
Game Hacking: Reverse engineering Dofus

Master Thesis
submitted to the Faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona
Universitat Politècnica de Catalunya

by

Javier de Muniategui Climente

In partial fulfillment
of the requirements for the master in
Master’s degree in Cybersecurity

Advisor: Manuel Alejandro Pajuelo González
Barcelona, Date 22/10/22

Contents

List of Figures 4

Listings 5

List of Tables 6

1 Acknowledgements 7

2 Introduction 9

2.1 Project goal . 11

2.2 Motivation . 12

3 State of the art 13

3.1 RedoxBot . 13

3.2 FlatyBot . 14

3.3 SnowBot . 14

4 Background 16

4.1 Ankama Launcher . 16

4.2 Dofus . 18

4.3 Process Monitor . 19

4.4 Process Hacker . 19

4.5 Charles . 19

4.6 Wireshark . 20

4.7 JPEXS Decompiler . 20

4.8 Debugtron . 20

4.9 Frida . 21

5 Project Development 23

5.1 Ankama Launcher . 23

5.1.1 VPN/Proxy detection system . 23

5.1.2 HTTPS REST API Endpoints . 25

2

5.1.3 Certificate . 37

5.1.4 Ankama Launcher and Dofus communication 39

5.2 Dofus . 41

5.2.1 Sniffer . 42

5.2.2 Network Messages . 42

5.3 Custom Launcher & Client . 50

6 Project methodology and planification 55

6.1 Project methodology . 55

6.1.1 Tools . 56

6.2 Project planning . 56

6.2.1 Initial planning . 56

6.2.2 Final Planning . 58

6.2.3 Modification and deviations from initial planification 61

7 Budget 63

7.1 Direct Costs . 63

7.1.1 Human Costs . 63

7.1.2 Material Costs . 63

7.2 Indirect Costs . 64

7.3 Contingency Costs . 64

7.4 Final Budget . 64

8 Future Work / Improvments 65

8.1 Improve the custom launcher . 65

8.2 Improve the custom client . 65

8.3 Sniffer GUI . 65

8.4 Custom server development . 66

9 Conclusions 67

3

List of Figures

1 Dofus standalone . 16

2 Electron license files . 17

3 Ankama Launcher Electron resources folder 17

4 Dofus Adobe AIR Version . 18

5 Frida architecture . 22

6 Cloudflare Access Denied . 24

7 Charles capturing Ankama Launcher Endpoints 25

8 Header for received messages. 43

9 Header for sent messages. 43

10 Dofus network protocol overview . 45

11 Custom client main function. 51

12 Launcher attributes. 51

13 Launcher HTTPS REST API functions. 52

14 The function that will create a Dofus ”client”. 53

15 Dofus client emulation. 54

16 Scrum methodology . 55

17 Microsoft Teams Logo . 56

18 WhatsApp Logo . 56

19 Initial Gantt diagram . 57

20 Final Gantt diagram . 60

4

List of Listings
1 REQ /json/Ankama/v5/Api/CreateApiKey 26
2 RES /json/Ankama/v5/Api/CreateApiKey 27
3 RES ERR /json/Ankama/v5/Api/CreateApiKey 27
4 REQ 2FA /json/Ankama/v5/Api/CreateApiKey 28
5 RES 2FA /json/Ankama/v5/Api/CreateApiKey 29
6 RES /json/Ankama/v5/Shield/SecurityCode 30
7 REQ /json/Ankama/v5/Shield/ValidateCode 30
8 RES /json/Ankama/v5/Shield/ValidateCode 30
9 RES ERR /json/Ankama/v5/Shield/ValidateCode 31
10 REQ /json/Ankama/v5/Account/SignOnWithApiKey 31
11 RES /json/Ankama/v5/Account/SignOnWithApiKey 32
12 RES /json/Ankama/v5/Account/Status 33
13 RES /json/Ankama/v5/Game/ListWithApiKey 34
14 REQ /json/Ankama/v5/Account/CreateToken 34
15 RES /json/Ankama/v5/Account/CreateToken 35
16 REQ /json/Ankama/v5/Game/StartSessionWithApiKey 35
17 RES /json/Ankama/v5/Game/StartSessionWithApiKey 35
18 REQ /json/Ankama/v5/Account/SendDeviceInfos 36
19 RES /json/Ankama/v5/Account/SendDeviceInfos 36
20 REQ /json/Ankama/v5/Account/CreateToken 36
21 RES /json/Ankama/v5/Account/CreateToken 37
22 Unpack .asar files . 37
23 Install asar module . 37
24 Pack .asar files . 38
25 Account information . 41
26 RCV - ProtocolRequired . 46
27 RCV - HelloConnectMessage . 46
28 SND - IdentificationMessage . 47
29 SND - ClientKeyMessage . 47
30 RCV - LoginQueueStatusMessage . 47
31 RCV - CredentialsAcknowledgementMessage 48
32 RCV - IdentificationSuccessMessage . 48
33 RCV - ServersListMessage . 49
34 SND - ServerSelectionMessage . 49
35 RCV - SelectedServerDataMessage . 49
36 RCV - HelloGameMessage . 50
37 SND - AuthenticationTicketMessage . 50
38 RCV - BasicAckMessage . 50
39 RCV - AuthenticationTicketAcceptedMessage 50

5

List of Tables

1 Initial estimated time . 58

2 Final project dedication time . 61

3 Human costs . 63

4 Material costs . 63

5 Direct costs . 64

6 Indirect costs . 64

7 Total costs . 64

6

1 Acknowledgements

I would like to thank several people for this project. Firs of all Manuel Alejandro Pajuelo
González, the director of this thesis for guiding me and teaching me most of the knowledge
that I have in reverse engineering and weird computer programming knowledge.

Secondly, I would like to thank my family for the support provided during the development
of the thesis and my life as a whole.

Finally, I would like to thank all the people I have meet online while playing the Dofus
video game. Some of them even become real life friends. Special thanks to Maŕıa, Alvaro
and Angela and a person who unfortunately had passed away some years ago, Javier.
Without them this thesis would be completely different, since probably Dofus would not
be a thing as important as it is for me.

7

Abstract

The world of video games has become a really powerful industry during the last decades.
With the rise of the video game industry, other niche markets appeared related to video
games. One of those markets is the in-game goods selling. In most cases these things are
not obtained by humans especially when massively sold but obtained by bots, which are
executed for 24 hours with multiple game instances to maximize benefits for the seller.

This thesis applies partial reverse engineering to a game called Dofus and its launcher in
order to implement a custom client for the game. The custom client will automatically
make the functions of the game launcher, the login handshake and server selection without
human intervention. Moreover, detailed information about the launcher and the game
network protocol will be explained and documented.

8

2 Introduction

The world of video games has become a rising industry during the last decades. Moreover,
in the lasts years the Covid-19 pandemic benefited this industry, increasing its numbers
even more[1]. To be more precise about how big this industry is, we can see that during
the year 2021 the industry moved 300 billion dollars, which is more than the movie and
music industry together[2].

Being an industry that moves this amounts of money implies that other submarkets will
appear in order to obtain economic benefits and satisfy new necessities in the raising
market. An example of those necessities can be: software that analyze your in-game per-
formance and tells you how you can improve, programs that let the users communicate
easily especially integrating the software inside the games, online markets to sell video
game keys for cheaper prices, monitoring services to check players statistics and in-game
market status...

Another important market inside game industry is the game hacking market, which has
become more important with the raise of online video games since they are the main actor
inside the industry. This market offers services to give the person who buys it an unfair
advantage over the other players that the game developer company does not intend to.
These practices are usually prosecuted by the company that has developed the game, and
they punish the players that use this kind of services by banning their accounts or even
in some cases the computer hardware identifier or the IP1 address.

The type of cheat that are sold varies vastly depending on the video game type. Usually
in an FPS2 we can find cheats that automatically aims to the head of the enemy (aimbot),
automatically shoots when the crosshair is over an enemy (triggerbot), renders the textures
of the enemies over the walls in order to see them when they are hided (wallhack), give
you extra information such as their weapons, heal, a box drown over them that can be
seen through walls(ESP3 hack), a line that goes directly to the enemies in order to locate
them (radarhack), being able to see the enemies in the map or minimap (maphack)...

On a MOBA4 game we can find bots that abuse the refer system to create new accounts
and level them to the needed level in order to obtain in-game rewards for the ”friends”
that you bring in the game, bots that automatically plays the game to level up accounts,
scripts that allow you to dodge enemy skills, make combos at inhuman speed, or programs
that inject code in the game to remove client side checks that should be server side allowing
the use of exploits.

In MMORPGs5 bots are the most used hack by far. There are multiple types of bots for
this kind of games which automates one or multiple tasks inside the game. Examples of
those tasks are for example leveling up your character by fighting enemies, automatically
gather resources to sell them and increase your in game job level (if the game has a job

1Internet Protocol
2First-Person Shooter
3Extrasensory Perception
4Multiplayer online battle arena
5Massively multiplayer online role-playing game

9

system), flood the chat with advertising, check the game shops to see if some resources
are more expensive in one shop than in another and buy the cheaper ones to sell them at
a higher price, automate specific missions or game mechanics...

The bots can be implemented in multiple ways, they are mainly categorized in 3 major
groups[3][4]:

• Reading on screen pixels as input in order to react to changes that happens in the
game window. Usually, the output is done by emulating a keyboard or mouse key
press on the game window. This method requires the game to be running, and it is
really inefficient with limited access to the game information and hard to make it
fault-tolerant. The good point is that it is easy to implement and the detection of
the bot is hard if the output system is done properly.

• Injecting code in the game, usually by doing a DLL injection. This method has
access to the in game memory which is used as input, so it requires some reverse
engineering of the game. The scope of the input is all the information that the client
has, so it can be fault-tolerant, and the bot can use the functions of the own game
as outputs by calling them. The game client itself has to be running in order to
inject the code, moreover this system is more risky since it can be detected easily,
especially if the game has an anitcheat or sends information to the server about the
process state (loaded DLLs when the game crashes for example).

• Implementing a custom client, which basically is able to read and write network
packages directly to the game server. This method uses as input the server packets
itself, and the output sends networks packets to the server simulating the game
client. In order to understand the network packages a total reverse engineering of
the network protocol is required however this implementation is the most powerful
one since it allows you to make the same as the game but with a better performance
since the GUI can be removed from the game, bypass any client side restriction or
client side anticheat or even modify network packets to find server side exploits.

From 2008 to 2012 one of the most famous MMORPGs (especially in Spanish-speaking
countries) was Dofus[5]. It was developed by Ankama[6] a French company mostly known
for the development of multiple MMORPG but with multiple content which derivates
of those games such an animation series called Wakfu (like the MMORPG game called
Wakfu, which was developed by them) or comics. The game is a turn based board game
that was published on 24/08/2004 in France, internationally released on 01/09/2005 and
a Spanish server and community released in 07/11/2007 with the creation of the Spanish
server called Alma[7].

Since Flash was one of the leading language in portability the developers decided to use it
for the game development, moreover there was a web client version for the game which did
not require installation. Being a game that did not require a lot of computer resources in
order to play was one of the keys for its success, especially in South American countries.
The other huge community was the French one, which in fact it is the biggest one right
now since the amount of Spanish players has dropped during the last years for multiple
reasons and the company keeps targeting the French audience mainly.

10

This combination of factors lead to an interesting phenomenon where people in South
America started playing the game trying to maximize the amount of in game currency
they could get and farming multiple resources or items. However, it was not due to the
fact that they wanted to become better at the game, but in order to sell those things
for real money to Spanish or French players. This was a huge profit for them since the
minimum salary in Mexico for example was an equivalent to 100 monthly euros[8] or even
lower in some other countries such as Venezuela.

Trying to maximize the benefits leads to the development of game bots that went from
farming resources and selling them in the game market to bots that formed a party
together and leveled multiple accounts simultaneously (up to 8 in the same party since
it’s the maximum number of players per fight). Even some of these bots implemented
features to be faster than normal clients, bypassing client side features such as the skills
animations in order to make the turns faster (almost instantly).

The current version of the game differs completely in network protocol, graphics and
implementation from the original one back in the releases days and this difference is clearly
marked by the release of the version 2.0 of Dofus released in 02/12/2009[9] where the whole
client was rewritten including the network protocol and graphics. It also implemented
more checks on server-side and client side to detect the increasing number of bots and
patched some exploits that those bots were using, like the animation exploit explained in
the upper paragraph. However, due to some controversy with the 2.0 update developers
decided to let one server for the older version 1.29 but explained that the maintenance
for this version had ended, and it will not have more updates (which was true until 2019
when they updated the server with a patch for a duplication exploit).

Nowadays, both versions of the game have bots, but the company has taken huge steps into
fighting these bots since they ruined the experience of the players. Being a fight about
who can find the method to bypass or catch the other one has led to more advanced
bots that go from MITM6 attacks to read the networks packets without modifying the
game memory to whole custom clients reimplementing the whole game client. From the
developers side, multiple client side approaches were taken apart from server side ones to
detect bots. Some of those patches and developments are blocking any IP that is not in
a white list inside the client config file to avoid connections to proxies (trying to counter
MITM bots), banning VPN or proxies IPs in the authentication server, implement a game
launcher that checks computer specific properties for computer identification...

2.1 Project goal

The goal of this thesis is to partially reverse engineer the version 2.0 of Dofus and the
launcher, which is now enforced to be used to launch the game and make the login process.
Detailed information about the pieces of software will be given and documented such as:
HTTPS REST API endpoints used by the launcher with their requests parameters and
returned values in responses, how are 2FA certificate files build and encrypted, by which
means does the launcher interchange the information with the client, the network protocol

6Man In The Middle

11

headers and its packets, the in game authentication server workflow or how does the game
finally choose a server to play in after being authenticated.

Moreover, a network sniffer will be implemented in order to read and analyze the in game
network packets and with all the gathered information a custom launcher and client will
be implemented.

The scope of the thesis is limited up to the selection and connection to the server that
will be used to play since the in game network protocol is composed by more than 5000
network messages, and it will require an amount of time that is out of scope.

2.2 Motivation

Being a video games player for years has built an increasing curiosity of how the games
I have played were implemented. Also, the time spent playing increased the curiosity of
how game hacks or bots are implemented, since it was inevitable to find some of them
while playing. This leaded me to the usage of multiple of them in multiple games, being
those games online or offline. After using them, the question about how they were build
and how another process could modify the game to change values to arbitrary numbers
at your will appeared in my head.

This combination of circumstances was one of the key that made me decide to take the
computer engineer degree and later on the master’s degree in cybersecurity. While in the
degree, the acquired knowledge allowed me to understand how game hacks worked and
what I was doing when I searched for values that had changed in the process memory.
Creating some game hacks for offline games or modding games was not enough and driven
by curiosity I have recently started to learn about reverse engineering and security in
binaries (how a serial worked, DRM systems, anitcheats...). With all this in mind, is
when I decided to do the master’s degree in cybersecurity, but the content about the
topics I am interested in was minimal.

Hoping to improve my skills in reverse engineering and game hacking, I have decided that
my thesis would be about a topic related to both. The chosen game finally was Dofus due
to the fact that it is one of the games I have played the most and my prior knowledge of
the game as a player is really huge. Having this in consideration and some nostalgia being
also involved, I have decided that reverse engineering the network protocol and creating
a partial custom client was the thing that would give me the most knowledge about the
game internals and at the same time the most sophisticated game hack. Moreover, it
would improve my skills in the topics that I am interested in.

12

3 State of the art

Dofus bots have existed for a long time, even before that Dofus changed its version to
the major release 2.0. There were moments where some bots occupied most of the market
and other times when the game was almost free of bots due to ban waves when the most
used bots were detected. In this section some old famous bots and the current ones will
be discussed, talking about how they were implemented, their cost and their life span.

3.1 RedoxBot

RedoxBot[10] was one of the most popular bots at the beginnings of Dofus 2.0. The bot
was created in 2012, and it reached a peak of 2300 users using the bot. The key features
sold by this bot were:

• Bypass antibot detection.

• Schedule login/logout times for the accounts.

• Multiaccount support.

• Auto fighting.

• Auto resource gathering for jobs.

• Auto reconnection in case of bug or disconnection.

• Spam in chat.

The bot was configurable in order to set the paths and maps where your characters should
move by using a scripting language. There was a default fighting AI, but you could create
your own by using a GUI7 and settings the casuistic and states when a spell or another
should be used, when the character should try to run from the enemies or run towards
them... This states machines were saved and set for each character or instead set as default
for each class that the game had.

The bot allowed to define a path that triggered when your character’s inventories were
full. The path should go to the bank map where the bot would deposit all the items inside
it, so it would be able to keep farming without nothing stopping it. This is especially
useful when using the bot to gather resources for jobs.

There was also a feature which allowed to set the client speed, which was able to bypass
animations inside the fights. This feature was one of the most interesting ones, since you
could make two or three fights in the same amount of time that a legit player would do
just one fight.

The bot implemented MITM working mode and the socket mode, so you could choose if
the original Dofus client should be run or the bot itself worked as a client, being a custom
client with the whole network protocol implemented.

7Graphical User Interface

13

The bot price was a 5 euro monthly subscription, however the bot development was
stopped by the main developer in 2014[11], after a massive banwave that banned most
RedoxBot users and the developer not having enough time for keeping up with the devel-
opment.

3.2 FlatyBot

FlatyBot[12] started in 2018 with the Dofus version 2.47. It has around 300 concurrent
users, and it does not sell any specific feature. Instead, there is an API documentation for
the bot, a community forum and discord where people post their scripts to share them
with other players.

It is explained in their documentation that the bot is an external bot, so basically it
emulates the clicks on the real Dofus client. However, it can be seen in the footnotes of
the website that it is a MITM bot. Presumably it can be speculated that the bot gets the
events by using the network protocol intercepting the packets or reading them, and then
it makes the actions inside the original client by emulating the clicks.

In order to support this assumption, it can also be seen that there are functions in
the API that relay on X and Y coordinates in order to click them, which is not nec-
essary in bots that inject code or use the network protocol directly. An example of this
is the npc:reply(x,y)[13] function that is used to answer to a NPC question when in-
teracting with them. On the other hand, it can be checked that there are other func-
tions which use the NPC identifier, this information is inside the client, and it is only
obtainable by reading the memory the network. An example of this is the function
npc:npcBank(npcId,indexReply)[13] that can be found in the documentation.

The bot price is a monthly subscription of 6 euros, and it is sold as one of the most secure
bots for Dofus due to its external implementation.

3.3 SnowBot

SnowBot[14] started in 2019 with the Dofus version 2.53. It has around 1300 concurrent
users boting and a total of 43000 users registered. It uses the same approach that FlatyBot,
letting the community create their own scripts by providing a scripting API to create your
own bot scripts and share them with the community.

The bot implements two ways of working, MITM mode in which the original Dofus client
has to be run and the bot hijacks the connection. This method, as explained before,
consumes more resources but allows the user to stop the bot and regain control as a
player at any moment. On the other hand, socket mode is a custom client that directly
manages the network protocol sending the packets without the need of the original client,
which is far more efficient in terms of resource consumption.

Another relevant thing to mention is that this bot has compatibility for the Dofus version
1 and 2. Moreover, it is also compatible with a standalone separated version of Dofus
called Dofus Touch which is played on Android and iOS. For the Dofus Touch version,
the client does not support MITM mode, since the original client can not be run.

14

This year the bot had changed the policies, and it has become free instead of a 5 euros
monthly subscription. It is the most known bot for Dofus nowadays.

15

4 Background

In this section, technical background will be given to better understand other sections of
the thesis. Most background regarding Dofus or bots was already given in the introduction,
but not about the tools or frameworks used during the thesis development. So this chapter
will refresh information about Dofus, bots and explain the tools used, how they work or
why they were used.

4.1 Ankama Launcher

Initially all the Ankama games were standalone games, in order to download them you
had to go to their respective website and download the installer. In 2016 they added their
game to Steam[15], where other releases like Wakfu were already published. However,
in 2018 this changed, and Ankama started their beta testing for a launcher they were
developing in order to have a unique place to login and download all their games. This is
how Ankama Launcher was born.

On release the launcher was not mandatory, you could use it to have all the games in one
place and automatically login to all games with the same account in a faster way, but
the standalone version was also available. If the standalone version was used you had to
make the login inside the game however, if the launcher was used, the login inside the
game was not necessary since the launcher authenticate the user and passed this info to
the game. Both versions launcher and standalone existed up to version 2.61.9.12[16]. In
the next update, the standalone version was deprecated, and the launcher login was made
mandatory. Trying to run the game executable without using the launcher will prompt
this message:

Figure 1: Unable to use Dofus without the Ankama Launcher.

The launcher is written in JavaScript, it runs over a framework called electron[17] which
uses Node.js[18] in combination with chromium[19] to render the interface. This infor-
mation can be easly extracted because usually the applications that use any browser for

16

rendering tend to have multiple subprocess with the same name as the father. Moreover,
if the children processes command line is checked, it can be seen that there are mul-
tiple chromium flags. Having all this into account, if the folder content where Ankama
Launcher is installed is checked, a file called LICENSE.electron.txt and a file called LI-
CENSES.chromium.html can be seen.

Figure 2: Electron license files in Ankama Launcher folder.

The electron app folder structure can be seen easily. The program executable is in the
root folder, with a folder next to the executable called resources. Inside resources, the file
app.asar can be found. The file format asar [20] works like tar that concatenates all files
together without compression, but having random access support. Inside this file resides
all the application’s JavaScript code.

Figure 3: Electron resources folder content in Ankama Launcher.

You can configure some settings that will affect Dofus once launched. The settings are:
the game language, which port should be used to establish connection with the servers,
which architecture should be used (32 or 64 bits) to run Dofus, if the game should go to
server selection or bring you to the character selection screen in the last played server and
if the game should be auto updated (not a game setting but more a launcher setting).

17

4.2 Dofus

The core game of Ankama released in 2004. The game is developed in Flash, which is
a publically known information. This information can be checked analyzing the game
files, where .swf files like DofusInvoker.swf can be seen. This extension stand for Small
Web Format and is used for Adobe Flash specially for multimedia, vectorial graphics and
ActionScript[21].

ActionScript is a really important concept for this thesis. It is an object-oriented program-
ming language which was created by Macromedia Inc.[22] and later acquired by Adobe
Systems[23]. It is really similar to JavaScript, and it is usually compiled in byte-code in
order to be consumed by the virtual machine. The runtime system that consumes those
.swf files is Adobe AIR[24] used for the development of desktop and mobile applications.
The current version of ActionScript and the used one by Dofus is the version Action-
Script 3 released in 2006 with the release of Adobe Flash Player 9[25], the platform used
for website development in Flash and later released for Adobe AIR.

When launching the game, the Adobe AIR version can be found in the lower left corner:

Figure 4: Information displayed in the lower left corner when the game is launched,
including the Adobe AIR version.

As it can be seen in the image, the Dofus version is 2.65.2.7, it is the release version (beta
can be downloaded from the launcher), released in 03/10/2022 and using the Adobe AIR
version 33.1.1.889.

The Adobe AIR is distributed inside the game with a DLL that will consume the .swf
files. It is located in Dofus\Adobe AIR\Versions\1.0\Adobe AIR.dll and inspecting the
properties of the file reveals the same version that is displayed in the figure 4.

In the game folder, there are multiple .swf files. Most of them are animation files,
as it can be deduced by their location. Example of those animations can be Do-
fus\content\gfx\emotes where multiple [number].swf files with all the emote animations
inside the game can be found. There are specially 3 .swf files which stand out by size,
those are:

• Dofus\content\themes\darkStone\assets.swf which contains themes for the GUI in-
side the game, being this one the default theme.

• Dofus\content\gfx\spells\all.swf which contains all the spells animations.

• Dofus\DofusInvoker.swf the most important one for this thesis since it contains all
the ActionScript3 files which are the game’s logic.

18

4.3 Process Monitor

Process Monitor[26] is one of the Microsoft sysinternals tools. It allows you to see real
time information about the processes interactions with the operating system such as the
interactions with the file system, registry, network and process/thread activity.

Some of the information that can be extracted from the interactions are: PID, process
name, the operation that was done such as open file handler, close file handler, read file,
write file, query directory information..., the path to the file or the registry key, the result
of the operation, when the operation was done...

Moreover, since a program can have millions of system interactions, process monitor allows
setting filters to get just the information that you desire. For example, you can filter
for all operations of a given process name that the path contains part of the substring
AppData\Local and exclude registry operations.

The tool was used to find files that could be interesting when analyzing Ankama Launcher
and Dofus. Especially useful for finding registry keys and files that when a given interaction
occurred they were opened or written. Example of those can be configuration files or files
used when the option remember was used in 2FA8. Moreover, it was also useful to check
which IPs were used by the programs.

4.4 Process Hacker

Process Hacker[27] is an improved Windows Task Manager that includes multiple features
that Task Manager does not. Some of those extra features are, check opened handles to
files and see which process does have them opened, close opened handles, check network
connections and socket states, close socket handles, get detailed information of processes
such as command lines arguments that were used to launch the program, the process
threads and the ability to terminate them, pause them or even changing their permissions
on the fly, check the process memory mapping with detailed information for each region
such as memory permissions, for what is the region used for (heap, stack, loaded image...),
check processes windows and their properties, the ability to manage services and create
them...

Most of these features are not used for this thesis, however there are a few ones that
were used. One of those features was the one that allowed the check of the command line
arguments that Dofus was using. Another feature that was used multiple times during
the thesis was the one that displays opened connections and sockets for processes, used
to see which ports did the launcher and game used and how both applications transferred
information between them.

4.5 Charles

Charles[28] is an HTTP proxy that enables a developer to view all the HTTP and SSL
traffic between its machine and the Internet. This includes requests, responses and the
HTTP headers. In order to do so, it opens a port and forwards the HTTP and HTTPS

8Two Factor Authentication

19

traffic to Charles by using the Windows Porxy settings. Once configured when HTTP or
HTTPS traffic occurs it will be displayed in Charles with the request, response, headers,
body and parameters of each request/response.

The problem is that HTTPS traffic is encrypted, but Charles has the feature to work
as MITM HTTPS proxy. In order to use this feature, Charles generates its own root
certificate and installs it (requires human intervention, but it guides you in the process).
Once the root certificate is installed, the clients will interact with Charles as if it was the
server, then Charles will decrypt and display the requests and finally send them to the
real server as if it was the client, encrypting the content again. For server responses the
same is done, Charles actuates as client for the server, gets the answer, decrypts it and
displays it, and finally it is sent it to the real client encrypting it as if Charles was the
server.

The HTTP proxy was used to intercept the Ankama Launcher HTTPS REST API requests
and analyze the requests and responses of the endpoints and their behavior.

4.6 Wireshark

Wireshark[29] should not need presentation. It is one of the best known tools, if not the
most, in the world of networking. It allows you to analyze network protocols and display
the whole information about the packets that are sent by the adapter, including some
layers that are not usually seen by developers, like the Ethernet layer.

It was used to get the network packets send by Dofus and using the feature ”Follow TCP
Stream” get the whole content of the TCP connection to the authentication server or the
game server, and manually check the bytes to see if the sniffer developed in the thesis was
working properly and the displayed values were correct.

4.7 JPEXS Decompiler

JPEXS Free Flash Decompiler[30] is as its name implies a Flash SWF decompiler written
in Java. It allows you to see the P-code which is the bytecode that the virtual machine
will execute. Moreover, it allows you to see and extract the ActionScript source code,
videos, images, texts... from the .swf files and even debug the code if flash debugger is
configured.

The tool was used to decompile DofusInvoker.swf to get the ActionScript3 source code.
In fact, the code was extracted to text files for a better management since JPEXS Decom-
piler presented some performance problems with big .swf files, even randomly crashing
while navigating the files. Moreover, the features to travel between code such as view
hierarchy call, find references or even the find text function were really slow and crashed
the decompiler after being used multiple times.

4.8 Debugtron

Debugtron[31] is an application developed with Electron that is used to debug in produc-
tion Electron based apps. It allows you to set breakpoints in the JavaScript code even if

20

it is inside the app.asar file, make heap snapshots, see and use the JavaScript developer
console or use a profiler for JavaScript VM.

Debugtron was used to analyze the workflow of the Ankama Launcher since the JavaScript
code was hard to follow without setting breakpoints, seeing the variable contents and going
inside calls. This is due to the fact that there were multiple functions that were called
using function pointers inside arrays, the variables names were shortened to letters or the
calls were executed asynchronously with the use of a JavaScript feature called promise.

4.9 Frida

Frida[32] is a dynamic instrumentation toolkit for developers, reverse engineers, and se-
curity researchers. It allows the injection of snippets of JavaScript code into native apps
on Windows, macOS, GNU/Linux, iOS and Android. In order to do so, Frida will inject
QuickJS[33] into the target process and then load the JavaScript code which will be ex-
ecuted by the JavaScript engine. While the snippet executes it has access to the whole
memory of the process, and you are able to read it, hook functions or call native functions
inside the process.

Frida will establish a bidirectional communication channel with the app that has injected
the snippets and the target app, the one that had received the injection. This allows to
receive information and messages on your app or send messages to the target application,
so it can behave differently or wait for a specific message to continue.

The code is written in C, but there are multiple bindings for other languages such as
Node.js, Python, Swift, .NET... so you can use the language you want for your app. On
the other side there is GumJS that is the instrumentation core which is written in C
and provides the JavaScript API that will be used by the snippets. Some of the things
that this API can do are: allowing you to hook functions, enumerate loaded libraries,
enumerate their imported and exported functions, read and write memory, scan memory
for patterns, etc.

There are 3 modes of operation, the injected one is the most common one, where you
will spawn a new process or hijack one that is already running. For this process, you do
not have the source code, but you want to run instrumentation code inside it. Frida core
will be the one to package GumJS in a shared library and then inject it into the desired
process while providing the communication channel with the scripts and unloading all the
necessary things once finished.

The other two ways are the embedded and preloaded one. The embedded one consist
of a library called Frida gadget, which is a shared library that should be embedded in
the program that will be instrumented. By simply loading this library, it will allow you
to interact with it remotely or even fully autonomous with no communication needed.
In the preloaded mode, it uses operating system features to load the library, such as
LD PRELOAD. Usually used to load Frida gadget in an autonomous way to load scripts
from the filesystem.

21

Figure 5: Diagram displaying the Frida architecture. Source: [34]

In this case, the figure 5 displays the workflow for Node.js bindings, since frida-node
appears in the graph. In this thesis case, frida-python was used as bindings, which as its
name implies are the Python bindings. All the workflow is exactly the same, but changing
frida-node for frida-pyhon.

Frida was used to develop the sniffer for Dofus by injecting JavaScript snippets inside
Dofus process and sending the needed information to the Python code (the sniffer), which
will be the one doing most of the work.

22

5 Project Development

This section will go in details about how the project was developed, going step by step
in the reverse engineering process and the programs implemented. It is recommended to
read the section 4 to have the context of all the tools that will be used. It will be divided
in two core sections, the Anakama Laucher reverse engineering and the Dofus reverse
engineering. Finally, a third section will explain the development of the custom client.

In order to isolate the work done in this section and to avoid getting banned if anything
went wrong, a virtual machine was used to avoid any kind of relation with the accounts
that are used to normally play the game and the accounts used for reverse engineering,
which were created for this specific purpose. This precaution was taken because most
online games gather hardware information and system specific information that is used
to identify the computer itself, for example, for 2FA. The information is usually used to
ban the computer or IP if the ban system detects that all or most of the accounts used
by them are malicious.

5.1 Ankama Launcher

5.1.1 VPN/Proxy detection system

Apart from setting up a virtual machine to hide hardware information, it is equally im-
portant to hide the IP, since it can also be used to link multiple accounts to the same
person. In order to hide it, a VPN or a Proxy is used to hide the original IP and reach
the destination server with the VPN or Proxy IP.

A first attempt was done by using free proxies that could be found in multiple internet
websites that recompile them. In those websites, a search for Spanish-speaking countries
proxies was done, since there is region lock inside the game, and it is not possible to
play Spanish servers with a French IP for example. In order to route the traffic of the
application through the proxy SocksCap64[35] was used. SocksCap64 is a program that
allows the user to define a processes list and those processes traffic will go through a
specific proxy server, even if those applications do not have such an option/feature. It is
capable of doing this by using SOCKS, an internet protocol that allows the exchange of
network packets between client and servers through a proxy server.

However, most of the free public proxies did not work since they were down or needed
authentication. The ones that worked were detected by the launcher and a message ap-
peared explaining that if your IP was hidden or if a proxy was being used, the launcher
could not proceed.

The next steep was trying to hide the IP by installing the launcher in a virtual private
server provided by Amazon Web Services[36]. With this solution there was no need of
virtual machine and the IP and hardware would be different since it would be a completely
different computer. During the process, the website to download Dofus[37] was accessed,
but an access denied message appeared:

23

Figure 6: Cloudflare blocking AWS machine.

Since downloading the launcher was not an option, the launcher files were moved from
the virtual machine to the Amazon machine. However, when trying to log in inside the
launcher, a message appeared saying ”HTTP Error: Access Denied”. To verify that this
behavior happened also with the proxy the same steeps were repeated in the virtual
machine with the proxy on, obtaining the same result, an access denied message when
Dofus website was accessed. Depending on the proxy the download website was blocked
or not but still the login or create account did not work with any proxy, showing an access
denied when the login or signup form was sent. With this check, seeing that the account
creation and logging gave also access denied in the Amazon machine, this option was
discarded.

Continuing with the virtual machine and proxy idea, a solution came in mind. TOR[38]
is used to hide the user’s IP so if somehow it supported the redirection of applications
traffic to itself and not only for web browsing, a wide variety of working proxies could be
tested. After configuring SocksCaps64 and TOR to enable TOR deamon and configure
SocksCaps64 to redirect the traffic to that local port TOR was listening to there was still
a thing remaining, configuring TOR so that the last node had a Spanish-speaking IP.
This was not a problem, since TOR allows you to set up a list of exit nodes by specifying
the IP of the nodes or country codes. However, this list is only a recommendation, but it
can be enforced by setting a TOR flag to true. After all this setup a test was done with
multiple IPs from different countries: Spain, Argentina, Panama, Colombia, Mexico... but
neither of them worked, they were all blocked by Cloudflare.

The next try was to give a chance to VPNs, the first one to be tried was ExpressVPN[39]
which is a well known VPN, and it is especially used for bypassing content lock in stream-
ing platforms. The result was disappointing. Even trying with multiple countries or man-
ually selecting regions inside countries to change the IP, all result ended in the same error,
access denied. To explore more options, less known VPNs were tried, some of those were:
F-Secure FREEDOME VPN[40] free trial, Mullvad VPN[41] and TorGuard[42]. Noone of
the VPNs was able to bypass the access denied message, even buying a dedicated IP on

24

TorGuard and using it resulted in access denied.

The conclusion was that Cloudflare (or a 3rd party service used by Ankama) uses a
machine learning and probabilistic system in order to detect VPN, proxies and virtual
private server IPs. Using similar services such as IP Intelligence[43] all the IPs provided
by the tested VPNs, proxies or AWS servers were flagged with a solid 1 (100% chance of
being a proxy/vpn IP).

Another relevant thing to mention is that while developing the sniffer, some tests were
done with a guifi[44] network, which was also banned by Cloudflare.

Since the system seems to be non-bypasseable without spending a huge amount of time,
another approach was taken. Since usually the IP assigned by the ISP is dynamic, a
rotation of this IP was forced by shutting down the router for 30 minutes and then
switching it on. After checking that the IP was different, the development could continue.
This solution was not the desired one, but an effective one. The ISP and IP will be
detectable, but it is not a real problem since there are millions of users using the ISP
IPs which are rotated constantly between users, so the system can not ban them without
affecting legit users.

5.1.2 HTTPS REST API Endpoints

The reverse engineering finally started, the first approach was to use Charles to extract
all the endpoints from the moment a user logs in up until the player starts the game.

Figure 7: Usage of Charles to capture all the requests that Ankama Launcher has done
to the HTTPS REST API.

As it can be seen in the figure 7 the interesting host is haapi.ankama.com, there are other
hosts, but they are images and JSONs to tell which images the launcher should load or
which news to display. The haapi.ankama.com is the one that is doing the login, creating
an API key to use other endpoints that require authorization and the one that manages
the 2FA (which is called shield inside the API and game).

Now, all the endpoints related to the login or launching Dofus will be explained in

25

detail, all the hosts are haapi.ankama.com and the protocol is always HTTPS, so
this information will be omitted in the endpoints descriptions. An example of this is
https://haapi.ankama.com/json/Ankama/v5/Api/CreateApiKey will be documented as
/json/Ankama/v5/Api/CreateApiKey.

In order to display the content properly when the body is plain text a JSON format will
be displayed in the documentation, however this does not correspond to the reality. In
reality, the parameters are as follows: param1=value1¶m2=value2... concatenating
the parameters with ”&” and separating parameter and value with ”=”. If there is an @
it will be converted to %40 following percent-encoding.

Without a certificate stored for 2FA:

Listing 1 POST Request Body - /json/Ankama/v5/Api/CreateApiKey
content-type:text/plain

1 {

2 "login": "emial@a.b",

3 "password": "pass123",

4 "game_id": 102,

5 "long_life_token": true,

6 "shop_key": "ZAAP",

7 "payment_mode": "OK",

8 "lang": "es",

9 "certificate_id": "",

10 "certificate_hash": ""

11 }

The variable values in the body are ”login” that will have the value of the email inserted
in the login form, ”password” which is the account’s password, ”lang” that is the language
the launcher is configured with and ”certificate id” and ”certificate hash” that will contain
information about the 2FA that will be explained in detail later in chapter 5.1.3. The other
parameters are hardcoded in the source code of the launcher.

The request responses can be:

26

Listing 2 POST Response Body - /json/Ankama/v5/Api/CreateApiKey
200 OK
content-type:application/json

1 {

2 "key": "ab4a316b-1675-4a31-d99c-f71f97da1ac4",

3 "account_id": 123456789,

4 "ip": "1.2.3.4",

5 "added_date": "2022-09-12T19:14:57+02:00",

6 "meta": [],

7 "data": {

8 "shop": "ZAAP",

9 "lang": "es",

10 "payment_mode": "OK",

11 "country": "ES",

12 "currency": "EUR",

13 "security_state": "UNSECURED",

14 "security_detail": "CERTIFICATE_MISSING"

15 },

16 "game_id": 102,

17 "certificate_id": null,

18 "external_auth_id": null,

19 "access": [],

20 "refresh_token": "104d27cd-1e75-4ea7-b2a0-810cd2561d0b",

21 "expiration_date": "2022-10-11T19:14:57+01:00"

22 }

Listing 3 POST Response Body - /json/Ankama/v5/Api/CreateApiKey
401 error: Unauthorized
content-type:application/json

1 {

2 "reason": "FAILED"

3 }

The response 3 does not need much explanation, if the username or password is wrong the
response will be a 401 with a JSON containing the reason, in this case ”FAILED”. If the
login is done successfully a 200 will be the response with a JSON containing information
about the login.

The returned information in case of 200 is a ”key” that will be used in order to authenticate
the following requests, ”account id”, ”ip”, some of the parameters that were sent in the
request and the ”security state” and ”security detail”. Those last returned values are im-
portant in order to determine the workflow of the login. The main key ”security state” can

27

be ”SECURED” or ”UNSECURED”. In case of a good certificate, meaning that the 2FA
has been completed successfully, the value will be ”SECURED”. On the other hand, if the
certificate is missing or is incorrect, the value will be ”UNSECURED”. ”security detail”
will have the values: ”CERTIFICATE OK” if ”security state” is SECURED, ”CERTIFI-
CATE FAILED” if the provided certificate is incorrect or ”CERTIFICATE MISSING” if
no certificate was found.

The request and response are different if a valid 2FA certificate is provided:

Listing 4 POST Request Body - /json/Ankama/v5/Api/CreateApiKey
content-type:text/plain

1 {

2 "login": "emial@a.b",

3 "password": "pass123",

4 "game_id": 102,

5 "long_life_token": true,

6 "shop_key": "ZAAP",

7 "payment_mode": "OK",

8 "lang": "es",

9 "certificate_id": 127397326,

10 "certificate_hash": "28a6788...44...8d7d2ff32b5ba8"

11 }

28

Listing 5 POST Response Body - /json/Ankama/v5/Api/CreateApiKey
200 OK
content-type:application/json

1 {

2 "key": "3422c70f-497e-4095-98af-facd2d244a38",

3 "account_id": 123456789,

4 "ip": "1.2.3.4",

5 "added_date": "2022-09-12T19:14:57+02:00",

6 "meta": [],

7 "data": {

8 "shop": "ZAAP",

9 "lang": "es",

10 "payment_mode": "OK",

11 "country": "ES",

12 "currency": "EUR",

13 "security_state": "SECURED",

14 "security_detail": "CERTIFICATE_OK"

15 },

16 "game_id": 102,

17 "certificate_id": 127397326,

18 "external_auth_id": null,

19 "access": [],

20 "refresh_token": "8c1ab84b-8510-4cd2-8938-4e1fdfd12fcd",

21 "expiration_date": "2022-09-11T19:14:57+01:00"

22 }

In this case it can be seen that the ”certificate id” and the ”certificate hash” are sent in the
body of the request, then the response will answer with ”security state”: ”SECURED”
and ”security detail”: ”CERTIFICATE OK” if the certificate is valid and it will also
change the ”certificate id” in the response with the sent certificate id. In the case that
the ”security state” is ”SECURED” there is no need to make the 2FA since you already
provided the information.

The next request is done to display the email’s domain that received the 2FA code, not
mandatory for the login, but to get the value to be displayed inside the launcher. The
endpoint knows the email since it requires the apikey in the headers in order to identify
who has made the request. It is not needed if the provided certificate is correct, since
there is no need to display the email where the code was sent because it was already done
in a previous login.

29

Listing 6 GET Response - /json/Ankama/v5/Shield/SecurityCode
200 OK
content-type:application/json
Requires apikey for request header, no request parameters

1 {

2 "domain": "a.b"

3 }

Finally, in order to request a certificate and complete the 2FA the next request is done:

Listing 7 GET Request - /json/Ankama/v5/Shield/ValidateCode
Requires apikey for request header, has request parameters

1 {

2 "game_id": 102,

3 "code": "2FA code of 5 capital letters or numbers",

4 "hm1": "10acb46fa2ddaf793b5f04a1960fb9f7",

5 "hm2": "7f9bf0691a40f5b397fadd2af64bca01",

6 "name": "launcher-PCUSERNAME"

7 }

As already said, ”game id” is a hardcoded value of 102 that is used by to identify the
launcher, ”code” is the written code inside the launcher form which is a combination of
5 capital letters and numbers that was received in the email. An example of such code is
”AB12C”. ”name” is the hardcoded string ”launcher-” concatenated with the computer
username. Finally, there are the fields hm1 and hm2, those values will be explained later
in the certificate chapter 5.1.3. Right now, the only relevant thing to mention is that
”hm2” is ”hm1” in the reverse order (read from right to left).

The response is:

Listing 8 GET Response - /json/Ankama/v5/Shield/ValidateCode
200 OK
content-type:application/json

1 {

2 "id": 127397326,

3 "encodedCertificate": "Encrypted base64 certificate"

4 }

Where ”id” is the certificate id that is used in the listing 4 and the encoded certificate is
a base64 string that the server generates and should be decrypted to create the certificate

30

hash. Once decrypted it seems to be just a base64 string that when decoded again it
contains random bytes or encrypted information that I was unable to decrypt any further
(The launcher does never decrypt it any further). Probably it is specific information such
as the user IP or random information to unique identify the certificate, since each time
the certificate is regenerated by the server it is different. For example, it might contain
the creation date, since the certificate varies on each creation or maybe a salt to create
those variations.

In case of providing an incorrect code, the response will be:

Listing 9 GET Response - /json/Ankama/v5/Shield/ValidateCode
403 error: Forbidden

1 {

2 "status": 403,

3 "message": "CODEBADCODE"

4 }

Once this last request is done, the certificate is encrypted and stored in the file system in
order to be used for future logins and avoid the 2FA process. The details about how it is
stored and how its hash is calculated will be given in the certificate chapter 5.1.3.

Listing 10 POST Request Body - /json/Ankama/v5/Account/SignOnWithApiKey
content-type:text/plain
Requires apikey for request header

1 {

2 "game": 102

3 }

31

Listing 11 POST Response Body - /json/Ankama/v5/Account/SignOnWithApiKey
200 OK
content-type:application/json

1 {

2 "id": "244538161828589379",

3 "id_string": "244538161828589379",

4 "account": {

5 "id": 123456789,

6 "type": "ANKAMA",

7 "login": "emial@a.b",

8 "nickname": "nick",

9 "tag": 1234,

10 "firstname": "a*****",

11 "lastname": "b*****",

12 "security": ["SHIELD"],

13 "lang": "es",

14 "community": "COMMUNITY_4",

15 "added_date": "2022-07-02T22:42:37+02:00",

16 "added_ip": "1.2.3.4",

17 "login_date": "2022-09-12T19:14:57+02:00",

18 "login_ip": "1.2.3.4",

19 "locked": "0",

20 "birth_date": "1993-05-10T00:00:00+02:00",

21 "parent_email_status": null,

22 "secure": null,

23 "secure_info": null,

24 "email": null,

25 "gsm": null,

26 "avatar_url": "https:\/\/avatar.ankama.com\/users\/167950465.png",

27 "fixed_country": null

28 },

29 "game": {

30 "game_id": 102,

31 "total_time_elapsed": 1021356,

32 "subscribed": false,

33 "first_subscription_date": null,

34 "expiration_date": null,

35 "free_expiration_date": null,

36 "ban_end_date": null,

37 "added_date": "2022-07-02T22:44:25+02:00",

38 "login_date": "2022-09-12T19:12:24+02:00",

39 "login_ip": "1.2.3.4",

40 "type": "NONE"

41 }

42 }

32

In the response ”id” and ”id string” can be found, which is the id of the request, it incre-
ments on each request to the API endpoint globally for all users that used the endpoint.
Despite having the normal and string version for id both are string and are always equal.
Next there is some information related to the account. The ”id” of the account that was
seen multiple types in other requests, the ”type” which is the account type since pre-
viously there were specific accounts games, email, nickname and its tag that is usually
displayed in game such as nick#1234, the security type (if shield is enabled or not), the
community in this case 4 which is the Spanish community, when the account was created
and with which IP followed by the last login and which IP was used for the login plus
some more extra info.

The next field is ”game” info (it is more launcher info that game info) where once again
the ”game id” with the value 102 which represents the launcher appears, if the user has
subscription, when was the first subscription and when will it expire, if the account is
banned, when the account was first used in the launcher and the last login in the launcher
(the previous login inside ”account” section is on the website portal not the launcher).

After getting the account information, the launcher will check the last accepted EULA
by calling the endpoint:

Listing 12 GET Response - /json/Ankama/v5/Account/Status
200 OK
content-type:application/json
Requires apikey for request header, no request parameters

1 [{

2 "id": "CGU",

3 "value": "9"

4 }]

The endpoint returns CGU which is a keyword for terms and conditions and the last
version of the terms and conditions that the account has accepted. If the launcher has a
newer terms and conditions value which is higher than the one returned by the API, the
terms will appear and after accepting them, a post will be done to the API to update this
number. The API endpoint to accept/update the terms was not documented since they
were not updated during the development of this thesis and since they are accepted on
account creation (in the signup form) this popup had never appeared.

Next, a request is done to an endpoint that will provide information about each game
played by the account:

33

Listing 13 GET Response - /json/Ankama/v5/Game/ListWithApiKey
200 OK
content-type:application/json
Requires apikey for request header, no request parameters

1 [{

2 "game_id": 1,

3 "total_time_elapsed": 132719,

4 "subscribed": false,

5 "first_subscription_date": null,

6 "expiration_date": null,

7 "free_expiration_date": null,

8 "ban_end_date": null,

9 "added_date": "2022-08-07T20:42:25+02:00",

10 "login_date": "2022-10-11T18:47:39+02:00",

11 "login_ip": "1.2.3.4",

12 "type": "FREEMIUM"

13 }]

In this case, we get one element in the array which has ”game id” of value ”1”. This
number identifies the game Dofus since it is the only one this account had played. With
a fresh new account, the array is empty. We can see how much time was spent in Dofus,
when the first subscription was done, if the account was banned for this game, the last
used IP for the game Dofus, if we have a subscription (in this case we do not since we are
”FREEMIUM”)...

The next request provides you with a token in order to authenticate in the Ankama
Launcher chat:

Listing 14 GET Request - /json/Ankama/v5/Account/CreateToken
Requires apikey for request header, has request parameters

1 {

2 "game": 99,

3 "certificate_id": "",

4 "certificate_hash": ""

5 }

The game id 99 corresponds to the chat, this was deduced by checking the Ankama
Launcher source code after unpacking it and seeing a hardcoded message to this endpoint
with a 99 and a catch error printing in the log ”[CHAT] cannot get game Token 99 for
chat”.

The response is:

34

Listing 15 GET Response - /json/Ankama/v5/Account/CreateToken
200 OK
content-type:application/json

1 {

2 "token": "daf492a39bac4e94be7ead5c5f54c630"

3 }

Following the workflow, we have start session with API key:

Listing 16 GET Request - /json/Ankama/v5/Game/StartSessionWithApiKey
Requires apikey for request header, has request parameters

1 {

2 "session_id": 244538161828589379,

3 "server_id": "",

4 "character_id": "",

5 "date": ""

6 }

The ”session id” is the id received in the response 11, the other parameters are empty
since is the launcher and not a game, so there is no server nor character.

Listing 17 GET Response - /json/Ankama/v5/Game/StartSessionWithApiKey
200 OK
content-type:application/json

1 3202899816

Finally, the last request is done:

35

Listing 18 POST Request Body - /json/Ankama/v5/Account/SendDeviceInfos
content-type:text/plain
Requires apikey for request header

1 {

2 "session_id": 244538161828589379,

3 "connection_type": "ANKAMA",

4 "client_type": "STANDALONE",

5 "os": "WINDOWS",

6 "device": "PC",

7 "partner": "",

8 "device_uid": "ba2a629a-337a-161e-ffb0-20d3d787fbe9"

9 }

As already explained, ”session id” is the id that was obtained in the response 11. Most pa-
rameters are hardcoded such as ”connection type”, ”client type”, ”device” and ”partner”.
”os” will depend on the operating system, the values are: ”WINDOWS”, ”MACOS” and
”LINUX”. Last but not least, ”device uid” is a value which is generated if it did not exist
previously and stored in C:\Users\UserName\AppData\Roaming\zaap\Settings which is
a JSON and the key that stores the value is ”DEVICE UID”. Its generation is totally
random, and it is a UUID that will be reused if it already exists.

The response is:

Listing 19 POST Response Body - /json/Ankama/v5/Account/SendDeviceInfos
200 OK
content-type:application/json

1

The answer has no content inside it, size 0 can be seen in the header.

This process is done always to log in the user, once all this process is done there is one
last step that consist of a request to CreateToken to get a token for the game 1 Dofus.
This request is done once Dofus is launched:

Listing 20 GET Request - /json/Ankama/v5/Account/CreateToken
Requires apikey for request header, has request parameters

1 {

2 "game": 1,

3 "certificate_id": 127397326,

4 "certificate_hash": "28a6788...44...8d7d2ff32b5ba8"

5 }

36

Listing 21 GET Response - /json/Ankama/v5/Account/CreateToken
200 OK
content-type:application/json

1 {

2 "token": "d1dff3c10e57718505ab7b37f9ccb3f6"

3 }

This last request includes the certificates, and the response is a token for Dofus.

This is the whole workflow done by the Ankama Launcher version 3.7.1 in order to launch
the Dofus game. The custom implementation of our launcher could be adapted for multiple
games since the common part is done always for all the games except the last message
which asks for a specific game token.

5.1.3 Certificate

The 2FA system uses a certificate to check if the computer is a valid computer that was
used previously for login. If there is no certificate or the certificate is invalid, the login
requires the 2FA process explained in the chapter 5.1.2.

In order to reverse engineer the certificate process and get more info in the parameters
used for the HTTPS REST API the Ankama Launcher app.asar file was unpacked. To
unpack it, the used command was:

Listing 22 Unpack .asar files

$ asar extract app.asar decompiled

To make the command 22 work NPM must be installed and then the package asar should
be installed with the command:

Listing 23 Install asar module

$ npm install -g asar

Once the file was unpacked, the most interesting file that could be seen was main.js with a
size of 6.8 MB. Opening this file resulted in a huge file with no white spaces nor new lines
since the file was minified. In order to format the code in a human-readable way, Visual
Studio Code was used with the extension Prettier. Once the file was properly formatted
it contained 175000 code lines. To be able to debug it with debugtron and learn easily the
workflow of the application by setting breakpoints the app.asar file should be repacked
with the properly formatted main.js otherwise the debugger would use the main.js found
in the original app.asar file that was minified.

The command used was:

37

Listing 24 Pack .asar files

$ asar pack .\decompiled\ app.asar

When you get the certificate from the request 8 it will be stored in the folder:
C:\Users\WDKRemoteUser\AppData\Roaming\zaap\certificate.

The name of the certificate will be .certif concatenated with the first 32 chars of the
SHA256 hash of the email’s account. An example for the email ”email@a.b” would be the
certificate name .certif067ebd11fc9e4ea4081749d3c149d341.

The content of the certificate is the JSON received in the response 8 with the addition of
another JSON key ”login”:”email@a.b”. There is no space between the keys or commas,
so the raw content is: {”id”:127397326,”encodedCertificate”:”...”,””login”:”email@a.b”}

However, the content of the certificates are not stored in raw, but they are encrypted. A
certificate file encrypted looks like:

f4aea188fdbca718569ddf95cb16f059|82f28fa0c...87b4a878

The first hexadecimal part up to ”|” is the IV used for the encryption as a hexadecimal
string, the part that remains at the right of the separator ”|” is the encrypted JSON.

The algorithm that is used to encrypt the JSON is aes-128-cbc and the result is converted
to a hexadecimal string. So the content of the file is:
IV in hexadecimal string + ”|” + the encrypted JSON in hexadecimal string

However, there is still a thing that is missing in order to encrypt and decrypt, the sym-
metric key used to retrieve and store the certificate. This key is generated with computer
specific information. This information is a concatenation of the following information:

1. Platform: ”win32”,”darwin” or ”linux”. Extracted from the Node.js call
os.platform().

2. Architecture: ”ia32” or ”x64”. Extracted from the Node.js call os.arch().

3. Machine GUID: an unique UUID generated during windows installation. The loca-
tion of the key is:
HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Cryptography
The key name is ”MachineGuid”. This key value is hashed with SHA256 and then
converted to hexadecimal string.

4. Logical CPU cores: The number of logical CPU cores. Extracted from the Node.js
call os.cpus().length.

5. The name of the CPU: The CPU name/model stored in the registry key:
HKEY LOCAL MACHINE\HARDWARE\DESCRIPTION\System\Ce-
ntralProcessor\0
The key name is ”ProcessorNameString”

The concatenation of this information and the usage of ”,” between each one to delimit
them is the string provided to the MD5 hash function that will give a 16 bytes hash.

38

This hash is the one used as symmetric key for the encryption of the JSON inside the
certificate file.

The certificate hash used in some requests, like in request 4 is calculated with the following
process:

1. The hm1 and hm2 (the reverse string of hm1) are generated.

2. After decrypting the certificate with the process explained before, the key encoded-
Certificate is decoded from base64 to raw.

3. A decrypt is done to the decoded base64 using aes-256-ecb with hm2 as key.

4. A hash is done using SHA256 with the concatenation of hm1 with the decrypted
encodedCertificate key.

5. This hash is converted to hexadecimal and is what it will be sent in the requests.

Finally, the only thing remaining related to certificates is hm1 and hm2. As already said,
hm2 is the reverse string of hm1, but how hm1 is obtained was never explained. In order
to obtain it, the process used is similar to the one used for obtaining the key for the JSON
certificate encryption. It is a concatenation of:

1. Platform: ”win32”,”darwin” or ”linux”. Extracted from the Node.js call
os.platform().

2. Architecture: ”ia32” or ”x64”. Extracted from the Node.js call os.arch().

3. Machine GUID: an unique UUID generated during windows installation. The loca-
tion of the key is:
HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Cryptography
The key name is ”MachineGuid”. This key value is hashed with SHA256 and then
converted to hexadecimal string.

4. Username: The name of the user that is logged in Windows. Extracted from the
Node.js call os.userInfo().username.

5. OS Version: Operating system version, for Windows 10 it is 10. Extracted from the
Node.js call os.getOsVersion().

6. Computer RAM: The amount of RAM the OS has. Extracted from the Node.js call
os.getComputerRam().

The concatenation is done without separators, and the first 32 bytes of the SHA256 are
picked and converted to a hexadecimal string.

5.1.4 Ankama Launcher and Dofus communication

Once the launcher executes Dofus it does it by passing some command line arguments,
those are:

• –port=26116, which is the port that Ankama Launcher is listening on, waiting for
Dofus instances to connect to it in order to send information to the instances.

39

• –gameName=dofus

• –gameRelease=main, which is always main for the release version.

• –instanceId=1, a number that increments by one each time a Dofus instance is
launched without closing the launcher.

• –hash=c26d73c1-3b0c-4915-9a01-947f77fbee58, a random UUID used as password/i-
dentify the game instance that is connecting to the launcher when the game estab-
lishes the connection in the launcher port.

• –canLogin=true

The first thing Dofus does is connect to the Ankama launcher port that was given in the
command line arguments and sends the hash to the launcher. In fact, the hash is sent
in each message Dofus sends to the launcher in order to identify the session. Once the
handshake is done Dofus asks for information to the launcher, this information is:

1. autoConnectType, which can be set in Dofus settings inside the launcher. 0 for
server selection, 1 for character selection, 2 for going inside the game directly.

2. Language, in this case ”es” for Spanish.

3. connectionPort, the port to use for reaching the authentication server of Dofus, can
be 5555 or 443.

4. Users info that is detailed in the JSON 25.

5. API Auth token, the token that was requested in the request 21 for Dofus.

6. Ankama launcher/Zaap needs update, a message that will be true or false depending
if the launcher needs update or not.

40

Listing 25 Account information

1 {

2 "id": 123456789,

3 "type": "ANKAMA",

4 "login": "email@a.b",

5 "nickname": "nick",

6 "firstname": "a*****",

7 "lastname": "b*****",

8 "nicknameWithTag": "nick#1234",

9 "tag": 1234,

10 "security": [

11 "SHIELD"

12],

13 "addedDate": "2022-07-02T22:42:37+02:00",

14 "locked": "0",

15 "parentEmailStatus": null,

16 "avatar": "https://avatar.ankama.com/users/167950465.png",

17 "isErrored": false,

18 "isMain": true,

19 "active": true,

20 "gameList": [

21 {

22 "isFreeToPlay": false,

23 "isFormerSubscriber": false,

24 "isSubscribed": false,

25 "totalPlayTime": 132719,

26 "endOfSubscribe": null,

27 "id": 1

28 }

29],

30 "acceptedTermsVersion": 9,

31 "all": {

32 "CGU": "9"

33 }

34 }

After this process, Dofus has requested all the necessary information and the Ankama
launcher work finishes here.

5.2 Dofus

In this section, how the sniffer was done and how the network protocol of Dofus works will
be detailed. Each message will be explained in detail, talking about what they contain

41

and the size of the contained elements. Using a combination of the sniffer and reading the
decompiled ActionScript3 code, the network protocol was deduced, and the sniffer was
improved to parse each message instead of outputting the raw bytes of the message.

5.2.1 Sniffer

The sniffer was developed by using Frida, to be more precise it was developed by using the
Python bindings in order to make a quick development. In order to inject the JavaScript
code, the Python code needed to be attached to the Dofus process. However, this was a
problem since Dofus could not be spawned by the Python code in a suspended state since
it was the launcher the one that had to spawn it to provide a valid hash identifier for the
launcher connection and information interchange.

In order to solve this issue a trick was done, since Dofus starts a connection with the
launcher, and it does not start the connection with the game authentication server until
it finishes the queries to the launcher a breakpoint was set in the on connect event inside
the launcher. This was done by using debugtron and Dofus remained hanged out until a
manual continue was done inside the debugger to proceed with the execution and answer
the Dofus query. With this done, the code injection could be done before establishing the
connection with the game authentication server.

The next steep was hooking the recv and send functions inside the ws2 32.dll by using
the Interceptor API provided by Frida. In those hooks the returned value was read, if it
was different from 0 or an error code, the buffer content was read by the amount of the
returned value (the amount of sent or received bytes) and sent to the Python application.

However, really estrange values were received in the Python code. After using Charles
and Process Hacker the problem could be found. Dofus asks for some images and string
to HTTPS endpoints in order to display them. Those request were of no interest for the
sniffer, so they should be filtered.

To filter those sockets two more functions were hooked, those were getaddrinfo and connect
both from ws2 32.dll. getaddrinfo is used to resolve DNS names, so by looking at the DNS
name, we could obtain the IP of the authentication server and the game server. With those
IPs, in the connect function, the socket handler that was returned for those IPs was saved
and later used in the send and recv to filter the calls that used those socket handlers.

With those four injections, we had all the messages that were sent to the authentication
and game server, so they were sent as raw bytes to the Python code for further parsing.

5.2.2 Network Messages

All network packets use big-endian endianess, and they have headers which are common
for all in order to parse them and identify the message type.

42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MessageID ST

Size, ST=1 ...Size, ST=2 ...Size, ST=3 Payload

Header

Payload

...

Figure 8: Header for received messages.

The first 14 bits are the messageID that is used to know how to parse the message payload.
The next 2 bits determine the bytes of the size. Possible values are 0 if the message does
not contain anything apart from headers (so there is no need of payload size), otherwise
its value will be 1, 2 or 3 so the Size is composed of 1, 2 or 3 bytes (respectively). The
Size field can vary in size from nonexistent up to 3 bytes, as explained, and it determines
the Payload size (in bytes). So if the Size is 270, ST will be 2 since Size value can not be
fitted in one byte and the Payload size is 270. Notice in the example that Size does not
include the headers size.

For sent messages, the header varies a little.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MessageID ST

Message sequence ID

Size, ST=1... ...Size, ST=2... ...Size, ST=3 Payload

Header

Payload

...

Figure 9: Header for sent messages.

As we can see after the first 2 fields (16 bits) there is a 4 bytes new field. This field indicates
the number of the message in the global scope of the communication. An example of this
is if we send a message before receiving any message after establishing communication
with the server this field will be one, if we send another one it will be 2, if now we receive
2 messages those message will not have this header field since it is only on sent message.
However, if now we send one more message, the value of this field should be 5 since there
were a total of 4 messages in the communication and this is the 5th one. All the other fields
remain equal. If the connection is swapped from authentication server to game server or
vice versa, the counter keeps incrementing and is not restarted.

43

Before going into each message, it is important to know the data types that we can find
inside the payload and how to read them.

• UTF-8 String : A string of 8 bits characters. In order to know the String length its
size it is written before the characters as 16 bits integer and its value determines
the String bytes.

• ByteArray : An array of bytes, similar to UTF-8 String, but the bytes might not
represent printable characters. Usually prefixed with the size however, the size has
not a fixed size itself, but it is a VarInt.

• VarInt : An integer from −214 to 214 − 1. The advantage against an integer despite
having a lower size than a normal integer is that for little numbers the bytes used for
storing the value are less, so the packet size is reduced. The method used to know
the integer size in bytes is using the most significant bit of each byte as a flag. If it
is 0 it means that there is not a next byte, if it is one it means that you have at least
another byte to read. If it is not the first byte to be read, the values are shifted left
by 7 for each already read byte and added to the total. Since the valuables bits in
order to compute the integer itself are all but the most significant bit in each byte,
a logical AND is applied with the mask ”0111111” before shifting or adding them
to the total amount. If the 4th byte has the flag of next byte, it will throw an error.

• Byte: A byte.

• Unsigend Byte: An unsigned byte.

• Boolean: A byte that if it is different from 0 would be considered True, if it is 0 it
will be false.

• Int : A 4 bytes integer.

• Double: Double precision floating point number using the standard IEEE 754[45].

• Short : A 2 bytes integer.

• Unsigned Short : An unsigned 2 bytes integer.

• VarLong : An integer from −228 to 228 − 1. The applied system is the same that for
VarInt but reading more bytes without throwing exception, up to 8 bytes.

• VarShort : An integer from −27 to 27 − 1. The applied system is the same that for
VarInt but reading less bytes without throwing exception, up to 2 bytes.

• VarUhShort : An integer up to 214 which is unsigned. The applied system is the same
that for VarInt but reading less bytes without throwing exception, up to 2 bytes.

• VarUhInt : An integer up to 228 which is unsigned. The applied system is the same
that for VarInt.

Now the protocol messages will be documented in the order they are received or sent. A
general overview can be seen in the figure 10.

44

Client AuthServer GameServer

ProtocolRequired

HelloConnect

Identification

ClientKey

LoginQueueStatus

CredentialsAcknowledgement

IdentificationSuccess

ServersList

ServerSelection

SelectedServerData

NewSocketConnection

HelloGame

AuthenticationTicket

BasicAck

AuthenticationTicketAccepted

Figure 10: Dofus network protocol overview.

On connection to the authentication server, two messages are received, the first one is the
protocol version and the second one contains information for later identifying yourself and
create the IdentificationMessage. With some of the data received in the HelloConnectMes-
sage the IdentificationMessage is created. It has the Credentials field which is the most

45

important one since it contains the information for authenticating the user and later be
used for authenticating yourself in the game server. After sending the IdentificationMes-
sage a key randomly generated (once per installation) which uniquely identifies the client
is sent to the server. The server will send how many people are waiting for authentication
before you. CredentialsAcknowladgment will be sent as ACK for IdentificationMessage if
the Credential field is well-formed. Once the authentication is done, the Identification-
Success message will be sent to the client. Once logged in, the ServersListMessage will be
received in order to know the game server’s state and list. The client will have to select
a game server by sending a ServerSelectionMessage and the authentication server will
send the information for reaching the selected game server including also a ticket/token
to perform the game server authetnication.

Once you get the game server data, a new connection will be done to the game server and
the connection with the authentication server will be closed. When reaching the game
server, a HelloGameMessage will be received and the client will send an Authetnica-
tionTicketMessage which will use some information which was sent to the authentication
server in IdentificationMessage and some of the information received in SelectedServer-
DataMessage (the ticket/token). Finally, a generic ACK will be received and later a
specific ACK for the AuthenticationTicketAcceptedMessage which will finish the authen-
tication with the game server.

All the detailed information about each message will be detailed next.

Listing 26 RCV - ProtocolRequired

1 Version: UTF-8 String #The protocol version, example: 1.0.3-3b7e331

Listing 27 RCV - HelloConnectMessage

1 Salt: UTF-8 String #Salt used in IdentificationMessage

2 KeyLength: VarInt

3 Key: ByteArray

Key: Signed key to use in order to encrypt credentials in IdentificationMessage. This key
will be verified with a hardcoded key inside DofusInvoker.swf.

46

Listing 28 SND - IdentificationMessage

1 FlagByte: Byte

2 Major: Byte #Version major

3 Minor: Byte #Version minor

4 Patch: Byte #Version Patch

5 Build: Int

6 BuildType: Byte #0 for release

7 Language: UTF-8 String #es

8 CredentialsLength: VarInt

9 Credentials: ByteArray

10 ServerID: Short #ID to the server to autoconnect to

11 SessionOptionalSalt: VarLong #Always 0

12 FailedAttempts: Short

13 Attempt: VarShort

FlagByte: A byte where the bit 0 means if autoconnect is desired (autoselect a game
server without human intervention), the bit 1 means useCertificate (always 0) and the bit
2 means useLoginToken which is always 1 since it is the only way to log in now.

Credentials: Concatenation of Salt (message 27), AES256 random generated key, username
length (always 3) username which is ” ” (3 white spaces) when using token login and the
token. This concatenation is encrypted with the Key from the message 27 after verifying
it.

Attempt: An array of VarShort with FailedAttempts attempts (time for each attempt
until error was given).

Listing 29 SND - ClientKeyMessage

1 Key: UTF-8 String

Key: Random key generated on first launch and stored. If already exists, it will be read.
Used to detect multiaccounts.

Listing 30 RCV - LoginQueueStatusMessage

1 Position: UnsignedShort #Your position in the queue

2 Total: UnsignedShort #Total people in the queue

LoginQueueStatusMessage can be received multiple times to update your position in the
queue graphically.

47

Listing 31 RCV - CredentialsAcknowledgementMessage

1

Received when the server recognizes the key used for encryption. No content.

Listing 32 RCV - IdentificationSuccessMessage

1 FlagByte: Byte

2 Login: UTF-8 String #user/email

3 Nickname: UTF-8 String

4 TagNumber: UTF-8 String #Tag of nickname

5 AccountId: Int

6 CommunityId: Byte

7 SecretQuestion: UTF-8 String

8 AccountCreation: Double #Time of account creation

9 SubscriptionElapsedDuration: Double

10 SubscriptionEndDate: Double

11 HavenbagAvailableRoom: UnsignedByte #Game storage chest

FlagByte: The bit 0 indicates if the user has rights (Privileged), the bit 1 means if the
user has console rights, bit 2 means if it was already connected, bit 3 means that it was
a forced login (maybe after an error pressing the retry button activates it ?)

SecretQuestion: Secret question for password recovery / identify yourself without email
access when making administrative tasks with the game technical support.

48

Listing 33 RCV - ServersListMessage

1 ServersLength: UnsignedShort

2 Servers:

3 [

4 {

5 FlagByte: Byte

6 ServerID: VarUhShort

7 Type: Byte #Server game mode

8 Status: Byte #Server population

9 Completion: Byte #Is server full?

10 CharactersCount: Byte #Your characters

11 CharactersSlots: Byte #Max characters

12 Date: Double #When server was opened

13 },

14 {..},

15 ...

16]

17 CanCreateNewCharacter: Bool

FlagByte: The bit 0 indicates if the server is monoaccount, bit 1 marks if the server is
selectable.

Listing 34 SND - ServerSelectionMessage

1 ServerID: VarUhShort

Listing 35 RCV - SelectedServerDataMessage

1 ServerID: VarUhShort

2 Address: UTF-8 String #DNS name

3 PortsLength: UnsignedShort

4 Ports:

5 [

6 PortNumber: VarUhShort #The ports the server listens on

7]

8 CanCreateNewCharacter: Bool

9 TicketLength: VarInt

10 Ticket: ByteArray #Used later to authenticate in game server

Now the DNS of the server should be resolved. With the IP and one of the ports returned
in the port list, the connection to the game server can be established. Once connected to
the game server, another 26 message will be received.

49

Listing 36 RCV - HelloGameMessage

1

No content.

Listing 37 SND - AuthenticationTicketMessage

1 Language: UTF-8 String #es

2 Ticket: UTF-8 String

Ticket: The ticked received in message 35 which should be decrypted before sending it
with the AES256 key generated for message 28.

Listing 38 RCV - BasicAckMessage

1 Sequence: VarUhInt #Incremental for each ACK

2 LastPacketId: VarUhShort #The ID of the message the ACK is for

Listing 39 RCV - AuthenticationTicketAcceptedMessage

1

We have finally established connection with the game server. No content.

After this point other messages are sent and received but the handshake and authenti-
cation with the game server was done, so the scope of the thesis in the Dofus network
protocol ends here.

5.3 Custom Launcher & Client

In order to apply and verify all the recompiled information, the custom Ankama launcher
and the custom client were developed, applying and emulating all the things explained in
the chapters 5.1 and 5.2. Both programs were implemented in the same application. This
was done in order to avoid writing the communication process between both applications
by opening a socket (original Ankama way of sharing the info as explained)/pipe/shared
memory...

The application was written in Rust and there were a few problems during its development
since some modules found in Node.js (for example the SO module) gave the information
in one way and the libraries/native calls used in Rust gave it in another even if the final

50

information was the same. An example of this can be the call to os.platform() which
returns ”win32” for Windows, but the library used in Rust returns ”windows”.

The decision to write it in Rust was due to multiple reasons. The most important ones
were: the ability to be compiled straight forward for multiple OS, it is a high performance
compiled language which rivalize in speed with C, it has multiple on compilation checks
that force you to write secure code (memory and data races secure code) otherwise it will
not compile.

By using multiple libraries, especially for the cryptographic intensive parts and for making
the HTTPS requests, the program was developed fast despite the need to learn Rust before
starting the project since I personally had not used it before.

The program was created as a Rust library in order to split the code and if necessary
generate a dynamic-link library to use in other languages. The library only exports a public
object called Launcher which only has 2 public methods, the creator which receives the
username and password and the launch dofus method.

Figure 11: Custom client main function.

Figure 12: Launcher attributes.

51

The Launcher contains some basic information such as the username and password, mul-
tiple hardcoded values that are used for requests such as launcher version or game id.
There is another section with some variables that will be null on creation and after calling
some methods they will be filled with information returned by the API responses. The
most important variable in this section is dofus token since it is the needed token for Do-
fus authentication server. It can also be seen a variable containing an object created for
encapsulating the certificate creation, encryption, detection and decryption. Finally, some
auxiliary variables such as a state variable used to know the next steep, some variables
related to the library used for the requests and a struct of type HwInfo used to store the
hm1, hm2 and related values such as RAM amount, CPU model...

Figure 13: Launcher HTTPS REST API functions.

The launch dofus function will proceed with the execution of the HTTPS REST API
requests encapsulated, each one in a private method. They will modify the attributes of
the Launcher, filling them with the values returned to the responses. As it can be seen,
depending on the create api key response the state of the launcher will be AnkamaSecured
or AnkamaUnsecured (if a valid certificate was sent or not). This will lead to the execution

52

of the shield methods if needed to complete the 2FA.

Once the whole process is done, the method dofus client will be called, which will emulate
the Dofus client by creating a DofusClient object. DofusClient encapsulates the attributes
needed for the game client, and it has just a public method to run the whole client
emulation.

Figure 14: The function that will create a Dofus ”client”.

The run method establishes connection with the authentication server. It will parse the
network messages, reading their content and answering accordingly to those messages by
sending our own ones. When a received message contains information that will be used
later, the field is stored in DofusClient attributes. Once you are authenticated it will
change DofusClient state to Authenticated breaking the loop. Finally, it will connect to
the game server and the parse function will change the used socket for sending the data
to the game socket since the state of the client is bigger or equal to Authenticated, so the
authentication socket will no longer be used. Now the parsed messages are received and
send to the game server and an infinite loop is done until an error appears that will break
the looped parse message finishing the execution.

53

Figure 15: Dofus client emulation.

The parse message method parses the headers of the network message and reads the
payload. With the message ID and payload, the method message will be called. Inside
this method a specific parsing function is called depending on the message ID, reading the
payload content, storing or modifying the necessary fields of DofusClient and answering
to the server if needed. If an unknown message ID is received, the state will change to
Error and the process will finish.

54

6 Project methodology and planification

6.1 Project methodology

The thesis has used a SCRUM[46] methodology in order to plan and divide the tasks.
SCRUM is one of the most common methodologies in the agile practices, it consists on
iterative steeps to develop a software for small teams. The approach is to divide the work
that has to be done into sprints, which consist of a time windows that goes from two weeks
to four weeks. In order to be able to react to unexpected problems faster, the chosen time
windows for sprints were 2 weeks.

Inside a sprint, the job that has to be done is divided in granular tasks that are distributed
among the team members. Moreover, there might be daily meetings in order to exchange
progress between the team members or comment problems that might appear, especially
if a task is blocking another one that has to be done by another member.

When the sprint finishes, an analysis of the problems and check of the performance is
done to see if there was too much work or not enough. In case some external factor has
caused an estimation time modification, it is also analyzed. With all this information the
next sprint is planed taking into consideration all the previous sprint analysis.

Figure 16: Scrum methodology. Source: [46]

Due to the team being limited to the director and the student, a full SCRUM approach
was not followed. Instead, the daily meetings were omitted since they were not necessary.
Only a periodical meeting at the end of the sprint was done to check how the development
was progressing. If there were doubts or problems the Microsoft Teams tool was used to
contact instantly and if further discussion was needed a call was done with the same tool.

55

6.1.1 Tools

The tools used to communicate while using this methodology were:

• Microsoft Teams: Used to contact instantly by chat and when needed calls. The
meetings were arranged using the application calendar, since it integrates with Mi-
crosoft Windows account.

Figure 17: Microsoft Teams Logo. Source: [47]

• WhatsApp: Used when a fast contact was needed, but teams was not available,
especially when in mobile phone.

Figure 18: WhatsApp Logo. Source: [48]

6.2 Project planning

Planification is crucial to organize and choose the task to be performed, the time estima-
tion of each task and see how the project progress while it is in development. With the
defined tasks, it allows setting deadlines and arrange them in order to see if the scope is
too big and arrange them to fit them the best in time.

The content of this section would be the initial planification in contrast with the final plan-
ification, explaining the deviations that happened and why did they happen. The thesis
was started on June and expected to finish it on middle of October. The approximated
time used in the project is five months.

6.2.1 Initial planning

The figure 19 shows the initial planification of the project before deviations. The columns
represent 1 sprint which consist of 2 weeks.

56

Phases of the Project

June July August September October

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Analysis Phase

100% completeLauncher

100% completeDofus

100% completeVPN/Proxy Detection
RE Launcher

100% completeREST API

100% completeCertificate

100% completeCommunication

100% completeCustom Launcher
RE Dofus

100% completeStatic Analysis

100% completeSniffer

100% completeCustom Client
Reporting Phase

100% completeReport

100% completePresentation

Figure 19: Initial Gantt diagram of the project

57

In the Gantt figure 19 we have some overlapped tasks which means that they were done
at the same time since they were complementary or have a direct relation.

Detailed times are given in table 1:

Estimated time
Task Time (hours)

Analysis Phase 50
Launcher 15
Dofus 15
VPN/Proxy Detection 20
RE Launcher 220
REST API 30
Certificate 50
Communication 20
Custom Launcher 120
RE Dofus 200
Static Analysis 30
Sniffer 80
Custom Client 90
Reporting Phase 65
Report 50
Presentation 15
Total 535

Table 1: Initial estimated time

As it can be seen tasks time does not correspond to the extent they appear in the Gantt
figure 19, this is because depending on the week more or less time could be used for the
thesis. This lead to tasks that the initial estimation consist of 30 hours in 2 weeks and
others of 20 hours in one week.

As it can be seen the custom launcher and the custom client tasks are done in parallel in the
Gantt moreover they are the biggest tasks in time cost. This is because while the reverse
engineering was done the implementation was done at the same time with the extracted
information, so any reverse engineering task implied also time in the development tasks
(Custom Launcher and Client).

Another thing to mention is that in the reverse engineering parts, some of the time was
invested in learning the usage of the tools and frameworks that were applied for the reverse
engineering.

6.2.2 Final Planning

During the realization of the project, some tasks suffered from time deviations since some
problems arose and other tasks were done faster than expected. This lead to a total

58

deviation of 30 hours. The final Gantt diagram in figure 20 includes the deviations, and
the table 2 contains the comparison of original times and final times. The following section
will go deeper in the deviations and their reasons.

59

Phases of the Project

June July August September October

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Analysis Phase

100% completeLauncher

100% completeDofus

100% completeVPN/Proxy Detection
RE Launcher

100% completeREST API

100% completeCertificate

100% completeCommunication

100% completeCustom Launcher
RE Dofus

100% completeStatic Analysis

100% completeSniffer

100% completeCustom Client
Reporting Phase

100% completeReport

100% completePresentation

Figure 20: Final Gantt diagram of the project

60

As it can be seen, there were changes in VPN/Proxy Detection since it was started earlier.
Also, the Certificate tasks required more time than expected and so it happened with the
Sniffer, this last one due to a change on the game in an update.

A detailed comparison in time can be seen in the table 2 which contrasts the planed and
final time invested in tasks.

Task Estimated (hours) Final (hours)
Analysis Phase 50 60
Launcher 15 15
Dofus 15 15
VPN/Proxy Detection 20 30
RE Launcher 220 235
REST API 30 30
Certificate 50 65
Communication 20 20
Custom Launcher 120 120
RE Dofus 200 210
Static Analysis 30 30
Sniffer 80 90
Custom Client 90 90
Reporting Phase 65 65
Report 50 50
Presentation 15 15
Total 535 570

Table 2: Final project dedication time

The VPN/Proxy Detection task gave problems and after investing an extra time the
found solution was not the expected one, but it was not mandatory for the project.
Reverse engineering the launcher gave problems in the certificate since the verification
was problematic and there were some troubles with cryptographical libraries. Finally, in
the ”Reverse Engineering Dofus” section a game update gave some problems with the
Sniffer and the Custom Client, but only the Sniffer required more extra time.

6.2.3 Modification and deviations from initial planification

Project planning is a must in almost any project, it helps to identify the tasks that have
to be done, the deadlines and blocking tasks and estimate the duration of the tasks and
the final duration of the project. However, it is also frequent to suffer from deviations due
to internal or external factors, for example a task that requires more time once you see
the scope when you start it or for example for being ill. This leads to re-plan the tasks
and timing.

In this section, the deviations will be explained in greater detail and analyze why did they
happen.

61

• Analysis Phase: This task went as expected until VPN/Proxy Detection was
reached. Due to some measures that the developers took in order to prevent bot
farms, some IPs of VPNs were banned. The problem was that this protection was
improved during the last years using an externalized service and this information
was unknown during the planing.

• Reverse Engineering Launcher: The planification took into account possible
problems in this section, especially in the custom launcher implementation. However,
multiple problems appeared with the cryptographical libraries that were used for
the certificate task and the verification process took longer than expected since the
debugging was complicated.

• Reverse Engineering Dofus: The static analysis task went smoothly, it was fin-
ished in less time than expected, and some time was invested in further analyzing
things more deep than expected initially. The Sniffer task had some troubles, espe-
cially with the framework that was used, since I was not familiar with some of the
features. However, this was not what created the deviation but once the sniffer was
finished some days after, there was a game update which changed multiple things
in the network protocol. This took time to fix the sniffer with the changes of the
new update.

• Reporting Phase: The reporting phase went as expected. The report was finished
before expected and some time was invested in peer review, which was not initially
considered apart from the director checks.

62

7 Budget

All projects have a monetary cost, this is also the case of this thesis. In this section, the
economical cost of the thesis will be estimated as if it was developed in a real business. I
will consider direct and indirect costs along with a contingency budget.

7.1 Direct Costs

The direct costs are those expenses that are directly linked to a project or department.
Direct costs are for example: the costs related to labor, materials, licenses, equipment,etc.
Two costs will be explained in this section, the human and material costs.

7.1.1 Human Costs

Human costs are the ones related to the salary of the people involved in the project.
This project has been developed by a student alongside the guidance of a professor. The
human resources in a business would be a senior developer/reverse engineer and a project
manager.

The salary of a developer is estimated as 21€/h and the salary of the project manager is
estimated to be 30€/h.

Role Hours Salary per
hour (€/h)

Cost

Developer 570 21 11.970
Director 50 31 1550

Total: 13.120

Table 3: Human costs estimation.

7.1.2 Material Costs

Materials cost contemplate the Hardware and Software needed for the development. These
costs include the desktop used for development, and some Software licenses for paid ap-
plications. The Software that requires a license/payment in order to work are: VMWare
Pro Workstation and Charles.

Product Price (€) Quantity Amortized
period

Estimated
cost

Custom Desktop 2000 1 3 years 333,30
VMWare Pro Workstation 200,50 1 - 200,50
Charles 51,4 1 - 51,40

Total: 585,20

Table 4: Material costs estimation.

63

Adding human and material cost leads to a total of 13.705,20 euros.

Type of cost Estimated cost (€)
Human costs 13.120,00
Material costs 585,20
Total: 13.705,20

Table 5: Total direct costs estimation.

7.2 Indirect Costs

Indirect costs are those that are not directly related to a specific product, but the whole
process of developing. So basically they are the costs of running the business itself.

An example of indirect costs are: office rent and expenses, electricity, internet...

Since the work was developed from home, only internet and electricity will be considered

Product Price Estimated cost
(€)

Electricity 0,26027 €/kWh 115,99
Internet 29 €/month 174,00

Total: 289,99

Table 6: Indirect costs estimation.

7.3 Contingency Costs

Since a project can have deviations and problems that can affect a normal development of
the project, setting a contingency measure is a must. The established contingency margin
for the project is 15% of the total project cost to deal with those problems.

7.4 Final Budget

Finally, the total cost of the project was:

Type of cost Estimated cost (€)
Direct costs 13.705,20
Indirect costs 289,99
Subtotal 13.995,19
Contingency measures (15%) 2.099,28
Total: 16.094,47

Table 7: Total costs estimation.

64

8 Future Work / Improvments

Due to the scope of the thesis and time limit, there are some improvements and future
work that could be done. Moreover, some parameters of the requests and the messages
are not yet fully investigated (not know what they are used for).

8.1 Improve the custom launcher

Some improvements could be done in the custom launcher. One of those improvements
would be to dynamically change the user-agent in the request to the last version of the
launcher automatically, by querying the endpoint that tells you the latest launcher version.
By doing so, you could maintain the custom launcher ”updated” automatically.

Make the launcher accept the new EULAs would be another improvement that could be
done, however in order to do so an EULA update is needed to see the endpoint/s used
to update the EULA. The other option would be to further reverse the code to find the
endpoint/s.

8.2 Improve the custom client

Further, extending the protocol is an obvious improvement, since right now the client
would only reach the game server and complete the authentication. Implementing the
character creation, the chat messages and the movement messages would be a good way
to continue the work. Further improvements would contain the network messages used for
fighting, develop an AI to fight the enemies or the messages used for NPC interactions.

Usually 2 to 3 content updates are done during the year, adding new content and changing
the network protocol by adding new messages or rearranging the messages IDs. In order
to automate the update process in the custom client, a parser could be done that it would
search for the decompiled code and update the values in the custom client. Another option
would be also to analyze all the messages to see if a new one was added or maybe one
was removed.

Adding support for multiple accounts would be another good feature to add, and by how
the code is organized an easy one.

Creating a configuration file to parametrize some values of the launcher or the client would
be a good way to enable or disable some features, such as using always the same AES256
key for debugging purposes.

8.3 Sniffer GUI

Adding a graphical user interface to the sniffer would help to display the values instead of
displaying them in the command line. Adding the possibility to filter messages or collapse
the contents of the payloads that you are not interested in would help the user to be more
efficient searching the desired content.

65

8.4 Custom server development

With the acquired knowledge, the creation of a custom server would be possible. This task
does not continue directly anything mentioned in the thesis. However, with the knowledge
obtained by analyzing the original client, it would be possible to guess what the server
does on its side and replicate it by creating a custom server. The original client could
be used to make the verifications that the server is doing the proper things. However,
since no code (source or decompiled) would be available, this task would be harder than
creating a custom client.

66

9 Conclusions

Considering all the things exposed in this memory, I can reach the conclusion that the
goal of the thesis was archived. The whole Ankama Launcher protocol was explained
and implemented, the game network protocol was documented, and a custom client was
developed that successfully authenticates with the game server.

The validity of the information gathered in this thesis can be verified by using the custom
launcher and client and checking that it works properly for Dofus 2.64 and the Ankama
Launcher 3.7.1.

The sniffer works properly and display all the message’s information (even some more
messages after the game server authentication is done).

There is scope to improve the work by further implementing more network protocol and
create a full custom client, nonetheless at the begging of the thesis I was already aware
that reverse engineer the whole network protocol would probably be an impossible task
due to time limits. However, the acquired knowledge in the thesis would greatly speed up
the process of reverse engineering the whole game, since now I am familiarized with most
of the important game files and the frameworks and tools used in the thesis.

67

References

[1] Read S. Gaming is booming and is expected to keep growing. This chart tells you all
you need to know. 2022. https://www.weforum.org/agenda/2022/07/gaming-
pandemic-lockdowns-pwc-growth (last visited on October 2022).

[2] Nolibois Q.Global Gaming Industry Value Now Exceeds $300 Billion, New Accenture
Report Finds. 2021. https://newsroom.accenture.com/news/global-gaming-
industry-value-now-exceeds-300-billion-new-accenture-report-finds.

htm (last visited on October 2022).
[3] Cano N. Game Hacking: Developing Autonomous Bots for Online Games. No Starch

Press, 2016. isbn: 9781593276690.
[4] Phillips J. DEF CON 19 - Hacking MMORPGs for Fun and Mostly Profit. https:

//www.youtube.com/watch?v=QoNdhlLPX-g (last visited on October 2022).
[5] Dofus, the Tactical MMORPG. https : / / www . dofus . com / en (last visited on

October 2022).
[6] Ankama. https://www.ankama.com/en (last visited on October 2022).
[7] ¡Estreno del servidor oficial Alma el 11/07/07! https://www.dofus.com/es/

mmorpg/actualidad/noticias/265732-estreno-servidor-oficial-alma-11-

07-07 (last visited on October 2022).
[8] México - Salario Mı́nimo. https://datosmacro.expansion.com/smi/mexico (last

visited on October 2022).
[9] DOFUS 2.0 has launched! https : / / www . dofus . com / en / mmorpg / news /

announcements/271980-dofus-2-launched (last visited on October 2022).
[10] RedoxBot. https://web.archive.org/web/20140920214325/http://redoxbot.

net/ (last visited on October 2022).
[11] RedoxBot. https://web.archive.org/web/20141218033216/http://redoxbot.

net/ (last visited on October 2022).
[12] FlatyBot. https://flatybot.net/ (last visited on October 2022).
[13] FlatyBot NPC API. https://docs.flatybot.net/v/us/api/trajets/npc (last

visited on October 2022).
[14] SnowBot. https://www.snowbot.eu/ (last visited on October 2022).
[15] Djundik P. SteamDB Dofus. https://steamdb.info/app/254300/ (last visited on

October 2022).
[16] Install the Ankama Launcher. https : / / support . ankama . com / hc / en - us /

articles/360017472154-Install-the-Ankama-Launcher (last visited on Oc-
tober 2022).

[17] Electron. https://www.electronjs.org/ (last visited on October 2022).
[18] Node.js. https://nodejs.org/en/ (last visited on October 2022).
[19] The Chromium Projects. https://www.chromium.org/chromium-projects/ (last

visited on October 2022).
[20] asar - Electron Archive. https://github.com/electron/asar/ (last visited on

October 2022).
[21] ActionScript 3.0 Reference for the Adobe Flash Platform. https://help.adobe.

com / en _ US / FlashPlatform / reference / actionscript / 3 / index . html (last
visited on October 2022).

68

https://www.weforum.org/agenda/2022/07/gaming-pandemic-lockdowns-pwc-growth
https://www.weforum.org/agenda/2022/07/gaming-pandemic-lockdowns-pwc-growth
https://newsroom.accenture.com/news/global-gaming-industry-value-now-exceeds-300-billion-new-accenture-report-finds.htm
https://newsroom.accenture.com/news/global-gaming-industry-value-now-exceeds-300-billion-new-accenture-report-finds.htm
https://newsroom.accenture.com/news/global-gaming-industry-value-now-exceeds-300-billion-new-accenture-report-finds.htm
https://www.youtube.com/watch?v=QoNdhlLPX-g
https://www.youtube.com/watch?v=QoNdhlLPX-g
https://www.dofus.com/en
https://www.ankama.com/en
https://www.dofus.com/es/mmorpg/actualidad/noticias/265732-estreno-servidor-oficial-alma-11-07-07
https://www.dofus.com/es/mmorpg/actualidad/noticias/265732-estreno-servidor-oficial-alma-11-07-07
https://www.dofus.com/es/mmorpg/actualidad/noticias/265732-estreno-servidor-oficial-alma-11-07-07
https://datosmacro.expansion.com/smi/mexico
https://www.dofus.com/en/mmorpg/news/announcements/271980-dofus-2-launched
https://www.dofus.com/en/mmorpg/news/announcements/271980-dofus-2-launched
https://web.archive.org/web/20140920214325/http://redoxbot.net/
https://web.archive.org/web/20140920214325/http://redoxbot.net/
https://web.archive.org/web/20141218033216/http://redoxbot.net/
https://web.archive.org/web/20141218033216/http://redoxbot.net/
https://flatybot.net/
https://docs.flatybot.net/v/us/api/trajets/npc
https://www.snowbot.eu/
https://steamdb.info/app/254300/
https://support.ankama.com/hc/en-us/articles/360017472154-Install-the-Ankama-Launcher
https://support.ankama.com/hc/en-us/articles/360017472154-Install-the-Ankama-Launcher
https://www.electronjs.org/
https://nodejs.org/en/
https://www.chromium.org/chromium-projects/
https://github.com/electron/asar/
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

[22] Adobe formely macromedia. https://web.archive.org/web/20051231224902/
http://www.macromedia.com/ (last visited on October 2022).

[23] Adobe. https://www.adobe.com/ (last visited on October 2022).
[24] Adobe - Adobe AIR. https://web.archive.org/web/20210101222142/https:

//get.adobe.com/air/ (last visited on October 2022).
[25] Media Collage - Flash Player Version History. https://www.mediacollege.com/

adobe/flash/player/version/ (last visited on October 2022).
[26] Russinovich M. Process Monitor. https : / / learn . microsoft . com / en - us /

sysinternals/downloads/procmon (last visited on October 2022).
[27] Steven G. Process Hacker. https://processhacker.sourceforge.io/index.php

(last visited on October 2022).
[28] Charles Web Debugging Proxy. https://www.charlesproxy.com/ (last visited on

October 2022).
[29] Wireshark. https://www.wireshark.org (last visited on October 2022).
[30] Petř́ık J. JPEXS Free Flash Decompiler. https://github.com/jindrapetrik/

jpexs-decompiler (last visited on October 2022).
[31] Debugtron. https://github.com/bytedance/debugtron (last visited on October

2022).
[32] Ravn̊as O. Frida. https://frida.re/ (last visited on October 2022).
[33] QuickJS JavaScript Engine. https://bellard.org/quickjs/ (last visited on

October 2022).
[34] Ravn̊as O. Frida Architecture. https://frida.re/docs/hacking/ (last visited on

October 2022).
[35] SocksCap64. 2022. https://sourceforge.net/projects/sockscap64/.
[36] Amazon Web Services. https://aws.amazon.com (last visited on October 2022).
[37] Dofus Download. https://www.dofus.com/en/mmorpg/download (last visited on

October 2022).
[38] TOR Project. https://www.torproject.org/ (last visited on October 2022).
[39] ExpressVPN. https://www.expressvpn.com/ (last visited on October 2022).
[40] F-Secure FREEDOME VPN. https://www.f-secure.com/en/home/products/

freedome (last visited on October 2022).
[41] Mullvad VPN. https://mullvad.net/en/ (last visited on October 2022).
[42] TorGuard. https://torguard.net/ (last visited on October 2022).
[43] IP Intelligence. 2022. https://getipintel.net/free- proxy- vpn- tor- ip-

lookup/#web.
[44] guifi. https://guifi.net/ (last visited on October 2022).
[45] IEEE Standard for Floating-Point Arithmetic. https://web.archive.org/web/

20160806053349/http://www.csee.umbc.edu/~tsimo1/CMSC455/IEEE-754-

2008.pdf (last visited on October 2022).
[46] scrum.org. What is Scrum? https://www.scrum.org/resources/what-is-scrum

(last visited on October 2022).
[47] Microsoft Teams. https://en.wikipedia.org/wiki/Microsoft_Teams (last

visited on October 2022).
[48] WhatsApp. https://en.wikipedia.org/wiki/Microsoft_Teams (last visited on

October 2022).

69

https://web.archive.org/web/20051231224902/http://www.macromedia.com/
https://web.archive.org/web/20051231224902/http://www.macromedia.com/
https://www.adobe.com/
https://web.archive.org/web/20210101222142/https://get.adobe.com/air/
https://web.archive.org/web/20210101222142/https://get.adobe.com/air/
https://www.mediacollege.com/adobe/flash/player/version/
https://www.mediacollege.com/adobe/flash/player/version/
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://processhacker.sourceforge.io/index.php
https://www.charlesproxy.com/
https://www.wireshark.org
https://github.com/jindrapetrik/jpexs-decompiler
https://github.com/jindrapetrik/jpexs-decompiler
https://github.com/bytedance/debugtron
https://frida.re/
https://bellard.org/quickjs/
https://frida.re/docs/hacking/
https://sourceforge.net/projects/sockscap64/
https://aws.amazon.com
https://www.dofus.com/en/mmorpg/download
https://www.torproject.org/
https://www.expressvpn.com/
https://www.f-secure.com/en/home/products/freedome
https://www.f-secure.com/en/home/products/freedome
https://mullvad.net/en/
https://torguard.net/
https://getipintel.net/free-proxy-vpn-tor-ip-lookup/#web
https://getipintel.net/free-proxy-vpn-tor-ip-lookup/#web
https://guifi.net/
https://web.archive.org/web/20160806053349/http://www.csee.umbc.edu/~tsimo1/CMSC455/IEEE-754-2008.pdf
https://web.archive.org/web/20160806053349/http://www.csee.umbc.edu/~tsimo1/CMSC455/IEEE-754-2008.pdf
https://web.archive.org/web/20160806053349/http://www.csee.umbc.edu/~tsimo1/CMSC455/IEEE-754-2008.pdf
https://www.scrum.org/resources/what-is-scrum
https://en.wikipedia.org/wiki/Microsoft_Teams
https://en.wikipedia.org/wiki/Microsoft_Teams

	List of Figures
	Listings
	List of Tables
	Acknowledgements
	Introduction
	Project goal
	Motivation

	State of the art
	RedoxBot
	FlatyBot
	SnowBot

	Background
	Ankama Launcher
	Dofus
	Process Monitor
	Process Hacker
	Charles
	Wireshark
	JPEXS Decompiler
	Debugtron
	Frida

	Project Development
	Ankama Launcher
	VPN/Proxy detection system
	HTTPS REST API Endpoints
	Certificate
	Ankama Launcher and Dofus communication

	Dofus
	Sniffer
	Network Messages

	Custom Launcher & Client

	Project methodology and planification
	Project methodology
	Tools

	Project planning
	Initial planning
	Final Planning
	Modification and deviations from initial planification

	Budget
	Direct Costs
	Human Costs
	Material Costs

	Indirect Costs
	Contingency Costs
	Final Budget

	Future Work / Improvments
	Improve the custom launcher
	Improve the custom client
	Sniffer GUI
	Custom server development

	Conclusions

