude
this is the stack frame size corresponds to the function
prologue. Next, we scan each instruction to find the
corresponding add instruction as the match for stack

memory deallocation. Afterward, a new stack size is
generated using the diversification algorithm, and the
stack size is randomly increased respecting the CPU
word alignment. Finally, the stack-frame size related in-
structions are patched in-place.

5.2. X86 STACK

The x86 stack randomization evaluation is performed
using the Windows CE binary. Because the Windows CE
binary cannot use the Patchkit library [29], our frame-
work implemented a custom code detection for our
algorithm. For patching, our tool traces instructions
starting from the entry point and applies the same al-
gorithm as ARM stack. In the Windows binary, it was
more difficult to identify the function location, size,
and internal structure compared to ARM. However, it
was easy to apply the patch if the function frame used
leave instruction for function epilogue as the instruc-
tion automatically calculates the required stack size for
deallocation.

5.3. ARM HEAP

Algorithm 2 – The ARM Heap pseudo code. Prefixes/
Postfixes such as “BB” denotes the basic block of func-
tion, “dis” denotes the dissemble result of the Capstone
library, “ins” denote each instruction.

0: function PATCH(binary)

1: for target_addr in malloc_BB do

2: bb ← malloc_BB[target_addr]

3: startpos ← target_addr – len(bb) + 4

4: for ins in dis(bb, startpos) do

5: if ins_mnemonic is “movs” then

6: if ins_operands is register then

7: Reg ← ins_reg_name

8: end if

9: if Reg = “r0” then

10: MRU ← (ins_addr, ins_str, bb[offset|opcode])

11: end if

12: end if

13: end for

14: if MRU ≠ None then

15: get(alignment info)

16: pad ← random.randrange(0xf0 - imm)

17: Patch(MRU, pad)

18: end if

19: end for

20: end function

328 International Journal of Electrical and Computer Engineering Systems

The overall flow of the heap randomization for ARM
32bit is shown in Algorithm 2. Before performing ran-
domization, the malloc position is first found by pars-
ing the symbol table of the target binary. Then, all the
basic blocks that contain the malloc address are loaded
and saved. At this point, analysis is performed consid-
ering the ARM and THUMB modes.

The core of the algorithm is to find a pattern corre-
sponding to the heap size allocation of malloc. When
movs instruction is found, we check if the target register
corresponds to r0 because r0 is the register used as the
first function parameter. We determine that the value for
r0 is the malloc size based on heuristics and save all the
size data. All values that contain r0 inside the basic block
are collected, and if there are multiple values, the closest
value to the malloc call site is used as the malloc size pa-
rameter. The randomization patch is then performed. In
the heap, memory alignment must follow 16-byte (128-
bit) granularity because of the ARM NEON instructions.

5.4. X86 & X64 HEAP

To perform the heap randomization on x86 and x64,
we use the malloc address from the symbol table and
basic block border information of the entire functions
based on binary analysis. We use basic block border
information to apply our algorithm solely to a single
block. Similarly to the ARM case, if the mov instruction
operand is the immediate type and is closest to the call
site, we consider the information as a size parameter.
Finally, we also respect the memory alignment of 16-
byte (128-bit) granularity considering the use of SIMD
instructions using 128-bit MMX registers.

6. EvALUATION

In this study, experiments were performed by port-
ing all related codes into a Docker container image for
efficiency. The server environment for our evaluation is
composed of 16GB RAM, and 1TB SSD, based on Ubun-
tu 16.04 64bit server. The Intel PX4 Autopilot Drone
firmware (ARM 32-bit) was mainly used for stack di-
versification testing. The soundness of patched drone
firmware was checked with basic system functionalities
after the booting process.

6.1. STACK

1) Buffer overflow Toy example

We evaluated our system using a simple x86-based
toy binary that has memory vulnerability. In the experi-
ment, we used a general stack buffer overflow vulner-
ability exploitation as a test case.

When the example code is executed, buffer overflow
is triggered, and a segmentation fault error occurs be-
cause the return address is broken. However, when a
buffer overflow vulnerability was triggered for a binary
with diversified stack sizes using our patch tool, the re-
sult of the attack was unpredictable.

Fig. 9. A toy program for testing memory
diversification against stack.

Fig. 10. Screen capture of
running toy example case.

2) PX4 drone

Fig. 11. Result after applying stack memory
diversification against PX4-based drone. The screen

on the left side indicates internal command/
communication operates without problem after

patching. Right side of the picture shows LED blinking
of the UAV that indicates its normal operation.

We evaluated our system using PX4 Autopilot Drone
firmware (ARM 32-bit) binary as a test case of ARM binary.
When the stack memory layout in the PX4 firmware was
randomized using our patch tool and then executed in
the same manner as the firmware before the patch, all
functions worked normally despite thousands of codes
being modified for diversification. Fig. 11 shows nsh pro-
gram, the shell interpreter of the drone. All the commands
in nsh shell operated correctly before/after our patch.

3) Windows CE binary

We evaluated our system using a collection of 42
binaries, including pmkdir, pmemmap, and pdebug,
which are tools that can be used in Windows CE provid-
ed by [32]. Wine [33] was used for compatibility to run
Windows-exclusive programs on the Linux operating
system. All functions worked normally when the diver-

329Volume 14, Number 3, 2023

sification-patched binaries were executed. Randomiza-
tion patch was performed in several tens of places in
the case of the Windows CE binary.

6.2. HEAP

1) Toy example

We use a simple toy example to evaluate our heap di-
versification patch. Fig. 13 shows the before/after result
of the diversification patch to the example program. The
randomization result showed that the heap allocation ad-
dress was all changed, however all printf() functions in the
example code were executed normally. The top portion
of the allocation address was changed because of the
ASLR effect (not because of our diversification), however,
and the bottom offset portion (marked with a red box)
was also changed by our patch tool (this part should not
change in the normal case). We used gcc and clang with
multiple optimization levels ranging from zero to three,
and Fig. 13 is based on the optimization level zero.

Fig. 12. A toy program for testing memory
diversification against heap.

Fig. 13. Before/after applying heap randomization
patch. The red box indicates the internal heap offset
is changed across the patch (the upper part of the

address is changed due to ASLR).

2) Binutils

We applied our system to the GNU Binutils binaries
for performance evaluation. The Binutils version in our
evaluation is based on 2.31.1 and the architecture is
64-bit Intel. After the randomization patch, all binaries
are executed as originally intended. To measure the ex-
ecution time delay due to the unnecessarily expanded
memory layout, we repeatedly tested the execution
time of various Binutils programs before/after we ap-
plied our system. The program execution time is mea-
sured based on a simple python script.

Table 1 summarizes the result (program execution
time) of the comparison between binaries before and
after patching. We noticed that there was tiny degrada-
tion in the execution time before and after the patch.
However, the overall amount of performance degrada-
tion is negligible.

Table 1. This table is organized by comparing the
binary execution time before and after randomizing

to the Binutils binary using our tool. Table 1 is the
result of 1000 runs each, and the following options

were used to test.

Binary Before After Option

addr2line 0.809s 0.732s
Check the file related to the

execution file address and the line
information

ar 0.877s 1.014s Generate an archive

nm-new 0.916s 0.921s Check the symbol information of
the file

objcopy 0.751s 0.749s
Generate a new file after

extracting the instructions and
data of the file

objdump 1.113s 0.867s Check all contents of the object
file

ranlib 0.826s 0.825s Register the library so that it can
be used

readelf 3.516s 3.682s Output the dependency of ‘ld’
including type

size 0.805s 0.848s Output the file size

strings 1.874s 1.904s Output the offset of the execution
file

strip-new 0.879s 0.938s Remove the symbol

3) PX4 drone

We used the PX4 Autopilot Drone firmware binary for
heap diversification evaluation as well. Similarly to the
stack experiment, all functions worked normally when
the heap memory layout in the PX4 firmware was ran-
domized with our patch tool and the binary was execut-
ed in the same manner as the firmware before the patch.

7. CONCLUSION

With the emergence of memory corruption vulnerabili-
ties, defense technologies that apply diversification to
software systems, such as stack canary and isolated heap,
are being extensively researched. However, because the

330 International Journal of Electrical and Computer Engineering Systems

source codes are unavailable, such defense technologies
cannot be applied to very old legacy systems. To remedy
such a problem, this study presents an alternative ap-
proach to apply memory layout adjustment solely based
on binary analysis and patching. We mainly apply diver-
sification against two memory components: stack and
heap. As an experimental approach, we chose stack and
heap as diversification targets because they are the most
common memory section of any computer system. By
applying our idea, it is expected that the attack time and
cost will increase significantly as the attacker must adjust
the attack payload differently each time when attacking
an instance. We conducted experiments using real-world
programs such as Intel PX4 Autopilot Drone firmware
(ARM 32bit) binary, and Binutils in the Linux system. The
results demonstrated our diversification did not break
any original semantics of the program yet successfully
changed the memory layout for the attacker.

8. ACKNOWLEDGMENT

This work was supported by the Sungshin Women’s
University Research Grant of 2022.

9. REFERENCES

[1] K. S. Lhee, S. J. Chapin, "Buffer overflow and format

string overflow vulnerabilities", Software: practice

and experience, Vol. 33, No. 5, 2003, pp. 423-460.

[2] J. C. Foster et al. "Buffer overflow attacks", Syn-

gress, Rockland, CA, USA, 2005.

[3] S. Govindavajhala, A. W. Appel, "Using memory

errors to attack a virtual machine," Proceedings of

the Symposium on Security and Privacy, Berkeley,

IL, USA, May 2003, pp. 154-165.

[4] A. Francillon, D. Perito, C. Castelluccia, "Defending

embedded systems against control flow attacks",

Proceedings of the 1st ACM workshop on Secure

execution of untrusted code, Chicago, USA, No-

vember 2009, pp. 19-26.

[5] A. Gupta, S. Kerr, MS. Kirkpatrick, E. Bertino, "Mar-

lin: A fine grained randomization approach to

defend against ROP attacks", Proceedings of the

International Conference on Network and System

Security, 3-4 June 2013, pp. 293-306.

[6] B. A. Kuperman, C. E. Brodley, H. Ozdoganoglu, T. N.

Vijaykumar, A. Jalote, "Detection and prevention of

stack buffer overflow attacks", Communications of

the ACM, Vol. 48, No. 11, 2005, pp. 50-56.

[7] P. O. Sullivan, "Preventing Buffer Overflows with

Binary Rewriting", University of Maryland, Elec-

trical Engineering, College Park, Md, PhD Thesis,

2010.

[8] Z. Jin, Y. Chen, T. Liu, K. Li, Z. Wang, J. Zheng, “A

novel and fine-grained heap randomization al-

location strategy for effectively alleviating heap

buffer overflow Vulnerabilities”, Proceedings of

the 4th International Conference on Mathematics

and Artificial Intelligence, Chegndu, China, April

2019, pp. 115-122.

[9] P. Wang, J. Zhang, S. Wang, D. Wu, "Quantitative

Assessment on the Limitations of Code Random-

ization for Legacy Binaries", Proceedings of the

IEEE European Symposium on Security and Pri-

vacy, Genoa, Italy, September 2020, pp. 1-16.

[10] M. Prasad, T. Chiueh, "A Binary Rewriting Defense

Against Stack based Buffer Overflow Attacks", Pro-

ceedings of the USENIX Annual Technical Confer-

ence, San Antonio, TX, USA, 9-14 June 2003, pp.

211-224.

[11] V. Iyer, A. Kanitkar, P. Dasgupta, R. Srinivasan, "Pre-

venting overflow attacks by memory randomiza-

tion", Proceedings of the IEEE 21st International

Symposium on Software Reliability Engineering,

San Jose, CA, USA, November 2010, pp. 339-347.

[12] S. Xu, P. Xie, Y. Wang, "AT-ROP: Using static analysis

and binary patch technology to defend against

ROP attacks based on return instruction", Proceed-

ings of the International Symposium on Theoreti-

cal Aspects of Software Engineering, Hangzhou,

China, December 2020, pp. 209-216.

[13] K. Chen, Y. Lian, Y. Zhang, "Automatically gener-

ating patch in binary programs using attribute-

based taint analysis", Proceedings of the Interna-

tional Conference on Information and Communi-

cations Security, December 2010, pp. 367-382.

[14] U. Müller, E. Hauck, T. Welz, J. Classen, M. Hollick,

"Dinosaur Resurrection: PowerPC Binary Patching

for Base Station Analysis", Proceedings of the Net-

work and Distributed System Security Symposium

2021, February 2021, pp. 21.

[15] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, T. Holz,

"Cross-architecture bug search in binary executa-

bles", Proceedings of the IEEE Symposium on Se-

curity and Privacy, May 2015, pp.709-724.

[16] M. Huang, C. Song, “ARMPatch: A Binary Patching

Framework for ARM-based IoT Devices”, Journal of

Web Engineering, Vol. 20, No. 6, 2021, pp. 1829-

1852.

[17] P. Sun, Q. Yan, H. Zhou, J. Li, "Osprey: A fast and

accurate patch presence test framework for bina-

ries", Computer Communications, Vol. 173, No. 9,

2021, pp. 95-106.

[18] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, F. Song,

"Spain: security patch analysis for binaries towards

understanding the pain and pills", Proceedings of

the 39th International Conference on Software

Engineering, Buenos Aires, Argentina, May 2017,

pp. 462-472.

[19] L. Zhao, Y. Zhu, J. Ming, Y. Zhang, H. Zhang, H. Yin,

"Patchscope: Memory object centric patch diff-

ing", Proceedings of the ACM SIGSAC Conference

on Computer and Communications Security, USA,

November 2020, pp. 149-165.

[20] S. Lee, H. Kang, J. Jang, BB. Kang, “Savior: Thwart-

ing stack-based memory safety violations by ran-

domizing stack layout”, IEEE Transactions on De-

pendable and Secure Computing, Vol. 19, No. 4,

2021, pp. 2259-2575.

[21] M. Backes, S. Nürnberger, "Oxymoron: Making

{Fine-Grained} Memory Randomization Practical

by Allowing Code Sharing", Proceedings of the

23rd USENIX security symposium, Sandiego, CA,

USA, August 2014, pp. 433-447.

[22] R. Nikolaev, H. Nadeem, C. Stone, B. Ravindran,

“Adelie: Continuous Address Space Layout Re-

randomization for Linux Drivers“, Proceedings of

the 27th ACM International Conference on Archi-

tectural Support for Programming Languages and

Operating System, Lausanne, Switzerland, Febru-

ary 2022, pp. 483-498.

[23] R. Wartell, V. Mohan, K. W. Hamlen, Z. Lin, "Binary
stirring: Self-randomizing instruction addresses of
legacy x86 binary code", Proceedings of the ACM
conference on Computer and communications se-
curity, Raleigh, NC, USA, October 2012, pp. 157-168.

[24] A. Biswas, Z. Li, A. Tyagi, "Performance Counters
and DWT Enabled Control Flow Integrity", SN
Computer Science 3.1, Vol. 3, No. 48, 2022, pp.
1-19.

[25] M. Singh, “Data Structure Alignment: How data is
arranged and accessed in Computer Memory?”,
https://www.geeksforgeeks.org/data-structure-
alignment-how-data-is-arranged-and-accessed-
in-computer-memory (accessed: 2021)

[26] ARM Developer, “Cortex-R4 and Cortex-R4F Tech-
nical Reference Manual r1p3”, https://developer.
arm.com/documentation/ddi0363/e/memory-
protection-unit/mpu-faults/alignment-fault (ac-
cessed: 2021)

[27] Github, “Capstone Engine”, https://github.com/
capstone-engine/capstone (accessed: 2021)

[28] Microsoft, “Align (C++)”, https://docs.microsoft.
com/en-us/cpp/cpp/align-cpp?view=msvc-170
(accessed: 2021)

[29] Github, “patchkit”, https://github.com/lunix-
bochs/patchkit (accessed: 2021)

[30] Github, Radare2: Libre Reversing Framework
for Unix Geeks, https://github.com/radareorg/
radare2 (accessed: 2021)

[31] Github, “Keystone Engine”, https://github.com/
keystone-engine/keystone (accessed: 2021)

[32] W.J. Hengeveld, “Rapi tools”, https://itsme.home.
xs4all.nl/projects/xda/tools.html (accessed: 2022)

[33] WINEHQ, “What is Wine?”, https://www.winehq.
org/ (accessed: 2022)

331Volume 14, Number 3, 2023

