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We analyze numerically the effect of a slight inclination in the lowest part of the snaking branches
of convectons that are present in negative separation ratio binary mixtures in two-dimensional elon-
gated rectangular cells. The exploration reveals the existence of novel stationary localized solutions
with striking spatial features different from those of convectons. The numerical continuation of these
solutions with respect to the inclination of the cell unveils the existence of even further families of
localized structures that can organize in closed branches. A variety of localized solutions coexist for
the same heating and inclination even in the horizontal cell, depicting a highly complex scenario in
the lowest part of the snaking diagrams for moderate to high heating.

I. INTRODUCTION

Thermal convection is an important problem with relevant implications to many geophysical flows and a multitude
of technological applications. The flow patterns that are observed for simple incompressible fluid convection are highly
enriched by the consideration of binary fluid mixtures. Binary fluid convection has indeed been used for many years
as a prototypical system for the study of the transition to chaos in a fluid flow. In binary mixtures thermal convection
promoted by thermal gradients may be enhanced by concentration non-uniformities sustained by the Soret effect, i.e.
the generation of concentration fluxes by temperature gradients. The components of miscible ordinary two-component
mixtures tend to separate in an imposed thermal gradient, and this separation in turn alters the driving force for
convection. The Soret effect is quantified by the Soret coefficient (separation ratio, in nondimensional form).

A relevant configuration for the study of pattern formation, and the reference setup for our work, is that of a
horizontal closed rectangular box heated from below. When mixtures with a negative Soret coefficient are used, i.e.
mixtures in which the heavier component of the fluid is driven into the direction of higher temperature, the conduction
state loses stability via a Hopf bifurcation that can lead to a rich dynamical behaviour near threshold. Experiments
performed in the late 1980s [1–4] and subsequent detailed numerical studies [5–9] showed that a variety of interesting
spatially extended and localized patterns arise in this configuration.

Among these localized structures, the so-called convectons have raised a lot of interest in the dynamical-systems
community in the recent past. Binary fluid convection is perhaps the first fluid system where these states were
observed experimentally, using horizontal annular containers heated from below [10]. Convectons in binary mixtures
consist of regions of large-amplitude stationary convection co-existing with regions of quiescent fluid and were obtained
numerically a few years later [11]. In subsequent works in two-dimensional horizontally extended domains convectons
were shown to be located in snakes-and-ladders branches of solutions, which allow a large multiplicity of coexisting
convectons of different lengths and types [7–9, 12]. Convectons arranged in analogous snaking branches of solutions
were also computed in natural doubly diffusive convection in a two-dimensional vertically extended cavity, with thermal
and concentration horizontal gradients allowing the existence of a conduction state [13, 14]. This phenomenology
is essentially captured by the bistable Swift-Hohenberg equation [12, 15]. Significantly, three-dimensional doubly
diffusive convectons that now arrange in primary and secondary snaking branches have been obtained numerically in
a closed vertically extended domain [16].

Although most of the properties of convectons in 2D rectangular cells heated from below are now well established,
some features remain unexplored. In particular, it is well-known that when the system possesses reflection symmetry in
the midplane (i.e., Boussinesq symmetry) the two snaking branches correspond to two types of stationary convectons:
even and odd convectons. The intertwined branches of localized states with different symmetry are interconnected by
rung-like branches consisting of asymmetric localized states. As one proceeds up the snaking branches the localized
states grow in length by nucleating new rolls on either side in such a way that the symmetry of the state is preserved.
When the domain is almost filled, the snaking must cease and the two snaking branches turn continuously into
large-amplitude domain-filling states. However, the study of lowest part of the snaking branches when the heating
(parametrized by the Rayleigh number) is increased, has never been addressed in binary mixtures, and will be the
focus of the present study.

∗ arantxa.alonso@upc.edu
† oriol.batiste@upc.edu
‡ maria.isabel.mercader@upc.edu



2

gα

z

xT0 −
∆T=2

T0 +∆T=2

FIG. 1. Sketch of the domain geometry.

The recent numerical study of Mercader et al. [17] explores the effect of slightly tilting rectangular elongated cells
for negative Soret mixtures and shows that bifurcation diagrams are significantly altered. With the small breaking
of symmetry induced by inclination, it might be expected beforehand that (i) the solution branch corresponding to
the large-scale base flow that replaces the conduction state in the inclined system extends to large values of the
Rayleigh number without significant change, and (ii) the inclination splits the snaking branch of odd convectons into
two branches of states that inherit the symmetry of the odd convectons, while the snaking branch of even convectons
breaks up into disconnected branches of asymmetric states. These changes in the bifurcation diagram are only observed
for very small inclinations, and both the behaviour of the large-scale base flow branch, and the organization of the
large-amplitude localized solutions in snaking branches, undergo a profound change as the inclination increases. The
snaking bifurcation diagram present in the noninclined system is destroyed already at small inclinations, and for
slightly larger but still small inclinations new localized states lying on solution branches with very complex behavior
are obtained. Other examples in which the snaking diagrams do not persist are discussed in the recent works of Lo
Jacono et al [18] in doubly diffusive convection in a vertical slot when changing the boundary condition at one of
the vertical walls, and of Azimi and Schneider [19] in plane Couette flow with wall-normal suction. The effect of
adding a slight inclination in extended layers of binary mixtures heated from below has also been studied in a shallow
cylinder filled with a positive Soret mixture [20, 21]. The results on both tilted problems suggest that even very small
inclinations produce substantial changes in the flow structure and result in new phenomena.

Motivated by the evidence that very slight inclinations affect substantially the dynamics, we aim to explore the
lowest part of the snaking branches for different inclinations of the cell when the heating is increased. We will
use numerical continuation techniques and perform parametric continuation in Rayleigh number and inclination to
elucidate the type of solutions that arise in this region of the diagrams. The study unveils the existence of novel
localized solutions that are also present in the non-inclined cell and that exhibit striking spatial features different
from those of convectons. As we will see, the depicted scenario in the lowest part of the snaking diagrams for
moderate to high heating is very complex.

The organization of the paper is as follows. In Section II, we formulate the equations and boundary conditions,
summarize the symmetries of the system, and explain the numerical methods used. The main results are presented
and discussed in Section III. In particular, III A describes the solutions that appear in the lowest part of the snaking
branches when the heating is increased, for the horizontal α = 0 cell and for the α = 0.01 and α = 0.03 inclined
cells, and III B summarizes the results obtained by numerical continuation with respect to the inclination of the cell
of some of the striking small amplitude localized states previously identified. Finally, a summary of the main results
of the work is discussed in Section IV.

II. FORMULATION OF THE PROBLEM: EQUATIONS, SYMMETRIES AND NUMERICAL
METHODS

We consider two-dimensional Boussinesq binary fluid convection in a rectangular cell of height H and length L,
inclined at a small angle α with respect to the horizontal. The cell is heated from below, ∆T being the temperature
difference between the bottom and the top. We choose coordinates whose origin is located at the bottom left corner,
and oriented along the bottom wall (the x direction) and the side wall (the z direction). In terms of these coordinates
the acceleration due to gravity takes the form

g = −g sinα êx − g cosα êz.

A sketch of the domain geometry is shown in Fig. 1.
We split the temperature T and concentration of the heavier molecular weight component Cheavy into a linear

profile in z and fluctuations Θ∗ and Σ∗ as follows:

T = T0 + ∆T (1/2− z/H) + Θ∗,

Cheavy = C0 − C0(1− C0)ST∆T (1/2− z/H) + Σ∗, (1)
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where T0 and C0 are the values of the temperature and concentration at midheight and ST is the Soret coefficient,
hereafter assumed to be negative so that the heavier component migrates towards the lower boundary in response
to the applied temperature difference. Here H is the height of the cell. With this decomposition the mass flux only
depends on the gradient of Θ∗ and Σ∗, the superscript ∗ indicating unscaled quantities.

Scaling lengths with H, time with the vertical thermal diffusion time H2/κ, κ being the thermal diffusivity, tem-
perature with ∆T and concentration with the induced concentration difference −C0(1 − C0)ST∆T , we obtain the
following dimensionless equations describing inclined binary fluid convection:

ut + (u · ∇)u = −∇P + σ∇2u +Razσ[(1 + S)Θ + Sη]êz

+Raxσ[(1 + S)Θ + Sη]êx −Raxσ(1 + S)(z − 1/2)êx,

Θt + (u · ∇)Θ = w +∇2Θ,

ηt + (u · ∇)η = −∇2Θ + τ∇2η, (2)

together with the incompressibility condition

∇ · u = 0. (3)

Here u ≡ (u,w) denotes the nondimensional velocity field, P is the nondimensional mechanical pressure that includes
parts of the buoyancy term that can be written as a gradient, Θ is the nondimensional temperature fluctuation and
η ≡ Σ−Θ, where Σ represents the nondimensional concentration fluctuation. The variable η is defined such that its
gradient is proportional to the dimensionless mass flux.

The system is thus specified by the inclination angle α and four dimensionless parameters: the Rayleigh number Ra
that provides a dimensionless measure of the imposed temperature difference ∆T , the separation ratio S proportional
to the Soret coefficient ST that measures the concentration contribution to the buoyancy force due to cross-diffusion,
and the Prandtl and Lewis numbers σ, τ , in addition to the aspect ratio Γ of the rectangular cell. These parameters
are defined as follows:

Ra =
γg∆TH3

κν
, S = C0(1− C0)

β

γ
ST , σ =

ν

κ
, τ =

D

κ
, Γ =

L

H
,

where γ and β are the thermal and concentration expansion coefficients, D is the solute diffusivity, and ν is the
kinematic viscosity. In these equations Rax = Ra sinα and Raz = Ra cosα.

We consider here the boundary conditions corresponding to impermeable, no-slip boundaries with fixed imposed
temperature at the top and bottom, and thermally insulating sidewalls. Thus

u = w = Θ = ηz = 0 on z = 0, 1, (4)

and

u = w = Θx = ηx = 0 on x = 0,Γ. (5)

We evaluate, as an estimate of the strength of the convection, the dimensionless velocity norm E defined by

E = Γ−1

∫ z=1

z=0

∫ x=Γ

x=0

u · udxdz.

This quantity represents twice the kinetic energy per unit area of the system. In the following we refer to E as the
mean kinetic energy.

When α 6= 0 the equations, together with the boundary conditions, are equivariant with respect to the symmetry
group Z2 = {I,R}, where I stands for the identity and R is a reflection with respect to the center of the cell.
Specifically, the reflection R acts on the fields u,w, the streamfunction Ψ (u = −Ψz, w = Ψx), Θ, and η as follows:

R : (x, z)→ (Γ− x, 1− z),
(u,w,Ψ,Θ, η)→ (−u,−w,Ψ,−Θ,−η). (6)

As a consequence, the equations admit solutions invariant under R as well as solutions that break the symmetry R.
In the latter case the application of R to a nonsymmetric solution generates a distinct but symmetry-related solution.
When α = 0, i.e., the layer is horizontal, the symmetry group is enlarged and becomes the symmetry group D2

generated by two separate reflections R1 and R2, where R1 corresponds to a reflection in the vertical x = Γ/2 plane
and R2, to a reflection in the horizontal z = 1/2 plane::

R1 : (x, z)→ (Γ− x, z),
(u,w,Ψ,Θ, η)→ (−u,w,−Ψ,Θ, η), (7)
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R2 : (x, z)→ (x, 1− z),
(u,w,Ψ,Θ, η)→ (u,−w,Ψ,−Θ,−η). (8)

Notice that the reflection R can be obtained as R = R1 ◦R2.
For α 6= 0, the system is not longer equivariant with respect to the symmetry R1, but a solution of the system with

inclination α, transformed by R1, is a solution of the system with inclination −α. We say that the system possesses
the following symmetry, R1,α, related to the reversed inclination,

R1,α : (α, x, z)→ (−α,Γ− x, z),
(u,w,Ψ,Θ, η)→ (−u,w,−Ψ,Θ, η). (9)

The system of equations (2)-(3) and boundary conditions (4)-(5) has been solved numerically using the algorithm
described in [22], which can be summarized as follows. To integrate the equations in time, we use the second-
order time-splitting method proposed in [23] combined with a pseudospectral method for the spatial discretization,
Chebyshev collocation in x and z. The Helmholtz equations obtained as a result of the splitting are solved using a
diagonalization technique [24].

Steady solutions have been computed with Newton’s method. We have used a first-order version of the time-
stepping code described above for the calculation of a Stokes preconditioner that allows a matrix-free inversion of
the preconditioned Jacobian needed in each Newton iteration [25]. The corresponding linear system is solved by an
iterative technique using the GMRES package [26]. The left-hand side of the preconditioned linear system (Jacobian
acting on the correction) corresponds to one time step of the linearized equations, and the right-hand side corresponds
to performing one time step of the full nonlinear equations. In this way the Jacobian matrix is never constructed or
stored [25]. The convergence criterion for the Newton method is 10−7.

In the results reported in the present paper we have used a resolution that ensures variations of the mean kinetic
energy E smaller than 0.1%. We have used a grid of nx = 640 and nz = 32 points in the x and z directions,
respectively.

III. RESULTS

We consider a negative separation ratio binary mixture of nondimensional parameters S = −0.1, τ = 0.01 and
σ = 7, representative of water-ethanol mixtures and previously used in earlier works [7–9]. The mixture fills a two-
dimensional rectangular Γ = 14 cell. Results for the horizontal α = 0 case and for very small values of inclination are
presented.

Previous studies of this system, for the set of parameter values of interest in this work, show that the primary
bifurcation of the α = 0 conduction state is a subcritical Hopf bifurcation that takes place at RaHopf = 1947.5
[6]. With further increase in the Rayleigh number, the system evolves either to finite-amplitude oscillatory states
(chevrons, blinking states and repeated transients [5]) or towards steady convection. The steady convection can either
fill the domain or form localized time-independent convectons. The binary mixture convectons are organized within a
snaking region Ra− < Ra < Ra+ in the Rayleigh number Ra. Within this region one finds even convectons, which are
invariant under R1, and odd convectons, which are invariant under R = R1 ◦ R2. Convectons lie on distinct solution
branches that snake back and forth across the snaking region. The snaking interval contains a large multiplicity of
coexisting odd and even convectons of different lengths, many of which turn out to be numerically stable [11, 27]. In
a bifurcation diagram showing a global quantity, such as the kinetic energy, as a function of the Rayleigh number,
each point in the snaking branches corresponds to two different solutions. These two solutions with the same value
of the global quantity are related by the R1 symmetry if they lie on the odd convecton branch of R-invariant states,
and are related by the R symmetry if they lie on the even convecton branch of R1-invariant states [9].

When the cell is slightly inclined the character of the problem changes dramatically, because of the generation of a
large-scale flow (LSF) along the bottom and top walls. The LSF is now the unique solution at very low Ra, and its
net effect is to generate isocontours of concentration with constant slope, except very close to the sidewalls where the
slope must vanish. For very small inclinations, the LSF flow destabilizes in a primary Hopf bifurcation that either
respects or breaks its R symmetry, giving rise to several time-dependent patterns resembling those of the non-inclined
cell case. For larger but still small inclinations, at α = 0.047, this bifurcation no longer exists and the base flow
undergoes a fold bifurcation at a low value of Ra [17].

When α 6= 0 the equations continue to admit R-invariant solutions. We call these solutions odd states, in analogy
with the name used in the α = 0 case. Figure 2(a) shows the snaking diagram (kinetic energy E as a function of
the Rayleigh number Ra) for the R-invariant states obtained for α = 0.01. Since the symmetry R1 is broken, the
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FIG. 2. Snaking branches showing the splitting of the odd convecton branch for α = 0 (black curve) when α = 0.01 (blue and
red curves). The states on the blue/red curve correspond to states with a counterclockwise or clockwise central roll (CCW or
CW branches, respectively). The panels on the right show contour plots of temperature fluctuation Θ, streamfunction Ψ, and
concentration C for the two clockwise/counterclockwise central roll states indicated by the solid dots on the solution branch
(Ra = 1887 and Ra = 1973). Parameters: S = −0.1, τ = 0.01, σ = 7 and Γ = 14.

odd branch of the α = 0 cell necessarily splits into two for α 6= 0, leading to the blue and red R-symmetric snaking
branches shown in Fig. 2(a). This plot also includes the snaking diagram for the odd states when α = 0 (black
curve). Figure 2(b) shows the concentration C, the streamfunction Ψ and temperature Θ contour plots for states
on the blue and red branches. States on the blue branch are characterized by a counterclockwise central roll in the
convective region (solution obtained for Ra = 1973, with a blue central roll in the Ψ contour plot), while states
on the red branch have a clockwise central roll (solution obtained for Ra = 1887, with a red central roll in the Ψ
contour plot). Because of the pumping action associated with odd states [7, 11], the former state entrains heavier
fluid from below on the right and lighter fluid from top on the left. The result is a marked positive gradient in the
contours of constant concentration C. Similar pumping takes place in the latter case, but because of the reversed
circulation of the outer rolls the entrainment direction is reversed, resulting in a much starker left-right asymmetry
in the concentration profile. Hereinafter we call the blue and red branches CCW (counterclockwise central roll) and
CW (clockwise central roll) branches.

The novel results we present in this work focus on the behavior of the lowest part of the snaking branches when
the Rayleigh number Ra is increased. We aim at clarifying the role of small inclinations of the cell on the small
amplitude solutions arising in this part of the snaking diagrams. To do this, as a first step, we will perform parametric
continuation in Rayleigh number Ra of solutions in the lowest part of the snaking and, as a second step, we will do
continuation in the inclination α of selected localized solutions with outstanding features obtained previously. The
results obtained when Ra is varied are presented in Section III A and those obtained when α is varied are discussed
in Section III B.

A. Numerical continuation of small-amplitude localized solutions with respect to Ra

To begin the study of the lowest part of the snaking diagrams as the Rayleigh number Ra increases we consider
first the horizontal α = 0 cell and focus on the odd snaking branch of solutions, which is the branch that persists
when inclination is introduced. Then, we discuss the results for inclinations α = 0.01 and α = 0.03. With inclination,
each value of α includes the analysis of the two odd snaking branches resulting from the splitting of the single α = 0
odd branch.
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1. Horizontal α = 0 cell: small-wavelength localized states

For α = 0, the numerical continuation of the odd snaking branch for large values of Ra reveals that the lowest part
of the convecton snaking branch does not connect to the base conductive state. Figure 3 shows the lowest part of
the branch of odd convectons when continued up to Ra ≈ 105. Plot (a) shows the kinetic energy E as a function of
Ra, and plots (b) and (c) the contour plots of concentration C and streamfunction Ψ at the locations indicated in
panel (a). We appreciate a marked increase of the kinetic energy of the solutions in the low part of the diagram for
the largest values of Ra, associated to a slow growth of the size of the convective region in the localized structure
(the number of convection rolls increases). Still more remarkable, the wavelength of the rolls decreases considerably,
giving rise to a peculiar localized pattern in which the convective rolls appear tightly packed one against each other.

The behavior we observe for mixtures of sufficiently negative values of the separation ratio and parameter values
similar to those used in this paper is not specific of the two-dimensional closed container. We have computed the

FIG. 3. (a) Solution branch obtained by numerical continuation of the lowest part of the snaking branch of odd states when
the Rayleigh number Ra is increased, for α = 0. The inset shows an enlargement of part of the snaking zone. Contour plots of
(b) concentration C and (c) streamfunction Ψ at the locations indicated in panel (a). In the concentration contour plots the
same color bar is used for all states. Parameters: S = −0.1, τ = 0.01, σ = 7 and Γ = 14.
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lowest part of the snaking branch in the case of periodic boundary conditions in the lateral walls of the container,
and the same behavior is obtained.

2. Tilted α = 0.01 cell: highly localized states and two-pulse snaking

For α = 0.01, the numerical continuation with Ra of the lowest part of the two odd snaking branches coming from
the splitting of the α = 0 case (CW and CCW branches in Fig. 2(b)) shows that the branches do not necessary
increase monotonically to large values of the Rayleigh number. In one of the branches, the convective region of the
pattern remains rather small while the amplitude of the solution slowly grows; in the other, the branch turns around
in a fold and reenters eventually the snaking region. We analyze in more detail the two cases.

FIG. 4. (a) Solution branch obtained by numerical continuation of the lowest part of the CCW snaking odd branch of convectons
(counterclockwise central roll in the snaking region) when the Rayleigh number Ra is increased, for α = 0.01. The inset shows
an enlargement of part of the snaking zone. Contour plots of (b) concentration C and (c) streamfunction Ψ at the locations
indicated in panel (a). In the concentration contours the same color bar is used for all states. Parameters: S = −0.1, τ = 0.01,
σ = 7 and Γ = 14.
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FIG. 5. (a) Solution branch obtained by numerical continuation of the lowest part of the CW odd snaking branch of convectons
(clockwise central roll in the snaking region) when the Rayleigh number Ra is increased, for α = 0.01. Contour plots of (b)
concentration C and (c) streamfunction Ψ at the locations indicated in panel (a). In the concentration contour plots the same
color bar is used for all states. Parameters: S = −0.1, τ = 0.01, σ = 7 and Γ = 14.

Figure 4 shows the results obtained when the lowest part of the CCW odd branch of convectons (counterclockwise
central roll in the snaking region) is continued to large values of Ra (up to Ra ≈ 105) for an inclination of α = 0.01.
Plot (a) shows the kinetic energy as a function of Ra, and plots (b) and (c) the contour plots of concentration C and
streamfunction Ψ at the locations indicated in panel (a). As can be appreciated in the concentration contour plots, a
background concentration slope appears as a result of the large scale flow induced by inclination. The initial part of
the curve and the structure of patterns (1), (2) and (3) is quite similar to that observed in the α = 0 case (the kinetic
energy increases initially with Ra). But sudden back and forth oscillations producing two clearly visible peaks in the
curve of kinetic energy take place between Ra ∼ 2.793 · 104 and Ra ∼ 2.248 · 104, and between Ra ∼ 3.857 · 104 and
Ra ∼ 2.873 ·104. In the first peak, the notable increase of the kinetic energy (4) is followed by an abrupt decrease (5).
Within this region, the central roll of the solutions splits and a new solution with two pairs of vertical stacked rolls
is obtained. In the second peak, a new increase and decrease of the kinetic energy takes place again. The solutions
within this region of the curve show a separation of the stacked pairs of rolls (6), a generation of a counterclockwise
central roll between them (7), and the disappearance of the clockwise rolls resulting in three much smaller vertically
staggered corotating rolls (8). From this point, the branch extends to large values of Ra and has not been calculated.
Interestingly, unlike in the α = 0 case, the size of the convective region in the localized patterns (1)-(8) remains
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roughly constant and quite small.

Figure 5 shows the results obtained when the lowest part of the CW odd branch of convectons (clockwise central
roll in the snaking region) is continued to large values of Ra (up to Ra ≈ 104) for an inclination of α = 0.01. Plot
(a) shows the kinetic energy as a function of Ra, and plots (b) and (c) the contour plots of concentration C and
streamfunction Ψ at the locations indicated in panel (a). The CW branch suddenly turns around at Ra ∼ 8200 and
reenters the snaking region. The contour plots corresponding to solution (2) show that, right before the turning point,
the convective region of the localized pattern is quite small and consists of a single-pulse state with a central clockwise
roll surrounded by a counterclockwise roll on each side. The curve of solutions undergoes a subsequent back and forth
between Ra ∼ 6020 and Ra ∼ 7180, where the central clockwise roll is swept away and the lateral counterclockwise
rolls are reinforced (3). As Ra decreases, these two corotating rolls merge (4) and add a clockwise roll on each side
(5). In an additional back and forth oscillation of the curve between Ra ∼ 2420 and Ra ∼ 2720, the single pulse starts
to split and turns into a two-pulse state. Then the state undergoes two-pulse snaking within the same snaking region

FIG. 6. (a) Solution branch obtained by numerical continuation of the lowest part of the CCW odd snaking branch of convectons
(counteclockwise central roll in the snaking region) when the Rayleigh number Ra is increased, for α = 0.03. Contour plots of
(b) concentration C and (c) streamfunction Ψ at the locations indicated in panel (a). In the concentration contour plots the
same color bar is used for all states. Parameters: S = −0.1, τ = 0.01, σ = 7 and Γ = 14.
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as the single-pulse states, much as occurs in the α = 0 case when the lateral boundary conditions are nonperiodic [9].

3. Tilted α = 0.03 cell: two-pulse snaking and corotating localized patterns

For α = 0.03, the outcome of the numerical continuation in Ra of the lowest part of the two odd snaking branches,
with clockwise and counterclockwise central rolls, respectively, is completely different from that of the α = 0.01 case.
As we will see below, the behavior of the lowest part of the snaking branches is in fact extremely sensitive to the
precise value of the small inclination α and to the type of branch which is analyzed (clockwise or counterclockwise
central rolls).

Figure 6 shows the results obtained when the lowest part of the CCW branch of odd convectons (counterclockwise
central roll in the snaking region) is continued to large values of Ra (up to Ra ≈ 104) for an inclination of α = 0.03.

FIG. 7. (a) Solution branch obtained by numerical continuation of the lowest part of the CW odd snaking branch of convectons
(clockwise central roll in the snaking region) when the Rayleigh number Ra is increased, for α = 0.03. Contour plots of (b)
deviation of temperature Θ and (c) streamfunction Ψ at the locations indicated in panel (a). In the temperature contour plots
the same color bar is used for all states. Parameters: S = −0.1, τ = 0.01, σ = 7 and Γ = 14.
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Plot (a) shows the kinetic energy as a function of Ra, and plots (b) and (c) the contour plots of concentration C
and streamfunction Ψ at the locations indicated in panel (a). We can appreciate in the contour plots that the CCW
branch undergoes a transition to the two-pulse states, as happened in the CW branch for an inclination of α = 0.01.
The solution in the lowest part of the snaking branch consists of a single pulse state, with a counterclockwise roll
located in the center of the domain (1). Following the branch as Ra increases, the roll tilts and expands slightly
(patterns (2) and (3)). After a fold at Ra = 9315, the roll nucleates (4) and splits into two counterclockwise rolls
(5) before the branch undergoes a back and forth between Ra ∼ 5380 and Ra ∼ 5876. From this zone, the two rolls
move away towards the lateral boundaries (6). When Ra decreases, the tilt of the lateral rolls disappears (7), each of
them adds a pair of rolls, so that the localized patterns become two-pulse states (8) that undergo two-pulse snaking
within the same snaking region as the single pulse states. Notice that the two-pulse states for α = 0.03 ((8) in Fig. 6)
and for α = 0.01 ((6) in Fig. 5), share the same spatial structure even though they originate from different branches
(CCW and CW, respectively).

Figure 7 shows the results obtained when the lowest part of the CW odd branch of convectons (clockwise central roll
in the snaking region) is continued to large values of Ra (up to Ra ≈ 104) for an inclination of α = 0.03. Plot (a) shows
the kinetic energy as a function of Ra, and plots (b) and (c) the contour plots of temperature Θ and streamfunction
Ψ at the locations indicated in panel (a). We choose to represent temperature rather than concentration contours to
visualize better the features of the solutions in this branch. The behaviour of the branch is completely different from
that of the previous branches discussed. The outcome of the numerical continuation reveals a branch with subsequent
forward regions of increasing energy followed abruptly by backwards regions in which the energy decreases.

Notice that the localized patterns at the early stages of the continuation consist of two counterclockwise rolls located
at the center of the domain, the central clockwise roll has been swept away since the beginning, as can be appreciated in
(1), the first solution represented in Fig. 7. The solutions near the folds with lowest values of kinetic energy (solutions
around (1), (3), (5) and (7)) consist of localized counterclockwise corotating rolls with an increasing even number of
rolls, 2, 4, 6 and 8, respectively, and a concentration gradients inside them (not shown here). A counterclockwise roll
is added on both sides in each excursion in which the kinetic energy increases and decreases abruptly. Thus, the size
of the convective region in these localized solutions increases progressively. This type of localized solutions composed
of counterclockwise corotating rolls was already been observed in doubly diffusive convection in vertical slots [28, 29],
but in the present case this occurs for a very small inclination.

On the other hand, the solutions near the folds with higher values of kinetic energy (solutions around (2), (4), (6)
and (8)) correspond to an interesting new type of localized solution we had never observed before. Essentially, these
patterns consist of a sequence of tightly packed counterclockwise rolls, located in the central part of the cell, with a
smaller wavelength than that of the previous corotating-roll patterns from which they derive. Their most remarkable
feature is the temperature field. Regardless of whether the fluid is ascending or descending, the left-half part of the
convective region corresponds to cold fluid, while the right-half part corresponds to warm fluid, with the exception
of a very small central region where cold descending fluid and warm ascending fluid is observed. A counterclockwise
central circulation associated to the inclination, i. e. a natural flow with ascendent warmer fluid and descendent
colder fluid, appears to be superposed to the distribution of localized rolls. These type of solutions are therefore
expected to exist only in inclined containers, as computations will confirm. The concentration field (not showed here)
is almost uniform within the sequence of rolls. We have followed this curve until a fold value of ∼ 7690. From this
point the branch has not been calculated.

B. Numerical continuation of small-amplitude localized solutions with respect to α

In this section we want to investigate whether some of the striking small amplitude localized states that we have
described in the previous section survive or not when the inclination α of the cell is modified. To do this, we have
carried out numerical continuation of a choice of initial localized states taking as continuation parameter the inclination
α of the cell and fixing the value of Ra. Following this strategy, we have been able to identify, on one hand, novel
localized states existing in the non-inclined α = 0 cell that are completely different from those shown in Fig. 3, and
on the other, novel localized states that require inclination of the cell to exist. We describe such localized states
hereunder.

The first localized solution that we have continued is solution (6) in Fig. 3, one of the small-wavelenght localized
states obtained in the non-inclined cell when the odd convecton snaking branch is continued in its lowest part for
large values of the Rayleigh number. The value of Ra now is fixed to Ra = 29630 and the inclination α is allowed
to vary. The outcome of the numerical continuation is summarized in Fig. 8, where we represent the energy E of
the different visited states as a function of the value of α. Notice that, as a consequence of the R1,α symmetry, the
resulting plot is symmetric with respect to α = 0. Plot (a) in Fig. 8 shows the solution branch, and plot (b) shows
the countour plot of the streamfunction, numbered from bottom to top, at the points indicated in panel (a), which
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FIG. 8. (a) Complex solution branch obtained by numerical continuation in α of the steady small amplitude odd localized
state at Ra = 29630 in Fig. 3. (b) Contour plots of the streamfunction Ψ at the locations indicated in panel (a) and where the
number of each solution increases from bottom to top. Parameters: S = −0.1, τ = 0.01, σ = 7 and Γ = 14.

correspond to all the crossing points of the curve with the α = 0 axis.

We observe that (i) the solution branch is closed, (ii) it extends up to α = 0.013, and (iii) for some of the solutions
obtained for α = 0 (i.e. solutions (1) and (3)) the curve crosses the α = 0 axis only once, while for other (i.e. solutions
(2), (4), (5), (6) and (7)), the curve crosses the α = 0 axis twice. This last feature of the curve can be understood in
terms of the symmetries of the α = 0 system. Each of the points in the α = 0 axis correspond to two solutions: the
solution plotted in panel (b), and their transformation by the R1 symmetry. Compare, for example, solutions (6) in
Fig. 3 and (2) in Fig. 8, they are related by the R1 symmetry. When α varies each representation of the same solution
follows a different path, since for α 6= 0 the R1 transformation is no longer a symmetry of the problem. Thus, while
at points (2),(4),(5),(6),(7) the curve crosses the α = 0 axis twice, solutions (1) and (3), apart from being R invariant,
are also R1 invariant and the curve crosses these points only once.

Performing a continuation with respect to α allows to obtain new localized structures for a fixed value of the
Rayleigh number. Apart from the initial small-wavelenght localized state (solution (6) in Fig. 3, which corresponds
to (2) in Fig. 8), we obtain localized solutions in the form of (i) several stacked pairs of rolls (three pairs of rolls in
(1), four pairs in (3)), (ii) misaligned pairs of rolls (solution (4)), (iii) coexisting stacked and non-stacked pairs of
rolls (solutions (5) and (6)), and (iv) stacked clockwise and counterclockwise rotating rolls (solution (7)). Despite the
different spatial structure of these patterns, the size of the convective region remains approximately constant in these
localized structures.

The second localized solution that we have continued is located in the extension of the lowest part of the snaking
CCW curve for α = 0.01, near solution (4) in Fig. 4, and consists of two pairs of vertical stacked rolls. Again, the
value of Ra is fixed to Ra = 29630 and the inclination α is allowed to vary. The result of the numerical continuation is
summarized in Fig. 9. Plot (a) shows the solution branch and plots (b) shows the countour plots of the streamfunction,
numbered from bottom to top, at the points indicated in panel (a), which correspond to the crossing of the curve
with the α = 0 axis.

Starting from the mentioned solution for α = 0.01 (solution near (4) in Fig. 4), and following the branch by
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FIG. 9. (a) Complex solution branch obtained by numerical continuation in α of the steady small amplitude odd localized
state at Ra = 29630 (state (4) in Fig. 4). (b) Contour plots of the streamfunction Ψ at the locations indicated in panel (a) and
where the number of each solution increases from bottom to top. Parameters: S = −0.1, τ = 0.01, σ = 7 and Γ = 14.

decreasing α, the first crossing with the α = 0 axis is solution (7) of Fig. 9. Advancing further the continuation
branch we obtain a new closed symmetric curve that extends to α = 0.02, with double crossing points (solutions
(1)-(5) an (7)) and single crossing points for R1 invariant solutions (solutions (6) and (8)). This resulting closed curve
is different from the previous one, and corresponds to new localized solutions of completely different spatial features.

Among the variety of localized solutions found throughout the curve, we focus on those visited by the curve in the
crossing with the α = 0 axis, that is, we describe the new localized solutions arising in the horizontal cell. We can
distinguish clearly that while in some of the localized solutions the convective region is located in the center of the
cell, in others, the conductive regime fills the central part of the cell and the convective motions take place near the
lateral boundaries. Solutions (6) and (7) consist of two stacked pairs of rolls in the center of the domain. Whereas (6)
is R1 invariant, the weakening of the rotating clockwise rolls in (7) breaks the R1 invariance. Solution (3) is formed by
two vertical staggered pairs of rolls, which separate slightly away in (4), and have moved notably towards the lateral
walls in (2). Remarkably, in (2), one of the two pairs of rolls remains attached to the bottom part of the cell and the
other to the top part. In solution (1), the counterclockwise rotating rolls of every pair have been swept away and the
remaining clockwise rotating rolls are attached to the lateral walls. We observe that weak counterclockwise rotating
rolls reappear again besides the clockwise rotating rolls in solution (5). Finally, the convective region in solutions (8)
and (9) continues to be attached to the lateral walls, but while (9) is formed by two pairs of rolls at each side filling
the whole vertical space, convection in (8) is in the form of two stacked pairs of rolls at each side, giving rise to an
R1 invariant solution. As can be appreciated, the size of the convective region of the localized solutions in Fig. 9 is
smaller than that of the solutions previously described in Fig. 8.

The third and last localized solution that we have continued is obtained in the extension of the lowest part of the
CW odd snaking branch of convectons for α = 0.03, near solution (8) in Fig. 7, and consists of counterclockwise
tightened rolls. As we have discussed before, the clockwise rolls have been swept in this localized solution. This
is a common feature of the solutions when the inclination becomes relevant [17]. Now, the value of Ra is fixed to
Ra = 7500 and the inclination α is allowed to vary. The outcome of the numerical continuation is summarized in
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FIG. 10. (a) Complex solution branch obtained by numerical continuation in α of the steady small amplitude odd localized
state at Ra = 7500 (state (8) in Fig. 7). Contour plots of (b) the deviation of temperature field Θ and (c) streamfunction
Ψ at the locations indicated in panel (a). In the temperature contours the same color bar is used for all states. Parameters:
S = −0.1, τ = 0.01, σ = 7 and Γ = 14.

Fig. 10. Plot (a) shows the solution branch in a E-α diagram, and plots (b) and (c) show, for the points indicated in
panel (a), the countour plots of the deviation of temperature field Θ and the streamfunction Ψ, respectively.

In this case, the numerical continuation unveils a branch with back and forth regions of increasing and decreasing
kinetic energy organized around a vertex located at α ∼ 0.019. The initial state for the numerical continuation is a
solution near (4) in Fig. 10. From this state, the numerical continuation leads to subsequent increases and decreases
of α. The behaviour of the solutions visited resembles that of solutions in Fig. 7. Solutions (2), (3) and (5) have a
low value of the kinetic energy, and are standard localized counterclockwise corrotating rolls with a varying number
of rolls and a concentration gradient inside them. Solutions (4) and (7) have higher values of the kinetic energy, and
are composed of counterclockwise tightened rolls, with colder fluid inside the left-half rolls and warmer fluid inside
the right-half rolls, regardless of whether the fluid is ascending or descending. The concentration field, not shown
here, is almost uniform inside the sequence of rolls. Finally, solutions (1) and (6) have intermediate values of E and
appear to be transition patterns with mixed features of the two types of patterns described previously.

This branch of solutions does not cross the α = 0 axis, in agreement with the fact that inclination is responsible
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for the existence of these peculiar patterns. In addition, the curve does not appear to close itself, so the curve could
be extended from (7) and from a point near (1).

IV. SUMMARY AND CONCLUDING REMARKS

Binary mixture convection in two-dimensional elongated and horizontal closed rectangular cells heated from below
can be in the form of steady roll-like localized structures called convectons. These structures organize in the parameter
space (kinetic energy-Rayleigh number) in a pair of intertwined snaking branches with different symmetries (even and
odd convectons). In this paper, we have continued the lowest part of the branch of odd convectons up to large values
of the Rayleigh number and, unlike it might be expected, it does not connect to the base conductive state. Instead,
a marked increase of the kinetic energy is observed, associated to a slow growth of the size of the convective region
in the localized structure. Localized states in the form of tightly packed convective rolls that progressively decrease
their wavelenght are obtained. This behavior is also observed in rectangular cells with periodic boundary conditions
in the lateral walls.

Previous studies in related laterally periodic systems that also exhibit snaking report a different behavior of the
lowest part of the snaking branches. These systems include natural double diffusive convection in a vertical slot
with imposed competing temperature and concentration horizontal gradients perpendicular to the buoyancy force
and periodic boundary conditions in the vertical direction, double diffusive convection in an horizontal layer with
imposed temperature and concentration differences between the horizontal walls and periodic boundary conditions
in the horizontal direction, and the subcritical Swift-Hohenberg equation [12, 15]. In these configurations the lowest
part of the snaking branches emerges from a branch of spatially periodic states in a secondary Eckhauss instability
at moderate values of the Rayleigh number. This branch of periodic states bifurcates from the conduction state.
In contrast, in binary mixture convection, with periodic boundary conditions and negative enough Soret coefficient
(a critical value dependent on the Lewis number) [30], the branch of periodic states extends to infinity. Thus, for
binary mixtures in rectangular containers with periodic lateral walls, the branch of spatially periodic states neither
bifurcates from the conduction state, nor gives rise to the lowest part of the snaking branches. The coupling between
temperature and concentration through the Soret effect, rather than the specific boundary conditions considered or
the symmetries of the problem, seems to be responsible for the differences in the bifurcation diagrams.

When a slight inclination of the cell α is introduced, the numerical continuation with Ra of the lowest part of the
two odd snaking branches resulting from the splitting of the odd snaking branch, reveals a behaviour different from
the horizontal case. The energy of the branches no longer increases monotonically when the Ra number is increased,
as it occurs for α = 0, and the behavior is very sensitive to the precise value of α and to the type of branch. In some
occasions, the branches even turn around in a fold and reenter eventually the snaking region in the form of two-pulse
localized solutions. In others, the convective region of the localized pattern remains rather small while the amplitude
of the solution slowly grows. Finally, there are also new families of localized solutions, with a larger convective region,
and for which the temperature field and the vertical velocity are out of phase. In all the cases, their spatial properties
differ considerably from those of convectons.

In search for the origin of these novel localized states obtained in slightly inclined cells, we have performed numerical
continuation with the inclination of the cell α. Starting from the localized solutions at Ra values far from the snaking
zone, we obtain complex diagrams with intricate branches of solutions. We observe qualitatively different behaviours
when the continuation is initiated from localized solutions belonging to branches obtained for small values of α, α = 0
and α = 0.01, or to branches obtained for slightly larger values of α, α = 0.03.

The complex branches obtained by continuation of solutions belonging to α = 0 and α = 0.01 turn out to be closed,
symmetric with respect to the continuation parameter α, and cross several times the α = 0 location. This means
that, unexpectedtly, a variety of novel highly localized states coexist for the same heating, not only in the inclined
cell, but also in the horizontal case. By simply computing two of these closed branches, we are able to obtain sixteen
different localized solutions coexisting for the same value of Ra for the α = 0 cell. Some of these solutions have a
central convective region made up of several stacked pairs of rolls, misaligned pairs of rolls, or a combination, but in
other families of localized solutions the convective region is located out of the central part of the cell, and can even
be attached to the lateral walls. In some cases the solutions are invariant to both R1 and R transformations. The
existence of these localized solutions is limited to a region of small values of α.

In contrast, when the continuation is initiated from localized solutions obtained for larger values of α, α = 0.03,
the branches of solutions exhibit complex back and forth oscillations in α, with increasing and decreasing energy, but
never reach the α = 0 value. These branches do not close on themselves and the spatial features that the solution
exhibit are intrinsic to inclination.

To sum up, we have explored the lowest part of the snaking branches for different inclinations of the cell. The
exploration reveals the existence of localized solutions with very different characteristics from those of convectons.
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When numerical continuation of these solutions with respect to the inclination of the cell is carried out, we have
obtained new localized solutions organized in isolas or in open branches. Following this procedure, we have been able
to obtain a variety of localized solutions coexisting for the same heating and inclinations, even in the horizontal cell,
that would have been extremely difficult to obtain otherwise.
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