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A B S T R A C T   

Background: The prosthetic alignment procedure considers biomechanical, anatomical and comfort characteris-
tics of the amputee to achieve an acceptable gait. Prosthetic malalignment induces long-term disease. The 
assessment of alignment is highly variable and subjective to the experience of the prosthetist, so the use of 
machine learning could assist the prosthetist during the judgment of optimal alignment. 
Research objective: To assist the prosthetist during the assessment of prosthetic alignment using a new compu-
tational protocol based on machine learning. 
Methods: Sixteen transfemoral amputees were recruited for training and validation of the alignment protocol. 
Four misalignments and one nominal alignment were performed. Eleven prosthetic limb ground reaction force 
parameters were recorded. A support vector machine with a Gaussian kernel radial basis function and a Bayesian 
regularization neural network were trained to predict the alignment condition, as well as the magnitude and 
angle of required to align the prosthesis correctly. The alignment protocol was validated by one junior and one 
senior prosthetist during the prosthetic alignment of two transfemoral amputees. 
Results: The support vector machine-based model detected the nominal alignment 92.6 % of the time. The neural 
network recovered 94.11 % of the angles needed to correct the prosthetic misalignment with a fitting error of 
0.51◦. During the validation of the alignment protocol, the computational models and the prosthetists agreed on 
the alignment assessment. The gait quality evaluated by the prosthetists reached a satisfaction level of 8/10 for 
the first amputee and 9.6/10 for the second amputee. 
Importance: The new computational prosthetic alignment protocol is a tool that helps the prosthetist during the 
prosthetic alignment procedure thereby decreasing the likelihood of gait deviations and musculoskeletal diseases 
associated with misalignments and consequently improving the amputees-prosthesis adherence.   

1. Introduction 

The goal of prosthetic alignment of the lower extremity is to match 
the prosthetic load lines with the anatomical and biomechanical ones of 
the amputee [1], to provide stability, an efficient gait, and movement 
functionality [2]. Prosthetic mismatches induce gait deviations that 

result in injury to the musculoskeletal system and affect the amputee’s 
quality of life [3]. To avoid prosthetic misalignment, different techno-
logical tools such as biaxial tilt sensors [4–6], goniometers [7,8], com-
fort surveys, inertial and postural systems [9,10] are used as to help the 
prosthetist to assess the amputee’s gait and identify the optimal or 
nominal alignment. The skills of the prosthetist to detect a gait deviation 
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caused by prosthetic misalignment, their ability to simultaneously 
interpret biomechanical parameters, anatomical parameters, amputee 
feedback, among others, make the judgment of optimal or nominal 
alignment a complex, iterative and subjective procedure. 

The use of computational modeling techniques could assist the 
prosthetist during the judgment of nominal alignment [11–13]. How-
ever, few authors have used computational models as tools to assist 
during the assessment of prosthetic alignment. Luengas et al. proposed a 
decision rule model to predict the center of pressure (COP) and joint 
angles of the hip, knee and ankle during flexion-extension prosthetic 
alignment variations of transtibial prostheses during standing [14]. For 
the same purpose, Camargo et al. used Generalized Regression Neural 
Networks (GRNN) reaching a maximum error of 6.25 % in the estima-
tion of COP and joint angles of hip, knee and ankle [15]. In [16] they 
trained a Support Vector Machine (SVM) based classifier to differentiate 
correctly aligned and misaligned transtibial prostheses from the com-
ponents of the Ground Reaction Force (GRF). The SVM achieved a 
detection accuracy of 96.67 % within the same subject and 88.89 % for 
inter-subject. Luengas et al. used neural networks (NN), decision trees 
(DT), and SVM to identify the best prosthetic alignment during the 
standing of transtibial amputees [17,18]. They used center-of-pressure 
(COP) parameters in the mediolateral and anteroposterior directions. 
The nominal alignment matched in 96.22 % of the cases with the NN 
method and in 100 % with the SVM and DT algorithms. 

The literature search did not find any articles that provided infor-
mation on the use of machine learning techniques to evaluate the quality 
of alignment of transfemoral prostheses. Considering the gap for trans-
femoral prosthetic alignment, this article proposes a novel protocol to 
assist prosthetists during the analysis of biomechanical parameters and 
the selection of the ideal prosthetic alignment for transfemoral amputees 
during the dynamic alignment procedure. The alignment protocol con-
sists of a SVM model with a Gaussian radial basis function to detect 
prosthetic misalignments. In addition, a Bayesian Regularization Neural 
Network (BRNN) is used to predict the magnitude and angle required to 
correct the socket and prosthetic foot misalignment from the GRF pa-
rameters [19]. The computational models were evaluated, trained and 
tested with a population of sixteen transfemoral amputees and the 
effectiveness of the protocol was validated with two volunteers. 

2. Methods 

2.1. Subjects and experimental equipment 

The Ethics Committee of the Institute of Medical Research of the 
Universidad de Antioquia (Medellín, Colombia) approved this research 
study. The computational models were trained using a population of 
sixteen transfemoral amputees, two women, and fourteen men. The 
volunteers were unilateral non-contracted transfemoral amputees, with 
a functional level K> =2, at least six months of experience in the use of 
transfemoral prostheses, older than eighteen years and had no other 
diagnosed musculoskeletal limitations. Two female and fourteen male 
below-knee amputees were recruited. Nine of them had left-sided 
amputation and seven had right-sided amputation. The main cause of 
amputation was traumatic. The population characteristic was 
35.4( ± 11.1) years old, weighted 65.8( ± 10.3) kg, 166.7(±7.7) cm tall, 
and a body mass index of 23.7( ± 3.0). The prosthetic devices were 
assembled by Mahavir Kmina Artificial Limb Center in Medellín, 
Colombia. A quadrilateral socket, an unidirectional vacuum valve for 
suspension, prosthetic knee ReMotion (D-Rev V3, USA), and Jaipur foot 
(BMVSS, Jaipur, India) were used to assemble the prosthesis. 

Bench and static alignment of the prostheses was performed by two 
prosthetists following the location of the trochanter-knee-ankle (TKA). 
Nominal or optimal dynamic alignment was achieved by two prosthet-
ists by assessing the amputee’s standing and walking. Four prosthetic 
misalignments were performed for each amputee, considering alter-
ations of the socket and prosthetic foot angles. The prosthetic knee and 

shank were the reference elements for the alignment variations for the 
socket and foot respectively. All volunteers were blinded on the align-
ment tests. The misalignment experiments followed three stages: (1) 
Random variations between − 18.0◦ and 28.0◦ of the sockets were per-
formed in flexion-extension, adduction-abduction, and internal-external 
rotation. In parallel, random variations of the prosthetic foot were made 
between − 13.0◦ and 11.0◦ in dorsal-plantar flexion, eversion-inversion, 
and internal-external rotation. Excessive changes in misalignment an-
gles were avoided because they increased the mechanical stress on the 
pyramidal adapter screws, increasing the likelihood of amputee falls. (2) 
The amputees walked for fifteen minutes along a ten-meter walkway 
using their self-selected walking speed. During the final five minutes of 
the test, three records of the ground reaction force of the prosthetic 
member were averaged. (3) The amputees were asked about the level of 
walking satisfaction with the previously performed alignment and then 
allowed to rest for twenty minutes. 

The remaining four repetitions were referred to as misalignments. 
The GRF raw data were filtered using a Butterworth second-order low 
pass filter with a cutoff frequency of 20 Hz to eliminate the electro-
magnetic noise of the GRF measurements. 

The ground reaction force was recorded with the force platform 
P6000 (BTS Bioengineering, Italy) with a sampling rate of 120 Hz and 
processed using the Smart Clinic and Smart Analyzer software (BTS 
Bioengineering, Italy). MATLAB (MathWorks, USA) was used to analyze 
the signals and train the computational models. Alignment variations 
were recorded with a goniometer, a protractor ruler, and verified by 
image analysis with Geogebra software (International Geogebra Insti-
tute, Austria). For the calculation of the angles using GeoGebra, refer-
ence points and laser line projections were used. With the double check 
we could ensure errors in the angles of about 0.1◦. 

The force platform records the Ground Reaction Forces while the 
volunteer stepping on it (stance phase). A set of GRF parameters were 
selected due to their effectiveness in prosthetic gait analysis [15,16] and 
particularly those that showed statistically significant differences be-
tween nominal alignment and misalignments for transfemoral amputees 
[19]: the braking force impulse (I3), propulsion force impulse (I4), 
duration of the stance phase (t1), duration of the braking phase (t4), 
duration of the propulsion phase (t5), time to propulsion peak (t7), time 
to midstance valley (t9), the impulse of terminal stance and pre-swing 
(I6), the loading rate (LR), and the vertical braking impulse (BIV) and 
propulsion impulse (PIV). 

2.2. Transfemoral prosthetic alignment protocol and validation 

The block diagram of Fig. 1.a shows the computational alignment 
protocol. The subfunctions of the protocol are developed in Fig. 1.b-e. 
Subfunction SF1 describes the data collection and processing procedure. 
SF2 shows the process performed by the classification model and func-
tion SF3 defines the computational regression model process. Finally, 
SF4 describes the prosthetic alignment adjustment performed by the 
prosthetist using the angles suggested by the computational alignment 
protocol. 

The alignment protocol was limited to three iterations to achieve 
convergence on nominal alignment. For each iteration, the prosthetist 
was asked about the diagnosis of the resulting alignment, nominal or 
misaligned. The results of the computational protocol were compared 
with the prosthetist’s alignment trial to evaluate the success of the 
protocol. Two prosthetists, one junior and one senior performed and 
evaluated the alignments suggested by the protocol. The prosthetists in 
isolation observed the amputee’s gait in the sagittal, coronal, and 
transverse planes without any time restrictions and moved freely along 
the gait walkway during the observation. Then, according to their 
experience, they evaluated the quality of the gait achieved with the 
alignment proposed by the automatic alignment protocol. A score from 1 
to 10 was used for the evaluation. 

Mahavir Kmina Prosthetic Center supplied the prostheses for the 
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volunteers. Two transfemoral volunteers were recruited with a mean age 
of 37.0 ± 11.3 years, an average weight of 59.9 ± 1.6 kg, an average 
height of 166 ± 0.0 cm, and a body mass index of 25.4 ± 0.6. A 
completely new prosthesis was fabricated for each patient to avoid any 
bias associated with prosthesis wear or biomechanical gait adjustment 
due to the adaptation of the amputee to the prosthesis. 

At the end of the test, the prosthetists were asked for the following 
information: (1) According to your alignment experience, rate the 
alignment suggested by the computational protocol (between 1 and 10). 
(2) Regardless of the effectiveness of this new protocol, do you consider 
that this type of initiative should be further developed? Please rate the 
importance from 1 to 10. (3) Has the alignment protocol allowed you to 
make a better alignment? Rate the importance from 1 to 10. (4) Did it 
take you longer to do your work with this new protocol? How long did it 
take (in minutes)? 

2.3. Computational models design and validation methods 

The alignment protocol proposed in this article involved the design 
of two computational models. A Bayesian regularization neural network 
(BRNN) was trained using thirty hidden layers, an input vector 
composed by the ground reaction force indices I3, I4, t1, t4, t5, t7, t9, I6, 
LR, BIV , and PIV . The output vector was formed by the magnitude and 

direction of the socket and foot that the prosthetist had to correct to 
achieve the nominal alignment (Eq. 1). The BRNN was trained on 70.0 % 
of the dataset, 15.0 % was used in validation and 15.0 % for computa-
tional model testing. The cross-validation technique was used defining 
thirty folds (k = 30). 
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The Support Vector Machines (SVMs) considering the Gaussian 
radial basis function Kernel were used to classify the GRF parameters of 
amputees walking with a nominally aligned and misaligned prosthesis 
[20]. The SVM outputs were two classes, nominal aligned or misaligned 
prosthesis. The SVM used the same inputs used in the BRNN [19]. The 
training, validation, and testing dataset were 70.0 %, 15.0 %, and 15.0 
% respectively. The K-Fold cross-validation used 30 folds. Finally, the 

Fig. 1. Architecture of computational prosthetic alignment protocol.  
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best model was chosen according to the estimation error, model per-
formance, accuracy, sensitivity, and specificity [21]. Confusion matrices 
and receiver operating characteristic (ROC) curves were used to eval-
uate the performance of the SVM computational model [22,23]. 

3. Results 

3.1. Alignment classification model 

The SVM model output during validation was able to classify 95.5 % 
of the dataset, misclassifying four alignments. The inter-subject classi-
fication accuracy was 96.4 %, the sensitivity 98.2 %, and the specificity 
94.5 %. The confusion matrix in Fig. 2.a shows that three of the pros-
thetic misalignments were classified as nominal alignments (5.5 %), and 
only one nominal-type alignment was classified as a misalignment (1.8 
%). Fig. 2.c shows with a spaced line the experiments that were mis-
classified. The misclassified alignments corresponded to four amputees. 
Fig. 2.b and Fig. 2.d show the receiver operating characteristics (ROC 
curve). The classification model tested with unknown data achieved an 
accuracy of 92.6 %, misclassifying two misalignments as nominal 
alignments. 

3.2. Alignment regression model 

The best model fitting was achieved for thirty hidden layers and the 
result is shown in Fig. 3. The computational model recovered the 100 % 
data during the training process. The validation (Fig. 3.a) and (Fig. 3.b) 
testing procedure recovered the 94.11 % and 77.27 % of the alignment 
dataset, respectively. The error histogram plot (Fig. 3.c) shows that the 
error is concentrated in values close to 0.51◦, so this value was consid-
ered the accuracy of the regression model. 

3.3. Validation of the prosthetic alignment protocol 

The alignment protocol was validated with two volunteers randomly 
selected from the initial set of amputees. The prosthetic alignment 
protocol was performed at the Mahavir Kmina Prosthetic Center for two 
days. The validation results are presented for each amputee in Table 1. 

Results for amputee 1. During the first iteration the computational 
protocol and the prosthetists indicated that the prosthesis was mis-
aligned. Prosthetists rated the amputee’s gait with an average score of 
3.9. During the second iteration, the computational protocol and the 
prosthesis again indicated that the prosthesis was misaligned, and the 
gait was rated 5.7. At the last iteration, the prosthetists and protocol 
indicated that the prosthesis was misaligned but rated the gait an 8.0. 
Throughout all experiments, the protocol and prosthetists agreed on the 
prosthetic alignment trial. The prosthetic adjustments suggested by the 
protocol improved the amputee’s gait performance from 5.4 to 8.0. The 
amputee reported no difficulties during the execution of the protocol. 
The prosthetists had difficulty adjusting the angles in the first iteration; 
however, they quickly learned to perform the angulations. Results for 
amputee 2. During the first iteration, the prosthetists and the compu-
tational protocol agreed in judging the prosthesis as misaligned, rating 
the gait with an average score of 6.7. In the second iteration, the 
alignment computational protocol and the prosthetists assessed the 
alignment as nominal, and the prosthetists rated the amputee’s gait with 
an average score of 9.6. This meant that the adjustment angles suggested 
by the protocol allowed the nominal alignment to be achieved. At the 
end of each alignment procedure, prosthetists were consulted about the 
procedure. 

Fig. 4 shows the result of questions one to three. The prosthetists 
gave an average score of 8.18 to the prosthetic gait after applying the 
computational alignment protocol. The prosthetists rated this type of 
computational assistance of prosthetic alignment at 8.52 and stated that 
the alignment protocol allowed them to do a better job, rating it at 8.58. 

Fig. 2. Validation charts of the classification model performance for the support vector machines.  
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In the question four, the senior prosthetist took 37 min longer using the 
computational protocol than the normal alignment procedure, while for 
the junior prosthetist it took no longer than usual. 

3.4. Discussion 

The aim of this work was to propose an alignment protocol to support 
the prosthetist during the evaluation of the prosthetic alignment of 
transfemoral prostheses. Two computational models were proposed, one 
to predict the nominal alignment from the prosthetic limb ground re-
action force parameters, and another to provide the socket and foot 
setting angles to achieve the nominal alignment. Our protocol presents a 

significant advance with respect to the work presented in the literature. 
The most relevant works were proposed by Luengas et al., Camargo 
et al., and Zhang et al., in which they developed classifiers and regres-
sion models to assist prosthetic alignment of transtibial amputees 
[15–17]. Zhang et al. proposed a classification model using SVM with a 
Radial Basis Function (RBF) kernel to automatically detect transtibial 
prosthetic misalignment through ground reaction force (GRF), achieving 
88.89 % accuracy [16]. Luengas et al. used the SVM, Neural Networks 
(NN), and Decision Trees (DT) to classify the alignment between nom-
inal and misalignment based on the center of pressure during standing 
[17,18]. SVM and DT models differentiated the standing gait of trans-
tibial amputees during the use of misaligned and nominally aligned 

Fig. 3. Results of the neural network trained.  

Table 1 
Performance of prosthetic alignment protocol. Meaning of acronyms: Flexion (F), extension (E), adduction (Add), external-rotation (ER), internal-rotation (IR), 
plantar-flexion (PF), Dorsi-flexion (DF), and Eversion (Ev). This table describes the score evaluated by junior and senior prosthetists for each iteration of the protocol. 
Also included is the prosthetists’ judgment of the type of prosthesis alignment according to the amputee’s gait, as well as the type of alignment according to the 
computed protocol.  

No. It. Prosthetist’s score Proposed alignment angles Alignment assessment according to gait analysis 

Junior Senior Junior prosthetist Senior prosthetist Computational alignment protocol  

1  1 4.3 3.4 Socket: | 1.8◦ F | 8.3◦ Add | 5.9◦ ER | 
Foot: | 4.4◦ PF | 2.7◦ Ev | 5.9◦ IR | 

Misalignment Misalignment Misalignment  

2 5.2 6.2 Socket: | 1.2◦ F | 1.3◦ Add | 1.3◦ ER | 
Foot: | 4.1◦ PF | 1.0◦ Ev | 1.7◦ IR | 

Misalignment Misalignment Misalignment  

3 7.6 8.4 Socket: | 0.4◦ F | 0.8◦ Add | 0.7◦ IR | 
Foot: | 1.2◦ PF | 0.8◦ Ev | 1.1◦ IR | 

Misalignment Misalignment Misalignment  

2  1 5.9 7.5 Socket: | 1.4◦ F | 0.8◦ Add | 0.3◦ ER | 
Foot: | 0.6◦ PF | 2.0◦ Ev | 0.1◦ IR | 

Misalignment Misalignment Misalignment  

2 9.8 9.4 Socket: | 0.7◦ E | 0.7◦ Add | 0.2◦ IR | 
Foot: | 0.1◦ DF | 1.2◦ Ev | 0.8◦ IR | 

Nominal alignment Nominal alignment Nominal alignment  

3 - - - - - -  
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prostheses with accuracies of at least 96.2 %. Our classification model 
using SVM with a Gaussian kernel achieved 95.5 % accuracy in classi-
fying nominal and misaligned gait of transfemoral amputees. This result 
is an advance over that achieved with transtibial amputees. Regarding 
the regression models, Luengas et al. used decision rules to predict the 
effect of prosthetic socket location on joint ranges, the center of pressure 
and weight distribution of transtibial amputees during standing in which 
the models reached accuracy levels greater than 98.0 % [14]. Camargo 
et al. used Generalized Regression Neural Networks (GRNN) to estimate 
joint ranges and center of pressure in ipsilateral and contralateral sides 
using socket flexion-extension alignment angles in a transtibial pros-
thesis [15]. Their prediction model exhibited approximation errors of 
6.25 %. The neural network trained in our work achieved errors of less 
than 5.8 % and was able to estimate the angle of adjustment of the socket 
and prosthetic foot to achieve the nominal alignment of the prosthesis. 

To our knowledge, there are no computational models in the litera-
ture focused on assisting the alignment of transfemoral prostheses. 
Therefore, the result of our work is an important contribution in the 
prosthetic fitting of transfemoral amputees, since it guides the pros-
thetist during the alignment procedure, gives information about the 
angles needed to align the prosthesis correctly and assists the prosthetist 
during the evaluation of the quality of the alignment of transfemoral 
prostheses. 

During the training and validation process of the classification model 
using support vector machines, the alignment was correctly classified 
except for four trials. To find an explanation for this fact, we assessed the 
satisfaction levels of volunteers during misclassified alignments. The 
level of satisfaction reported by amputees during alignment variations 
was a confounding factor, since in some cases amputee satisfaction with 
walking with a misclassified prosthesis was close to or higher than that 
of the nominal alignment. Under this consideration, it is possible that the 
prosthetist did not understand the cause of the gait deviation, confusing 
the biomechanical effect of the misalignment with the gait deviations 
previously adapted by these amputees [24]. 

The use of specific types of prosthetic foot (Jaipur foot), socket 
(ischial retention) and polyaxial knee (automatic locking, D-Rev), 
among other specificities, could limit the scope of the protocol for these 
types of prostheses, so future studies should include different prosthetic 
devices. However, some modifications could be implemented to the 
protocol to be used with other mechanical devices with translation and 
rotational movements The ability of amputees to adapt their gait pat-
terns to accommodate prosthetic misalignments [25,26] and the 

amputee’s previously acquired gait deviations could mask the effects of 
prosthetic misalignment [24] so that the judgment of the nominal 
alignment could have been distorted; however, we tried to minimize this 
effect by allowing adaptation times to alignment changes of less than 
10 min. 

Finally, the alignment protocol proved to be effective during vali-
dation, successfully identifying the type of prosthesis alignment in all 
experiments. It converged to nominal alignment in one of the subjects 
and in all cases the alignment variations suggested by the protocol 
succeeded in improving the amputee’s gait. The applicability of the 
protocol in prosthetic centers is high, as there is no restriction on the 
ability of the prosthetist to perform the alignment procedure. The 
computational cost is low, so it can be performed on any computer. Only 
one force platform needs to be used, so there is no need for large in-
vestments to use the protocol. The use of statistically calculated force 
descriptors allows a higher degree of objectivity in the alignment 
procedure. 
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Fig. 4. Opinion survey of the prosthetic alignment computational protocol. The Q1, Q2, and Q3 labels refer to questions of the survey. The scale of Q1, Q2, and Q3 are 
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prótesis transtibiales, Rev. Vínculos 14 (2017) 119–126, https://doi.org/ 
10.14483/2322939X.12785. 

[19] A.M. Cardenas-Torres, J. Uribe P, J.M. Font-Llagunes, A.M. Hernández, J.A. Plata, 
A.M. Cárdenas, J. Uribe, J.M. Font-Llagunes, A.M. Hernández, J.A. Plata, A. 
M. Cardenas-Torres, J. Uribe P, J.M. Font-Llagunes, A.M. Hernández, J.A. Plata, 
The effect of prosthetic alignment on the stump temperature and ground reaction 
forces during gait in transfemoral amputees, Gait Posture 95 (2021) 76–83, 
https://doi.org/10.1016/J.GAITPOST.2022.04.003. 

[20] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 203 (1995) 273–297, 
https://doi.org/10.1007/BF00994018. 

[21] R.G. Congalton, A review of assessing the accuracy of classifications of remotely 
sensed data, Remote Sens. Environ. 37 (1991) 35–46, https://doi.org/10.1016/ 
0034-4257(91)90048-B. 

[22] D. Berrar, Cross-Validation, Encycl. Bioinforma. Comput. Biol. ABC Bioinforma. 
1–3 (2019) 542–545, https://doi.org/10.1016/B978-0-12-809633-8.20349-X. 

[23] R. Jain, M.K. Camarillo, W.T. Stringfellow, Detection, in: Drink. Water Secur. Eng. 
Planners, Manag., Butterworth-Heinemann, 2014, pp. 83–123, https://doi.org/ 
10.1016/B978-0-12-411466-1.00005-7. 

[24] A. Esquenazi, Gait analysis in lower-limb amputation and prosthetic rehabilitation, 
Phys. Med. Rehabil. Clin. N. Am. 25 (2014) 153–167, https://doi.org/10.1016/J. 
PMR.2013.09.006. 

[25] G. Fiedler, B.A. Slavens, K.M. O’Connor, R.O. Smith, B.J. Hafner, Effects of physical 
exertion on trans-tibial prosthesis users’ ability to accommodate alignment 
perturbations, Prosthet. Orthot. Int. 40 (2016) 75–82, https://doi.org/10.1177/ 
0309364614545419. 

[26] T. Kobayashi, M.S. Orendurff, A.K. Arabian, T.G. Rosenbaum-Chou, D.A. Boone, 
Effect of prosthetic alignment changes on socket reaction moment impulse during 
walking in transtibial amputees, J. Biomech. 47 (2014) 1315–1323, https://doi. 
org/10.1016/j.jbiomech.2014.02.012. 

Andrés Mauricio Cárdenas Torres, PhD. (Corresponding author) Andrés Cárdenas 
received his undergraduate degree in Electronic Engineering from the Universidad 
Autónoma de Manizales (2006), and his Master in Electronic Engineering from Pontificia 
Universidad Javeriana (2013). In 2022 he received a doctorate in Electronics and 
Computing Engineering from the Universidad de Antioquia. His research activity focuses 
on Biomechanics, gait analysis, prosthetic devices, prosthetic alignment, machine 
learning, system modelling, system identification, and electronic system design. 
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