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ABSTRACT

Abstract

Financial stress indices are a type of indicators that seek to provide an overall vision about the

risk situation of the financial system, by comprising into a single statistic a set of individual

indicators that measure, in some way, the existing risk within a certain segment of the financial

system. In this project we explore the interdependencies of systemic risk between the different

European powers and between the three main global financial powers: China, Europe and United

States. Furthermore, we implement a Long Short-Term Memory (LSTM) network to predict such

financial stress indices at three different time horizons, and compare our findings with classical

econometric approaches such as ARMA-GARCH models.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The role of the financial system at a macro scale is critical, it has huge impact on the real economy and

its actions can have direct consequences on our daily lives. The constant development of an increasingly

globalized and interconnected world represents progress in many aspects, but it also brings with it many

complexities, dysfunctions and risks that can trigger very severe systematic crises, which can easily spread

between countries and cause periods of economic setback with strong consequences on our quality of life.

Identifying and monitoring factors that can explain the risks in which the financial system is immersed is a

key aspect to be considered by regulators and central banks to prevent potential crisis and avoid collapsing in

the economy.

Currently, there are many individual indicators that undertake this function, such as volatility series of stock

returns, interest rate spreads or ratios between financial quantities, which focus their attention on the risk

situation in which a certain market finds itself within the financial system. However, sometimes one can’t see

the forest for the trees; the poor performance of one of these indicators can lead to erroneous generalizations

about the overall state of the systemic risk, when it may well be that a particular event is simply the result of

the idiosyncrasy present in that segment and does not correspond to a deeper crisis.

To this extent, one may want to define what is the systemic risk. As stated in 2009 by the International Mon-

etary Fund (IMF), the Bank for International Settlements (BIS) and the Secretariat of the Financial Stability

Board (FSB), the systemic risk may be understood as:

“[. . .] risk of disruption to financial services that is (i) caused by an impairment of all or parts of

the financial system and (ii) has the potential to have serious negative consequences for the real

economy.” [1]

To assess this phenomenon, financial stress indices arise as a type of indicators that intend to give an overall

vision about the situation of the financial system. They are composite time series which are formed by the ag-

gregation of individual risk indicators from the major financial segments. They aim to cover as much relevant

information as it can be obtained from the markets and compress it into one unique indicator that summa-

rizes the current systemic risk level. However, these indicators are not exempt from their own complexities,
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CHAPTER 1. INTRODUCTION

opening up an interesting field of study within the branch of financial risk, which ranges from their own con-

struction methodology and statistical design to subsequent evaluations of their capacity to identify financial

stress events, their integration and interconnection with other macroeconomic series and other practical uses

with potential regulatory impact.

This project aims to contribute to the existing literature on financial stress indices, focusing on the indicator

designed in [2], named Composite Indicator of Systemic Stress (CISS). This indicator is recognized by the

largest European financial institutions and is currently being used by the European Central Bank, which reports

it daily for the greatest economic powers on the European continent, United States and China.

Our work is divided into two different research areas. In the first place, we carry out an analysis of the levels of

connectivity that these indicators present between different regions. Following the methodological framework

proposed in [3, 4], we exploit the so-called Connectedness measures and apply them over our time series of

study. The goal of this part is to determine what kind of relationships exist between the systemic risk of the

different European powers and between the three main global financial powers: China, Europe and United

States. Our approach allows us to address the following questions: what is the total risk connectedness level

of our financial network?, are there regions that have higher levels of interconnection than others?, what is the

directionality of the risk in each case?, are there regions that are net producers of financial stress and others

that are net receivers? In addition, we must consider whether these linkages are static, or if, on the contrary,

the levels of connectedness change dynamically over time. At what times does risk transmission become more

acute? How do specific events in one region affect the levels of systemic risk in others?

Second, we build a neural network to predict CISS series at different time horizons. Specifically, we use a net-

work with Long Short-Term Memory (LSTM) units, which belongs to the Recurrent Neural Networks (RNN)

family and contains memory modules designed to model sequential data. Through a Bayesian optimization

process on the hyperparametric space, we determine which configurations are best suited to our experimental

problem. In addition, we fit classic autoregressive models of the ARMA-GARCH type on the same sample.

The objective is to determine whether the CISS series have some type of temporal structure, linear or non-

linear, that allows us to predict future values of systemic risk in the different regions considered. In this sense,

this part consists of two steps, firstly, data engineering and design of the LSTM network and, secondly, com-

parison with respect to the classical econometric approaches commonly used in the financial industry. Our

approach allows us to address the following questions: what limitations do neural network models have in the

field of financial series?, in what situations do we find them to be advantageous?, what is the relative gain of

such models with respect to the ARMA-GARCH approach?, what are the most predictable regions?, and how

is the error term distributed as we increase the time horizon?

Hence, the interest of this work can be seen from three different perspectives. From the financial point of view,

since we obtain results on the connectedness levels of the financial risk of different regions, and we also predict

future values of the series. From the scientific point of view, since we contribute to the existing literature on

financial stress indicators, applying methodologies that are proven to be useful in other fields of research but

have not yet been extensively investigated in this one. And last, from the educational point of view since this
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CHAPTER 1. INTRODUCTION

project gives us the possibility of enriching our knowledge around time series and the state-of-the-art of deep

learning techniques for prediction.

Next, we briefly detail the structure of the work. Section 2 introduces the methodology and the theoretical

framework used on this project. Subsection 2.1 pivots around the Connectedness measures and the approach

used to enable for time-varying dependence. Subsection 2.2 explains how the LSTM network works. We

start by introducing neural networks for giving some context and we proceed to describe the architecture of an

LSTM layer. Subsequently, we comment on the weight optimization procedure and on the main characteristics

of the learning stage. Section 3 focuses on the CISS data extracted from the European Central Bank (ECB).

The statistical design of the indicator is explained in Subsection 3.1 and, later, we present a descriptive analysis

of the series in Subsection 3.2. We closure the section by identifying historical stress events and discussing

whether these are reflected in the CISS indexes. In Section 4, we present the results obtained. Subsection 4.1

shows the results regarding the systemic risk connectedness. In order, we analyse the connectedness within

the European Area and later between China, United States and Europe as a whole. Subsection 4.2 shows the

forecasts results. First, we present the Benchmark models for comparison. We proceed by describing how we

engineered our LSTM network. Last, we present our results on the test sample, for the different time horizons

considered. Section 5, Conclusions, summarizes the work done and ends up with a discussion on further work

and future lines of research.
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Chapter 2

Methodology

2.1 Connectedness

Consider a set of time series to which we want to assess its interdependencies and features of its linkages, from

pairwise connections to system-wide levels of interconnection. Correlation-based measures can give an idea of

the relationship between two variables, but they are limited to capture only linear and pairwise dependencies,

plus they fail to give information about the directionality of the linkage. Other measures can arise from

approximating models to the system of time series, which account for these possible interconnections. For

instance, assuming that the system can be well modelled by an N-variable VAR(p) process, then the model

contains all the features regarding interdependences between the time series. However, since many time series

may compose the system and this can be dependent up to its p lagged past values, the number of parameters

rapidly increases and the direct interpretation of the model by simply examining its coefficients becomes

complex and generally a very useless practice.

To overcome this situation, in [3,4] the authors develop a generalized connectedness framework, related to the

idea of computing the shares of variances that can be associated to the forecasting error of one variable due

to shocks on the other variables. In that sense, the concept of connectedness [5] can be defined and measured

consistently, providing with useful insights of directional linkages between individual variables, relations on a

more global scale, and even enabling for time varying levels of connectedness.

In what follows, we describe the methodology presented above, that will be applied on Section 4 (Results)

on the systemic risk indicators, to evaluate the possible spillovers of risk between the financial systems of the

different regions studied.
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2.1.1 Generalized variance decomposition

Consider we model our N-variable time series system xt with a VAR(p) process:

xt =
p

∑
i=1

Φixt−i + εt , with εt ∼ (0,Σ) (2.1)

Here εt is a N-dimensional independently and identically distributed vector of disturbances with 0 expected

value and covariance matrix Σ, and Φi is the N×N coefficient matrix associated to the i-th lagged value of xt .

One can express the VAR(p) process in its infinite moving average representation:

xt =
∞

∑
i=0

Aiεt−i, (2.2)

where Ai represents the N×N coefficient matrix associated to the i-th lagged disturbances of xt : εt−i. The Ai

matrices can be directly obtained from the VAR(p) model, as they follow the recursion:

Ai =
p

∑
j=1

Φ jAi− j, with A0 = IN×N and Ai = 0 for i < 0 (2.3)

From the vector moving average representation, one can compute the H-step-ahead variance decomposition

matrix DH = [dH
i j ] with i, j = 1,2, . . . ,N. This procedure allows us to decompose the variance of the forecast-

ing error (at horizon H) into parts depending upon coming from the different variables of the system. That is,

the i j-th element of the matrix (dH
i j ) represents the fraction of variance in variable i of the H-step-ahead fore-

casting error that comes due to shocks in variable j. However, since the estimated VAR(p) does not generally

holds orthogonality, meaning that the disturbances tend to be contemporaneously correlated, we can’t simply

apply orthogonal variance decomposition, but rather we make use of the generalized variance decomposition

approach [6, 7]. Therefore, following the literature, we compute the i j-th element of the generalized variance

decomposition matrix of the H-step-ahead forecast error as:

dgH
i j =

σ
−1
j j ∑

H−1
h=0 (e′iAhΣe j)

2

∑
H−1
h=0

(
e′iAhΣA′hei

) (2.4)

where ei is a unit vector of dimension N, with value 1 on position i and 0’s elsewhere, Σ is the covariance

matrix of the error vector ε and σ j j stands for the standard deviation associated to the error term of the j-th

variable.

As the VAR(p) shocks may not be orthogonal, the set of the H-step-ahead forecasting error variances affecting

variable i do not necessarily add one. Therefore, to ease interpretations, we normalize the dH
i j elements row-

wise:
˜dgH
i j =

dgH
i j

∑
N
j=1 dgH

i j

(2.5)
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CHAPTER 2. METHODOLOGY

It immediately follows the next properties:

N

∑
j=1

˜dgH
i j = 1 ;

N

∑
i, j=1

˜dgH
i j = N (2.6)

2.1.2 The Connectedness Table

From the generalized variance decomposition framework described above, we can define the connectedness

measures, summarized in the Connectedness Table (equation 2.7). Note that we have dropped, for simplicity,

the generalized (g) and normalized (∼) marks from the notation but will be referring to them implicitly from

now on.

x1 x2 · · · xN From Others (CH
i←•)

x1 dH
11 dH

12 · · · dH
1N ∑

N
j=1 dH

1 j, j ̸= 1

x2 dH
21 dH

22 · · · dH
2N ∑

N
j=1 dH

2 j, j ̸= 2
...

...
...

. . .
...

...

xN dH
N1 dH

N2 · · · dH
NN ∑

N
j=1 dH

N j, j ̸= N

To Others ∑
N
i=1 dH

i1 ∑
N
i=1 dH

i2 · · · ∑
N
i=1 dH

iN
1
N ∑

N
i, j=1 dH

i j

(CH
•← j) i ̸= 1 i ̸= 2 i ̸= N i ̸= j

(2.7)

The Connectedness Table contains the H-step-ahead variance decomposition matrix DH = [dH
i j ] in its upper-left

block. DH is asymmetric, since its variance decomposition components are generally directional dH
i j ̸= dH

ji .

The pairwise directional connectedness from j to i can be defined as:

CH
i← j = dH

i j (2.8)

This is a measure of connectedness between two individual variables of the time series system. It measures

which proportion of the variance in i is attributable to the source of error coming from j.

Similarly, we can define the net pairwise directional connectedness between two variables i and j as:

CH
i j =CH

j←i−CH
i← j (2.9)

Here, if CH
i j > 0 implies that the variable i transmits greater shocks on the error variance to j than it receives

from it, whereas in the CH
i j < 0 case, variable j is the one having biggest influence among the two.

Now, consider the sum of variance decompositions elements that i receives, excluding itself. That is, the total

directional connectedness from others to i:

CH
i←• =

N

∑
j=1
j ̸=i

dH
i j (2.10)

6



CHAPTER 2. METHODOLOGY

Note that it satisfies CH
i←• = 1− dH

ii . When this value is low, then the major part of the variance in the

forecasting error comes from its own variance decomposition element, meaning that the variable is highly

exogenous with respect to the others. On the other hand, higher values of CH
i←• occurs when i is easily

influenced by the realized innovations from other variables.

Analogously, we define the total directional connectedness to others from j:

CH
•← j =

N

∑
i=1
i̸= j

dH
i j , (2.11)

which in this case indicates the total amount of variance shocks transmitted by j, and is not bounded to 1.

From here, the net total directional connectedness can be computed for each variable, to evaluate whether i is

a net receiver (CH
i < 0) or a net sender (CH

i > 0) of shocks:

CH
i =CH

•←i−CH
i←• (2.12)

Last, one can define a macro-scale measure of connectedness that somehow summarizes the degree of inter-

connection the system has as a whole. By accounting for all the cross-variance shares, that is, the non-diagonal

terms of the H-step-ahead variance decomposition matrix, we obtain the total connectedness measure:

CH =

∑
N
i, j=1
i ̸= j

dH
i j

∑
N
i, j=1 dH

i j
=

1
N

N

∑
i, j=1
i ̸= j

dH
i j (2.13)

In some sense, the measures described here can be seen as an analogy of a network of exchange of goods

between regions or villages, where individual regions are be both receivers and providers of those goods. Each

region sells and buys a different number of products to each other individual region (pairwise connectedness),

counting at the end the total amount of products they have sold or bought (total directional connectedness).

The total connectedness quantifies in a single value, the gross level of exchanges achieved among the whole

network, and it is unique, as for a closed system, the total amount of shipped goods must equal the total

amount of received goods.

2.1.3 Time varying Connectedness and Predictive Horizon H

Since now, we defined the connectedness measures we are going to use. Obtaining those measures, by estimat-

ing a VAR(p) model to our set of time series and computing the variance decomposition matrix, will give us an

idea of the unconditional or mean levels of interconnection that our system exhibit. However, one can argue

that the interdependences between the time series may change during the period of study, and therefore, we

should allow for time-varying connectedness measures to better capture the dynamic nature of the interrelated

time series. To do so, we must enable the variance decomposition matrix to be time dependent, and since its

7
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calculation is given by the estimated coefficients of the approximating model VAR(p), we have no choice but

to let the estimated coefficients of the underlying time-series model to change over time. We address this issue

by using a rolling-window approach, consisting of estimating the VAR parameters by taking only the most

recent w observations in time and calculating the connectedness measures for each sub-period, then rolling the

window of width w one step forward and repeating the process until the end of our sample.

This method requires the choice of the width of the rolling window w, that is subject to influence our results.

Generally, one will expect smoother variations of the connectedness measures as window width increases,

whereas sharper variations for small values of w. In a similar way, the choice of the predictive horizon H may

also have an effect on our outcome. As pointed in [5], the connectedness measures do not necessarily need to

be robust to the choice of H, but rather different values of H will lead us to explore the different relationships

between the time series more on the “long-” or “short-run”. In any case, the appropriate choice of these

parameters will depend on the actual experimental scenario and on being consistent with the objectives to be

met.

2.2 LSTM Neural Network

Artificial neural networks (ANN) is a topic that has raised great interest in the world of statistics and data

science in last decades [8]. This has been achieved thanks to recent advances in computational science and to

the ability of computers of processing larger amounts of data and performing mathematical operations more

and more efficiently.

Deep learning (DL) models are a type of ANN’s with an internal structure with several processing layers,

which results in a great capacity for abstraction and generalization over the initial input data [9]. Most of

these DL models focus on predictive tasks (supervised learning). Its fundamental structure (Deep Multi-Layer

Perceptron models or DMLP) consists of a network of connected neurons (or nodes), which are divided into

three types of layers. The input layer is the layer where the data is ingested into the model. The number of

explanatory variables (feature space) defines the number of neurons in the input layer. The hidden layers are

the intermediate layers, which are stacked one on top of the other. A hidden layer receives the information

or input vector (x) from the neurons of the previous layer and performs a (typically) linear transformation of

the inputs according to the parameters (or weights) of each neuron, which can be expressed in vector form as

z =Wx, where (W ) represents the weight matrix. The outcome is transformed by a non-linear function called

activation function σ(z), which produces an output that is transmitted to the neurons of the next layer. The

result of the subsequent transformations is sent to the output layer, which returns the final output of the model.

Information in DMLP models flows forward in the network, from the input layer to the output layer. To train

the model (that is, adjust the internal parameters of each neuron), a loss function f is defined that depends

on the output obtained in the output layer and on the real expected value for the given input. As the tuple

“input-real expected value” are known in the training phase and the output depends on the parameter space Ω,

8
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it can be seen that the loss function can be expressed essentially as f (Ω). The error (precisely, how the error

on the loss function changes when we infinitesimally modify the set of parameters) propagates in the opposite

direction to the flow of information (backpropagation of the error, i.e., the error flows from the output layer to

the input layer) and is calculated using classical partial derivative calculus theory.

The gradient of the loss function ∇ f (Ω) (with respect to the parameter space) indicates the direction of max-

imum change of the loss function with respect to the infinitesimal change of the components of Ω. The idea

behind the training of the model consists of iteratively modifying the parameters of Ω by a term proportional

to the gradient of the loss function (−α∇ f (Ω)), that is, in the direction of the maximum error decrease. The

positive constant (α) that multiplies the gradient is the so-called learning rate and determines how much the

parameters are modified at each step. Under certain conditions, the process converges to a local minimum at

Ω for which the error is (locally) minimized.

Summarizing, a deep learning model is fundamentally a network of computational units that concatenates

activation functions over linear transformations of the inputs of the previous layer. Interestingly, structures

with several hidden layers and multiple neurons in each layer generate a large parameter space, capable of

extracting complex structures from the initial data and generalizing the salient aspects of the input to optimize

the predictive capacity of the model.

Apart from its multiple applications in speech recognition, visual object recognition, object detection or in

many other diverse fields such as biostatistics or medicine [10], deep learning has also found its place in

financial applications. In particular, the prediction of financial time series is of great interest both in the

academic world and in the finance industry due to its potential economic impact.

For prediction problems with sequential data, such as language translation, handwriting recognition or predic-

tion of financial time series, there is a type of DL models called Recurrent Neural Networks (RNN) that takes

into account the dependency structure of the data with respect to their previous lagged values [11]. However,

classical gradient-based algorithms applied to plain RNN models are often inefficient, as error backpropaga-

tion over time tends to either explode or vanish [12]. This leads to the non-convergence of the parameter

space towards a local minimum, or in other situations, to the limitation of these models to learn relationships

between data that are far apart in the temporal sequence (long-term dependencies) [13]. To solve this problem,

the Long Short-Term Memory (LSTM) model proposes a specific architecture for the network nodes that al-

lows for constant error flow backpropagation over time (constant error carrousel CEC) by means of truncated

gradient-based algorithms for training its parameters [13, 14].

In this project, we focus on the prediction of financial time series with LSTM neural networks, since they

allow capturing the temporal structure of the data both in the long and short term and have proven to be the

reference RNN model within the financial sector [9, 15]. In the following sections, we describe the architec-

ture of an LSTM network and present the most relevant aspects regarding the optimization methods and the

hyperparameter space.

9
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2.2.1 LSTM architecture

The fundamental component of a LSTM network is the LSTM unit. Analogous to the standard DMLP net-

works, a set of LSTM units form a LSTM layer. By stacking LSTM layers in between the input layer and the

output layer, we form the LSTM network.

However, in distinction to the neuron of a standard DMLP set-up, the LSTM unit has a more complex structure

(see Figure 2.1) which allows for a time dependent cell state with an internal memory capable of storing

past information and updating itself with new one. To do so, the input is passed through the LSTM unit

sequentially, in form of timesteps t.

Figure 2.1: Schematic design of an LSTM unit

The structure of an LSTM layer can be described mathematically in vectorized form, for each timestep t. Four

components build each LSTM unit and return the vector cell state ct and the output vector ht at time t. These

are the forget gate ft , the input gate it , the output gate ot and the candidate values c̃t to enter the cell state.

They are fed at each timestep with the input vector xt and the past output vector of the LSTM layer ht−1, as

follows:
ft = σ (Wf xt +U f ht−1 +b f )

it = σ (Wixt +Uiht−1 +bi)

ot = σ (Woxt +Uoht−1 +bo)

c̃t = tanh(Wc̃xt +Uc̃ht−1 +bc̃)

(2.14)

where Wj and U j are weight matrices and b j are bias vectors, with j = { f , i,o, c̃}. They are time-independent

and conform the parameter space of the LSTM layer. Note that, ft , it , ot and c̃t , are nothing else than linear

combinations between xt and ht−1 (zt, j =Wjxt +U jht−1 +b j) squeezed into the differentiable, monotonically

increasing functions σ(z) and tanh(z):

σ(z) =
1

1+ e−z ; tanh(z) =
ez− e−z

ez + e−z (2.15)

These functions are called activation functions, which basically bound the input z that are given into the (0,1)

10
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range for the sigmoid function σ(z) and into the (-1,1) range for the hyperbolic tangent function tanh(z).

They apply element-wise to the vector z = (z1, . . . ,zn), that is f (z) = ( f (z1), . . . , f (zn)). Hence, the three

gates compute a value, for each LSTM unit of the layer at timestep t, between 0 (the gate is fully closed

and the information going through that gate is blocked) and 1 (the gate is fully open and the information

going through that gate will flow). Note that the gates can also be partially open (intermediate values), as the

activation functions are continuous. In contrast, the candidate values for the cell state c̃t contain values from

-1 to 1 for each LSTM unit of the layer.

The cell state is then updated based on the new candidate values c̃t that arrived at timestep t and on the lagged

cell state ct−1, as follows:

ct = ft ⊙ ct−1 + it ⊙ c̃t (2.16)

where ⊙ represents the Hadamard-product (i.e., element-wise multiplication between the components of the

two vectors). The interpretation of the gates becomes clearer here. The forget gate actuates over the lagged

cell state. Information of past cell state will be removed (forgotten) from the actual state if the forget gate

is closed (values near to 0), whereas ct will store information of the past as long as the forget gate is open.

Likewise, the input gate actuates over the candidate values c̃t and decides whether to add this new information

on the current cell state.

The current cell state ct is then used to compute the output vector of the LSTM layer:

ht = ot ⊙ tanh(ct) (2.17)

In this case, the output gate ot determines whether the (squeezed) information of the cell state at time t will

be propagated forward on the neural network.

2.2.2 Weight optimization and hyperparameter tunning

The number of parameters of an LSTM network depends on the number of layers and the number of nodes

per layer of the network. Consider a hidden layer with N LSTM units that receives input from the previous

layer from M different units. Therefore, the matrices Wj associated with the input vector xt have dimension

N×M (for j = { f , i,o, c̃}), while the matrices U j, associated to the past output vector ht−1, are square N×N

matrices, since they refer to the elements of the same layer. Finally, the bias vectors b j have dimension N.

Since there are four internal components within each unit ( ft , it ,ot , c̃t) the number of parameters for the hidden

layer i is expressed as:

layeri = 4NiMi +4N2
i +4Ni (2.18)

For a network with k hidden layers, the total number of network parameters is simply the sum of the parameters

of the hidden layers added to the number of parameters of the output layer:

# param = # output+
k

∑
i

layeri (2.19)
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The output layer is typically formed by a dense layer of neurons as in plain DMLP networks. Hence, the

number of parameters of the output layer is: # output = NoutMout + Nout . Note that the number of input

features Mi of the layer i corresponds to the number of units of the previous layer Ni−1, that is, Mi = Ni−1.

As it can be seen, the number of parameters in an LSTM network scales quadratically with the number of

neurons per layer and linearly with the number of layers. Together with the number of variables (features)

of the input layer and the number of outputs that we want the model to return, these factors determine the

specific architecture of the LSTM network and define the parameter space. Once the weights are fixed, the

model is uniquely defined: it computes an output every time it is fed with an input. The weights are the

so-called internal or structural parameters of the network. Initially, they are fixed in a random way to be later

recursively updated in the learning phase.

For the adjustment of the internal parameters, it is necessary to firstly define a loss function. For predictive

regression problems (as opposed to classification problems), where one wants to predict the quantitative con-

tinuous value of a target variable (or set of variables) Y , it is common to use the mean square error (MSE) or

the mean absolute error (MAE) loss functions. For a sample of n observations, with real (target) value Yi and

predicted value Ŷi, with i ∈ (1,2, . . . ,n), these are calculated as follows:

MSE =
1
n

n

∑
i=1

(
Yi− Ŷi

)2 ; MAE =
∑

n
i=1

∣∣Yi− Ŷi
∣∣

n
(2.20)

Generally, in order to achieve high levels of abstraction and generalization over the input data, deep learning

models require several internal layers and a considerable number of neurons. Since the number of internal

parameters in the model scales very quickly, this often becomes a high number and therefore large amounts

of data are required to be able to estimate the parameters robustly and obtain good predictive performance.

This implies a very intensive computational cost when calculating the loss function for the entire sample and

recursively updating the parameters. To overcome this situation, the stochastic gradient descent SGD (or

mini-batch gradient descent) algorithms are implemented, where the training sample is divided into batches

of size n (n = 1 for pure stochastic gradient descent), and the weights are updated based on the respective

gradients of each different subsample that is taken in each iteration. With this technique, the learning process

is computationally more efficient and with an adequate batch size it is possible to control the variance of the

estimated parameters and a stable convergence towards a minimum is usually obtained [16].

Hence, we define the batch size as the number of samples processed before updating the internal model

parameters. Additionally, epochs are defined as the number of complete passes that the learning algorithm

does through the whole training dataset. These two factors are set in the training phase of the model, and

largely determine the training time. The larger the batch size, the longer it takes to update the parameters

and therefore the learning becomes slower. Meanwhile, for small batch sizes, the convergence to a minimum

occurs earlier, although the stability in the convergence is not ensured and the variability in the estimated

parameters is typically higher. Regarding the number of epochs, the higher they are, the more times the

algorithm will go through the training sample, which implies a higher time cost, but at the same time a greater

ability to refine the minimum of the loss function.
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At present, there are multiple gradient-based algorithms for optimizing the model weights and minimizing the

cost function. For LSTM networks, as well as for other recurrent type networks, the error flow must also be

propagated through previous timesteps. In such cases, Backpropagation Through Time (BPTT) algorithms

are used, which are computed in a similar way to standard DMLP models but extending the partial derivative

chain rule back in time [17]. Specifically, for this project, we have opted to use the Adam algorithm [18].

This is an optimization method that estimates the first and second moments of the stochastic gradient (with a

subsample of batch size n) of the loss function and adds a bias correction to both estimators. This has proven

to be a computationally efficient optimization method, suitable for a large majority of problems and frequently

outperforming vanilla SGD and other reference algorithms such as RMSprop or Adagrad [16, 18].

In contrast to the internal parameters, the factors related to the training of the model (such as the optimizer

choice, the learning rate) and the factors that describe the structure of the network (its depth, the number of

units per layer, the choice of the activation function) constitute the hyperparameter space. The hyperparameter

space is rather a (potentially infinite) list of possible models and architectures that can be assembled for a

given input-output tuple, and each one of these models contains a series of weights which are fitted in training

through the specified learning process. Given a loss function, the objective is not only to fit the internal

parameters of a particular specific model, but also to estimate which of all the possible models that can be

specified is the one that minimizes the loss function (i.e., to find the best possible set of hyperparameters).

In conclusion, the predictive performance of neural networks depends on many aspects. Mainly, the elements

that most influence the results are the quality of the information provided by the explanatory variables, the

network architecture, the optimization methods used and the choice of the hyperparameters. However, these

factors are usually limited by the experimental context of the problem and frequently the results are a trade-off

between the desired precision threshold and the computational and economic cost of training such complex

models.
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Chapter 3

Data

Our study is based on the CISS series of financial stress for the countries or regions that we detail below. On

one side, we have chosen the CISS series for France, Germany, Portugal, Spain, England and Italy, since they

represent the financial stress of the main countries of the European region. On the other side, we have also

selected the CISS series for China, the United States and the CISS for the Euro area as a whole, as they are

three of the regions with the greatest global economic and financial activity. In the next section we will give

a brief introduction to the CISS indices and explain how they are built. After that, we present the data and its

main descriptive characteristics.

3.1 CISS construction

The Composite Indicator of Systemic Stress (CISS) is an index build in [2] which summarizes the levels of

stress of the financial system for a specific region. It belongs to the family of the financial stress indices

that aim to capture the conditions of instability of the financial system as a whole, by comprising into a

single statistic a set of individual indicators that each measure, in some way, the existing risk within a certain

segment of the financial system. These indicators have spread after the global financial crisis of 2007-2009, as

authorities and major financial institutions became aware of the need of such tools and instruments to measure

and monitor the health of the financial system. Apart from the CISS indicator, examples of such indices

are the St. Louis Fed Financial Stress Index (STLFSI3), the EMFSI proposed in [19] for emerging market

economies, the National Financial Conditions Index (NFCI) of the Federal Reserve Bank of Chicago, or the

European Financial Market Stress Index (EFMSI) [20].

The CISS indicator is currently being used and reported daily by the European Central Bank, and it is arguably

one of the preferred choices in the European area by financial authorities, regulators and major banks [21].

In what follows, we briefly describe its statistical design and methodology, extracted from the original papers

[2, 22].

The CISS is composed by a set of individual financial risk indicators (15 time series for most regions and 16

for the China CISS region). These indicators are categorized into one of the next five segments of the financial
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system, which are thought to be a good representation of it: the money market, the bond market, the equity

market, financial intermediaries, and the foreign exchange market. Each of these 5 segments typically contains

3 of these individual risk indicators.

The choice of the individual risk indicators (variables of the CISS index) that compound the CISS indicators

is made from a fundamental and economic point of view. It may vary according to the characteristics of

each area of study and depending on what individual indicators are considered to best manifest the risk of the

segment to which they belong. In addition, it is important that the information provided by the variables of

a segment is complemented rather than being all explaining the same phenomena. What is more, the choices

of variables should emphasize on two conditions. First, they should be available, or at least comparable, for

different regions so that consistent CISS indicators can be constructed for various areas. And second, they

should have a long enough record, so that they capture past financial stress events. Examples of individual

indicators that meet these conditions and appear in most of the CISS segments are: asset return volatilities of

series that are representative of its market, risk spreads (such as interest rate spreads and yield spreads) and

liquidity indicators.

Once the indicators have been obtained in the form of raw time series, a transformation of each individual

indicator is made according to its cumulative empirical distribution function. Being the time series xt with

the timestamp t ranging from 1 to the total number of observations n, we order the sample according to its

value (x[1],x[2], . . . ,x[n]) so that it fulfils x[1] ≤ x[2] ≤ . . .≤ x[n]. Here, [r] represents the rank order assigned to a

realization of xt . The transformation is calculated as follows:

zt = Fn (xt) =

{
r
n for x[r] ≤ xt ≤ x[r+1], r = 1,2, . . . ,n−1

1 for xt ≥ x[n]
(3.1)

However, to allow efficient exploitation and real-time updating of the index, the empirical cumulative dis-

tribution is computed for each variable only for an initial sample period (of length n), and the subsequent

observations are computed using the recurrence:

zn+T = Fn+T (xn+T ) =

{
r

n+T for x[r] ≤ xn+T ≤ x[r+1], r = 1,2, . . . ,n−1, . . . ,n+T −1

1 for xn+T ≥ x[n+T ]
(3.2)

where T = 1,2, . . . ,N and N is the end of the full data sample.

The transformed variables are bounded on the interval (0,1]. This is a great advantage in terms of the ho-

mogenization of the variables in their scale and range, and it is much more robust than the classic approach

of standardizing the variables by demeaning and dividing them by the standard deviation, which implicitly

assumes that the variables are normally distributed. The transformed series are grouped into one of the main 5

above-mentioned segments of the financial system. For each segment, a subindex is created, giving an idea of

the individual stress conditions in which each subpart of the financial system finds itself. These subindices are

simply constructed as the equal-weighted aggregation of their elements, that is, by averaging the transformed
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series:

si,t =
1
3

3

∑
j=1

zi, j,t (3.3)

where i = 1,2,3,4,5 stands for the different segments and j = 1,2,3 represents the individual risk indicators

within each segment, at time t.

The last step consists of combining the sub-indices to form a single index that reflects the general stress

level of the financial system. The underlying idea of this procedure focuses on considering time varying

cross-correlations between the market segments. The CISS indicator should emphasize on those situations in

which the stress is wide spreading across segments (high correlation), and it is then where it should display

greater risk levels, indicating a potential collapse or crisis. However, in a situation of low financial stress,

it may happen that one of the market segments presents periods of stress due to the own conditions of the

sector, without this needing to rebound in a generalized increase in the system wide stress (in a low-correlated

environment, an increase of the stress in one segment can just be as a response of its own idiosyncrasy).

In addition, the subindices should be aggregated by weighting the importance that each one has on the real

economy. These weights must be determined for each region of study, depending on the relation of their

financial system with the economy. Normally, impulse response functions are estimated using VAR models,

obtaining the average impact of each segment relative to the industrial production growth or other national

economic series [2, 22].

That being said, the aggregation of the subindices into the composite indicator is computed as:

CISSt = (w⊙ st)Ct (w⊙ st)
′ (3.4)

where w = (w1,w2,w3,w4,w5) account for the subindices weights, st = (s1,s2,s3,s4,s5) are the subindices, Ct

is the 5× 5 time varying correlation matrix with elements ρi j,t and w⊙ st = (w1s1,t , w2s2,t , . . . , w5s5,t) is

the Hadamard-product (i.e. element-wise multiplication between the components of the two vectors at time t).

The correlation between market segment i and j at time t (ρi j,t) is approximated by means of an exponentially-

weighted moving average (EWMA) model, where the covariances σi j,t and volatilities σi,t are computed as:

σi j,t = λσi j,t−1 +(1−λ )s̃i,t s̃ j,t

σ
2
i,t = λσ

2
i,t−1 +(1−λ )s̃2

i,t

ρi j,t = σi j,t/σi,tσ j,t

(3.5)

for i, j = 1,2,3,4,5 and being s̃i,t = (si,t −0.5) the demeaned subindex i, with theoretical median of 0.5. The

lambda factor is set constant around a value of λ = 0.93, because it represents an intermediate choice that is

well balanced between the persistence in volatility and the reaction to market events [22].

Hence, CISSt of equation 3.4 denotes the value of the CISS index at time t. Note that this index is unit-free,

continuous and comprised on the interval (0,1].
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3.2 CISS Overview

The CISS indices have been extracted from the metadata of the Statistical Data Warehouse of the European

Central Bank (ECB), under its official naming The New Composite Indicator of Systemic Stress (CISS), Index,

and with construction scheme as explained in section 3.1. We considered the following 9 regions: Germany,

France, UK, Spain, Italy, Portugal, Euro Area, United States and China. During the project, we will refer

loosely to the countries within the “European Union” or “Euro area” (CISS series of Germany, France, UK,

Spain, Italy and Portugal) to differentiate from the three major global economies (CISS series of US, China

and Euro Area), which we will call the “world area”. Note that, technically, UK is neither part of the European

Union since the Brexit nor it uses the Euro as his primary currency, but we include him in the analysis as it is

geographically part of Europe and forms one of its largest economies.

The series have daily frequency, with observations being on trading days (approximately 1 trading year is com-

posed of 252 observations). Our sample period consists of 5755 observations, ranging from 1st of September

2000 to 16th of September 2022, except from the China CISS, which starts reporting on the 10th of October

of 2006 (to 16th of September 2022) and contains 4160 observations. Moreover, the China CISS contains 3

non-reported days from its sample period, due to desyncs with the Occidental trading calendar. To circumvent

this problem, we imputed the 3 missing values with the value of the China CISS on the previous day.

The series are plotted below (see Figure 3.1 and Figure 3.2). One can readily observe that the dynamics of the

series are quite similar, although each region slightly differs on the levels of stress reached in times of crisis.

In general, it is observed a high level of market integration. Perhaps, the most dissimilar one is the China

CISS (Fig. 3.2), which has presented generally lower levels of stress. By looking at the different regions of

the European zone (Fig. 3.1), we can see that Germany has lead the major peaks from among his neighbours.

Examining its descriptive statistics, we find out that all time series studied follow the same pattern: they are

positive skewed (to the tail of higher systemic stress levels) and they are leptokurtic, i.e., presenting heavier

tails than the normal distribution. Besides, the Jarque-Bera test rejects the null hypothesis of the individual

indices being normally distributed.
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Figure 3.1: CISS series of the European countries.

Figure 3.2: CISS series of the World area.

Since the index is constructed with the scope of capturing the levels of stress of the financial system, there is

no better way to assess its utility but to look for the major high-stress events occurred historically within time

frame considered and evaluate the ability of the index to identify such periods. To do so, we focus on the Euro

Area index, shown in Figure 3.3, with the most significant historical stress episodes depicted with a vertical

line.

First spike of stress appears on the 11th of September of 2001, after the terrorist attacks occurred in the US.

In 2002, we visualize another upturn of the stress, coinciding with the crash of the dot-com bubble on the
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United States, which ended in October 2002 (second dashed line), after the NASDAQ had capitulated to its

local minimum, with a loss of about 75% with respect to its peak level. Another peak is observed no so long

after that, on 19th of March of 2003, when a coalition led by the United States and Britain launched an air

attack on Iraq, leading to the beginning of the invasion of Iraq.

None of these events had as much impact as the Global Financial Crisis of 2007-2008. First signals appeared

in August 2007, after French bank BNP Paribas suspended three of its investment funds linked to the U.S.

subprime mortgage sector. Later in March 2008 we observe another local maximum, coinciding with the

collapse of Bear Stearns. Finally, in September 2008, Lehman Brothers is filed for bankruptcy and AIG is

rescued. Just two months later, after the financial crisis had extended worldwide, we reach to the maximum

value of the series (0.94). The second highest peak is observed on late 2011, embedded in the context of

the European sovereign debt crisis. We highlighted two episodes which caused a high increase on the CISS

levels on that time: in May 2010, when several events related to the Greek crisis occurred and fears of default

increased, and in August 2011, after fears of contagion of the sovereign debt crisis in Portugal, Italy and Spain

and a consequent stock market fall worldwide.

Three more clusters of high stress are identified from 2012. First one corresponds to the 2015–2016 stock

market selloff, added to the uncertainty created around the referendum on the UK’s membership of the Euro-

pean Union, with its peak in June 2016, when the Brexit was finally voted. Later, a sharp peak is observed

in March 2020, due to the outbreak of the Covid-19, which caused serious levels of stress in the Euro Area,

although they vanished equally fast, returning to the low band of the CISS. Last highlighted episode started

in 24th of February 2022, with Russia’s announcement of a “special military operation” in Ukraine, which

triggers the invasion of the country, with persistent effects until the end of the sample period.

Figure 3.3: CISS series of the Euro Area superimposed on relevant historical market events.
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As a conclusion, it seems clear that these indices reveal important historical events that have clearly had an

impact on the financial system, and hence, we hope that the explanation just presented serves to appreciate the

usefulness of the CISS indicator and to contextualize the results that we will discuss in the next section.
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Chapter 4

Results

4.1 Systemic risk connectedness

Here, we present and analyse our results on the connectedness of the systemic risk within the countries of the

European Union. Later, we carry on the same analysis between US, Euro Area and China, i.e., the world area,

and compare our findings between the two sets studied.

Following the standard methodology in the framework of vector autoregressive models, it is preferred to use

stationary variables, so that we can estimate the VAR in level. To do so, we work with the differenced

time series of the CISS indices to ensure stationarity and better properties on the estimation of the model1.

Even so, the interpretation of the connectedness measures remains the same, as the forecast error variance

decomposition is robust to such changes.

The order of the VAR model, the parameter p, is chosen according to the Hannan-Quinn Information Criterion

(HQ). It is a measure of the goodness of fit often used in autoregressive models, which includes a penalty term

for the number of parameters in the model [23]. Hence, according to HQ, we use peuro = 2 for the VAR model

on the European region and pworld = 4 for the VAR model on the world area.

With regards to the choice of the predictive horizon H for the obtention of the H step-ahead forecast error

variance, we have taken H = 10, which represents a two-weeks ahead horizon (10 trading days) for the shocks

of one of the variables to influence the forecast error variance of the others. In the Appendix A (Fig. 5.1 and

5.3) we show an analysis of the sensitivity of the total connectedness index for a range of values of H that are

typically used in the literature [3, 24, 25]. We can see that for our series of study, the choice of H have little

impact on the results.

With respect to the choice of the window width w for the dynamic case, we opted to use w = 250 for both

models, corresponding to a full trading year. Sensitivity of the index for different width choices is shown in

the Appendix A (Fig. 5.2 and 5.4). It is seen that the dynamics and the level of the total connectedness index

1We assess stationarity by using the Augmented Dickey-Fuller Test (ADF), the Philips-Perron Test (PP) and the KPSS Test. Our
results conclude that the CISS series are I(1).
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are preserved, so our results can be considered robust to the choice of w.

4.1.1 Systemic risk connectedness between European countries

The connectedness table for the European region is depicted in Table 4.1. Focusing first on the variance

decomposition matrix (the pairwise elements), we observe that the highest contributions for each country come

from its own variance share terms (diagonal elements). However, these do not represent in any case more than

half of the total variance, being the contribution from others Ci←• greater than the self-connectedness.

The highest levels of pairwise directional connectedness Ci← j are found between France and Germany, with

CFrance←Germany = 17.37 and CGermany←France = 17.16. These coincide in being the most important countries

of the European Union in terms of their economy. After these, the highest levels of pairwise connectedness

occur for CSpain←France and for CPortugal←Spain, which makes sense as they are neighbouring countries. The

least interrelated country, speaking in terms of systemic risk, is the UK, both in terms of variance transmitted

C•←UK and received CUK←•. These results are in line with his recent history efforts of disassociating from the

European Union, making his exit official in 2016 with Brexit. Even so, the interdependencies in its financial

system with the rest of the European countries continue to be relevant and it still shows significant levels of

connectedness.

As for the total directional connectedness to others C•← j, Germany and France are the largest transmitters

of systemic risk in the European region, with levels above 73%. The net measure of total directional con-

nectedness indicates that, in mean, Germany, France, Spain and Italy are net transmitters of systemic risk,

being Germany and France leading again. Meanwhile, Portugal and UK, notably with the biggest net value in

absolute terms CUK =−10.59, are net receivers of risk from the rest of the regions.

Overall, it seems clear that European regions exhibit high levels of systemic risk connectedness. This is what

summarizes the total connectedness measure, which ascends to C = 62.89%.

Germany France Italy Spain Portugal UK C. from others
Germany 34.28 17.16 13.71 13.53 11.75 9.56 65.72
France 17.37 32.37 13.54 15.07 12.33 9.33 67.63
Italy 14.56 14.41 35.47 14.23 13.20 8.12 64.53
Spain 14.29 15.66 14.41 34.31 14.47 6.86 65.69

Portugal 13.88 14.22 14.26 15.66 36.33 5.64 63.67
UK 12.92 12.11 10.29 8.27 6.51 49.90 50.10

C. to others 73.02 73.57 66.21 66.76 58.27 39.51 62.89
Net C. 7.31 5.93 1.68 1.07 -5.4 -10.59

Table 4.1: Connectedness table of the European region

Once seeing the connectedness from an “unconditional” point of view, we present the connectedness measures
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in a time-varying environment. We start from the macro perspective and later we will break down into the

more localized measures. The time-varying total connectedness is depicted in Figure 4.1, superimposed on

the Euro CISS index for contextualization.

Its value mostly ranges from 40% to 70%, with a historical minimum in November 2014 (32.1%) and a

maximum in March 2020 (83.0%), when the first Covid restrictions were established. A greater variability

of the total connectedness can be observed as time progresses, with higher highs but also more spikey lows

being observed. From late 2004, a gradual increase in the total connectedness can be observed until the

end of the sovereign debt crisis, approximately in 2012. After a sharp drop in total connectedness, another

period of increase is observed around the events of 2015-2016. The largest periods of connectedness in the

sample are observed in the stage marked by Covid, stabilizing around 75% for more than a year after the

shock caused by the lockdown, even when the systemic risk had already dropped to much lower levels. In the

latest observations, a significant rise in total connectedness can also be seen, surely caused by the practically

unanimous cooperation of European countries to deal with the Russian crisis. It is noteworthy that, although

there seems to be a relationship between the increase in connectedness and systemic risk (measured by the

Euro CISS index), this does not necessarily have to be the case. As observed in 2008, the risk was extreme

while the levels of connectedness were only slightly higher from the observed mean, thus having the countries

endogenous variance shares an important contribution in the variance of the forecast error.

Figure 4.1: Total Connectedness Index. European region countries.

The results obtained of the net total directional connectedness for the 6 countries of study are shown in Figure

4.2. Keep in mind that, positive values indicate that the country is a net emitter of systemic risk, whereas

negative values indicate that it is a net receiver. We can get several insights from these. For example, at

the onset of the Covid restrictions, we can observe two different cases. The first occurs for Germany, Spain,

Portugal and the UK, where the effect of Covid can be seen as an extreme value or outlier, but it is not
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observed to cause a permanent effect on the structure of the connectedness series. However, for France and

Italy there is a clear level shift in the series, which lasts significantly over time. Precisely, Italy was the first

country in the Eurozone to apply the lockdown due to its high levels of contagion among its inhabitants in the

earliest phases of the Covid pandemic, which supposed (in net terms) a strong transmission of the systemic

financial risk to the rest of the countries. Another observation to highlight is found in the crisis period of

2007-2008, where both Germany, France and the UK, the three European powers, registered an increase in the

net levels of connectedness with respect to their average levels, thus becoming transmitters of systemic risk

and expanding it to the rest of the countries.

Figure 4.2: Net Total Directional Connectedness Index. European region countries.

Regarding the pairwise measures, being N = 6 the number of regions considered, note that there are N2−N

separate pairwise directional connectedness measures and 1
2(N

2−N) net pairwise directional connectedness

measures. Since our goal does not consist on doing an exhaustive analysis of all the possible combinations and

for the sake of the extension of the research project, we limit ourselves on presenting only pairwise measures

between the countries Germany and France and between Spain and France, since they were the ones that

presented higher levels of pairwise directional connectedness in the static case (Table 4.1). The results are

shown in Figure 4.3.
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In the first place, we can observe that between complementary series of pairwise directional connectedness

(Ci← j and C j←i), they tend to have similar structure and dynamics along the sample period, being the net terms

Ci j originated when differences in level appear after certain events. A clear example of that is found after the

shock originated by the Covid pandemic, where a positive net difference of around 5% persists in both graphs

for approximately one year.

For Germany-France, we observe that the fractions of variance in the forecast error that are attributable to

the opposite country range between 15% and 20% for most of the sample period. However, around 2005

and as of September 2017, we observe two episodes of strong decoupling between the risks of their financial

systems, falling to levels of 5% and below. Interestingly, it is in the same period of 2017, when a substantial

peak is observed in the pairwise directional connectedness levels between Spain and France, with a historical

maximum of CSpain←France = 32.6%. Hence, it can be argued that there was a transfer on the systemic risk of

the French country, from Germany to Spain. These types of spillovers do not occur that commonly, but rather

the decrease in the pairwise connectedness between two countries is usually absorbed in the self-variance

share term of these countries or it is diluted in a more homogeneous way between the rest of the interrelated

regions.

Figure 4.3: Pairwise and Net Pairwise Directional Connectedness indices for the pairs of countries Germany-
France and Spain-France.

25



CHAPTER 4. RESULTS

4.1.2 Systemic risk connectedness between US, Europe and China

The connectedness table of the “world” area is shown in Table 4.2. At first sight, we can see very similar

values in magnitude of the pairwise directional connectedness to those seen in Table 4.1. However, this time

they are overshadowed by the larger values of the diagonal terms (self-connectedness), which account for more

than 80% of the total variance of the forecast error. Consequently, the system-wide connectedness measures

(C. from others and C. to others) represent less than a quarter of the total variance. The same happens with

the total connectedness measure, with a value of C = 17.19%.

On the one hand, this phenomenon suggests that the three regions form a less interconnected financial network

(in terms of risk) and therefore they are more independent and robust financial systems, which does not

contradict the fact that they are regions highly connected in other sectors such as the commercial or the

industrial. On the other hand, we must also keep in mind that any analysis of connectedness in an interrelated

network (of regions) is clearly dependent on the variables (regions) included in the analysis. Thus, if we

considered other major global financial regions2, the self-connectedness term would potentially be lower,

since there would be part of the variance that would be explained by these new variables, which in turn would

result in an increase in the system wide connectedness measures.

That being said, we can observe several important aspects. We can see high levels of pairwise directional con-

nectedness between the Euro Area and the US, while China is a fairly isolated region in terms of its financial

systemic risk. Even so, the variance fractions it receives from the US and Europe double what it transmits to

them, being the only region with a negative value of net total directional connectedness CChina =−7.64%.

US Euro China C. from others
US 81.26 16.10 2.65 18.74

Euro 16.93 80.26 2.81 19.74
China 6.97 6.12 86.91 13.09

C. to others 23.90 22.22 5.45 17.19
Net C. 5.16 2.48 -7.64

Table 4.2: Connectedness table between US, Euro Area and China

We now extend our analysis to the dynamic case. In Figure 4.4 we visualize the time-varying total connected-

ness measure. The series oscillates around the 20% value. The sample period for this case is smaller, as China

CISS index is only available from 2006.

Like the analysis between European regions, the levels of total connectedness are not particularly high for the

period of the global financial crisis of 2007-2008, while the maximum of the series is found in the financial

2Currently, from the major global economies, only US, China, and Euro CISS indices (apart from the European countries) are being
reported publicly on the ECB Statistical Data Warehouse, so we could not include other economies of interest such as Russia, India,
Japan or Brazil.
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shock caused by Covid in 2020, with a value of C = 42.45%. We also find periods with high connectedness

coinciding with the events of the war between Russia and Ukraine and in the 2015–2016 stock market selloff.

In addition, we can see a period of high connectedness between the financial systems in 2013-2014, in times

when the systemic risk was stabilized at low levels.

Figure 4.4: Total Connectedness Index. World area.

The net total directional connectedness measures obtained are shown in the Figure 4.5. In general, the series

oscillate around their average levels of net total directional connectedness seen in the Table 4.2. For instance,

we can observe during 2020 in the Covid period, that there is a significant increase in the transmission of

systemic risk from the Euro zone to the rest of the regions. For China, it is generally observed that its value

tends to stabilize close to zero in times when the systemic risk is relatively low, as occurs between 2015 and

2020. In contrast, for times with high financial stress it is usually the region with the greatest propensity of

receiving contributions coming from shocks on the US and Europe.

Finally, we take a closer look to the United States and European block and analyse their measures of con-

nectedness at pairwise level. These are shown in Figure 4.6. We can see how until Q3 2012, the two com-

plementary series of pairwise directional connectedness (CUS←Euro and CEuro←US) are practically identical and

consequently the net pairwise directional connectedness stays close to 0. As of 2014, the US begins to transfer

a greater fraction of the forecast error variance to Europe and the series diverge slightly, creating a positive

trade of net connectedness levels from the US to Europe. This is temporarily reversed during the Covid re-

strictions in Europe, which had a large impact on its financial stress and an increase in risk contagion levels,

but returns to positive for the latest sample observations, relating to the conflict with Russia.
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Figure 4.5: Net Total Directional Connectedness Index. World area.

Figure 4.6: Pairwise and Net Pairwise Directional Connectedness indices for the pair US-Euro Area.
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4.2 Prediction of systemic risk

In this section, we present and analyse the results obtained on the prediction of the CISS indicators, over the

9 previously defined regions. The goal of this section is to determine whether these financial stress indices

present any kind of internal structure, based on the previous values of the series, that can be extracted and

generalized by our predictive models. If so, these series could be used not only to assess the current observed

systemic stress situation in each region, but also to use the predictions as a proxy for an early warning about

the future development of the latent financial stress in each region.

Precisely, in this research paper, we will focus on the ability of LSTM neural networks to model this type of

composite indices. We intend to provide evidence on whether these LSTM network models can provide added

value over the already existing and widely used classical econometric models. Therefore, we will compare

this type of recurrent neural networks, of a non-linear nature, against ARMA-GARCH models, of a linear

nature in mean (and non-linear in variance). In addition, to have several views of the model’s performance,

we propose three different forecast horizons: t + 1|t, for next day forecasts, and t + 5|t and t + 10|t for one

week and two weeks ahead predictions, respectively.

For the evaluation of these models, we reserve a test sample, which is set to contain 10% of the total ob-

servations. This sample will not be used in any case to adjust the internal parameters of the model or to

select a specific model among those considered, but will serve to determine its ability of generalization, on

observations that have never been seen during the learning process. Due to the sequential nature of the time

series, the test sample cannot be chosen randomly, since we would be introducing a bias in the evaluation of

the model by using test observations contained among other past and future information that the model would

have seen in beforehand during the training phase. This, of course, does not occur in a real experimental

situation. Therefore, we choose the test set as the last observations of the sample period, which represent a

total of 575 observations per region, from July 10, 2020 to September 16, 2022. This test set contains the

latest remarkable stress episode observed, that is, the current war between Russia and Ukraine, with all the

economic consequences that this has entailed worldwide.

In the following sections, we specify the benchmark models used in the comparison against LSTM networks.

Subsequently, the specification and construction of the LSTM model is detailed. We later display the experi-

mental results obtained and conclude with a final discussion on the topic.

4.2.1 Benchmark models

Here, we propose two different univariate approaches for forecasting the CISS indicators at different time

horizons h. The two will serve as a benchmark for evaluating the performance of the LSTM network against

the indices of systemic risk. First, we present a Naive approach, i.e., the simplest model one could implement

to forecast next values of a time series. It is a point of reference to distinguish between models that add

some value in forecasting the specific time series of study (at horizon h) and models that are not capable
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of extracting any pattern with the previous information available. Second, we propose classic econometric

time series models, the so-called ARMA-GARCH models, which are autoregressive processes conditioned

to the previous values of the time series and the previous error terms, which allow to compute time-varying

estimates of its conditional mean and conditional variance (or volatility). We provide with basic context and

mathematical formulation of the models and present related literature for further in-depth reading.

Naive approach

The naive approach consists of using the last observation available (at time t) and suppose the time series does

not change in the following observation periods, so the best possible estimation of xt+h|t is the current value

of xt|t itself:

x̂t+h|t = xt|t (4.1)

In practice, the series of forecasts is just the series itself lagged h times. This approach benefits, in principle,

from time series that do not vary much in time, whereas it will compute worse forecasts for series with high

variability.

ARMA-GARCH model

A sequence of observations Xt follows an ARMA (AutoRegressive Moving Average) process if its behaviour

can be explained by its lagged values Xt−1,Xt−2, . . . and its past previous errors Zt−1,Zt−2, . . . , plus a random

component Zt (also called innovation or disturbance) which follows a white noise process (independent and

identically distributed, with expected value equal to zero and variance σ2) [26,27]. However, often in financial

statistics, the variance error is seen to be serially autocorrelated. We circumvent this problem by allowing the

variance of the error term to follow an autoregressive moving average process, analogously to that followed

by the model for the mean. In mathematical form, that reads:

Xt = α +φ1Xt−1 + . . .+φpXt−p +Zt +θ1Zt−1 + . . .+θqZt−q

Zt = σtεt εt ∼WN(0,1)
(4.2)

where the parameters p and q indicate the order of the autoregressive (AR) and moving average (MA) parts

of the model, usually specified as ARMA(p,q).

Regarding the models for the variance, these are called GARCH models (Generalized AutoRegressive Con-

ditional Heteroskedasticity). There exist many different variations within these models [28], but we have

narrowed our study to only 3 of them, which are mainly the most used ones. These are presented below.

The GARCH(1,1) [29], models the conditional variance as a linear function of the past innovation term squared

and the past variance term:

σ
2
t = α0 +α1Z2

t−1 +β1σ
2
t−1 (4.3)
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Sometimes, it is seen that the variance reacts asymmetrically to the market, i.e., conditional variance generally

increases more when the past innovation is negative compared to when the past innovation is positive, or vice

versa. Such behaviour can’t be explained in a plain GARCH(1,1) model, as the dependence between the past

innovation and σ2
t is symmetrical. Extensions like the GJR-GARCH(1,1) [30], introduce a dummy variable

S−t that takes into account this effect [31], by modelling σ2
t as follows:

σ
2
t = α0 +αZ2

t−1 +βσ
2
t−1 + γS−t−1Z2

t−1

S−t =

{
1 if Zt < 0

0 if Zt ≥ 0

(4.4)

Similarly, the EGARCH(1,1) model [32], is an alternative to the GJR-GARCH, which also takes into account

the asymmetrical behaviour of the variance, but is formulated in terms of a logarithmic scale:

ln
(
σ

2
t
)
= α0 +β ln

(
σ

2
t−1

)
+ γ

Zt−1√
σ2

t−1

+θ

 |Zt−1|√
σ2

t−1

− 2
π

 (4.5)

Estimation of the parameters for the presented ARMA-GARCH models is done via Maximum Likelihood

Estimation (MLE). As stated previously (see section 4.1), the CISS indices do not present a clear stationary

behaviour. Thus, we have opted to adjust the ARMA-GARCH models on the differenced time series to ensure

stationarity. Specification of the orders p and q for the ARMA part is done via the sample ACF and PACF.

Additionally, for selecting between the possible candidates, we relied on AIC and BIC criteria and ensured that

all estimated coefficients were statistically significant. Then, we proceeded to choose a model for the variance.

First, via an ARCH test and with the ACF and PACF plots of the squared residuals, we checked that there

are indeed conditional heteroscedasticity effects on all the studied series. Besides, we found out the residuals

to be heavy tailed and non-normal, so we allowed the error-term to be modelled as a t-Student. Among the

3 possible GARCH candidates, we based our decision on 3 different aspects. First on AIC, BIC and HQ

information criteria. Second, on whether the estimated coefficients were statistically significant, emphasizing

on the significance of the asymmetry coefficients for the GJR-GARCH and EGARCH models. We found that

most of the regions considered do present such effect. Third, on whether the validation of the model is correct

and if its assumptions are reasonably fulfilled, which are: no autocorrelation structure on the standardized

residuals, no autocorrelation structure on the squared standardized residuals and whether the residuals follow

the underlying fitted distribution.

The results obtained are shown in the next table:
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Region Model selected Error term distribution

Germany ARMA(4,0)-gjrGARCH(1,1) t-Student
France ARMA(4,0)-gjrGARCH(1,1) t-Student
Italy ARMA(1,1)-EGARCH(1,1) t-Student
Portugal ARMA(1,1)-gjrGARCH(1,1) t-Student
UK ARMA(1,1)-GARCH(1,1) t-Student
Spain ARMA(3,0)-gjrGARCH(1,1) t-Student
EU ARMA(4,0)-EGARCH(1,1) t-Student
US ARMA(1,1)-GARCH(1,1) t-Student
China ARMA(0,5)-gjrGARCH(1,1) t-Student

Table 4.3: Selected ARMA-GARCH models for the differenced CISS time series.

We want to highlight the fact that even the model for the variance does not directly intervene in the calculus

of point predictions, it does influence in the estimation of the parameters when the ARMA-GARCH models

are fitted jointly. Besides, from the statistical point of view, we should always favour models that are robust

and fulfil the initial assumptions, especially when the samples clearly show volatility effects.

Once the model parameters have been adjusted and validation is seen correct, we proceed to forecast the

observations on the test sample. Note that, as the model is initially fitted to the differentiated series, we must

inverse the differencing to recover the forecasts on the original CISS series. If F(h)
t is the h-step-ahead forecast

of ∆xt+h|t , done at time t and therefore with observed values up to that point, then x̂t+h|t fulfils:

∆̂xt+h|t = x̂t+h|t − x̂t+h−1|t = F(h)
t ⇒ x̂t+h|t = x̂t+h−1|t +F(h)

t (4.6)

When h = 1, then x̂t|t = xt|t is known and we directly retrieve the forecast for the original series. However,

when h > 1, we need to recursively compute the previous forecasts until arriving to our last observed value

xt|t , following the same logic as before:

x̂t+h|t =
(

x̂t+h−2|t +F(h−1)
t

)
+F(h)

t = ...= xt|t +
i=h−1

∑
i=0

F(h−i)
t (4.7)

Taking a closer look, we realize that the forecasts for the ARMA-GARCH models at horizon h contain the

same term xt|t as in the Naive approach, plus a sum of terms linked to the forecasts of the differenced series up

to the h-th horizon. As h increases, the F(h)
t term converges to zero, that is, towards the unconditional mean of

the differenced series. Hence, since our time series do not present significant (lineal) autocorrelation structure

beyond the 5th lag, we expect the performance of the ARMA-GARCH models to initially outperform the

Naive approach, but to equalize as the horizon is extended.
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4.2.2 Data engineering and LSTM tuning

This section explains the assembly process used for the LSTM network in the prediction of the CISS indices.

We detail the aspects that we have considered in the data engineering process, the design and choice of the

network architecture and in the learning stage. Also, we briefly comment on other modelling strategies that

we have taken into account, but which have been finally discarded of the project as they did not add any

significant improvement.

Note that, in the case of ”black box” models, especially for neural networks, it is difficult to acknowledge at

a fundamental level what is the internal logic or meaning behind each of the adjusted parameters and what

interpretation can we give to them with respect to our experimental data. While classical statistical models

are built under assumptions about their underlying distribution and contain interpretable relationships between

their components, neural networks lack these characteristics and therefore the validation process shall be

focused on its predictive capacity. Therefore, often the only way to choose a model among all the possible

architectures and designs is to select the configuration that obtains the best performance metrics in a subsample

reserved for this purpose, named validation sample. This can be advantageous in some cases, since no prior

statistical assumptions need to be made for modelling our set of data. On the other side, we should be aware

that it may introduce a bias in our chosen model, since the validation sample does not have to be robust with

respect to the entire observed period, and the temporal structure of the series may vary in the test sample.

Generation of training, validation and test sequences

That being said, for our experimental problem, we have divided the total sample into the following 3 partitions.

The training sample contains 75% of the observations (4317 observations for each region except for China,

with 2722 observations), comprised from the beginning of the sample period to March 20, 2017. These

observations are used to adjust the internal weights of each specific LSTM network. The validation sample

contains 15% of the observations (864 observations per region), from March 21, 2017, to July 9, 2020. This

sample is used to select the hyperparameters of the model, that is, the network architecture and training

features. Finally, the test sample comprises the final 10% of the observations, that is, 575 observations per

region, from July 10, 2020, to September 16, 2022, coinciding with the test sample used in the benchmark

models, whose results are discussed in section 4.2.3.

Next, we generate, for each partition and each region, the input-output pairs of sequences in such a way

that they can be ingested by the neural network. We define the input sequence x(t,l) as the ordered list of

length l containing the last l observations since time t, including xt . That is, x(t,l) = {xt ,xt−1, . . . ,xt−l+1}. The

parameter l, called sequence length, determines the number of past observations that we consider to predict

future values of the time series. In our experimental problem, we decided to choose a sequence length of

l = 64, which spans up to 3 (financial) months of observations prior to the forecast. We consider that this is a

sufficiently long period of information with respect to the specified forecast horizons h = {1,5,10}. Even so,

we must be aware that this choice may condition the results. The output y(t,h) associated with the sequence
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x(t,l) is the real target value of the model at horizon h, that is, the value observed at t + h: y(t,h) = xt+h.

Therefore, an input-output tuple can be written as a pair of arrays (x := x(t,l), y := y(t,h)), of shapes (1, l) and

(1,1) respectively. Being n the number of observations for one specific region and partition, the total number

of tuple sequences that can be generated from there equals N = n−h− l +1, as we have to subtract the first

l− 1 observations and the last h observations from the subsample to obtain complete (x,y) pairs. Hence, if

we stack each tuple row-wise, the input-output set constitutes two paired arrays of shapes (N, l) and (N,1),

respectively for x and y.

Network design

Considering the mentioned partitions, we can arrange no more than 4253 sequences (of 64 timesteps) per

region in the training phase. This supposes a major constraint in our problem, since the number of sequences

that we could input to our network would be relatively low with respect to its potentially high number of

parameters. For instance, an LSTM network for one region, with a single hidden layer of 18 units, would

suppose a total of 1459 trainable parameters, which would imply a ratio of approximately only 3 training

sequences for each estimated parameter. This may be undesirable since the network learns to memorize the

training examples rather than abstract representations that later generalize with unseen data. Although we

could restrict from the beginning the model to really small architectures, we have been able to verify in our

trials that this approach does not lead to the best results in the forecast horizons considered. In the same way,

a multivariate approach, with simultaneous forecasts of all regions, does not solve our limitation as the total

number of different sequences that we can input to the network is the same, but being in this case the input

at timestep t (xt) a vector with 9 features, one for each country of study. Namely, the set of tuple sequences

for the multivariate approach can be generalized to one tensor of shape (N, l,r) for the input and another of

shape (N,r) for the output, where r is the number of features we fit at a time (r = 1 for the univariate case and

r = 9 for the multivariate) and N, l are, as stated previously, the total number of sequences and the number of

timesteps in each sequence, respectively.

To alleviate the issue of having a small dataset, we propose a univariant approach that combines the sequences

from all the regions into one unique network. We do so by concatenating (stacking row-wise) the tuple

sequences of all the countries within the same partition. In this way, we effectively multiply by almost 9 times

(China has fewer observations than the others) the number of sequences that the network receives in its training

phase. As we have seen both in the CISS construction methodology and in the study of their connectedness

levels, the series present a very similar structure among them, with common characteristics. Therefore, what

we intend to do with this approach is to generalize the behaviour of this type of financial stress indices into a

single neural network, capable of capturing common structural patterns, while eliminating the individual noise

of each of them. In this way, we can better fit architectures with few more layers and neurons without falling

so quickly into overfitting problems. In addition, we implemented 3 measures in our design to reduce the risk

of overfitting, described below.

The first measure consists of applying dropout and recurrent dropout rates between the neural connections
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of the LSTM units with respect to the inputs and recurrent inputs they receive. That is, during the training

process, a random fraction of the received inputs are dropped (are set to 0) in each unit with probability

p, along with their connections. For the test and validation samples, the predictions are calculated with the

network fully connected and the network weights are adjusted by averaging the weights obtained from the

various partially connected networks in training [33]. This technique is potentially prevents the network from

being too unbalanced and placing too much importance on only some of the units and weights.

For the second and third measures, we implement two call-backs on the validation set during the training

phase. That is, at the end of each epoch, we evaluate the validation sample with the current weights of the

model, using the same loss function as in training, and we save the result. Then, we define an action to

implement if we observe that during a certain number of contiguous epochs, called patience period, the loss

function in the validation set does not improve by at least an increment greater than ∆. The first action we

implement is to reduce the current learning rate by a factor of 10, in order to fine-tune the direction of the

gradient-descend as we approach the minimum. This allows us to dynamically adjust the learning rate of the

model, making it learn faster at the start of training and more granularly as the learning stagnates, improving

its computational efficiency. On the second action, we implement an early stopping of the model training if

we observe that it no longer improves in the validation set, thus preventing the model from starting to overfit

the training sample and losing generalization capacity over unseen samples. In this way, we can set the epochs

to a larger number and let the results themselves decide when it is no longer worthwhile to continue training

the network. Note that, when these two call-backs are implemented together, one should set the patience

period for the early stopping to a number higher than the patience period needed to reduce the learning rate,

thus leaving a reasonable margin for improvement potentially caused by a more accurate learning before

definitively stopping the optimization process. For our experimental case, we have opted for a minimum ∆ of

improvement of ∆ = 10−7, a patience period equal to 3 before reducing the learning rate and a patience of 7

epochs before early stopping the training.

Bayesian Hyperparameter Optimizer

Once the design of the neural network has been defined jointly with the characterization of the content and

form of the input-output data and the overfitting prevention modules, the hyperparametric space is specified

and the next step consists on finding which set of hyperparameters hp optimizes the loss function over the

validation sample. Namely, this is hp = (Nl,u1, . . . ,uNl,d1, . . . ,dNl,rd1, . . . ,rdNl, lr,act), which stands for the

number of LSTM layers (Nl), the number of units (ui), the dropout rate (di) and the recurrent dropout rate

(rdi) in each LSTM layer i = 1,2, . . . ,Nl, the initial learning rate (lr) and the activation function (act) of the

output dense layer.

There are many techniques to adjust the hyperparameters of the model, the simplest being manual search or

random grid search (creating a discretized grid and randomly trying possible combinations). In this project,

we use a much more computationally efficient and statistically interesting technique, the so called Bayesian

Optimization [34]. This technique uses the “Bayes’ theorem” and other tools of Bayesian statistics to direct

35



CHAPTER 4. RESULTS

the search within the hyperparametric space, through a recursive algorithm that updates our beliefs over the

posterior distribution of an objective function based on the combination of prior knowledge that we have been

accumulating from the first sampled trial and on the likelihood of the new results obtained given the current

state of knowledge. We do so by assuming an approximating distribution of the objective function f , such as a

Gaussian process (GP). In our case, the objective function is the loss function on the validation set. In a brief,

being hpi the i-th sampled set of hyperparameters (among all the possible configurations), we refer to f (hpi)

as the value of the loss function evaluated at hpi. The evidence set of observations accumulated up to trial t

reads D1:t = {hp1:t , f (hp1:t)}. Accordingly, the likelihood of the evidence set given the loss function follows

the distribution P(D1:t | f ), while the prior distribution itself is P( f ). The multiplication of the last two terms

is proportional to the posterior distribution:

P( f |D1:t) ∝ P(D1:t | f )P( f ) (4.8)

At this point, an acquisition function a(hp|D1:t) is usually used to draw the next trial hpt+1 to evaluate on

the loss function. The acquisition function is defined in such a way that its value is high where the GP

predicts a high value of the posterior distribution (exploitation) or in the regions where the GP presents greater

uncertainty (exploration). The whole process is then repeated several times, each step sampling a new trial

from the hyperparametric space, up to the maximum number of trials that one specifies.

Note that, in our scenario, the number of layers and the number of units per layer can be theoretically as

high as we want. Furthermore, the learning rate and the dropout rates are continuous variables, so infinitely

many trials can be done. Clearly, it makes sense to bound and discretize our hyperparametric space, mainly

because of computational cost but also due to the context of small sample data. We restricted our initial

learning rate values for the Adam optimizer to lr = {10−2,10−3,10−4,10−7}, and the dropout rates to the

interval di,rdi = [0, 0.25] in form of steps separated 0.05 units each other apart. We opted for two different

possibilities for the activation function of the output dense layer: the sigmoid function and the rectified linear

unit ReLU function ( f (x) = x+ = max(0,x)). Finally, we limited the maximum number of LSTM layers to 4.

We set a range of LSTM units per layer between 2 and 18 units (in steps of 2) for the configuration of only 1

LSTM layer, and between 2 and 10 units (in steps of 2) per layer for the configurations with 2 or more LSTM

layers. In that way, we limited the minimum number of training sequences given per parameter to estimate to

an approximate ratio of 13 in the worst-case scenario. Due to convenience in compilation and constraints on

computational time3, we have set the number of trials for the Bayesian hyperparametric optimizer to 15 for

the 1 LSTM layer case, with a batch size of 16 and 35 epochs per sampled configuration, and a number of

trials to 10 for the 2 to 4 LSTM layers case, with a batch size of 16 and number of epochs equal to 20.

4.2.3 Experimental results

The loss function defined in the optimization process has been the Mean Squared Error (MSE), both for the

adjustment of the internal parameters on the training set and for the selection of the hyperparameters on the
3We have used Keras framework on top of TensorFlow 2, in python programming via Google Colab.
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validation set. The selected final configurations of the hyperparametric space are shown in Table 4.4. In total,

3 different LSTM networks are obtained, each one optimized to predict the systemic risk indices in one of

the time horizons h fixed. These are the configurations that have obtained the best predictive performance on

the validation set within the trials carried out in the Bayesian optimization process; MSE = 6.31 ·10−5 for the

h = 1 case, MSE = 8.27 ·10−4 for the h = 5 case, and MSE = 2.80 ·10−3 for the h = 10 case.

Hyperparameter Description h=1 h=5 h=10

Nl LSTM hidden layers 1 4 1

u1 N. units layer 1 2 10 18
d1 Dropout rate layer 1 0 0 0
rd1 Recurrent droput rate layer 1 0 0 0

u2 N. units layer 2 - 10 -
d2 Dropout rate layer 2 - 0 -
rd2 Recurrent droput rate layer 2 - 0 -

u3 N. units layer 3 - 2 -
d3 Dropout rate layer 3 - 0 -
rd3 Recurrent droput rate layer 3 - 0 -

u4 N. units layer 4 - 10 -
d4 Dropout rate layer 4 - 0 -
rd4 Recurrent droput rate layer 4 - 0 -

lr Initial learning rate 0.01 0.01 0.01
act Activation function (output layer) ReLU ReLU Sigmoid

Table 4.4: Hyperparametric configurations (hp) selected from the Bayesian Optimization process for the
LSTM network, for time horizons h = {1,5,10}.

We obtain for h = 1 and h = 10 an LSTM network with only 1 hidden layer, while the network to predict

5-days-ahead contains 4 LSTM layers. Regarding the number of units per layer or the preferred activation

function, the results do not seem to show any significant common pattern. The number of internal parameters

of the network varies from 35 for the case h = 1, 1459 adjustable parameters for h = 10 and up to 1955 for

the case h = 5, being the model among the 3 with the greatest complexity.

We can glimpse two observations from these results. First, the optimal dropout rate and recurrent dropout

rate are equal to 0 in all LSTM layers of the best selected configurations. Our experimental problem does not

benefit from this regularization measure, which indicates that preventing overfitting does not compensate the

downside of losing a fraction of the information (the dropped inputs). Second, we see that the preferred initial

learning rate is 0.01, presumably due to the algorithm’s ability to dynamically reduce the learning rate during

training if learning stalls.

In the following tables, we show the prediction results of the CISS indices on the test sample, broken down

by region and compared with the ARMA-GARCH model and the Benchmark model (the Naive model). Two
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error metrics are displayed, the MSE and the MAE (see equation 2.20).

Table 4.5 shows the forecast metrics for h = 1 (x̂t+1|t). In total terms, the metrics for the LSTM model and for

the ARMA-GARCH models are lower than the metrics for the Naive model (the default Benchmark model),

which means that the prediction error is lower. Both models add value in forecasting the CISS series. Re-

garding the MSE metric, we find that the predictions of the ARMA-GARCH models are better (in total terms)

than the LSTM model, while this relationship is reversed for the MAE. Note that for the MSE metric, the

error is given in squared terms (also the metric units are squared). It penalizes more harshly large errors (and

outliers) than small errors, whereas the MAE gives all errors equal weight (more interpretable, metric units

match CISS units). Thus, due to the difference in the units, one must be careful when comparing both metrics

in terms of magnitudes as it could lead to misleading conclusions. As for the regions, Portugal is the one with

the smallest error above all, obtaining a MSE = 3.04 · 10−5 with the LSTM model, the lowest in the table,

while scoring MSE = 3.34 ·10−5 with the ARMA-GARCH model. The worst forecast for the LSTM model,

in absolute terms, is for the Euro Area CISS, with MSE = 1.30 ·10−4 and MAE = 6.58 ·10−3.

ARMA-GARCH Model Benchmark Model LSTM Model
Country MSE MAE MSE MAE MSE MAE

Germany 8.70E-05 4.81E-03 1.05E-04 5.31E-03 9.28E-05 4.95E-03
France 8.68E-05 5.17E-03 9.87E-05 5.50E-03 9.12E-05 5.28E-03
Italy 8.87E-05 4.90E-03 1.09E-04 5.50E-03 8.89E-05 4.74E-03
Portugal 3.34E-05 3.66E-03 3.67E-05 3.93E-03 3.04E-05 3.42E-03
UK 1.24E-04 6.49E-03 1.49E-04 7.20E-03 1.23E-04 6.37E-03
Spain 4.60E-05 3.65E-03 5.44E-05 3.99E-03 4.65E-05 3.52E-03
Euro Area 1.24E-04 6.59E-03 1.43E-04 7.17E-03 1.30E-04 6.58E-03
US 7.08E-05 5.01E-03 7.20E-05 5.21E-03 7.55E-05 5.04E-03
China 5.17E-05 4.70E-03 6.07E-05 4.99E-03 5.40E-05 4.73E-03

Total 7.91E-05 5.00E-03 9.21E-05 5.42E-03 8.15E-05 4.96E-03

Table 4.5: MSE and MAE metrics for the forecasts of the CISS series on the test sample. Case h = 1.

To have a better comparative perspective of the performances of the models, we define the % gain of one model

over another model as the relative change %c in its metric (% Gain m1 to m2 is %c = 100 · (m2−m1)/m2).

The computed relative gains are depicted in Table 4.6 for h = 1:
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% Gain ARMA to Bench. % Gain LSTM to Bench. % Gain LSTM to ARMA
Country MSE MAE MSE MAE MSE MAE

Germany 17.31 9.48 11.83 6.89 -6.63 -2.86
France 12.04 5.89 7.58 3.89 -5.07 -2.12
Italy 18.37 10.92 18.14 13.84 -0.28 3.28
Portugal 8.92 6.71 16.98 12.97 8.85 6.71
UK 17.02 9.96 17.45 11.60 0.52 1.82
Spain 15.34 8.64 14.41 11.69 -1.10 3.34
Euro Area 13.55 8.09 8.74 8.28 -5.57 0.21
US 1.73 3.75 -4.85 3.21 -6.69 -0.56
China 14.80 5.87 11.04 5.36 -4.42 -0.54

Total 14.08 7.83 11.52 8.57 -2.98 0.80

Table 4.6: Relative gains of the MSE and MAE metrics between the different fitted models for the CISS series.
Results for the test sample. Case h = 1.

As we have seen previously, the LSTM model is the best in total terms according to the MAE metric, while

according to the MSE metric the relative gain of the LSTM model against the ARMA model is negative, with

a loss of 2.98%. In the comparison LSTM model over Naive model (Benchmark), the most important relative

gains according to the MAE are given for Italy and Portugal; 13.84% and 12.97%. According to the MSE, the

two largest gains are in Italy, first with the ARMA model (18.37%), followed by the LSTM model (18.14%).

For the LSTM model, mostly all relative gains with respect to Benchmark are positive, with an exception

to US, which presents a −4.85% loss in the MSE. Similarly, in the ARMA-GARCH models, US is also the

country that annotates the worst performance, although it still presents positive gains in both metrics.

For the horizon h = 1 we cannot conclude that there is a clear winning model between the LSTM and the

ARMA-GARCH. While it is true that the ARMA outperforms the LSTM on some occasions, this also occurs

in the opposite direction just as many times. Besides, we can see that the regions with the lowest prediction

error (in absolute terms) are not necessarily the ones that present a higher relative gain when compared to the

Naive model.

Moving now to the horizon h = 5, Table 4.7 shows the results of the predictions for the test sample and Table

4.8 shows their relative gains with respect to the other fitted models.
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ARMA-GARCH Model Benchmark Model LSTM Model
Country MSE MAE MSE MAE MSE MAE

Germany 1.08E-03 1.68E-02 1.21E-03 1.80E-02 1.16E-03 1.78E-02
France 9.48E-04 1.68E-02 1.04E-03 1.74E-02 9.44E-04 1.68E-02
Italy 1.23E-03 1.92E-02 1.38E-03 2.04E-02 1.24E-03 1.89E-02
Portugal 3.09E-04 1.18E-02 3.31E-04 1.26E-02 2.75E-04 1.16E-02
UK 1.55E-03 2.48E-02 1.73E-03 2.65E-02 1.54E-03 2.49E-02
Spain 5.57E-04 1.30E-02 5.94E-04 1.34E-02 5.83E-04 1.33E-02
Euro Area 1.34E-03 2.21E-02 1.47E-03 2.31E-02 1.47E-03 2.27E-02
US 4.68E-04 1.40E-02 4.75E-04 1.45E-02 4.85E-04 1.46E-02
China 5.80E-04 1.50E-02 6.21E-04 1.53E-02 6.13E-04 1.53E-02

Total 8.96E-04 1.71E-02 9.82E-04 1.79E-02 9.23E-04 1.73E-02

Table 4.7: MSE and MAE metrics for the forecasts of the CISS series on the test sample. Case h = 5.

% Gain ARMA to Bench. % Gain LSTM to Bench. % Gain LSTM to ARMA
Country MSE MAE MSE MAE MSE MAE

Germany 10.08 6.52 3.85 1.07 -6.92 -5.83
France 9.20 3.60 9.61 3.79 0.46 0.20
Italy 10.71 5.89 9.82 7.41 -1.00 1.62
Portugal 6.57 5.71 16.94 7.89 11.10 2.31
UK 10.46 6.49 10.84 6.14 0.42 -0.38
Spain 6.10 3.51 1.82 0.79 -4.56 -2.82
Euro Area 8.45 4.41 -0.04 1.91 -9.27 -2.62
US 1.38 3.39 -2.19 -0.74 -3.61 -4.27
China 6.54 1.90 1.24 -0.39 -5.68 -2.34

Total 8.76 4.78 6.03 3.33 -3.00 -1.53

Table 4.8: Relative gains of the MSE and MAE metrics between the different fitted models for the CISS series.
Results for the test sample. Case h = 5.

First, we observe a decline in the predictive capacity of the three approaches used. This is to be expected,

since the forecast is further forward in time and therefore the range of variation of the stress index is po-

tentially greater. This time, in total terms, the ARMA-GARCH models present better metrics than the rest.

Although the LSTM network is still more predictive than the Naive model, it is outperformed by classical

autoregressive models. In relative terms, the LSTM network loses 3.00% in the MSE metric and 1.53% in the

MAE compared to the ARMA. Even so, for some regions, such as Portugal or France, favourable results are

still obtained for the neural network. While the ARMA-GARCH models keep their relative gain (with respect

to the Benchmark) positive for all regions, we behold negative values for the Euro Area, US and China on the

LSTM model (with respect to the Benchmark).

Finally, we analyse the forecasts obtained for two weeks ahead (h = 10). The metrics are shown in Table 4.9,

and in Table 4.10 appear the corresponding relative gains between each of the fitted models.
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ARMA-GARCH Model Benchmark Model LSTM Model
Country MSE MAE MSE MAE MSE MAE

Germany 2.80E-03 2.78E-02 2.84E-03 2.85E-02 3.02E-03 3.17E-02
France 2.52E-03 2.73E-02 2.55E-03 2.75E-02 2.51E-03 2.90E-02
Italy 3.37E-03 3.23E-02 3.44E-03 3.29E-02 3.79E-03 3.56E-02
Portugal 7.61E-04 1.94E-02 7.61E-04 1.95E-02 7.24E-04 2.10E-02
UK 4.21E-03 4.16E-02 4.34E-03 4.26E-02 4.09E-03 4.07E-02
Spain 1.27E-03 2.06E-02 1.26E-03 2.05E-02 1.31E-03 2.39E-02
Euro Area 3.45E-03 3.61E-02 3.37E-03 3.61E-02 3.86E-03 3.81E-02
US 1.07E-03 2.20E-02 1.05E-03 2.21E-02 1.08E-03 2.36E-02
China 1.31E-03 2.29E-02 1.29E-03 2.28E-02 1.37E-03 2.46E-02

Total 2.31E-03 2.78E-02 2.32E-03 2.80E-02 2.42E-03 2.98E-02

Table 4.9: MSE and MAE metrics for the forecasts of the CISS series on the test sample. Case h = 10.

% Gain ARMA to Bench. % Gain LSTM to Bench. % Gain LSTM to ARMA
Country MSE MAE MSE MAE MSE MAE

Germany 1.20 2.48 -6.53 -11.23 -7.82 -14.05
France 1.23 0.52 1.47 -5.69 0.24 -6.24
Italy 2.19 1.59 -10.02 -8.40 -12.48 -10.15
Portugal 0.04 0.65 4.92 -7.70 4.87 -8.40
UK 3.18 2.36 5.84 4.56 2.74 2.26
Spain -1.20 -0.37 -3.82 -16.73 -2.59 -16.29
Euro Area -2.43 0.06 -14.54 -5.41 -11.82 -5.47
US -1.88 0.35 -2.66 -6.72 -0.76 -7.10
China -1.79 -0.47 -5.74 -8.16 -3.87 -7.66

Total 0.67 0.96 -4.03 -6.26 -4.73 -7.29

Table 4.10: Relative gains of the MSE and MAE metrics between the different fitted models for the CISS
series. Results for the test sample. Case h = 10.

For the case h = 10, the LSTM network does not show any improvement with respect to the Naive approach

(Benchmark), but rather the results worsen in relative terms 4.03% according to the MSE and 6.26% according

to the MAE. The neural network is unable to extract generalizable information from the training and, when

evaluating on an unseen sample, it is not capable of adding value to the forecast. Only for one country,

UK, it manages to obtain both metrics with positive relative gains with respect to the Naive and ARMA-

GARCH models. For the ARMA-GARCH models, the forecasts slightly improve, achieving in total terms

better metrics when compared to the Benchmark, although the gains are close to zero; 0.67% according to

the MSE and 0.96% according to the MAE. As we have seen in section 4.2.1, the ARMA-GARCH models

fitted have the advantage that the forecast (on the differenced series) tends to zero as we extend the horizon,

so the forecast in the original series resembles the predictions of the Naive approach when h increases, with

the characteristic that the forecast cannot get much worse compared to the Benchmark no matter how much

we continue to extend the horizon. On the other hand, for the LSTM model, this kind of boundary does not
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exist, which can cause results with more variability that further deviate from the Naive approach. In our initial

trials, we even attempted to set larger horizon frames, up to h = 60, but we quickly realize that we were not

able to outperform the Naive approach.

From the fundamental point of view of the CISS series, it can be argued that the time structure of the series

is very non-uniform and hardly obeys patterns or empirical regularities for sample periods that are far from

each other. Therefore, its structure from the training sample must have mutated several times compared to

the test sample. For example, in the LSTM model, if we look at the MSE at h = 1 for the validation sample

(MSE = 6.31 ·10−5) we can see that its value is significantly lower than the MSE = 8.15 ·10−5 later obtained

in the test sample.

Although it is true that at short horizons we observe some autocorrelation structure with its past values, the

most distant lags (on the differenced series) could well be modelled by a white noise process. Even for non-

linear models, as the LSTM, we do not manage to extract valuable information to predict long horizons. The

CISS series are fundamentally driven by financial and macroeconomic changes and relevant market events,

and so own lagged terms of the series do not seem to have good explanatory power in the long-range view.

In addition to the metrics presented, one can also come upon with relevant insights by plotting the predictions

obtained and comparing them between the different time horizons considered. We do so for the UK CISS, in

Figures 4.7, 4.8 and 4.9. On the left, we depict the forecasted values in the test sample, including the actual

observed CISS. On the right, a scatter plot of the same forecast versus the actual values gives us an idea of the

dispersion of our predictions, where the diagonal line (y = x) represents the perfect case. From top to bottom,

the time horizons h = {1,5,10} are shown, respectively.

As the horizon increases, the dispersion becomes more noticeable. For h = 1, the predictions appear accurate

to the naked eye and the dispersion plot looks quite uniform along the diagonal axis line, while being most

of the observations located in values of low stress regime. For h = {5,10}, dispersion magnifies, being the

greater the actual observed value, the greater the error. This is expected, as when financial stress is higher,

uncertainty also increases, resulting in more variability on the time series and thus more difficulty in giving

accurate predictions. Besides, we observe that the dispersion plot is skewed towards the upper diagonal. That

is, it is more common to see the forecasted value to be smaller than the actual value (more source of error in

average) than it is to forecast a value that is higher than the observed. This undershooting is clearer to see

in the h = 10 horizon; it happens mostly in cases where the financial risk suddenly increases and models are

not able to level up until some periods ahead when high values of the index begin to enter as inputs. Last,

comparing the models adjusted, and in concordance with the metrics presented before, we see that for the UK

CISS the LSTM model is the one performing better. This is qualitatively reflected in the scatter plots, where

the LSTM predictions are generally more centred around the diagonal line, while the Naive approach is the

one that remains in the outermost parts of the graph. This last observation, is of course subject to change with

the other studied regions, depending in each case which was the model we found out to have a better fit. But,

for the rest of the analysis, we have seen that the dispersion phenomena are common in a qualitative way to

all the other studied regions, so we avoid overextending our work by just presenting this case as an example.
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Figure 4.7: Predicted values by the 3 fitted models: LSTM network (red), ARMA-GARCH model (yellow),
and Naive approach (blue). Predictions for h = 1.

Figure 4.8: Predicted values by the 3 fitted models: LSTM network (red), ARMA-GARCH model (yellow),
and Naive approach (blue). Predictions for h = 5.

Figure 4.9: Predicted values by the 3 fitted models: LSTM network (red), ARMA-GARCH model (yellow),
and Naive approach (blue). Predictions for h = 10.

In summary, under the presented experimental context, we believe that LSTM networks can provide with
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satisfactory results on the short horizon. However, due to the circumstances (small sample data, composite

financial time series, little serial dependency, structural changes, etc), we consider classical econometric ap-

proaches such as ARMA-GARCH models to be more robust and to return with better results in this scenario,

plus they provide simplicity in terms of parameters to estimate, computational time and interpretability of the

model.
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Chapter 5

Conclusions

Throughout this project we have been working around financial stress indices, in particular, with the Compos-

ite Index of Systemic Stress. We have applied various methodologies to these indicators to extract valuable

insights about the behaviour of systemic stress on different selected regions. On this section, we highlight the

major conclusions reached and propose a discussion on future lines of work within this research area.

In relation to the analysis of connectedness on the systemic risk between the regions studied, we resolved the

main goals that were initially proposed. Within the Euro Area, we encounter with a highly interconnected

network, with a measure of total connectedness of C = 62.89%. Despite being the own variance share terms

the bigger individual elements among the variance decomposition matrix, the aggregated connectedness from

others exceeds the 50% level in all countries. Interestingly, from the unconditional point of view, the two

major economic powers of the EU, that is, France and Germany, exhibit the greatest levels of connectedness,

and they are the countries with highest capacity of transmitting systemic risk to others. Also, neighbouring

countries, such as France and Spain or Portugal and Spain, present strong linkages in terms of pairwise con-

nectedness. Overall, Portugal and specially UK, are the two countries less interrelated in the network. UK

efforts to disassociate from the European Union are also seen reflected in the financial sector, although this

does not prevent him from being the greatest net receiver of risk among all, with CUK = −10.59%. Besides,

we explored the dynamic behaviour of the connectedness measures, from the macro to the micro perspective.

In general, it is seen that systemic risk interdependencies between countries usually peak or exhibit highest

variability when financial stress increases due to an important market event. We localized the greatest levels

of total connectedness to be coinciding with the beginning of the lockdown measures on the Covid pandemic,

sustaining values around the C = 75% for an entire year. Other periods of high connectedness were found

during the European sovereign debt crisis and during the years 2015-2016, linked to the stock market selloff

and to the uncertainty around Brexit.

With regards to the connectedness study between China, United States, and the Euro Area, we have also

found interesting results. The total connectedness measure stands at C = 17.19%, being lower compared to

the previous case studied. Even though, pairwise connectedness measures between Euro Area and United

States show strong linkage, as high as the top countries in Europe. In contrast, China is the most isolated

country in terms of financial stress, showing connectedness measures significantly lower in magnitude. In
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net terms, the Euro Area and United States are transmitters of risk, impacting China with a net total term of

CChina = −7.64%. From the dynamic point of view, we observed similar qualitative results as in the within

Europe countries case, being the greatest shocks of financial stress transmitted during the Covid period.

Our results obtained in this project are in line with other related papers. In [35], interdependences on the

CISS indices are analysed for 11 countries from the European Area, by using two different connectedness

frameworks: the generalized connectedness approach as presented here [5], and the frequency connectedness

measures as proposed in [36]. In this paper, the author limits himself to showing only the overall (total) con-

nectedness measure in the dynamic rolling window case. We extended the analysis by showing also pairwise,

net pairwise, total directional and net total directional connectedness measures, both in the static and dynamic

case. In [37], the authors present dynamic connectedness measures by realizing a TVP-VAR model between

the stock markets of different European countries (including US and China), where they put special focus on

the Covid period. Our results regarding this period are coincident, which show strong evidence that stock

markets behaviour is quite indicative to the overall financial stress, in the same way that it is often used as a

barometer for the state of the economy. However, one point in favour towards using financial stress indices

rather than stock market data is that the first ones also target other relevant financial segments, such as the

bond market or the money market, so a wider view can be obtained if we want to evaluate the whole financial

system.

We believe further work on this topic would be meaningful if other global or emerging economic powers

(such as Japan, India, or Brazil, among others) were included in the analysis, and we could explore how

the directionality of risk is transmitted to those countries and how those interdependences would evolve over

time. Besides, as done in related literature, applying other alternative connectedness frameworks that exist

and comparing them with the one presented here, would also enrich our analysis and perhaps it would give us

with a wider perspective within the research field.

In relation to the forecasts on the CISS indices at different time horizons, we have proposed a univariate LSTM

network with a unique structure for all regions as a data augmentation method and with various modules to

prevent overfitting the training sample. We have also approached the problem by adjusting ARMA-GARCH

models into the differenced time series and we have complemented the work with a Naive approach as a

Benchmark model for comparison. Our results outperform the Naive approach in the one-day-ahead and one-

week-ahead horizons but fail to consistently deliver a better forecast on the two-weeks-ahead case. The results

suggest that the temporal structure of the CISS series is rarely preserved during long periods and its lagged

observations have explanatory power only for the short term. Comparing the LSTM model with the ARMA-

GARCH framework, we see that the second may be more suitable to use in experimental contexts as the one

presented here, as it has proven to provide with generally better results. However, for countries like Portugal

and UK, the LSTM network is arguably the preferred choice in all time horizons considered, as it outperforms

the other approaches in the majority of the metrics presented. Perhaps, in terms of forecasting, the best choice

would be not to choose any model in particular, but to have ARMA-GARCH models and LSTM networks

competing in parallel, and ultimately one can decide at each moment what model to use for each country

based on the recent predictive performance of the two.
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Also, we presented a comparative analysis of the dispersion of the error term for the different horizons consid-

ered. The results suggest that for one-week-ahead and two-weeks-ahead horizons, the three approaches tend

to undershoot the forecast, as only having as inputs its own lagged observations, the models fail to guess an

upcoming raise in risk levels.

To our knowledge, few literature exists related to forecasting financial stress indices with neural networks.

Besides, it is not a common practice to use Benchmark models to have a real comparative outlook on whether

the new models proposed suppose any improvement with respect to more classical and simpler approaches.

By searching and comparing promising LSTM approaches within the financial sector, we find most of them to

be designed to predict stock prices. What characterizes those is that: usually the prediction horizons are short

(one-day-ahead [15]), or that there are more features available such as candlestick type data [38] (OHLCV:

open price, high price, low price, adjusted close price and volume), or that there is a much bigger database

available, obtained by extracting high-frequency intraday data [39]. Therefore, we believe that in our project

it has been difficult to outperform classical approaches due to the fact that our experimental setup does not

contain these type of characteristics.

Future lines of research regarding financial time series forecasting, specially related to stress indices, would

follow on proposing hybrid models which combine the LSTM network with autoregressive ARMA-GARCH

models. Since the error is seen stationary and centred around zero, one possibility to examine would be to

model the CISS series first by using a neural network, and then trying to model its error by an ARMA-GARCH

model (or vice-versa, first ARMA-GARCH, then LSTM network). This approach is similar in some sense

to hybrid models for volatility estimates that combine the GARCH framework with deep learning methods;

see, for instance, [40–42]. Another alternative would be to ideate a data augmentation method (similar to

the one proposed in [43]) which could combine information from various CISS series and also from other

macroeconomic variables of interest, perhaps in a structured way making use of the results obtained from an

analysis of connectedness between those series. All in all, the predictive performance of neural networks in

financial time series modelling will mostly depend on whether we are capable of having a large enough data

set, with information that has good explanatory power over the series of study.

As end point, I would like to emphasize on the importance of financial stress indices. Even though individual

risk indicators such as volatility series or interest rate spreads are still the most used indicators in the industry

to monitor financial risk, I believe composite systemic stress indices, such as the CISS series presented here,

provide a much more direct, robust, and interpretable vision of the overall levels of risk in the financial

system. Thus, major financial corporations, policy makers and central banks, but also within the scientific

research sector, should pay close attention to the field of financial stress indices if they want to modernize risk

management, have a better understanding of financial risk, and prevent on future economic crisis.
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Appendix A

Figure 5.1: Sensitivity analysis of the Total Connectedness Index for different horizons H. European region
countries.

Figure 5.2: Sensitivity analysis of the Total Connectedness Index for different window widths w. European
region countries.
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Figure 5.3: Sensitivity analysis of the Total Connectedness Index for different horizons H. World area.

Figure 5.4: Sensitivity analysis of the Total Connectedness Index for different window widths w. World area.

54



APPENDIX B

Appendix B

Code details
On this project, we have used two different programming languages: R and Python.

• On R, via RStudio, we have carried out the exploratory and descriptive analysis of the CISS series.

Also, the identification, fitting, validation and forecasting of the ARMA-GARCH models (and the Naive

approach). Besides, we have carried out the Connectedness analysis. All the plots presented on this

project have been made using the ggplot2 package.

• On Python, via Google Colab, we have designed and deployed the part regarding the LSTM network

and its forecasting. Precisely, for training the model and specifying the network architecture, we have

used the Keras framework on top of TensorFlow 2.

The full extend of the code built to make this project can be found in the following GitHub repository:

https://github.com/oriol33/TFM_OriolGairin.git

In the following pages, we provide some snippets of the code that may be of interest. Note that they just

represent a short brief, they are not complete and do not cover the extend of our work.
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Germany CISS

Identification, fitting and validation of an ARMA-GARCH model.

1

2 #Validation function (model for the mean)

3 ############################################################

4 validation=function(model,dades){

5 s=frequency(get(model$series))

6 resid=model$residuals

7 par(mfrow=c(2,2),mar=c(3,3,3,3))

8 #Residuals plot

9 plot(resid,main="Residuals")

10 abline(h=0)

11 abline(h=c(-3*sd(resid),3*sd(resid)),lty=3,col=4)

12 #Square Root of absolute values of residuals (Homocedasticity)

13 scatter.smooth(sqrt(abs(resid)),main="Square Root of Absolute residuals",

14 lpars=list(col=2))

15

16 #Normal plot of residuals

17 qqnorm(resid)

18 qqline(resid,col=2,lwd=2)

19

20 ##Histogram of residuals with normal curve

21 hist(resid,breaks=20,freq=FALSE)

22 curve(dnorm(x,mean=mean(resid),sd=sd(resid)),col=2,add=T)

23

24

25 #ACF & PACF of residuals

26 par(mfrow=c(1,2))

27 acf(resid,ylim=c(-1,1),lag.max=60,col=c(2,rep(1,s-1)),lwd=1)

28 pacf(resid,ylim=c(-1,1),lag.max=60,col=c(rep(1,s-1),2),lwd=1)

29 par(mfrow=c(1,1))

30

31 #ACF & PACF of square residuals

32 par(mfrow=c(1,2))

33 acf(residˆ2,ylim=c(-1,1),lag.max=60,col=c(2,rep(1,s-1)),lwd=1)

34 pacf(residˆ2,ylim=c(-1,1),lag.max=60,col=c(rep(1,s-1),2),lwd=1)

35 par(mfrow=c(1,1))

36

37 #Ljung-Box p-values

38 par(mar=c(2,2,1,1))

39 tsdiag(model,gof.lag=7*s)

40 cat("\n--------------------------------------------------------------------\n")

41 print(model)

42

43 #Stationary and Invertible

44 cat("\nModul of AR Characteristic polynomial Roots: ",

45 Mod(polyroot(c(1,-model$model$phi))),"\n")
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46 cat("\nModul of MA Characteristic polynomial Roots: ",

47 Mod(polyroot(c(1,model$model$theta))),"\n")

48

49 #Model expressed as an MA infinity (psi-weights)

50 psis=ARMAtoMA(ar=model$model$phi,ma=model$model$theta,lag.max=36)

51 names(psis)=paste("psi",1:36)

52 cat("\nPsi-weights (MA(inf))\n")

53 cat("\n--------------------\n")

54 print(psis[1:20])

55

56 #Model expressed as an AR infinity (pi-weights)

57 pis=-ARMAtoMA(ar=-model$model$theta,ma=-model$model$phi,lag.max=36)

58 names(pis)=paste("pi",1:36)

59 cat("\nPi-weights (AR(inf))\n")

60 cat("\n--------------------\n")

61 print(pis[1:20])

62

63 #Sample ACF vs. Teoric ACF

64 par(mfrow=c(2,2),mar=c(3,3,3,3))

65 acf(dades, ylim=c(-1,1) ,lag.max=36,main="Sample ACF")

66

67 plot(ARMAacf(model$model$phi,model$model$theta,lag.max=36),ylim=c(-1,1),

68 type="h",xlab="Lag", ylab="", main="ACF Teoric")

69 abline(h=0)

70

71 #Sample PACF vs. Teoric PACF

72 pacf(dades, ylim=c(-1,1) ,lag.max=36,main="Sample PACF")

73

74 plot(ARMAacf(model$model$phi,model$model$theta,lag.max=36, pacf=T),ylim=c(-1,1),

75 type="h", xlab="Lag", ylab="", main="PACF Teoric")

76 abline(h=0)

77 par(mfrow=c(1,1))

78 }

79 ###################################################################

80

81 # Work with differencied series

82 plot(germany_ts)

83 d1serie <- diff(germany_ts)

84 d1serie <- d1serie[-1]

85 plot(d1serie)

86

87 # Check overdifferentation

88 var(germany_ts)

89 var(d1serie)

90

91 # Check stationarity (#H0: serie is I(1))

92 d1serie.df<-ur.df(d1serie, type = c("none"), lags = 3)

93 summary(d1serie.df)

94 plot(d1serie.df)
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95

96 #Identification (model for the mean)

97 win.graph(width=8,height=5)

98 par(mfrow=c(1,2),font=2,font.lab=4,font.axis=2,las=1)

99 acf(d1serie,ylim=c(-0.1,1),main="d1serie")

100 pacf(d1serie,ylim=c(-0.1,1),main="d1serie")

101

102 #Proposed model for the mean: ARMA(5,0)

103 (model = arima(d1serie, order = c(5,0,0),include.mean = TRUE))

104 pnorm(c(abs(model$coef)/sqrt(diag(model$var.coef))), mean=0, sd=1, lower.tail=FALSE)

105 BIC(model)

106

107 #Validation

108 validation(model,d1serie)

109 #Clear signs of volatility

110

111

112 ## Model for the variance ##

113

114 #ARMA-GARCH(1,1) t-Student

115 spec1=ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)), mean.model

=list(armaOrder=c(4,0)), distribution.model = "std")

116 m1=ugarchfit(spec=spec1,data=d1serie)

117 m1

118 plot(m1)

119 #Observations: Good Validation !

120

121

122 #ARMA-GJR-GARCH t-Student

123 spec2=ugarchspec(variance.model=list(model="gjrGARCH", garchOrder = c(1,1)), mean.model=

list(armaOrder=c(4,0)), distribution.model = "std")

124 m2=ugarchfit(spec=spec2,data=d1serie)

125 m2

126 #gamma<0 indica que cuando la diferencia es negativa (disminuye el systemic risk),

127 # la volatilidad de la serie ligeramente disminuye, respecto a diferencias positivas.

128 plot(m2)

129 #Observations: Good validation! Captures asymmetry

130

131

132 #ARMA-EGARCH t-Student

133 #alpha1 se corresponde con el gamma de las diapositivas (coef. asimetrico)

134 #Gamma de R se corresponde con el theta de las diapositivas.

135 spec3=ugarchspec(variance.model=list(model="eGARCH", garchOrder = c(1,1)), mean.model=

list(armaOrder=c(4,0)), distribution.model = "std")

136 m3=ugarchfit(spec=spec3,data=d1serie)

137 m3

138 # alpha1 positivo (coef. asim.) significa que para diferencia negativa (disminuye

systemic risk),

139 # la volatilidad del dia siguiente disminuye respecto si la diferencia fuera positiva.
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140 plot(m3)

141 #Observations: Worst fit.

142

143

144 ##############################

145 ### Final model proposed: ###

146 ##############################

147

148 #ARMA(4,0)-gjrGARCH(1,1) t-Student

149 #Observations: Good fit. Asymmetric behavior. Good Validation !

150 m2

151 plot(m2)

Germany CISS

Forecasting on the test sample with the ARMA-GARCH and Naive models. Horizon h = 1.

1

2 #Partitions for Train + Test

3 #Validation is done from econometric p.o.v.

4 train_pct <- 0.9

5 test_pct <- 1-train_pct

6

7 ##### Univariate Forecasts ###################

8

9 ##### Germany ################################

10

11 # We fit the model on differenced data, then we inverse transform.

12 d1germany_ts <- diff(germany_ts)

13 d1germany_ts <- d1germany_ts[-1]

14

15 out_sample <- round(test_pct*length(d1germany_ts),0) #Observations that we leave outside

the training set

16

17 #ARMA(4,0)-gjrGARCH(1,1) t-StudentFrance

18 # We fit the model, leaving out the test data

19 spec2=ugarchspec(variance.model=list(model="gjrGARCH", garchOrder = c(1,1)), mean.model=

list(armaOrder=c(4,0)), distribution.model = "std")

20 m_germany=ugarchfit(spec=spec2,data=d1germany_ts, out.sample = out_sample )

21

22 #FORECAST y(t+1|t)

23 ugarchforecast(m_germany, n.ahead=10, n.roll= 0)

24 forc_germany_1 = ugarchforecast(m_germany, n.ahead=1, n.roll= out_sample)

25

26 fpm(forc_germany_1) #Forecast performance measures

27 sigma(forc_germany_1) #Forecast standard deviation

28 fitted(forc_germany_1) #Forecast time series (point prediction)

29 #plot(forc_germany_1) #Plot forecast, with confidence intervals

30
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31

32 #### FORECAST y(t+1 .... t+10 |t) #########

33 forc_germany = ugarchforecast(m_germany, n.ahead=10, n.roll= out_sample)

34

35 forc_germany_sigma_TOT <- t(as.data.frame(sigma(forc_germany)))

36 forc_germany_mean_TOT <- t(as.data.frame(fitted(forc_germany)))

37

38 ###### T+1|T #####

39

40 #Horizon

41 H <- 1

42

43 #Substract H last predictions, as we don’t have data to compare.

44 forc_germany_mean <- forc_germany_mean_TOT[1:(dim(forc_germany_mean_TOT)[1]-H),]

45

46 #Select T+H forecast

47 forc_germany_mean <- as.data.frame(forc_germany_mean[,1])

48

49 #First day of forecast

50 F1 <- (round(train_pct*length(germany_ts),0)+H)

51

52 #Select forecast dates

53 dates_f <- dates[F1:length(dates)]

54

55 #Build dataset with dates, actual values and predicted values

56 forc_germany_mean <- cbind(forc_germany_mean,dates_f) #date

57

58 forc_germany_mean <- cbind(forc_germany_mean, d1germany_ts[(F1-1):length(d1germany_ts)])

#actual_diff

59 forc_germany_mean <- cbind(forc_germany_mean,germany_ts[F1:length(germany_ts)]) #actual

60

61 lagged_actual <- germany_ts[(F1-H):(length(germany_ts)-H)] #lagged H times

62 forc_germany_mean <- cbind(forc_germany_mean,lagged_actual)

63

64 rownames(forc_germany_mean) <- NULL

65 colnames(forc_germany_mean) <- c(’pred_diff’, ’date’, ’actual_diff’, ’actual’, ’lagged_

actual’)

66

67 #We undo de diff() transformation. We get the prediction for the time series

68 pred <- forc_germany_mean$pred_diff+forc_germany_mean$lagged_actual

69 forc_germany_mean <- cbind(forc_germany_mean, pred)

70

71 #Plot the results

72 plot(forc_germany_mean$actual)

73 lines(forc_germany_mean$pred)

74

75 #Compute forecast metrics

76

77 #MSE
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78 mse(actual = forc_germany_mean$actual, predicted = forc_germany_mean$pred) #original

series

79 mse(actual = forc_germany_mean$actual_diff, predicted = forc_germany_mean$pred_diff) #

differenced series

80

81 #RMSE

82 rmse(actual = forc_germany_mean$actual, predicted = forc_germany_mean$pred)

83 rmse(actual = forc_germany_mean$actual_diff, predicted = forc_germany_mean$pred_diff)

84

85 #MAE

86 mae(actual = forc_germany_mean$actual, predicted = forc_germany_mean$pred)

87 mae(actual = forc_germany_mean$actual_diff, predicted = forc_germany_mean$pred_diff)

88

89

90 ####### NAIVE APROXIMATION x_{t-1} = x_t #######

91

92 # T+H|T

93

94 #Horizon

95 H <- 1

96 #Time series

97 ts_naive <- array(germany_ts)

98

99 #First day of forecast

100 F1 <- (round(train_pct*length(ts_naive),0)+H)

101

102 #Select forecast dates

103 dates_f <- dates[F1:length(dates)]

104

105 naive_aprox <- data.frame(matrix(ncol = 3, nrow = length(dates_f)))

106 colnames(naive_aprox) <- c(’dates_f’, ’actual’, ’lagged_H’)

107

108 naive_aprox$dates_f <- dates_f

109 naive_aprox$actual <- ts_naive[F1:length(ts_naive)]

110 naive_aprox$lagged_H <- ts_naive[(F1-H):(length(ts_naive)-H)]

111

112 #Plot the results

113 plot(naive_aprox$actual)

114 lines(naive_aprox$lagged_H)

115

116 #MSE

117 mse(actual = naive_aprox$actual, predicted = naive_aprox$lagged_H)

118

119 #RMSE

120 rmse(actual = naive_aprox$actual, predicted = naive_aprox$lagged_H)

121

122 #MAE

123 mae(actual = naive_aprox$actual, predicted = naive_aprox$lagged_H)

124
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125

126 ###### RELATIVE GAIN (ARMA-GARCH models vs. Naive approach) #######

127

128 #MSE gain

129 -100*(mse(actual = forc_germany_mean$actual, predicted = forc_germany_mean$pred) -

130 mse(actual = naive_aprox$actual, predicted = naive_aprox$lagged_H) )/

131 (mse(actual = naive_aprox$actual, predicted = naive_aprox$lagged_H))

132

133 #RMSE gain

134 -100*(rmse(actual = forc_germany_mean$actual, predicted = forc_germany_mean$pred) -

135 rmse(actual = naive_aprox$actual, predicted = naive_aprox$lagged_H) )/

136 (rmse(actual = naive_aprox$actual, predicted = naive_aprox$lagged_H))

137

138 #MAE

139 -100*(mae(actual = forc_germany_mean$actual, predicted = forc_germany_mean$pred) -

140 mae(actual = naive_aprox$actual, predicted = naive_aprox$lagged_H) )/

141 (mae(actual = naive_aprox$actual, predicted = naive_aprox$lagged_H))

Connectedness: European countries

Connectedness measures and robustness analysis.

1

2 ########################

3 # VAR(p) fitting # Euro Area. Differencied series.

4 ########################

5

6 length(germany_ts)

7 length(france_ts)

8 length(italy_ts)

9 length(spain_ts)

10 length(portugal_ts)

11 length(uk_ts)

12

13 # Work with differencied series

14 d1germany <- diff(germany_ts)

15 d1germany <- d1germany[-1]

16

17 d1france <- diff(france_ts)

18 d1france <- d1france[-1]

19

20 d1italy <- diff(italy_ts)

21 d1italy <- d1italy[-1]

22

23 d1spain <- diff(spain_ts)

24 d1spain <- d1spain[-1]

25

26 d1portugal <- diff(portugal_ts)

27 d1portugal <- d1portugal[-1]
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28

29 d1uk <- diff(uk_ts)

30 d1uk <- d1uk[-1]

31

32 CISS_euro <- as.zoo(data.frame(d1germany,d1france,d1italy,d1spain,d1portugal,d1uk))

33

34 ### VAR(p) ###

35

36 #lag selection

37 VARselect(CISS_euro, lag.max =10)

38 p.lag <- 2

39

40 #estimation

41 var.mod_euro <- VAR(CISS_euro, p=p.lag)

42

43 ########################

44 # Conectedness #

45 ########################

46

47 #Hyperparameters

48 H <- 10 #horizon

49 p.lag <- 2 #VAR(p)

50 window <- 250 #width rolling sample

51

52 #Generalized spillover index (Conectedness Table)

53 ConTable_euro <- G.spillover(var.mod_euro, n.ahead = H, standardized = FALSE)

54 ConTable_euro[1:7,1:7]

55

56 #Net spillovers

57 net(ConTable_euro)

58

59 #Dynamic (Net) Spillover Index (Estimates the dynamic spillover index given a moving

window)

60 DSI_net_euro <- roll.net(CISS_euro, width= window, n.ahead= H, index= "generalized", p=p.

lag)

61 colnames(DSI_net_euro) <- c("Germany", "France", "Italy", "Spain", "Portugal", "UK")

62 plot(DSI_net_euro, xlab="Time", main="Net Total Directional Connectedness", ylim=c(-6,6))

63

64 #Graphs formating

65

66 #data <- as.data.frame(DSI_net_euro)

67 #dim(data)

68 #dates2 <- rev(dates)[(length(dates)-5505+1):length(rev(dates))]

69 #length(dates2)

70 #dim(data)

71 #data$day <- dates2

72 #

73 #p1 <- ggplot(data, aes(x=day)) +

74 # geom_hline(yintercept=0, size=1, linetype="dashed", alpha=0.6)+
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75 # geom_line(aes(y = data[,1]), size = 1, color="#3288BD") +

76 # labs(x = "", y = "Germany") +ylim(-5.8,5.8)+

77 # theme(text = element_text(family = "serif", size=16))

78 #p1

79 #

80 #p2 <- ggplot(data, aes(x=day)) +

81 # geom_hline(yintercept=0, size=1, linetype="dashed", alpha=0.6)+

82 # geom_line(aes(y = data[,2]), size = 1, color="#3288BD") +

83 # labs(x = "", y = "France") +ylim(-5.8,5.8)+

84 # theme(text = element_text(family = "serif", size=16))

85 #p2

86 #

87 #p3 <- ggplot(data, aes(x=day)) +

88 # geom_hline(yintercept=0, size=1, linetype="dashed", alpha=0.6)+

89 # geom_line(aes(y = data[,3]), size = 1, color="#3288BD") +

90 # labs(x = "", y = "Italy") +ylim(-5.8,5.8)+

91 # theme(text = element_text(family = "serif", size=16))

92 #p3

93 #

94 #p4 <- ggplot(data, aes(x=day)) +

95 # geom_hline(yintercept=0, size=1, linetype="dashed", alpha=0.6)+

96 # geom_line(aes(y = data[,4]), size = 1, color="#3288BD") +

97 # labs(x = "", y = "Spain") +ylim(-5.8,5.8)+

98 # theme(text = element_text(family = "serif", size=16))

99 #p4

100 #

101 #p5 <- ggplot(data, aes(x=day)) +

102 # geom_hline(yintercept=0, size=1, linetype="dashed", alpha=0.6)+

103 # geom_line(aes(y = data[,5]), size = 1, color="#3288BD") +

104 # labs(x = "Time", y = "Portugal") +ylim(-5.8,5.8)+

105 # theme(text = element_text(family = "serif", size=16))

106 #p5

107 #

108 #p6 <- ggplot(data, aes(x=day)) +

109 # geom_hline(yintercept=0, size=1, linetype="dashed", alpha=0.6)+

110 # geom_line(aes(y = data[,6]), size = 1, color="#3288BD") +

111 # labs(x = "Time", y = "UK") +ylim(-5.8,5.8)+

112 # theme(text = element_text(family = "serif", size=16))

113 #p6

114 #

115 #grid.arrange(p1, p2, p3, p4, p5, p6, nrow = 3)

116

117 #Dynamic Spillover Index

118 DSI_euro <- roll.spillover(CISS_euro, width= window, n.ahead= H, index= "generalized", p=

p.lag)

119 plot(DSI_euro, xlab="Time", ylab="Total connectedness")

120 max(DSI_euro)

121 min(DSI_euro)

122 which(DSI_euro == min(DSI_euro))
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123 DSI_euro[4842]

124 DSI_euro[3366]

125

126 #DSI vs. "mean" CISS (or vs. Euro CISS)

127 time = data.frame(euro_ts[251:5755,], DSI_euro/100)

128 ts.plot(time, gpars= list(xlab="time", ylab=",", col = 1:ncol(time)))

129 legend("topleft", c("CISS","DSI"), lty=c(1,1), col=c("black","red"), cex=0.6)

130

131 #Graphs formating

132

133 #data <- time

134 #dim(data)

135 #dates2 <- rev(dates)[(length(dates)-5505+1):length(rev(dates))]

136 #length(dates2)

137 #dim(data)

138 #data$day <- dates2

139 #

140 #colors <- c("Euro Area CISS" = "#3288BD", "Total Connectedness" = "#D53E4F")

141 #

142 #p <- ggplot(data, aes(x=day)) +

143 # geom_line(aes(y = data[,1], color="Euro Area CISS"), size = 1) +

144 # geom_line(aes(y = data[,2], color="Total Connectedness"), size = 1)+

145 # labs(x = "Time", y = "", color = "Series", ylim=c(0,1)) +ylim(0,0.95)+

146 # scale_color_manual(values = colors)+theme(text = element_text(family = "serif", size

=16))

147 #p

148

149 #Dynamic pairwise directional conectedness ij

150 ConTable_euro[1:7,1:7]

151 #Germany & france maximum exchange

152 #Spain & france 2nd maximum exchange

153 roll.pairwise = function(wind=250, ahead=10, Varp=2){

154

155 dynTable <<- array(dim=c(8,7,length(1:(dim(CISS_euro)[1]-wind+1))))

156

157 for (k in 1:(dim(CISS_euro)[1]-wind+1)) {

158 var.mod <- VAR(CISS_euro[k:(k+wind-1)], p=Varp)

159 ConTable <- G.spillover(var.mod, n.ahead = ahead, standardized = FALSE)

160 dynTable[,,k] <<- ConTable

161 }

162 }

163

164 roll.pairwise(wind=250, ahead=10, Varp=2)

165

166 ts.plot(dynTable[1,2,], ylim=c(-8,25), ylab="Germany-France") # Dynamic pairwise

directional connectedness i <- j (germany <- france)

167 lines(dynTable[2,1,],col="red") # Dynamic pairwise directional connectedness i <- j (

france <- germany)

168 lines(dynTable[2,1,]-dynTable[1,2,], col="blue") #Net pairwise directional connectedness
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ij (j<-i - i<-j) (germany-france)

169 abline(h = 0, lty = "dashed", col = "black")

170 dynTable[1,2,][4100]

171 DSI_euro[4100]

172

173 ts.plot(dynTable[4,2,], ylim=c(-6,35), ylab="Spain-France") # Dynamic pairwise

directional connectedness i <- j (spain <- france)

174 lines(dynTable[2,4,], col="red") # Dynamic pairwise directional connectedness i <- j (

france <- spain)

175 lines(dynTable[2,4,]-dynTable[4,2,], col="blue") #Net pairwise directional connectedness

ij (j<-i - i<-j) (spain-france)

176 abline(h = 0, lty = "dashed", col = "black")

177 max(dynTable[4,2,])

178

179 ts.plot(dynTable[2,2,])#france-france

180

181

182 ### Robustness analysis ###

183 ## H

184

185 roll.spillover

186 G.spillover

187

188 #G.spillover_mod (MODIFIED FUN)

189 G.spillover_mod <- function (x, n.ahead=H, standardized = TRUE)

190 {

191 if (!(class(x) == "varest")) {

192 stop("\nPlease provide an object of class ’varest’, generated by ’VAR()’.\n")

193 }

194 var.est <- x

195 n.ahead <- abs(as.integer(n.ahead))

196 EVD <- g.fevd(var.est, n.ahead = n.ahead)

197 K <- var.est$K

198 table <- do.call(rbind, lapply(EVD, "[", n.ahead, )) *

199 100

200 CFO <- rowSums(table - diag(diag(table)))

201 CTO <- colSums(table) - diag(table)

202 CTOT <- colSums(table)

203 table <- rbind(table, ‘C. to others (spillover)‘ = CTO,

204 ‘C. to others including own‘ = CTOT)

205 index <- function(x) {

206 (sum(x) - sum(diag(x)))/nrow(x)

207 }

208 if (standardized) {

209 table <- cbind(table, ‘C. from others‘ = c(CFO,

210 sum(CFO), sum(CTOT)))/K

211 }

212 else {

213 table <- cbind(table, ‘C. from others‘ = c(CFO,
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214 index(table[1:K, ]), sum(CTOT)))

215 }

216 return(table)

217 }

218

219 #roll.spillover_mod (MODIFIED FUN)

220 roll.spillover_mod <- function (data, width, n.ahead = H, index = c("orthogonalized",

221 "generalized"), ortho.type = c("single", "partial",

222 "total"), ...)

223 {

224 if (!(class(data) == "zoo")) {

225 stop("\nPlease provide an object of class ’zoo’, generated by ’as.zoo’.\n")

226 }

227 K <- ncol(data) + 1

228 roll.index <- switch(match.arg(index), orthogonalized = {

229 switch(match.arg(ortho.type), single = {

230 rollapply(data, width = width, FUN = function(z) {

231 O.spillover(VAR(z, ...), ortho.type = c("single"))[K,

232 K]

233 }, by.column = FALSE, align = "right")

234 }, partial = {

235 rollapply(data, width = width, FUN = function(z) {

236 O.spillover(VAR(z, ...), ortho.type = c("partial"))[K,

237 K]

238 }, by.column = FALSE, align = "right")

239 }, total = {

240 rollapply(data, width = width, FUN = function(z) {

241 O.spillover(VAR(z, ...), ortho.type = c("total"))[K,

242 K]

243 }, by.column = FALSE, align = "right")

244 })

245 }, generalized = {

246 rollapply(data, width = width, FUN = function(z) {

247 G.spillover_mod(VAR(z, ...))[K, K]

248 }, by.column = FALSE, align = "right")

249 })

250 return(roll.index)

251 }

252

253 ########

254

255 H <- 10

256 DSI_H10_euro <- roll.spillover_mod(CISS_euro, width= 250, n.ahead=H, index="generalized",

p=p.lag)

257 H <- 3

258 DSI_H3_euro <- roll.spillover_mod(CISS_euro, width= 250, n.ahead=H, index="generalized",

p=p.lag)

259 H <- 15

260 DSI_H15_euro <- roll.spillover_mod(CISS_euro, width= 250, n.ahead=H, index="generalized",
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p=p.lag)

261

262 time2 = data.frame(DSI_H3_euro,DSI_H10_euro,DSI_H15_euro)

263 ts.plot(time2, gpars= list(xlab="time", ylab=",", col = 1:ncol(time2)))

264 legend("topleft", c("H=3","H=10", "H=15"), lty=c(1,1,1), col=1:ncol(time2), cex=0.6)

265

266 #Graphs formating

267

268 #data <- time2

269 #dates2 <- rev(dates)[(length(dates)-length(DSI_H3_euro)+1):length(rev(dates))]

270 #length(dates2)

271 #dim(data)

272 #data$day <- dates2

273

274 #colors <- c("H=3" = "#D53E4F", "H=10" = "#FEE08B", "H=15"="#3288BD")

275 #

276 #p <- ggplot(data, aes(x=day)) +

277 # geom_line(aes(y = DSI_H3_euro, color="H=3"), size = 1) +

278 # geom_line(aes(y = DSI_H10_euro, color="H=10"), size = 1)+

279 # geom_line(aes(y = DSI_H15_euro, color="H=15"), size = 1)+

280 # labs(x = "Time", y = "Total Connectedness Index", color = "Horizon") +

281 # scale_color_manual(values = colors)+theme(text = element_text(family = "serif", size

=16))

282 #p

283

284 ########

285

286 ## Window

287 DSI_150_euro <- roll.spillover(CISS_euro, width= 150, n.ahead= 10, index= "generalized",

p=p.lag)

288 DSI_200_euro <- roll.spillover(CISS_euro, width= 200, n.ahead= 10, index= "generalized",

p=p.lag)

289 DSI_250_euro <- roll.spillover(CISS_euro, width= 250, n.ahead= 10, index= "generalized",

p=p.lag)

290 DSI_300_euro <- roll.spillover(CISS_euro, width= 300, n.ahead= 10, index= "generalized",

p=p.lag)

291 length(DSI_150_euro[101:length(DSI_150_euro)])

292 length(DSI_200_euro)

293 length(DSI_250_euro)

294

295 time = data.frame(DSI_150_euro[101:length(DSI_150_euro)], DSI_200_euro[51:length(DSI_200_

euro)], DSI_250_euro)

296 ts.plot(time, gpars= list(xlab="time", ylab=",", col = 1:ncol(time)))

297 legend("topleft", c("w=150","w=200","w=250"), lty=c(1,1,1), col=1:ncol(time), cex=0.6)

298

299 time = data.frame(DSI_200_euro[101:length(DSI_200_euro)], DSI_250_euro[51:length(DSI_250_

euro)], DSI_300_euro)

300 ts.plot(time, gpars= list(xlab="time", ylab=",", col = 1:ncol(time)))

301 legend("topleft", c("w=200","w=250","w=300"), lty=c(1,1,1), col=1:ncol(time), cex=0.6)
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302

303 #Graphs formating

304

305 #data <- time

306 #dim(time)

307 #dates2 <- rev(dates)[(length(dates)-5455+1):length(rev(dates))]

308 #length(dates2)

309 #dim(data)

310 #data$day <- dates2

311 #

312 #colors <- c("w=200" = "#D53E4F", "w=250" = "#FEE08B", "w=300"="#3288BD")

313 #

314 #p <- ggplot(data, aes(x=day)) +

315 # geom_line(aes(y = data[,1], color="w=200"), size = 1) +

316 # geom_line(aes(y = data[,2], color="w=250"), size = 1)+

317 # geom_line(aes(y = data[,3], color="w=300"), size = 1)+

318 # labs(x = "Time", y = "Total Connectedness Index", color = "Window width") +

319 # scale_color_manual(values = colors)+theme(text = element_text(family = "serif", size

=16))

320 #p

LSTM network for h = 5

Input-output sequences preparation, LSTM architecture and Bayesian Optimizer.

1

2 #Read csv

3 euro = pd.read_csv(’euro.csv’, skiprows=5)

4 uk = pd.read_csv(’uk.csv’, skiprows=5)

5 us = pd.read_csv(’us.csv’, skiprows=5)

6 china = pd.read_csv(’china.csv’, skiprows=5)

7 germany = pd.read_csv(’germany.csv’, skiprows=5)

8 italy = pd.read_csv(’italy.csv’, skiprows=5)

9 spain = pd.read_csv(’spain.csv’, skiprows=5)

10 portugal = pd.read_csv(’portugal.csv’, skiprows=5)

11 france = pd.read_csv(’france.csv’, skiprows=5)

12

13 # Change column names

14 euro.columns = [’date’, ’value’, ’status’]

15 uk.columns = [’date’, ’value’, ’status’]

16 us.columns = [’date’, ’value’, ’status’]

17 china.columns = [’date’, ’value’, ’status’, ’comment’]

18 germany.columns = [’date’, ’value’, ’status’, ’comment’]

19 italy.columns = [’date’, ’value’, ’status’]

20 spain.columns = [’date’, ’value’, ’status’]

21 portugal.columns = [’date’, ’value’, ’status’]

22 france.columns = [’date’, ’value’, ’status’]

23

24 #Reverse data frame (so that first observation is the oldest)
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25 euro = euro.loc[::-1].reset_index(drop=True)

26 uk = uk.loc[::-1].reset_index(drop=True)

27 us = us.loc[::-1].reset_index(drop=True)

28 china = china.loc[::-1].reset_index(drop=True)

29 germany = germany.loc[::-1].reset_index(drop=True)

30 italy = italy.loc[::-1].reset_index(drop=True)

31 spain = spain.loc[::-1].reset_index(drop=True)

32 portugal = portugal.loc[::-1].reset_index(drop=True)

33 france = france.loc[::-1].reset_index(drop=True)

34

35 #Plot

36 plt.figure(figsize=(10,4))

37 plt.title("CISS")

38 plt.plot(france[’value’])

39 plt.xlabel(’Date’, fontsize=18)

40 plt.ylabel(’’, fontsize=18)

41 plt.show()

42

43 #Select value column

44 euro = euro.filter([’value’])

45 uk = uk.filter([’value’])

46 us = us.filter([’value’])

47 china = china.filter([’value’])

48 germany = germany.filter([’value’])

49 italy = italy.filter([’value’])

50 spain = spain.filter([’value’])

51 portugal = portugal.filter([’value’])

52 france = france.filter([’value’])

53

54 #Convert dataframe to numpy

55 euro = euro.values

56 uk = uk.values

57 us = us.values

58 china = china.values

59 germany = germany.values

60 italy = italy.values

61 spain = spain.values

62 portugal = portugal.values

63 france = france.values

64

65 france.shape , china.shape , len(euro)

66

67 #Partitions for Train + Validation + Test

68 train_pct = 0.75

69 valid_pct = 0.15

70 test_pct = 0.10

71

72 training_data_len = math.ceil(len(euro)*train_pct)

73 valid_data_len = math.ceil(len(euro)*valid_pct)
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74

75 #training_data_len = 4320

76 #valid_data_len = 860

77

78 #Hyperparamether sequence_length (prediction at t+1 by using previous ’sequence_length’

days)

79 sequence_length = 64

80

81 #Create the Train , Validation & Test datasets

82 train_euro = euro[0:training_data_len, :]

83 train_uk = uk[0:training_data_len, :]

84 train_us = us[0:training_data_len, :]

85 train_germany = germany[0:training_data_len, :]

86 train_italy = italy[0:training_data_len, :]

87 train_spain = spain[0:training_data_len, :]

88 train_portugal = portugal[0:training_data_len, :]

89 train_france = france[0:training_data_len, :]

90

91 valid_euro = euro[training_data_len:(training_data_len+valid_data_len), :]

92 valid_uk = uk[training_data_len:(training_data_len+valid_data_len), :]

93 valid_us = us[training_data_len:(training_data_len+valid_data_len), :]

94 valid_germany = germany[training_data_len:(training_data_len+valid_data_len), :]

95 valid_italy = italy[training_data_len:(training_data_len+valid_data_len), :]

96 valid_spain = spain[training_data_len:(training_data_len+valid_data_len), :]

97 valid_portugal = portugal[training_data_len:(training_data_len+valid_data_len), :]

98 valid_france = france[training_data_len:(training_data_len+valid_data_len), :]

99

100 test_euro = euro[(training_data_len+valid_data_len): , :]

101 test_uk = uk[(training_data_len+valid_data_len): , :]

102 test_us = us[(training_data_len+valid_data_len): , :]

103 test_germany = germany[(training_data_len+valid_data_len): , :]

104 test_italy = italy[(training_data_len+valid_data_len): , :]

105 test_spain = spain[(training_data_len+valid_data_len): , :]

106 test_portugal = portugal[(training_data_len+valid_data_len): , :]

107 test_france = france[(training_data_len+valid_data_len): , :]

108

109 print(train_euro.shape ,valid_euro.shape, test_euro.shape)

110

111 #Adjust china valid and test datasets to the other countries lengths

112 train_china = china[0:(len(china)-len(test_euro)-len(valid_euro)), :]

113 valid_china = china[(len(china)-len(test_euro)-len(valid_euro)):(len(china)-len(test_euro

)), :]

114 test_china = china[(len(china)-len(test_euro)): , :]

115 print(train_china.shape, valid_china.shape, test_china.shape)

116

117 #Create function to compute x_train and y_train sequences (x: input & y:output).

118 def seq_fun(train_data, valid_data, test_data):

119 x_train = []

120 y_train = []
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121 x_valid = []

122 y_valid = []

123 x_test = []

124 y_test = []

125

126 for i in range(sequence_length, len(train_data)-4):

127 x_train.append(train_data[(i-sequence_length):i, 0])

128 y_train.append(train_data[i+4,0])

129

130 for i in range(sequence_length, len(valid_data)-4):

131 x_valid.append(valid_data[(i-sequence_length):i, 0])

132 y_valid.append(valid_data[i+4,0])

133

134 for i in range(sequence_length, len(test_data)-4):

135 x_test.append(test_data[(i-sequence_length):i, 0])

136 y_test.append(test_data[i+4,0])

137

138 x_train, y_train, x_valid, y_valid, x_test, y_test = np.array(x_train), np.array(

y_train), np.array(x_valid) , np.array(y_valid), np.array(x_test), np.array(y_test)

139 return(x_train, y_train, x_valid, y_valid, x_test, y_test)

140

141 #Obtain sequences on our datasets

142 train_euro_x , train_euro_y, valid_euro_x, valid_euro_y, test_euro_x, test_euro_y =

seq_fun(train_euro, valid_euro, test_euro)

143 train_uk_x , train_uk_y, valid_uk_x, valid_uk_y, test_uk_x, test_uk_y = seq_fun(train_uk,

valid_uk, test_uk)

144 train_us_x , train_us_y, valid_us_x, valid_us_y, test_us_x, test_us_y = seq_fun(train_us,

valid_us, test_us)

145 train_germany_x , train_germany_y, valid_germany_x, valid_germany_y, test_germany_x,

test_germany_y = seq_fun(train_germany, valid_germany, test_germany)

146 train_italy_x , train_italy_y, valid_italy_x, valid_italy_y, test_italy_x, test_italy_y =

seq_fun(train_italy, valid_italy, test_italy)

147 train_spain_x , train_spain_y, valid_spain_x, valid_spain_y, test_spain_x, test_spain_y =

seq_fun(train_spain, valid_spain, test_spain)

148 train_portugal_x , train_portugal_y, valid_portugal_x, valid_portugal_y, test_portugal_x,

test_portugal_y = seq_fun(train_portugal, valid_portugal, test_portugal)

149 train_france_x , train_france_y, valid_france_x, valid_france_y, test_france_x,

test_france_y = seq_fun(train_france, valid_france, test_france)

150 train_china_x , train_china_y, valid_china_x, valid_china_y, test_china_x, test_china_y =

seq_fun(train_china, valid_china, test_china)

151

152 #Concatenate train and validation sequences (input and output)

153 x_train_con = np.concatenate((train_euro_x, train_uk_x, train_us_x, train_germany_x,

154 train_italy_x, train_spain_x, train_portugal_x,

train_france_x, train_china_x))

155

156 y_train_con = np.concatenate((train_euro_y, train_uk_y, train_us_y, train_germany_y,

157 train_italy_y, train_spain_y, train_portugal_y,

train_france_y, train_china_y))
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158

159 x_valid_con = np.concatenate((valid_euro_x, valid_uk_x, valid_us_x, valid_germany_x,

160 valid_italy_x, valid_spain_x, valid_portugal_x,

valid_france_x, valid_china_x))

161

162 y_valid_con = np.concatenate((valid_euro_y, valid_uk_y, valid_us_y, valid_germany_y,

163 valid_italy_y, valid_spain_y, valid_portugal_y,

valid_france_y, valid_china_y))

164

165

166 x_train_con.shape , y_train_con.shape, x_valid_con.shape, y_valid_con.shape

167

168 #Reshape the data to fit to LSTM. You have to input 3d array (number of samples, number

of timesteps, number of features).

169 #In this scheme, we only feed the model with one sequence (feature) at a time.

170 x_train_con = np.reshape(x_train_con, (x_train_con.shape[0], x_train_con.shape[1], 1))

171 x_valid_con = np.reshape(x_valid_con, (x_valid_con.shape[0], x_valid_con.shape[1], 1))

172 x_train_con.shape, x_valid_con.shape

173

174 #Build the LSTM model

175 #Define a function that creates a hypermodel with a bounded (but not specified)

hyperparameter space.

176

177 def hypermodel(hp):

178 model=Sequential()

179 model.add(LSTM(units=hp.Int(’base_layer’,min_value=2, max_value=10, step=2),

180 dropout=hp.Float(’droput_base’,min_value=0.0, max_value

=0.20, step=0.1),

181 recurrent_dropout=hp.Float(’redroput_base’,min_value=0.0,

max_value=0.20, step=0.1), return_sequences=True, input_shape = (x_train_con.shape

[1],1)))

182

183 for i in range(hp.Int(’n_hlayers’, 1, 2)):

184 model.add(LSTM(units=hp.Int(’dense_’ + str(i), min_value=2, max_value=10, step=2),

dropout=hp.Float(’droput_’ + str(i),min_value=0.0, max_value=0.20, step=0.1),

recurrent_dropout=hp.Float(’redroput_’ + str(i),min_value=0.0, max_value=0.20, step

=0.1), return_sequences=True))

185

186 model.add(LSTM(hp.Int(’final_layer’,min_value=2, max_value=10, step=2),

187 dropout=hp.Float(’droput_final’,min_value=0.0, max_value

=0.20, step=0.1),

188 recurrent_dropout=hp.Float(’redroput_final’,min_value=0.0,

max_value=0.20, step=0.1), return_sequences=False))

189

190 model.add(Dense(1, activation=hp.Choice(’dense_activation’,values=[’sigmoid’, ’relu’],

default=’sigmoid’)))

191

192 model.compile(loss=’mean_squared_error’, optimizer=tf.keras.optimizers.Adam(hp.Choice(’

learning_rate’, values=[1e-2, 1e-3])))
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193 return model

194

195 #Bayesian Hyperparameter Optimizer

196 bayesian_opt_tuner = keras_tuner.BayesianOptimization(

197 hypermodel=hypermodel,

198 objective=’val_loss’,

199 max_trials=8,

200 executions_per_trial=1,

201 seed=2022,

202 project_name=’run4_t5_v1’,

203 overwrite=True,)

204

205 bayesian_opt_tuner.search(x=x_train_con ,y=y_train_con,

206 epochs=10,

207 validation_data=(x_valid_con, y_valid_con),

208 batch_size=16,

209 callbacks=[tf.keras.callbacks.EarlyStopping(monitor=’val_loss’,

210 patience=7,

211 min_delta=1e-7,

212 verbose=1,

213 restore_best_weights=True),

214 tf.keras.callbacks.ReduceLROnPlateau(monitor=’val_loss’,

215 factor=0.1,

216 patience= 3,

217 verbose=1,

218 min_delta=1e-7,

219 mode=’min’)]

220 )

221

222 model = bayesian_opt_tuner.get_best_models(num_models=1)[0]

223

224 #Check

225 check = model.evaluate(x_valid_con, y_valid_con, batch_size=16)

226 print("test loss", check)

227

228 hyp= bayesian_opt_tuner.get_best_hyperparameters(1)[0]

229 hyp.values
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