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ABSTRACT: Accurate estimates of soil unit weight are fundamental for correctly post process CPTu data 
and making use of Soil Behavior Type-based classification systems. Soil-specific and global regressions have 
been proposed for this purpose. However, soil-specific correlation might pose a problem of pertinence when 
applied at new sites. On the other hand, global correlations are easy to apply, but generally carry large system­
atic uncertainties. In this context, this work proposes a data clustering technique applied to geotechnical data­
base aiming to identify hidden linear trends among dimensionless soil unit weight and normalized CPTu 
parameter according to some unobservable soil classes. Global correlations are then revisited according to 
such data subdivision aiming to improve accuracy of soil unit weight prediction while reducing transform­
ation uncertainty. A new probabilistic criterion for soil unit weight prediction is also obtained. The potential 
benefits of the proposed procedure are illustrated with data from a Llobregat delta site (Spain). 

1 INTRODUCTION 

CPTu interpretation is almost always based on stress 
normalized cone readings. For instance, soil classifi­
cation charts (Robertson, 1990; Been & Jefferies, 
2006; Schneider et al., 2008) use stress normalized 
tip resistance, friction and excess pore pressure 
parameters. Total soil unit weight γt is thus 
a necessary input in any CPTu interpretation exercise. 

Soil unit weight is measured on undisturbed sam­
ples from boreholes. Such samples are not always 
available, particularly for granular soils and/or in early 
stages of site investigation. As a simpler alternative, 
total soil unit weight can be estimated indirectly from 
piezocone and seismic piezocone readings. In the last 
decades several proposals have been presented to 
achieve this purpose (Mayne, 2009; Mayne et al., 
2010; Robertson & Cabal, 2010; Mayne, 2014; Leng­
keek, 2018). 

These proposals are all based on empirical regres­
sion using databases in which cone readings are 
paired with soil unit weight measurements. A trade-
off typically arises between coverage (the scope of 
the original soil database) and precision (the predict­
ive power of the regression). Global regressions, usu­
ally described as applicable to soils with a "normal" 
or common mineralogy, are widely applicable but 
less precise than regressions developed only for 
a certain class of soil (i.e., soil specific). On the other 
hand, soil specific regressions are more difficult to 

apply at a particular site because they have less 
coverage and require a previous soil classification 
step, which may introduce additional uncertainty. 
One possible way out of this problem is to develop 
soil-specific regressions for unit weight using 
a global database that is segmented into soil classes 
for regression purposes. How to define those classes? 

In this work we employ a Gaussian Mixture Model 
(a.k.a., GMM) technique to identify hidden classes in 
a global database described by Mayne, (2014) with the 
purpose of establish more accurate regressions. GMM 
have been previously applied to CPTu data analyses 
(Depina et al., 2016; Krogstad et al., 2018) to identify 
soil classes for stratigraphic delineation. In those stud­
ies, a Bayesian perspective was introduced, as having 
the possibility of updating the stratigraphic groups as 
more information was gathered was deemed essential. 
In the present work a fixed database in considered and 
therefore the Bayesian updating aspect has been 
omitted. 

A key step of applying such data clustering tech­
nique is to express the reference database, including 
soil unit weight and CPTu data, as a multivariate 
normal distribution before GMM is applied. To this 
end we use a methodology laid out by Ching et al., 
(2014), to rationally account for predictor co-
dependence and to establish or revise correlations 
between different variables. 

In what follow, key steps to construct valid multi­
variate distribution are reported followed by a brief 
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description of finite Gaussian Mixture Models. In 
the results section, an example of data subdivision 
and assignment to identified hidden classes is 
reported using dimensionless soil unit weight and 
normalized CPTu parameters. Existing correlations 
are re-examined using the new soil classes and 
a new one is proposed. 

2	 METHODOLOGY 

2.1 Setting up a multivariate distribution 

Ching et al., (2014) and Phoon & Ching, (2018) pro­
posed a systematic cumulative transform procedure 
to build standard multivariate normal distributions 
for multivariate databases. Such approach is adopted 
in this study to treat the Mayne, (2014) database. 

Essentially the steps involved are: 

1. For a given set of selected observations Ω (e.g., 
Ω ¼ ½Ω1; Ω2] with Ω1 = [nx1] and n number of 
observations) define marginal distributions Ωi for 
each of the component variates in the database; 

2. Transform the different marginals into standard­
ized normal distributions Xi 

3. Assume	 that transformed observations 
X ¼ ½X1; X2] follow a multivariate normal distri­
bution f X ;ð Þ

ð Þ, and trans­
form it back to the non-normalized space, obtain­
ing the simulated set Ωsim 

4. Obtain a random sample from f X

5. Check by inspection the overlap between	 Ωsim 
and Ω. 

A key step in the procedure is the definition of 
marginal distributions for the different variates in the 
database (in this case dimensionless soil unit weight 
and normalized CPTu parameters). Lognormal distri­
butions have been frequently used in geotechnical 
applications (Phoon & Kulhawy, 1999). The lognor­
mal is included in the Johnson system of distribu­
tions (Ching et al., 2014), which has three main 
families: the lognormal system SL, the bounded 
system SB and unbounded system SU . Choosing 
between the whole system of Johnson distributions 
offers versatility while maintaining the interesting 
property of having analytical expressions to trans­
form into standard normal variables and back (Ching 
et al. 2014). 

The selection of an appropriate Johnson distribu­
tion for a particular dataset is based on the first four 
moments of a sampling distribution (George & 
Ramachandran, 2011). Examples of Johnson distri­
butions fitted to different variates of the Mayne, 
(2014) global database are given in (Figure 1). 

2.2 Multivariate as a gaussian mixture 

The multivariate distribution that represents the data­
base might be conceived as a combination of several 

Figure 1. Fitting Johnson probability density function to a) 
ln (QtnÞ; b)  γt=γ data of Mayne, (2014) database. w 

underlying components (the hidden classes that we 
are trying to identify). This is formalized using 
a Gaussian Mixture Model, (Depina et al., 2016; 
McLachlan & Peel, 2000), that expresses the trans­
formed -standardized- multivariate distribution as 
a linear combination of K multivariate gaussians: 

Each /j represents a component of the mixture and 
is a multivariate normal probability density function 
with the same structure as ð Þ. Therefore, each f X
component has its own statistical parameters, denoted 
by Yj In our case the include a vector of means and 
a covariance matrix . The collection of 

all the Yj is denoted by Y. Each component has 
a weight  πj (proportion of data assigned to /j); 
weights are chosen so that they add up to one and are 
collected in a vector I ¼ (π1,.., πK ). ζ ¼ collection 
of all the unknown parameters of the mixture 
model ði:e:; ½ ] .Y; I Þ
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Depending on the values that ζ finally takes each 
observation xi would have a certain probability pij 
of belonging to a particular component /j. 

Gaussian Mixture analysis consists of estimating 
the most probable ζ , bζ . This is generally done 
through the Expectation-Maximization (EM) algo­
rithm (Samé et al., 2011; Huang et al., 2017; Liu 
et al., 2019) which alternates an expectation step in 
which observations are assigned exclusively to 
a particular gaussian component and a maximization 
step, in which the log-likelihood function for the 
incomplete dataset is maximized. 

The concept of GMM could be also formulated 
in a Bayesian framework, by integrating prior 
knowledge p (ζ ) and observations Ω to obtain 
posterior estimates of ζ . Due to lack of previous 
studies, this work only applies GMM. For more 
detailed information about the Bayesian formula­
tion, analysis about optimal number of hidden 
classes to consider and most plausible normalized 
CPTu parameters to be considered, the reader is 
referred to Collico, (2021). 

Figure 2. A) Assigned probability of belonging to compo­
nent 1 of the GMM b) Scatter and marginal distributions of 
observations for the two hidden classes identified. 

3 RESULTS 

3.1 Cluster definition and analysis 

There are six variates in the Mayne, (2014) database. 
To illustrate the methodology proposed in a simple 
setting, we consider only two of them, namely 
dimensionless unit weight γ =γ and normalized tip t w 
resistance, ln QtnÞ. After fitting a bivariate distribu­ð 
tion to all the data pairs γt=γ � ln QtnÞð we run the 
expectation-maximization algorithm to identify 
a GMM with two components. 

An example illustrating the probabilities of data 
belonging to a particular component of the Gaussian 
mixture is given in Figure 2a. Clustering is based on 
such probabilities. A simple choice is to assign data 
to the component in which they have the largest 
probability of belonging. For two components this is 
equivalent to enforcing a probability threshold of 0.5 
as clustering criteria. The result of doing so in this 
case is reported in Figure 2b, while statistics for the 
two clusters in the Ω space are reported in Table 1. 

To understand the meaning of this newly identi­
fied soil classes, the clustered data is plotted in Soil 
Behavior Type charts (Robertson, (2016); Schneider 
et al. (2008) (Figure 3). Results show that the first 
hidden class identified is dominated by Clay-Like-
Contractive soils (C � C, Figure 3a), while 
the second hidden correlation identified is repre­
sented by a wider range of conventional soil types. 

w 

Table 1. Covariance matrix and mean vector of 
-lnð hidden classes identified.γt=γw QtnÞ

Class Mean Covariance 

1 
0.04 -0.036

1.59 1.71 
-0.036 0.125 

2 
0.025 0.04 

1.95 3.32 0.04 0.94 

3.2 Generating cluster-based correlations 

The clustered data can be used to generate new correl­
ations. Such correlations need not be based on the 
same restricted subset of the global database that was 
used to generate the clustering. For instance, we use 
here correlations that follow a template proposed by 
Mayne, et al., (2010) (i.e., γt=a+ b·log(z) + c·log f s +ð Þ
d·log qt ). Results in terms of coefficient of determin­ð Þ
ation, R2 and regression standard error, σεT are 
reported in Table 2, while regression coefficients are 
reported in Table 3. The standard error, after GMM 
subdivision, is at least 13% smaller than the one of 
global database. The coefficient of determination R2is 
also smaller for the clusters than for the global data­
base. These effects are particularly strong for Hidden 
class 2. 
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Figure 3. Scatter plot of data belonging to each hidden 
cluster identified on SBT charts: a) Robertson, (2016); b) 
Schneider et al., (2008). 

Table 2. Coefficient of determination and regression 
standard error before and after database subdivision. 

R2 σεT 

Global 0.66 1.44 
Hidden class1 0.6 1.25 
Hidden class 2 0.39 1.22 

However, those comparisons are somewhat mis­
leading, as the statistics are computed using differ­
ent observations. The improvement of predictive 
strength after clustering is more clearly identified 
through a cross-validation procedure. To this end 
we run a simulation exercise in which we ran­
domly selected 85% of the data in each cluster and 
used them to fit cluster specific correlations, as 
well as a global one in which no cluster distinction 
was made. Then we applied those correlations, to 
the remaining 15% of the dataset -the validation 
data. The sum of squared residuals jjSSresjj was 

computed at each trial, for each one of the correl­
ations (global, cluster 1, cluster 2). 500 such simu­
lations were performed. Results, reported in 
Figure 4 for both Hidden classes, highlight the 
benefit of the GMM as the distribution of error 
norms is clearly shifted towards lower values. 

Table 3. Coefficient of the regression for linear form of 
Mayne (2010) after BMA subdivision. 

a b c d 

Global 
Class1 
Class2 

8.78 
-0.78 
15.34 

-0.67 
-4.2 
0.052 

2.24 
7.77 
0.02 

1.457 
-0.57 
1.94 

Figure 4. Cross validation of revisited regression and 
comparison with global literature correlation for a) 
Hidden class1. B) Hidden class 2. 
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3.3 Application to new sites: Decision boundary 

To assign CPTu observations at a new site to a cluster, 
we use the (non- normalized) Robertson, (1990) SBT 
chart. Plotting the clustered data in that chart we apply 
discriminant analysis (Ghojogh & Crowley, 2019) to 
establish a user-friendly separation criteria for new 
CPTu observations. The decision boundary (Figure 5) 
obtained takes the shape of a quadratic in Robertson 
(1990) chart. This boundary line between the two clus­
ters has the following expression: 

with σboundary systematic uncertainty associated 
with decision boundary (σboundary ¼ 0:13Þ. 

Figure 5. Mean estimate and 95% Confidence Interval of 
decision boundary. 

3.4 Illustrative example 

The cluster-based correlations just developed are now 
applied to results of a particular CPTu campaign per­
formed at a Llobregat site (SW Barcelona-Spain). 
Several infrastructures have been developed around 
this site during the last decades, requiring extensive 
onshore-nearshore geotechnical investigation. Along 
with in-situ investigation, laboratory tests were per­
formed on selected sub-samples from undisturbed 
Shelby tubes recovered every 5m in each borehole. 
For this study we consider data from 20 CPTu and 44 
total soil unit weight measurements. More detail on 
this campaign is given by Deu et al., (2021). 

All the CPTu data were plotted on Robertson 
graph, showing that the site is dominated by silty 
soils. Then each CPTu observation was assigned to 
class 1 or 2 according to the mean value of the deci­
sion boundary (Figure 6a). Most of the data were 
assigned to Hidden class 2. 

The cluster-based correlation was applied to the 20 
CPTu data and the results are plotted in (Figure 6b), 
indicating the mean and spread of the predicted values. 

The same is done using the global correlation, obtained 
using the whole database, without clustering. Summary 
results are also presented in Table 4. They include the 

Table 4. Statistics of mean value of total unit weight 
prediction. 

μγt σμγt 

Global correlation 17.47 0.48 
Cluster-based correlation 18.1 0.42 
Laboratory 19.45 0.66 

Figure 6. A) CPTu data assigned to class 1 and class 2 
according to the proposed criterion. b) Profile of total unit 
weight prediction for cluster-based and global correlations 
and laboratory observations. 
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overall predicted mean estimate as well as the standard 
deviation of the means evaluated at different depths. 

The cluster-based correlation clearly exhibits an 
improvement of total unit weight prediction at the 
site (Figure 5b), when compared global correlation. 
It has a lower dispersion and its mean is closer to 
that of the laboratory measurements. It is clear, how­
ever, that even the cluster-based correlation under­
estimates the laboratory mean. There are several 
possible explanations for this discrepancy. One is 
that samples of silty soils generally tend to be densi­
fied upon sampling (Lim et al. 2018). The other is 
that the reference database is somewhat scarce in the 
silt area were most datapoints in the example lie 
(compare Figures 6a and 3a). 

CONCLUSION 

This study describes a first attempt to apply GMM 
clustering to geotechnical database. 

The clustering technique has been applied in 
a space parametrized by dimensionless soil unit 
weight and normalized cone tip resistance, assuming 
the existence of two unobserved classes, selected at 
50% probability. One of emerging hidden classes can 
be associated to Clay-Like-Contractive class, while 
the second is representative of a wide range of soil 
types. Assignation of new data to the hidden classes 
is based on a discriminant line generated on non-
normalized SBT charts (Robertson, 1990). CPTu data 
subdivision according to such classes has been shown 
to increase the predictive strength of correlations. 
This has been illustrated using a correlation template 
from Mayne et al., (2010) in which unit weight is pre­
dicted from shaft friction, depth and tip resistance. 

Beyond the particular application explored here, 
the technique presented here may prove useful to 
improve accuracy and precision of empirical CPTu 
based correlations established using global databases. 
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