
Effective Memory Diversification in Legacy 
Systems

321

Original Scientific Paper

Heesun Yun
Sungshin Women’s University
Department of Convergence Security Engineering 
02844, Seoul, South Korea
yunheesun718@gmail.com 

Daehee Jang
Sungshin Women’s University
Department of Convergence Security Engineering 
02844, Seoul, South Korea
djang@sungshin.ac.kr

Abstract – Memory corruption error is one of the critical security attack vectors against a wide range of software. Addressing this 
problem, modern compilers provide multiple features to fortify the software against such errors. However, applying compiler-based 
memory defense is problematic in legacy systems we often encounter in industry or military environments because source codes are 
unavailable. In this study, we propose memory diversification techniques tailored for legacy binaries to which we cannot apply state-of-
the-art compiler-based solutions. The basic idea of our approach is to automatically patch the machine code instructions of each legacy 
system differently (e.g., a drone, or a vehicle firmware) without altering any semantic behavior of the software logic. As a result of our 
system, attackers must create a specific attack payload for each target by analyzing the particular firmware, thus significantly increasing 
exploit development time and cost. Our approach is evaluated by applying it to a stack and heap of multiple binaries, including PX4 
drone firmware and other Linux utilities.
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1.  INTRODUCTION

Memory corruption vulnerabilities are caused by 
unexpected changes or reference of memory values, 
and there are various categories of them [1,2]. Gener-
ally, the existence and detailed structures of specific 
memory regions vary by application, but the stack and 
heap memory regions of most applications, including 
legacy binaries, are composed based on a general and 
common memory layout; thus, its exploitation steps 
are fairly similar from one to another [3-5].

For instance, memory corruption vulnerabilities in a 
stack such as buffer overflow vulnerability often target 
to corrupt a specific/common data so-called return ad-
dress. Defending such memory corruption-based ex-
ploitation is also well established by security research-
ers: use stack canary and check if the canary value has 
changed [6]. However, such defense (stack canary) is 
applied by compilers; thus, it is difficult to apply such 
defense to legacy binary which cannot be re-compiled.

Various vulnerabilities are also likely to exist in the 
heap memory area as the heap is dynamically allocat-

ed at runtime and it is usually more complicatedly con-
structed than the stack memory buffers [7]. Similarly, 
to stack situations, multiple defense systems including 
address space layout randomization (ASLR) are pro-
posed as a part of the compiler feature or heap-alloca-
tor’s runtime verification logic [8].

All such state-of-the-art defenses are inapplicable 
to legacy binaries as they cannot be re-compiled [9]. 
However, we claim that applying the ASLR effects (even 
partially) to stack and heap memory regions would ap-
ply to some extent solely based on binary analysis and 
in-place instruction patching [10,11]. This is the part 
where our idea comes in.

To apply the memory diversification effect to legacy 
binaries, we use binary analysis techniques and in-place 
instruction patching to change the runtime memory 
layout of binary without re-compiling the source code.

The goal is to create different memory layouts for each 
physical device, without altering the original functional-
ity. More specifically, we patch the binary/firmware to 
differentiate the size/distance of unused memory pad-

Volume 14, Number 3, 2023



322 International Journal of Electrical and Computer Engineering Systems

dings in stack and heap. As a result, when our diversi-
fication technology is applied to drones, even if the 
software system is prone to memory corruption, the 
attacker must adjust the attack payload differently each 
time when attacking an instance because diversification 
renders the memory layout of each physical instance 
differently. As a result, an attacker must create multiple 
attack payloads by analyzing the instance of each ma-
chine, which significantly increases attack time and cost. 

Several related works also consider the lack-of-
source-code situation. For example, [9] also fortifies 
the binary to prevent exploitation. The key idea of such 
work is to patch the ROP-gadget instruction instead of 
changing the memory layout as our system does. We 
have surveyed previous studies to this end and sum-
marized more details in section 2.

In short, we proposed binary-patch-based memory 
layout randomization technique that does not require 
source code and is thus suitable for legacy systems. The 
main contributions of this paper are as follows.

1. Our system provides a way to change the memory 
layout without re-compiling the binary. This is use-
ful to fortify outdated system binaries when their 
source code is intentionally or unintentionally un-
available. 

2. Our system effectively raises the bar of applying 
memory corruption attacks against multiple physi-
cal devices using the same firmware. Because our 
approach diversifies the memory layout of each 
target, the attacker must develop different exploit 
payloads (e.g., ROP payload for buffer overflow vul-
nerability) for each target device.

3. We implemented and deployed our idea against 
commercial-off-the-shelf (COTS) software such as 
Intel PX4 aero drone firmware and popular Binutils 
binaries in the Linux system.

4. We provide academic analysis and discussion that 
our approach must consider data alignment issues 
and code/data interleaving problems in ARM-like 
CPU architectures. This is a thought-provoking dis-
cussion for additional future research to this end.

The rest of the paper is structured as follows. Section 
2 covers various related works regarding our research 
direction. Section 3 proposes a system theory about 
the legacy system and memory safety. Next, we de-
scribe the design of our framework in section 4, and the 
implementation of algorithms in section 5. Afterward, 
we present the evaluation results in section 6. Finally, 
we summarize our paper and conclude in section 7.

2. RELATED WORK

2.1. BINARY PATCH

Because many commercial software applications are 
developed based on closed-source code, it is difficult to 
apply security patches to their vulnerable parts. Various 

researches are addressing this limitation. [12] conducted 
a study to prevent return-oriented programming (ROP) 
attacks based on the return instruction without based on 
debugging symbol information in a Linux 64-bit environ-
ment without source code. [13] conducted a patch for a 
buffer overflow vulnerability by automating the secu-
rity patch for the Windows x86 binary without the use of 
source code, debugging information or human interven-
tion. [14] considers a closed-source code patching envi-
ronment in PowerPC-based binaries. [9] achieves security 
effectiveness by patching the binary to prevent code re-
use attacks. [15] identified vulnerabilities in closed-source 
code software based on the bug signature. [16] per-
formed a static binary patch to prevent vulnerabilities in 
ARM-based Internet of Things (IoT) device firmware.

Additionally, many studies aim to better identify the 
causes of security vulnerabilities in binary. [17], [18] 
enabled finding similar patches or vulnerabilities in dif-
ferent binaries by identifying code portions changed 
by a binary patch through basic block analysis. [19] 
detected software vulnerabilities in the binary codes 
of patched and unpatched programs using the patch 
diffing technology. Previous studies primarily aimed 
at preventing specific security vulnerabilities in an en-
vironment with binary-only approach without source 
code. To some extent, our study is similar to these stud-
ies in that patch is performed in a binary-only environ-
ment, but our framework is mainly focused on diversi-
fying the memory layout and hindering memory cor-
ruption exploitation for physical instances (e.g., each 
drone machine).

2.2. MEMORY RANDOMIZATION

As attacks that exploit memory corruption vulnerabili-
ties have been launched against several commercial 
software applications, the latest security technolo-
gies for memory protection, such as ASLR, have been 
implemented in most software applications. ASLR is 
a technology that can defend against attacks using a 
fixed address by randomly changing the address of the 
data area whenever a binary is executed. Thus, research 
to prevent external attacks by randomizing part of the 
memory is being actively conducted. [20] proposed a 
technology to randomize the stack layout based on the 
LLVM compiler to prevent memory corruption vulner-
abilities. The position of each object was randomized 
using source code information so that attackers cannot 
predict the stack layout. [8] performed randomization 
for the entire heap memory area by proposing a ran-
dom memory block allocation algorithm. It is similar 
to our study in that randomization is performed in the 
heap memory area, but the detailed process to obtain 
the randomization effect is different. [21] proposed a 
solution to prevent just-in-time (JIT) code reuse attacks 
using memory randomization technology that is subdi-
vided for each process so that code sharing is not dis-
turbed. [22] conducted a study on the kernel defense 
mechanism by performing device driver randomiza-
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tion and proposed a solution to prevent ROP attacks 
on the Linux kernel by increasing the KASLR entropy. 
[11] proposed a method for randomizing the memory 
layout in user-end machines to prevent buffer overflow 
attacks. As shown in the above examples, memory ran-
domization to reinforce security is being extensively 
researched. Although some studies do not use source 
code and symbols, many studies perform memory ran-
domization using the source code information. Our 
study performed effective memory randomization 
only for binaries without source code information.

2.3. LEGACY SYSTEM

A legacy system is one that uses software applications 
from older versions or works in uncommon ways. Cur-
rently, the latest software updates and distributions are 
done quickly based on open sources, but many legacy 
systems are still being used in military or space explora-
tion systems. Because these legacy systems are mostly 
based on closed-source code, it is difficult to apply se-
curity patches to them. In this situation, research into 
the reinforcement of the security of legacy systems is in-
dispensable. [23] generates randomized instruction ad-
dresses whenever a legacy x86 binary is executed with-
out source code or symbol information. [9] proposed a 
binary-based rewriting technology for patching legacy 
binary to prevent code reuse attacks. [24] proposed a so-
lution for detecting control flow integrity (CFI) attacks, 
such as buffer overflow and ROP attacks. It detected CFI 
attacks with high accuracy by inserting performance 
counters and instrumentation hooks through binary ed-
iting in the ELF file, which is legacy software.

3. PROPOSED SYSTEM THEORY

3.1. LEGACY SYSTEM

A legacy computer system in this paper refers to a 
computer device with old software application/firm-
ware that differs from the recent standard. Currently, 
the development and distribution of software are done 
quickly based on state-of-the-art compilers, yet many 
legacy systems are still used as old version binaries in 
various fields. Because most legacy systems are closed-
sourced, and not properly updated, they can be a good 
target for attackers to abuse system vulnerabilities such 
as memory errors.

3.2. ASLR

ASLR is a memory layout diversification technology 
that changes the address of the data whenever a pro-
gram is executed by randomly placing memory layouts 
such as stack, heap, and library codes in the unpredict-
ed address space to make memory exploitation attacks 
difficult. As memory exploitation technologies such 
as return oriented programming (ROP) are becoming 
more popular, memory protection techniques such as 
ASLR are now widely used in most software systems. 

3.3. BASIC BLOCK

A basic block in computing is a straight-line code se-
quence with no branches other than the entry and exit. 
Because of this characteristic, computer science re-
searchers often analyze binaries based on basic blocks 
as a unit of algorithm testing/measure.

3.4. MEMORY ALIGNMENT

When data structures or classes are stored in mem-
ory in programming languages such as C++, paddings 
are sometimes inserted in between variables. These 
paddings are dummy values added by the compiler. 
The memory is aligned in 4-byte units to optimize the 
performance when the CPU accesses the memory. Be-
cause of the data bus structure between the CPU and 
memory, all variables that enter the memory must be 
placed in consideration of memory alignment to im-
prove system performance [25]. In some cases, if data 
is accessed to an address without considering memory 
alignment, it can cause an alignment fault rather than 
causing a performance issue [26]. In our paper, we con-
sider memory alignment problems while applying our 
patch for memory diversification.

4. DESIGN

4.1. OvERvIEW

The overall framework of this study is shown in Fig. 
1. The firmware binary of the legacy system is ①disas-
sembled using the Capstone [27] library and ②func-
tions are extracted based on binary analysis. Afterward, 
③ we analyze basic blocks in the function to run our 
code detection algorithm for proper diversification 
patch. For the next step, ④ our patch tool performs 
a diversification patch to the corresponding assembly 
instructions to adjust the memory layout. After our al-
gorithm is applied, ⑤ all the basic blocks are reassem-
bled into a diversified version of binary. We applied this 
approach to PX4 drone firmware to confirm its effec-
tiveness and stability. However, in the case of Windows 
CE binaries, we could not apply the final re-assembly 
step because the underlying tool only considers Linux-
based binary. In such a case, we applied in-place binary 
patching directly against machine codes with addition-
al heuristics.

4.2. STACK DIvERSIFICATION

The overall methodology for stack memory diversi-
fication is to insert a random-sized dummy padding 
inside each stack frame. Because each binary might 
have unique compiler options, the details of the stack 
memory layout may differ from one instance to anoth-
er. However, the main structure of the stack frame and 
its uses are mostly similar. To launch a successful attack 
via buffer overflow vulnerability in the stack; the return 
address, buffer position, layouts, and offsets among lo-
cal variable data must be precisely calculated. A general 
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defense technology against such attacks is to place a stack 
canary between a local variable and the return address, 
then check whether the stack canary has been changed 

before exiting the function. If the canary value has been 
changed, it indicates that unintended data overwrites oc-
curred during the execution of the function.

Fig. 1. System Overview. Analysis module spots patch targets based on various pattern detection 
algorithms. Binary patcher is responsible for modifying and re-assembling the target binary.

Fig. 2. demonstrates how our patch algorithm checks whether the function's prologue and epilogue match 
each other. If the condition is satisfied, the patch module performs randomization patch. The patch module 

extracts the operand from the assembly

However, without re-compiling, the source code, 
adding stack canary features to legacy systems is dif-
ficult. Fig. 3 and 4 show the codes before and after ap-
plying the stack canary. Lines 81 to 90 in Fig. 4 repre-
sent the stack canary part. The figure shows the same 
program, but with/without additional assembly codes 
as the stack canary defense feature. The problem with 
legacy systems is that it is difficult to insert additional 
assembly code without breaking the other codes. How-
ever, it is feasible to in-place modify the assembly codes 
without breaking other codes. Therefore, instead of us-
ing a stack canary; in this study, we diversify the dis-
tance between the local variable of the stack and the 
return address via inserting a random-sized padding by 

modifying the stack-offset related variables embedded 
in the assembly instruction. This can be done relatively 
simply based on a binary patch, considering how the 
compiler allocates the stack frame.

The compiler adds the stack allocation and deallo-
cation codes as function prologue and epilogue. Our 
algorithm detects this code via binary analysis and 
randomly modifies the size of the stack frame dummy 
padding differently for each legacy instance. The point 
of our idea is that we can make this modification solely 
based on in-place binary patching. To build our system, 
our patch framework analyzes each binary architecture 
of the target binary, such as ARM and Intel, and applies 
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a tailored algorithm to each CPU architecture. For ex-
ample, ARM uses fixed-length instruction encoding, 
while Intel uses variable-length instruction encoding.

Fig. 3. Typical disassembly result w/o stack canary

Fig. 4. Typical disassembly result w/o stack canary.

Fig. 5. Typical function's prologue and epilogue 
code (Binutils cxxfilt). Such code patterns can 

change depending on compiler options.

The compiler adds the stack allocation and deallo-
cation codes as function prologue and epilogue. Our 
algorithm detects this code via binary analysis and 
randomly modifies the size of the stack frame dummy 
padding differently for each legacy instance. The point 
of our idea is that we can make this modification solely 
based on in-place binary patching. To build our system, 
our patch framework analyzes each binary architecture 
of the target binary, such as ARM and Intel, and applies 
a tailored algorithm to each CPU architecture. For ex-
ample, ARM uses fixed-length instruction encoding, 
while Intel uses variable-length instruction encoding.

Fig. 5 shows the general function prologue and epi-
logue for stack frame allocation and de-allocation. In 
Fig. 5, the size of the local variable is 0x10. Because 
0x10 is part of the 32-bit operand encoding (10 00 00 
00) of the instruction, this instruction can be changed 
in-place without reducing or expanding the code. The 
essence of our idea is to randomly increase this size 
to make the distance between the stack buffer and 
the return address unpredictable. The unnecessarily 

The patch appears simple if the stack frame alloca-
tion and de-allocation code are symmetric (e.g., add 
a value and subtract the same value later). However, 
there are cases where the stack allocation codes are 
more complicated. For example, when a stack frame of 
size 100 is allocated by subtracting 100 from to stack 
pointer and then de-allocated twice with the size of 50, 
it is difficult to determine which value is the stack frame 
size because the correspondence of allocation and de-
allocation codes do not match based on the same op-
erand size. Therefore, we use additional heuristics to 
filter out exceptional cases of stack frame allocation.

Furthermore, an additional check is performed to 
determine whether the changed size is appropriate 
for the diversification patch. The stack size must be in-
creased with 4-byte granularity considering the CPU 
word alignment, which improves performance when 
the CPU accesses the memory and prevents alignment 
faults [25,28].

4.3. HEAP DIvERSIFICATION

The overall concept of applying diversification to 
heap memory is similar to the previous stack case (bina-
ry analysis and finding the appropriate patch call site), 
but the detailed method is quite different. Heap mem-
ory corruption vulnerabilities are generally related to 
use-after-free and type confusion. Use-after-free refers 
to a vulnerability that can occur when a dynamically al-
located heap space is freed and reused, whereas type 
confusion refers to a vulnerability that occurs when 
the instance of an object confuses the type. The heap 
is a memory segment with complex data dependency 

increased buffer size can be considered as a dummy 
padding inside memory space which has no harm to 
program execution. However, if this value is decreased, 
the program may be damaged as the original buffer 
cannot hold the given data.
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based on multiple pointer chains. The code pointer in 
the stack only needs to consider the return address, 
whereas, in the heap, it is relatively difficult to find a 
code pointer based on their memory location. Hence, 
even slight diversification of the heap memory layout 
can have a significant impact on exploit development.

Our binary analysis algorithm for heap memory di-
versification differs from the stack analysis. Generally, 
heap layout can be dynamically changed using stan-
dard methods such as IAT hooking in Windows and 
LD_PRELOAD in Linux. However, this approach is only 
possible for dynamically linked binaries. However most 
legacy binaries are based on static linking. This raises 
the question of how the heap allocation call site can 
be detected based on a generic algorithm. In this pa-
per, we consider the binary has symbols to indicate the 

heap allocation function. Based on such a premise, our 
algorithm tracks down heap memory allocation sites 
in the legacy binary by parsing the symbol table. Then, 
the call site is backtracked to find the memory alloca-
tion size parameter (to modify it). However, a few prob-
lems occur while finding this size information.

The first is the data interleaving problem. In Fig. 7, the 
address 0x807f378 represents a heap allocation call site 
(malloc). To find the allocation size parameter, the in-
struction must be backtracked, but there are interleaved 
data inside the code (0x807f370). This data can be mis-
interpreted as instruction and hinder the analysis. To 
solve this problem, our algorithm additionally traces the 
boundary of each basic-blocks and runs backtrace only 
within the scope inside the block. However, even within 
the same basic block, there are exceptional cases.

Fig.6. shows the malloc symbol and basic block information extracted from the symbol table in the header 
of the binary. After extracting the symbol information, the call site information is obtained from the symbol, 

and the parameter information is obt.

Fig. 7. Example case of data interleaving in ARM 
binary.

Fig. 8 shows two function parameters in the same ba-
sic block. Because function parameters are stored in a 
stack and restored immediately before they are used, it 
is difficult to determine which parameter is the actual 
size parameter based on static code analysis.

5. IMPLEMENTATION

To implement our algorithms, we use Patchkit [29], 
for ELF binary patch, and Capstone [27], Radare2 [30], 
and Keystone [31] tools for binary analysis and disas-
sembly/reassembly. Overall, implementations are writ-
ten in 979 lines of Python and 1,495 lines of additional 
Docker/management codes.

5.1. ARM STACK

Algorithm 1 – The ARM Stack pseudo code. Prefixes/
Postfixes such as “BB” denotes the basic block of func-
tion, “dis” denotes the dissemble result of the Capstone 
library, “ins” denote each instruction, and “SP” denotes 
the stack pointer.

0: function PATCH(binary)

1: for func in binary_funcs() do

Fig. 8. Exceptional case for tracking function 
parameter. In the example, it is ambiguous to 

determine which R0 is the actual parameter for the 
function fat_checkmount.
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2: startBB ← func_startBB_dis

3: for ins in startBB do

4:  if ins_OpcodeName = “sub” then

5:   src, dst ← ins_operands

6:   else

7:   Skip

8:   end if

9:   if src = SP_reg & dst = stack_size then

10:   prologue ← ins_addr

11:   end if

12: end for

13: for ins in reversed(endBB) do

14:  if ins_OpcodeName = “add” then

15:   src, dst ← ins_operands

16:  else

17:   Skip

18:  end if

19:  if src = SP_reg & dst = stack_size then 

20:   epilogue ← ins_addr

21:  end if

22: end for

23:  if prologue = epilogue then

24:  function RANDOMIZE(stack_size)

25:   get (alignment info)

26:   ran_num ← random.randrange(0, 0x10)

27:   new_stack_size ← stack_size +ran_num

28:   Patch()

29:   end function

30:   end if

31: end for

32: end function

The overall flow of the stack randomization for ARM 
32bit is shown in Algorithm 1. The disassembly result 
for the first basic block of each function is initially pro-
cessed, and this result includes instructions such as 
push and mov. To find the address of the subtraction 
instruction of the stack (e.g., memory allocation), each 
instruction in the basic block is analyzed, and if the op-
code is sub, the operand is remembered. If this value 
is constant (e.g., immediate type value), we conclude 
this is the stack frame size corresponds to the function 
prologue. Next, we scan each instruction to find the 
corresponding add instruction as the match for stack 

memory deallocation. Afterward, a new stack size is 
generated using the diversification algorithm, and the 
stack size is randomly increased respecting the CPU 
word alignment. Finally, the stack-frame size related in-
structions are patched in-place.

5.2. X86 STACK

The x86 stack randomization evaluation is performed 
using the Windows CE binary. Because the Windows CE 
binary cannot use the Patchkit library [29], our frame-
work implemented a custom code detection for our 
algorithm. For patching, our tool traces instructions 
starting from the entry point and applies the same al-
gorithm as ARM stack. In the Windows binary, it was 
more difficult to identify the function location, size, 
and internal structure compared to ARM. However, it 
was easy to apply the patch if the function frame used 
leave instruction for function epilogue as the instruc-
tion automatically calculates the required stack size for 
deallocation.

5.3. ARM HEAP

Algorithm 2 – The ARM Heap pseudo code. Prefixes/
Postfixes such as “BB” denotes the basic block of func-
tion, “dis” denotes the dissemble result of the Capstone 
library, “ins” denote each instruction.

0: function PATCH(binary)

1: for target_addr in malloc_BB do

2: bb ← malloc_BB[target_addr]

3: startpos ← target_addr – len(bb) + 4

4: for ins in dis(bb, startpos) do

5: if ins_mnemonic is “movs” then

6:  if ins_operands is register then

7:   Reg ← ins_reg_name

8:  end if

9:  if Reg = “r0” then 

10:   MRU ← (ins_addr, ins_str, bb[offset|opcode])

11:  end if

12: end if

13: end for 

14: if MRU ≠ None then

15:  get(alignment info)

16:  pad ← random.randrange(0xf0 - imm)

17:  Patch(MRU, pad)

18: end if

19: end for

20: end function
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The overall flow of the heap randomization for ARM 
32bit is shown in Algorithm 2. Before performing ran-
domization, the malloc position is first found by pars-
ing the symbol table of the target binary. Then, all the 
basic blocks that contain the malloc address are loaded 
and saved. At this point, analysis is performed consid-
ering the ARM and THUMB modes.

The core of the algorithm is to find a pattern corre-
sponding to the heap size allocation of malloc. When 
movs instruction is found, we check if the target register 
corresponds to r0 because r0 is the register used as the 
first function parameter. We determine that the value for 
r0 is the malloc size based on heuristics and save all the 
size data. All values that contain r0 inside the basic block 
are collected, and if there are multiple values, the closest 
value to the malloc call site is used as the malloc size pa-
rameter. The randomization patch is then performed. In 
the heap, memory alignment must follow 16-byte (128-
bit) granularity because of the ARM NEON instructions.

5.4. X86 & X64 HEAP

To perform the heap randomization on x86 and x64, 
we use the malloc address from the symbol table and 
basic block border information of the entire functions 
based on binary analysis. We use basic block border 
information to apply our algorithm solely to a single 
block. Similarly to the ARM case, if the mov instruction 
operand is the immediate type and is closest to the call 
site, we consider the information as a size parameter. 
Finally, we also respect the memory alignment of 16-
byte (128-bit) granularity considering the use of SIMD 
instructions using 128-bit MMX registers.

6. EvALUATION

In this study, experiments were performed by port-
ing all related codes into a Docker container image for 
efficiency. The server environment for our evaluation is 
composed of 16GB RAM, and 1TB SSD, based on Ubun-
tu 16.04 64bit server. The Intel PX4 Autopilot Drone 
firmware (ARM 32-bit) was mainly used for stack di-
versification testing. The soundness of patched drone 
firmware was checked with basic system functionalities 
after the booting process.

6.1. STACK

1) Buffer overflow Toy example 

We evaluated our system using a simple x86-based 
toy binary that has memory vulnerability. In the experi-
ment, we used a general stack buffer overflow vulner-
ability exploitation as a test case.

When the example code is executed, buffer overflow 
is triggered, and a segmentation fault error occurs be-
cause the return address is broken. However, when a 
buffer overflow vulnerability was triggered for a binary 
with diversified stack sizes using our patch tool, the re-
sult of the attack was unpredictable.

Fig. 9. A toy program for testing memory 
diversification against stack.

Fig. 10. Screen capture of 
running toy example case.

2) PX4 drone

Fig. 11. Result after applying stack memory 
diversification against PX4-based drone. The screen 

on the left side indicates internal command/
communication operates without problem after 

patching. Right side of the picture shows LED blinking 
of the UAV that indicates its normal operation.

We evaluated our system using PX4 Autopilot Drone 
firmware (ARM 32-bit) binary as a test case of ARM binary. 
When the stack memory layout in the PX4 firmware was 
randomized using our patch tool and then executed in 
the same manner as the firmware before the patch, all 
functions worked normally despite thousands of codes 
being modified for diversification. Fig. 11 shows nsh pro-
gram, the shell interpreter of the drone. All the commands 
in nsh shell operated correctly before/after our patch.

3) Windows CE binary 

We evaluated our system using a collection of 42 
binaries, including pmkdir, pmemmap, and pdebug, 
which are tools that can be used in Windows CE provid-
ed by [32]. Wine [33] was used for compatibility to run 
Windows-exclusive programs on the Linux operating 
system. All functions worked normally when the diver-
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sification-patched binaries were executed. Randomiza-
tion patch was performed in several tens of places in 
the case of the Windows CE binary.

6.2. HEAP

1) Toy example 

We use a simple toy example to evaluate our heap di-
versification patch. Fig. 13 shows the before/after result 
of the diversification patch to the example program. The 
randomization result showed that the heap allocation ad-
dress was all changed, however all printf() functions in the 
example code were executed normally. The top portion 
of the allocation address was changed because of the 
ASLR effect (not because of our diversification), however, 
and the bottom offset portion (marked with a red box) 
was also changed by our patch tool (this part should not 
change in the normal case). We used gcc and clang with 
multiple optimization levels ranging from zero to three, 
and Fig. 13 is based on the optimization level zero.

Fig. 12. A toy program for testing memory 
diversification against heap.

Fig. 13. Before/after applying heap randomization 
patch. The red box indicates the internal heap offset 
is changed across the patch (the upper part of the 

address is changed due to ASLR).

2) Binutils 

We applied our system to the GNU Binutils binaries 
for performance evaluation. The Binutils version in our 
evaluation is based on 2.31.1 and the architecture is 
64-bit Intel. After the randomization patch, all binaries 
are executed as originally intended. To measure the ex-
ecution time delay due to the unnecessarily expanded 
memory layout, we repeatedly tested the execution 
time of various Binutils programs before/after we ap-
plied our system. The program execution time is mea-
sured based on a simple python script. 

Table 1 summarizes the result (program execution 
time) of the comparison between binaries before and 
after patching. We noticed that there was tiny degrada-
tion in the execution time before and after the patch. 
However, the overall amount of performance degrada-
tion is negligible.

Table 1. This table is organized by comparing the 
binary execution time before and after randomizing 

to the Binutils binary using our tool. Table 1 is the 
result of 1000 runs each, and the following options 

were used to test.

Binary Before After Option

addr2line 0.809s 0.732s
Check the file related to the 

execution file address and the line 
information

ar 0.877s 1.014s Generate an archive

nm-new 0.916s 0.921s Check the symbol information of 
the file

objcopy 0.751s 0.749s
Generate a new file after 

extracting the instructions and 
data of the file

objdump 1.113s 0.867s Check all contents of the object 
file

ranlib 0.826s 0.825s Register the library so that it can 
be used

readelf 3.516s 3.682s Output the dependency of ‘ld’ 
including type

size 0.805s 0.848s Output the file size

strings 1.874s 1.904s Output the offset of the execution 
file

strip-new 0.879s 0.938s Remove the symbol

3) PX4 drone 

We used the PX4 Autopilot Drone firmware binary for 
heap diversification evaluation as well. Similarly to the 
stack experiment, all functions worked normally when 
the heap memory layout in the PX4 firmware was ran-
domized with our patch tool and the binary was execut-
ed in the same manner as the firmware before the patch.

7. CONCLUSION

With the emergence of memory corruption vulnerabili-
ties, defense technologies that apply diversification to 
software systems, such as stack canary and isolated heap, 
are being extensively researched. However, because the 
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source codes are unavailable, such defense technologies 
cannot be applied to very old legacy systems. To remedy 
such a problem, this study presents an alternative ap-
proach to apply memory layout adjustment solely based 
on binary analysis and patching. We mainly apply diver-
sification against two memory components: stack and 
heap. As an experimental approach, we chose stack and 
heap as diversification targets because they are the most 
common memory section of any computer system. By 
applying our idea, it is expected that the attack time and 
cost will increase significantly as the attacker must adjust 
the attack payload differently each time when attacking 
an instance. We conducted experiments using real-world 
programs such as Intel PX4 Autopilot Drone firmware 
(ARM 32bit) binary, and Binutils in the Linux system. The 
results demonstrated our diversification did not break 
any original semantics of the program yet successfully 
changed the memory layout for the attacker.
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