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Abstract The estimation of semantic similarity between 
words is an important task in many language related appli-
cations. In the past, several approaches to assess similarity 
by evaluating the knowledge modelled in an ontology have 
been proposed. However, in many domains, knowledge is 
dispersed through several partial and/or overlapping ontolo-
gies. Because most previous works on semantic similarity 
only support a unique input ontology, we propose a method 
to enable similarity estimation across multiple ontologies. 
Our method identifies different cases according to which 
on-tology/ies input terms belong. We propose several 
heuristics to deal with each case, aiming to solve missing 
values, when partial knowledge is available, and to capture 
the strongest semantic evidence that results in the most 
accurate similar-ity assessment, when dealing with 
overlapping knowledge. We evaluate and compare our 
method using several general purpose and biomedical 
benchmarks of word pairs whose similarity has been 
assessed by human experts, and sev-eral general purpose 
(WordNet) and biomedical ontologies (SNOMED CT and 
MeSH). Results show that our method is able to improve 
the accuracy of similarity estimation in
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comparison to single ontology approaches and against state
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1 Introduction

With the enormous success of the Information Society, the
amount of textual electronic information available has been
significantly increasing in recent years. As a result, com-
puter understanding of electronic texts has become an im-
portant trend in computational linguistics. One of the most
basic tasks is the evaluation of the semantic similarity be-
tween words. Semantic similarity/distance methods have
been extensively developed to tackle this problem in an au-
tomatic way. Word similarity estimation has many direct ap-
plications. In word-sense disambiguation [1], for example,
context terms can be semantically compared with the senses
of a potentially ambiguous word to discover the most similar
sense. In document categorisation or clustering [2–4], the
semantic resemblance between words can be compared to
group documents according to their subject. In word spelling
correction [5], semantic similarity can assess which is the
most appropriate correction for a potential misspelling ac-
cording to its similarity against context words (e.g., “a cot
is a mammal” instead of “a cat is a mammal”). Automatic
language translation [2] relies on considering the detec-
tion of term pairs expressed in different languages but re-
ferring to the same concept as a synonym discovery task,
where semantic similarity assists the detection of differ-
ent linguistic formulations of the same concept. Semantic
similarity assessments can also assist information extraction
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tasks [6] such as semantic annotation [7] and ontology learn-
ing [8–12], helping to discover semantically related terms.
Finally, semantic similarity is widely used in information re-
trieval [5, 6, 13–15] tasks, either suggesting similar queries
to improve the recall or filtering results according to their
resemblance to the user query.

Semantic similarity is estimated from the degree of tax-
onomic proximity between concepts. For example, bron-
chitis and flu are similar because both are respiratory sys-
tem disorders. Taxonomies, and more general ontologies,
provide a formal and machine-readable way to express a
shared conceptualisation by means of a unified terminol-
ogy and semantic inter-relations [16], from which simi-
larity can be estimated. Motivated by initiatives such as
the Semantic Web [17], many ontologies have been de-
veloped in the last years. Available ontologies range from
general-purpose knowledge sources, such as WordNet [18]
for English words, to specific terminologies, such as medi-
cal sources like UMLS, or ontologies designed for a specific
application [19–22]. Thanks to the explicit knowledge struc-
ture that ontologies provide, they have been extensively used
to compute similarity. In fact, similarity estimation is based
on the extraction of semantic evidence from one or sev-
eral knowledge sources. The more available the background
knowledge is and the better its structure is, the more accu-
rate the estimation will potentially be. Different families of
measures can be disguised according to the type of knowl-
edge used to extract semantic evidences and to the principles
in which similarity estimation relies.

On the one hand, there exists pure ontology-based meth-
ods focused on the analysis of the hierarchical structure of
an ontology [23–26]. Ontologies are considered in these ap-
proaches as geometrical models in which inter-concept sim-
ilarity can be estimated from their relative distance in the
ontological structure, which is the shortest path of semantic
links connecting them [26]. On the other hand, other sim-
ilarity computation paradigms grounded in the information
theory complement the taxonomic knowledge provided by
an ontology with the probability of appearance of words in a
pre-processed domain corpus [27–29]. However, these latter
approaches depend on corpora availability and human tag-
ging to obtain robust similarity estimations [30–32]. On the
contrary, pure ontology-based approaches are able to com-
pute similarity in an efficient manner without depending on
external resources and human supervision [33]. In fact, they
are able to provide accurate results when a well detailed and
taxonomically homogenous ontology is available [25]. This
is also a drawback, because they completely depend on the
degree of coverage and detail of the input ontology. This
limitation can be overcome by using multiple ontologies.

Classical similarity approaches, in general, do not sup-
port more than one input ontology. The use of multiple on-
tologies provide additional knowledge [34] that may help

to improve the similarity estimation and to solve cases in
which terms are not represented in a certain ontology. This
is especially interesting in domains in which several large
and detailed ontologies are available (e.g., in biomedicine:
MeSH and SNOMED) offering overlapping and/or comple-
mentary knowledge of the same domain. However, the dif-
ferent scopes, points of view and design principles followed
by knowledge experts when developing ontologies produce
significant differences in their level of detail, granularity
and semantic structure, making difficult the comparison and
integration of similarities computed from different ontolo-
gies [34].

As it will be detailed in the Sect. 3, very little work has
been done in developing methods to enable the similarity as-
sessment from multiple ontologies. In this paper we present
a new approach tackling this task. On the one hand, our
method will permit estimating the similarity when a term
is missing in a certain ontology but it is found in another
one by discovering common concepts that can act as bridges
between different knowledge sources. On the other hand,
in case of overlapping knowledge, that is, ontologies cov-
ering the same pair of terms, our approach will be able to
improve the accuracy by selecting the, apparently, most re-
liable similarity estimation from those computed from the
different ontologies. A heuristic has been designed to tackle
this task, based on the amount of semantic evidences ob-
served for each ontology. It is worth to note that, on the
contrary to previous works, our approach tackles the cases
found in a multi-ontology scenario according to which on-
tology the concepts belong (i.e., the pair of compared con-
cepts belong to one ontology, both concepts are found in
more than one ontology, each concept belongs to a different
ontology) and it operates in an unsupervised fashion during
the semantic integration. Our method has been applied to
a state-of-the-art ontology-based measure [33], designed to
provide a high similarity estimation accuracy by exploiting
solely taxonomical knowledge.

The rest of the paper is organised as follows. Section 2,
provides some definition of basic concepts involved in the
semantic similarity assessment. Section 3 introduces related
works focusing on ontology-based semantic similarity using
multiple ontologies. Section 4 begins with a description of
the similarity measure to which the proposed method has
been applied. Then, the method for similarity assessment
from several ontologies is described in detail, defining a set
of cases according to which ontologies the input terms be-
long and the strategy proposed to tackle each situation. Sec-
tion 5 evaluates our approach by means of several standard
benchmarks and compares it against a mono-ontology sce-
nario and related works. The final section contains the con-
clusions.



Fig. 1 Ontology O1

2 Basic concepts

Let us define path(c1, c2) = {l1, . . . , lk} as the minimum
number of links connecting the terms c1 and c2 in a tax-
onomy. Let |path(c1, c2)| the length of this path.

Example 1 Let us consider the ontology O1 which is par-
tially shown in Fig. 1.

Given a pair of concepts c1, c2 in O1, we can see that
the path between c1, and c2 is composed by the set of links
that connect them: path(c1, c2) = {c1 − s4, s4 − s3, s3 −
sLCS, sLCS − s6, s6 − c2}. Consequently, |path(c1, c2)| = 5.

Applying path definition, given a concept c, we can de-
fine depth(c) as the length of the path between c and the root
node (1).

depth(c) = ∣
∣path(c, root)

∣
∣ (1)

Considering Example 1, depth(c1) = 5.

In addition, let us define a superconcept s of a concept c

as any concept that taxonomically subsumes (generalises) c

in the taxonomy.
Applied to Example 1, concepts s4, s3, sLCS, s1 and the

root node are superconcepts of c1.
Finally, let us consider Sup(c1, c2) the set of supercon-

cepts that subsume both c1 and c2. Then, the Least Common
Subsummer (LCS) of concepts c1 and c2 (i.e. LCS(c1, c2)) is
defined as the most specific superconcept (the one with the
maximum depth) that defines the path between the pair of
evaluated concepts.

LCS(c1, c2)

= arg max
s∈{arg minc∈Sup(c1,c2)(|path(c1,c)|+|path(c,c2)|)}

Depth(s) (2)

Applied to Example 1, the LCS of c1 and c2 is sLCS.

3 Related work

As stated in the introduction, the exploitation of multiple in-
put sources would lead to better coverage and more robust

similarity estimations. In the past, the general approach to
data integration has been mapping the local terms of distinct
ontologies into an existent single one [16, 35–37] or creat-
ing a new ontology by integrating existing ones [36, 38, 39].
However, manual or semi-automatic ontology integration
represents a challenging problem, both from the cost and
scalability points of view (e.g. requiring the supervision of
an expert) and because of the difficulty to deal with overlap-
ping concepts and inconsistencies across ontologies [40].

Tackling the problem from a different perspective, [40]
compute the similarity between terms as a function of some
ontological features and the degree of generalisation be-
tween concepts (i.e., the path distance between the pair of
concepts and their least common subsumer) into the same
or different ontologies. Similarly, in [41], authors rely on
the matching between synonym sets and concept definitions,
using the Jaccard index as to measure the degree of overlap-
ping and, hence, of similarity. When the term pair belongs to
different ontologies, both methods approximate the degree
of generalisation between concepts by considering that these
ontologies are connected by a new imaginary root node that
subsumes the root nodes of these two ontologies. A prob-
lem of their approaches is their reliance on many ontolog-
ical features such as attributes, synonyms, meronyms and
other kind of non-taxonomic relationships, which are more
scarcely found in ontologies, in comparison to taxonomical
knowledge. In fact, an investigation of the structure of exist-
ing ontologies via the Swoogle ontology search engine [42]
has shown that domain ontologies very occasionally model
non-taxonomic knowledge. Moreover, these methods do not
consider the case in which the term pair is found in several
ontologies, which is a very common situation as it will be
shown during the evaluation. In consequence, they omit the
problem of selecting the most appropriate assessment and/or
the integration of overlapping sources of information. In ad-
dition, the integration of different ontologies is very simple
and does not consider the case in which ontologies share
subsumers that could be used as bridging classes.

Other methods rely on terminological matchings to en-
able multi-ontology similarity assessment. In [43], authors
compute the similarity as function of the concreteness of
the concept subsuming the compared terms in a taxonomy.
In the multi-ontology scenario, this subsuming concept is
obtained by matching concept labels of different ontolo-
gies and retrieving the most taxonomical specific match-
ing. A more elaborated approach is presented in [44]. This
work complements terminological matching of subsumer
concepts with a graph-based ontology alignment method
that aims at discovering structurally similar, but not neces-
sarily terminologically identical, subsumers. The result of
the alignment method is evaluated by means of path-based
similarity measures. The main problem of these methods is
their omission of the case in which overlapping knowledge
is available.



A more general proposal covering all possible situations
which may appear in a multi-ontology scenario is presented
by [34]. They apply it to the UMLS biomedical source,
in which concepts are dispersed across several overlapping
ontologies and terminologies such as MeSH or SNOMED
(see Sect. 5). Authors propose a methodology to exploit
these knowledge sources using a path-based distance de-
fined in [45]. The proposed measure combines path length
and common specificity. They use the common specificity to
consider that pairs of concepts at a lower level of a taxon-
omy should be more similar than those located at a higher
level. They measure the common specificity of two concepts
by subtracting the depth of their Least Common Subsumer
from the depth Dc of the taxonomic branch to which they
belong.

CSpec(c1, c2) = Dc − depth
(

LCS(c1, c2)
)

(3)

The smaller the common specificity of two concept nodes,
the more the information they share, and thus, the more sim-
ilar they are. Based on path length and common specificity,
they proposed a measure (SemDist) defined as follows:

SemDist(c1, c2) = log
((∣

∣path(c1, c2)
∣
∣ − 1

)α

× (

CSpec(c1, c2)
)β + k

)

(4)

where α > 0 and β > 0 are contribution factors of two fea-
tures, k is a constant, and |path(c1, c2)| is the length of the
path between the two concepts. To ensure the function is
positive and the combination is non-linear, k must be greater
or equal to one.

For the case of multiple ontologies, they rely on a user-
selected primary ontology (the other ones are considered as
secondary) that acts as the master in cases in which concepts
belong to several ontologies. It is also used as a base to nor-
malize similarity values. They propose different strategies
according to the situation in which the compared concepts
appear. If both concepts appear in the primary ontology,
the similarity is computed exclusively from that source even
in the case that they also appear in a secondary ontology.
If both concepts appear only in a unique secondary ontol-
ogy, obviously, the similarity is computed from that source.
A more interesting case occurs when concepts appear in sev-
eral secondary ontologies. Authors propose a heuristic to
choose from which of these ontologies the similarity should
be computed, based on the degree of overlapping with re-
spect to the primary ontology and the degree of detail of
the taxonomy (granularity). Finally, if a concept is uniquely
found in an ontology (the primary) and the other concept
in a different ontology (a secondary one), they temporally
“connect” both ontologies by finding “common nodes” (i.e.
subsumers representing the same concepts in any of the on-
tologies) and considering the result as a unique ontology.

A problem that authors face is the fact that different
ontologies may have different granularity degrees, that is,

different depths and branching factors for a certain taxo-
nomic tree. Because their measure is based on absolute path
lengths, the similarity computed for each term pair from
different ontologies will lead to a different similarity scale
which cannot be directly compared. They propose a method
to scale similarity values both in the case in which the con-
cept pair belongs to a unique secondary ontology or when
it belongs to different ontologies—both secondary, or one
primary and the other secondary—which are “connected”,
taking as reference the predefined primary ontology. They
scale both Path and CSpec features to the primary ontology
according to difference in depth with respect to the primary
ontology. For example, in the case in which both concepts
belong to a unique secondary ontology, Path and CSpec are
computed as stated in (5) and (6) respectively, and they com-
pute the similarity using (4).

∣
∣Path(c1, c2)

∣
∣ = ∣

∣Path(c1, c2)secondary_onto
∣
∣ × 2D1 − 1

2D2 − 1
, (5)

CSpec(c1, c2) = CSpec(c1, c2)secondary_onto × D1 − 1

D2 − 1
(6)

where D1 and D2 are the depths of the primary and
secondary ontologies respectively. Hence, (D1 − 1) and
(D2 − 1) are the maximum common specificity values
of the primary and secondary ontologies respectively, and
(2D1 − 1) and (2D2 − 1) are the maximum path values of
two concept nodes in the primary and secondary ontologies,
respectively.

This approach has some drawbacks. First, since the pro-
posed method bases the similarity assessment on the path
length connecting concept pairs, it omits other taxonomic
knowledge already available in the ontology such as the
complete set of common and non-common superconcepts.
Moreover, it is worth to note that the presence of an is-a
link between two concepts gives an evidence of a relation-
ship but not about the degree of their semantic similarity,
because all individual links have the same length and, in
consequence, represent uniform distances [46]. Secondly,
the cross-ontology method is hampered by the fact that a
primary ontology should be defined a priori by the user to
solve cases with overlapping knowledge and to normalize
similarity values. This scaling process, motivated by the fact
of basing the similarity on absolute values of semantic fea-
tures (path and depth) of a concrete ontology, results in a
complex scenario to be considered during the similarity as-
sessment. Moreover, it assumes that, in all situations, the
primary ontology will lead to better similarity estimations
than secondary ones, which could not be true. There may be
situations in which, for a pair of concepts appearing both in
the primary ontology and also in one or several secondary
ontologies, similarity estimation from a secondary one may
lead to better results because its knowledge representation
is more accurate or more detailed for a particular subset



of terms. Even though authors evaluate the approach using
standard benchmarks and widely available ontologies, ex-
periments regarding the influence in the results of selecting
one ontology or another as the primary are missing.

4 Proposed method

In Sect. 4.1, we provide a brief description of a simi-
larity measure selected as more appropriate way to esti-
mate similarity than related works based on absolute path-
lengths [34, 40]. In Sect. 4.2, a multi-ontology similarity en-
abling method is presented jointly with the heuristics pro-
posed to tackle the different scenarios, that is, when over-
lapping or complementary knowledge is available, and on
the contrary to most related works [40, 41, 43, 47] focusing
only on the former case.

4.1 Similarity measure

From Sect. 3 we realise that one of the problems of the ap-
proaches presented by [34] and [40] is the similarity func-
tion used in their methodologies. Regarding [34], being a
path-based function, their underlying measure provides ab-
solute similarity values with non-comparable scales when
they are obtained from different ontologies, that is, the path
length would depend on the ontology size, depth and granu-
larity. In the case of the measure used by [40] their measure
relies on non-taxonomic features, which are rarely found in
ontologies [42].

From these considerations, we conclude that an ontology-
based measure providing relative values normalised accord-
ing to the ontological structure to which it has been applied,
that it is based solely on taxonomical knowledge is desirable
in a multi-ontology scenario.

Several ontology-based measures fitting these require-
ments exist [23, 25, 33]. Those were compared in [33], con-
cluding that the approach by [33] was able to provide the
best results when evaluated with standard ontologies and
benchmarks. Particularly, this measure tackles some of the
limitations observed in other ontology-based measures rely-
ing on the quantification of the path [23, 25]. Because of
their simplicity, these approaches consider partial knowl-
edge (i.e., the path and/or taxonomic depth) during the sim-
ilarity assessment. This omits other taxonomic relations de-
fined between concepts in case, for example, of ontolo-
gies incorporating relations of multiple inheritance in which
several paths between concept pairs exist. The approach
by [33], on the contrary, evaluates concept similarity as a
function of the amount of common and non-common taxo-
nomic subsumers of the compared concepts. Concretely, it
evaluates, in a non-linear way, the ratio between the cardi-
nality of the set of non-common superconcepts as an indi-
cation of distance, and the total number of superconcepts of

both concepts as a normalising factor (7). In this manner, it
exploits more ontological knowledge than path-based mea-
sures since, if multiple taxonomic superconcepts exist, all of
them are considered. This improves the accuracy in a mono-
ontology setting, but retaining the computational simplicity
and lack of constraints [33]. The measure was defined as:

sim(c1, c2) = − log2
|T (c1) ∪ T (c2)| − |T (c1) ∩ T (c2)|

|T (c1) ∪ T (c2)| (7)

where T (ci) is defined as the set of superconcepts of the
concept ci , including the concept ci , as T (ci) = {cj ∈
C|cj is superconcept of ci} ∪ {ci}.

As shown in (7), the fact that it evaluates a ratio of taxo-
nomic features provides normalised similarity values which
can be compared independently of the ontology size and
granularity. This is relevant in a multi-ontology setting be-
cause it will enable a direct comparison of the results ob-
tained from different ontologies.

Because of these arguments, we selected this measure
as the function to which apply and test the accuracy of the
multi-ontology similarity computation method presented be-
low.

4.2 Multi-ontology similarity assessment

Our multi-ontology similarity computation method has been
designed to be general enough to be applicable to any ontol-
ogy configuration without requiring user supervision. On the
contrary to [40, 41, 43, 47], our method considers all pos-
sible situations according to which ontology the compared
concepts belong. On the contrary to [34], who rely on the
pre-selection of a primary ontology, we consider all input
ontologies equally important. As a result, the multi-ontology
similarity scenario is simplified to three cases (instead of five
proposed in [34]), according to whether or not each or both
concepts (c1 and c2) belong to any of the considered ontolo-
gies.

Case 1: Concepts c1 and c2 appear in only one ontology.
If the pair of concepts occurs in a unique ontology, the sim-
ilarity is computed like in a mono-ontology setting.

Example 2 Let us compare the concept pair c1 and c2 be-
longing to a unique ontology O1, whose structure is par-
tially shown in Fig. 1. Applying the measure detailed in (7),
so that we obtain: T (c1) ∩ T (c2) = {root, s1, sLCS} and
T (c1) ∪ T (c2) = {root1, s1, sLCS, s2, s3, s4, s5, s6, c1, c2},
then sim(c1, c2) = − log2((10 − 3)/10) = 0.514.

Case 2: Both concepts c1 and c2 appear at the same time in
more than one ontology.
In this case, both concepts appear in several ontologies, each
one modelling knowledge in a different but overlapping way.



Hence, the similarity calculus is influenced by the differ-
ent levels of detail or knowledge representation accuracy of
each ontology [40].

A possible way to tackle this situation would be to ag-
gregate this overlapping knowledge or the individual sim-
ilarity estimations pursuing the hypothesis that the combi-
nation of individual evidences would produce more accu-
rate results. However, when dealing with ontological mod-
els, as acknowledged by researchers working on ontology
merging/alignment [48], the integration of heterogeneous
knowledge becomes a complex task due individual ontolo-
gies are typically created by different experts, pursuing dif-
ferent goals, framed in different areas/tasks and with dif-
ferent scopes and points of view. Hence, even in cases in
which overlapping knowledge is detected across several on-
tologies like in this case, the aggregation of this knowledge
is challenging because of ambiguities and semantic incon-
sistencies. As a result, the integration of different knowledge
sources cannot rival the semantic coherency of a knowledge
structure created by an individual expert [48].

In this case, we are dealing with several knowledge struc-
tures that model the same knowledge (concept pairs), each
one being created by an individual expert in a semantically
coherent manner. Hence, similarity assessments from indi-
vidual ontologies would be also coherent. Considering the
difficulties and imperfections of automatic knowledge inte-
gration processes, we argue that individual similarity assess-
ments computed from individual ontologies would be more
accurate.

Moreover, when dealing with multiple ontologies, a par-
ticular ontology may better represent similarity between
concepts with respect to the rest of ontologies due to a higher
taxonomical detail or a better knowledge representation ac-
curacy.

Hence, it would be desirable to be able to decide, accord-
ing to a heuristic, which ontology provides the, apparently,
best estimation of the inter-concept similarity. Considering
the nature of the ontology engineering process, and the psy-
chological implications of a human assessment of the simi-
larity, two premises can be enounced.

First, the fact that a pair of concepts obtains a high sim-
ilarity score is the result of considering common knowl-
edge modelled through an explicit ontology engineering
process. However, because of the knowledge modelling bot-
tleneck, which typically affects manual approaches, onto-
logical knowledge is usually partial and incomplete [49]. As
a result, if two concepts appear to be semantically far be-
cause they, apparently, do not share knowledge, one cannot
ensure if this is an implicit indication of semantic disjunc-
tion or the result of partial or incomplete knowledge. We can
conclude that explicitly modelled knowledge is more impor-
tant as semantic evidence when computing similarity than

the lack of it. Hence, we prefer higher similarity values be-
cause they are based on explicit evidences provided by the
knowledge expert.

Secondly, psychological studies have demonstrated that
humans pay more attention to similar than to different fea-
tures during the similarity assessment [35, 50]. Hence, we
assume that non-common characteristics between entities
are less important than common ones.

As a result, given a pair of concepts appearing in different
ontologies, we consider the one giving the highest similar-
ity score as the most reliable estimation because it incorpo-
rates the highest amount of explicit evidences of relationship
between terms (explicitly modelled by the knowledge engi-
neer). Concretely, we compute similarity values individually
for each ontology. Then, we choose the highest similarity
value, which we assume to be the best estimation, as the fi-
nal result (8).

sim(c1, c2) = max∀Oi∈O|c1,c2∈Oi

simOi
(c1, c2) (8)

being O a set of ontologies to which c1 and c2 belong.
Applying this heuristic, given a set of concept pairs be-

longing to several ontologies, the final similarity value of
each pair may be taken from different ontologies. This will
correspond to cases in which a particular ontology pro-
vides, apparently, a more accurate modelling of the two con-
cepts, regardless its global degree of granularity or detail in
comparison to the other ontologies. On the contrary to the
method by [34] that relies on the user criteria to pre-select
the most adequate ontology (i.e. the primary one) assuming
that it will provide the most accurate assessments in all situ-
ations, which is hardly assumable, our heuristic will exploit
the benefits offered by each ontology for each pair of con-
cepts. This configures an unsupervised and adaptive method
that is able to select, for each term pair to compare, the as-
sessment which is likely to more accurately represent their
similarity.

Moreover, because the underlying similarity measure (7)
provides relative values, normalised to the granularity de-
gree of each ontology, the comparison between the results
obtained from different ontologies for the same pair of con-
cepts does not require additional scaling, on the contrary
to [34]. This simplifies the process, avoiding the necessity
that the user provides the normalising factor (i.e. the pri-
mary ontology).

Example 3 Let O = {O1,O2} (see Fig. 2) the set of
ontologies to which c1 and c2 belong. Hence, in O1,
simO1(c1, c2) = − log2((10 − 3)/10) = 0.514, while in O2,
simO2(c1, c2) = − log2((9 − 3)/9) = 0.585. Following the
heuristic (8), the final similarity is sim(c1, c2) = 0.585.

Case 3: None of the ontologies contains concepts c1 and c2

simultaneously



Fig. 2 Ontologies O1 and O2

Each of the two concepts belong to a different ontology, each
one modelling the knowledge from a different point of view.
As stated in [40] the similarity estimation across ontologies
can be only achieved if they share some components. On the
contrary to the previous case, the current scenario necessar-
ily requires integrating different ontologies to measure the
similarity across them.

As stated in Sect. 3, some approaches tackled this prob-
lem by merging different ontologies in a unique one, intro-
ducing a high computational and human cost, and dealing
with the difficulties inherent to the treatment of ambiguous
overlapping concepts and to the avoidance of inconsisten-
cies [40, 41, 43, 47].

From a different point of view, as introduced in Sect. 3,
[34] base their proposal in the differentiation between pri-
mary and secondary ontologies, connecting the secondary
to the primary by joining all the equivalent nodes, that is,
those with concepts represented by the same label. These
equivalent nodes are called bridges. Then, they define the
LCS of a pair of concepts in two ontologies as the LCS of
the concept belonging to the primary ontology and one of
the bridge nodes.

LCSn(c1, c2) = LCS(c1,bridgen) (9)

Then, the path is computed trough the two ontologies via
the LCS and the bridge node, and the similarity is assessed.
Again, because ontologies have different granularity de-
grees, the path length depends on the concrete ontology. To
normalise the value, it is measured the path between the con-
cept of the primary ontology and the LCS, and the path be-
tween the concept of the secondary ontology and the LCS
scaled with respect to the dimension of the primary ontol-
ogy.

In [40, 41], the two ontologies are simply connected by
creating a new node (called anything) which is a direct su-
perconcept of their roots.

Considering the nature of our similarity measure, in
which the set of common and non-common superconcepts

are evaluated, the approach proposed in [40, 41] implies the
loss of all the potentially common superconcepts. Moreover,
differently from [34, 47], where only the path length to the
LCS is computed, we need a more complete vision of the
taxonomic structure above the evaluated concepts, including
all taxonomic relationships in cases of multiple inheritance.

Because of these reasons, we propose a new method to
assess similarity across different ontologies. It is based on
evaluating the union of the set of superconcepts of c1 and
c2 in each ontology and on finding equivalences between
them. This allows evaluating the amount of common and
non-common knowledge in a cross-ontology setting. It is
important to note that, on the contrary to [34], where all the
bridge nodes of the ontology are considered introducing a
high computational burden in big ontologies, we only eval-
uate the superconcepts of each concept.

The detection of equivalencies between concepts of dif-
ferent ontologies has been previously studied in the ontol-
ogy alignment field [51]. Several approaches have been pro-
posed, based on different principles, to assess the chance
that concepts of different ontologies are in fact equivalent.
Many of these methods rely on semantic similarity func-
tions to enable this assessment, provided by human experts
or computed from other knowledge sources. However, in a
scenario such as the current one, in which neither user inter-
vention nor additional knowledge other than the one to be
aligned is available, an unsupervised method is needed. Ter-
minological matching methods, which are also widely used
in the ontology alignment field [48, 52, 53] fit with these re-
quirements, because they discover equivalent concepts re-
lying solely on the fact that concept labels match. Applied
to our problem we discover equivalent superconcepts when
they are referred with the same textual labels, considering,
if available, synonym sets.

However, because of language ambiguity (synonymy and
polysemy) and differences in the knowledge representation
process, a terminological matching offers a limited recall.
To minimise this problem, in addition to consider common
superconcepts as those that terminologically match, we also
consider that all their subsumers are also common, regard-
less having or not an identical label. In fact, each of the eval-
uated concepts inheriting from terminologically equivalent
superconcepts recursively inherits from all superconcepts’
subsumers.

Summarising, the set of shared superconcepts for c1 be-
longing to ontology O1 and c2 belonging to the ontology
O2, is composed by those superconcepts of c1 and c2 with
the same label, and also the subsumers of these equivalent
superconcepts.

Formally, TO1(c1) is the set of superconcepts of concept
c1 (including c1) in the hierarchy HC

O1 of concepts (CO1)
in ontology O1, and TO2(c2) is the set of superconcepts of
concept c2 (including c2) in the hierarchy HC

O2 of concepts
(CO2) in ontology O2.



Let > a relation C × C called generalisation (ci > cj ,
means that ci is a generalisation of cj or, in other words ci

is a superconcept of cj ). Then, we define the set of super-
concepts of c1, c2 as:

TO1(c1) = {ci ∈ CO1|ci > c1} ∪ {c1}, (10)

TO2(c2) = {cj ∈ CO2|cj > c2} ∪ {c2} (11)

Then, the set of terminologically equivalent superconcepts
(ES) in TO1(c1) ∪ TO2(c2) is defined as:

ES = {

ci ∈ TO1(c1)|∃cj ∈ TO2(c2) ∧ ci ≡ cj

}

(12)

In (12) “≡” means terminological match. Finally, the set of
common superconcepts (CS) in TO1(c1) ∪ TO2(c2) is com-
posed by elements in ES and all the superconcepts of ele-
ments in ES.

CS(c1, c2) =
⋃

∀ci∈ES

(

TO1(ci) ∪ TO2(ci)
)

(13)

The remaining elements in TO1(c1) ∪ TO2(c2) are consid-
ered as non-common superconcepts.

Once the set of common and non-common superconcepts
have been defined, we are able to apply the similarity mea-
sure presented in (7).

Example 4 Let O = {O1,O3} be the set of ontologies to
which the compared concepts (c4 and c3) individually be-
long (Fig. 3). Suppose that concepts s3 ∈ O1 and r3 ∈ O3

terminologically match (s3 ≡ r3). Only O1 contains c4 and
only O3 contains c3. In this case, we obtain: ES = {s3}
and CS(c4, c3) = {s3, root1, s1, sLCS, root3, r1, r2}. s3 and
r3 are considered the same concept. Then, sim(c3, c4) =
− log2((15 − 7)/15) = 0.9.

Finally, as in Case 2, c1 and/or c2 individually may be-
long to several ontologies. If that is the case, the described
process and the similarity computation are executed for each
combination of ontology pairs. For each pair, a similarity
value is obtained. Following the same reasoning discussed

Fig. 3 Ontologies O1 and O3

in Case 2, we take the highest similarity values as final re-
sult. Formally:

sim(c1, c2) = max(sim{Oi,Oj }(c1, c2)),

{Oi,Oj } ∈ O × O|i 	= j ∧ (c1 ∈ Oi, c2 ∈ Oj)
(14)

Example 5 Consider the set of ontologies O = {Oa,Ob,

Oc,Od} so that c1 belongs to Oa and Oc and c2 belongs
to Ob and Od . In this case, we individually compute the
similarity for the pairs Oa − Ob , Oa − Od , Oc − Ob and
Oc − Od using the method described above. The highest
similarity value obtained for all pairs is taken as the final
result.

By means of the described method approach, we are able
to maintain the properties of the underlying measure, that is,
the maximisation of the taxonomic knowledge exploited in
the similarity assessment, but integrating knowledge from
different ontologies in a seamless way. On the contrary,
other approaches [34, 47], which only look for a common
LCS from which the path is evaluated, omit taxonomic
knowledge explicitly modelled in the ontology. Again, on
the contrary to [34], the numerical scale of similarity values
is also maintained regardless of the input ontology because
results are implicitly normalised by the size of the corre-
sponding superconcept sets.

Although, this method could be adapted to other edge-
counting measures, the similarity measure of Eq. (7) has
been selected because of its desirable characteristics (dis-
cussed in Sect. 4.1) and also because of its accuracy that
surpassed other edge-counting measures and even differ-
ent paradigms like corpora-based IC measure (as discussed
in [33]).

5 Evaluation

Similarity measures are usually evaluated by means of stan-
dard benchmarks of word pairs whose similarity has been
assessed by a group of human experts. The correlation of the
similarity values obtained by computerised measures against
human similarity ratings is calculated. If the correlation is
near to 1, it indicates that the measure properly approxi-
mates the judgements of human subjects, which is precisely
the goal.

Using widely accepted benchmarks also enables an ob-
jective comparison against other approaches. Some of these
benchmarks consist of a list of domain independent pairs of
words [54, 55], while others have been specially designed
for a specific domain. The field of biomedicine will be
the focus of our evaluation in a multi-ontology scenario,
as it has been very prone to the development of big and
detailed ontologies and knowledge structures. The UMLS



Table 1 Set of 30 medical term
pairs with averaged experts’
similarity scores (extracted
from [56])

Term 1 Term 2 Physician
ratings
(averaged)

Coder
ratings
(averaged)

Renal failure Kidney failure 4.0 4.0

Heart Myocardium 3.3 3.0

Stroke Infarct 3.0 2.8

Abortion Miscarriage 3.0 3.3

Delusion Schizophrenia 3.0 2.2

Congestive heart failure Pulmonary edema 3.0 1.4

Metastasis Adenocarcinoma 2.7 1.8

Calcification Stenosis 2.7 2.0

Diarrhea Stomach cramps 2.3 1.3

Mitral stenosis Atrial fibrillation 2.3 1.3

Chronic obstructive pulmonary disease Lung infiltrates 2.3 1.9

Rheumatoid arthritis Lupus 2.0 1.1

Brain tumor Intracranial hemorrhage 2.0 1.3

Carpal tunnel syndrome Osteoarthritis 2.0 1.1

Diabetes mellitus Hypertension 2.0 1.0

Acne Syringe 2.0 1.0

Antibiotic Allergy 1.7 1.2

Cortisone Total knee replacement 1.7 1.0

Pulmonary embolus Myocardial infarction 1.7 1.2

Pulmonary fibrosis Lung cancer 1.7 1.4

Cholangiocarcinoma Colonoscopy 1.3 1.0

Lymphoid hyperplasia Laryngeal cancer 1.3 1.0

Multiple sclerosis Psychosis 1.0 1.0

Appendicitis Osteoporosis 1.0 1.0

Rectal polyp Aorta 1.0 1.0

Xerostomia Alcoholic cirrhosis 1.0 1.0

Peptic ulcer disease Myopia 1.0 1.0

Depression Cellulitis 1.0 1.0

Varicose vein Entire knee meniscus 1.0 1.0

Hyperlipidemia Metastasis 1.0 1.0

repository (Unified Medical Language System) is a paradig-
matic example, which includes several biomedical ontolo-
gies and terminologies (MeSH, SNOMED CT or ICD).
These ontologies are also characterised by their high level
of detail, classifying concepts in several overlapping hierar-
chies.

In order to evaluate the accuracy of our similarity method
in a multi-ontology setting and to compare it against related
works, we have performed several tests combining differ-
ent biomedical and general purpose ontologies described in
Sect. 5.2. Evaluation benchmarks have been also selected
accordingly; they are detailed in Sect. 5.1.

5.1 Evaluation measures

From a domain independent point of view, the most com-
monly used benchmarks are those proposed by [54] and [55].

The former provides a set of 30 domain-independent word
pairs manually rated by human subjects from 0 to 4. The
pairs, which represent a high, middle and low level of syn-
onymy, were chosen from an experiment done by [55], who
proposed a set of manually rated 65 word pairs. Many au-
thors [27–29] have used these benchmarks to evaluate and
compare the accuracy of their proposals.

Within the biomedical field, we have considered two dif-
ferent biomedical datasets [56, 57]. In the first one, [56] cre-
ated, in collaboration with Mayo Clinic experts, a set of
word pairs referring to general medical disorders. The sim-
ilarity of each concept pair was assessed by a group of 3
physicians who were experts in the area of rheumatology
and 9 medical coders who were aware about the notion of
semantic similarity. After a normalisation process, a final



Table 2 Set of 36 medical term
pairs with averaged experts’
similarity scores (extracted
from [57])

Term 1 Term 2 Human ratings
(averaged)

Anemia Appendicitis 0.031

Otitis Media Infantile Colic 0.156

Dementia Atopic Dermatitis 0.060

Bacterial Pneumonia Malaria 0.156

Osteoporosis Patent Ductus Arteriosus 0.156

Amino Acid Sequence Antibacterial Agents 0.155

Acq. Immunno. Syndrome Congenital Heart Defects 0.060

Meningitis Tricuspid Atresia 0.031

Sinusitis Mental Retardation 0.031

Hypertension Kidney Failure 0.500

Hyperlipidemia Hyperkalemia 0.156

Hypothyroidism Hyperthyroidism 0.406

Sarcoidosis Tuberculosis 0.406

Vaccines Immunity 0.593

Asthma Pneumonia 0.375

Diabetic Nephropathy Diabetes Mellitus 0.500

Lactose Intolerance Irritable Bowel Syndrome 0.468

Urinary Tract Infection Pyelonephritis 0.656

Neonatal Jaundice Sepsis 0.187

Anemia Deficiency Anemia 0.437

Psychology Cognitive Science 0.593

Adenovirus Rotavirus 0.437

Migraine Headache 0.718

Myocardial Ischemia Myocardial Infarction 0.750

Hepatitis B Hepatitis C 0.562

Carcinoma Neoplasm 0.750

Pulmonary Stenosis Aortic Stenosis 0.531

Failure to Thrive Malnutrition 0.625

Breast Feeding Lactation 0.843

Antibiotics Antibacterial Agents 0.937

Seizures Convulsions 0.843

Pain Ache 0.875

Malnutrition Nutritional Deficiency 0.875

Measles Rubeola 0.906

Chicken Pox Varicella 0.968

Down Syndrome Trisomy 21 0.875

set of 30 word pairs with the averaged similarity measures
provided by both sets of experts in a scale between 1 and 4
were obtained (see Table 1). The correlation between physi-
cian judgements was 0.68, and between the medical coders
was 0.78.

The second biomedical benchmark, proposed by [57],
is composed by a set of 36 word pairs extracted from the
MeSH repository (see Table 2). The similarity between word
pairs was also assessed by 8 medical experts from 0 (non-
similar) to 1 (synonyms).

5.2 Ontologies

We have used WordNet as domain independent ontology,
and SNOMED CT and MeSH as domain-specific biomed-
ical ontologies, because these are also used in the evaluation
of previous works. Note that any other ontology (an OWL
file) with a taxonomical backbone may be used instead/in
addition.

WordNet [18] is a freely available lexical database that
describes and structures more than 100,000 general En-
glish concepts, which are semantically structured in an on-



Table 3 Correlation values
obtained by the proposed
method for Pedersen et al.’s
benchmark (with 29 word pairs)
for physicians’, coders’ and
both ratings and for Hliaoutakis’
benchmark (with 36 pairs) using
SNOMED CT, MeSH, and
WordNet

Ontologies Pedersen
physicians

Pedersen
coders

Pedersen
both

Hliaoutakis

SNOMED CT 0.601 0.788 0.727 0.557

MeSH 0.562 0.769 0.694 0.749

WordNet 0.535 0.747 0.669 0.611

SNOMED CT + WordNet 0.624 0.799 0.744 0.727

MeSH + WordNet 0.596 0.790 0.724 0.770

SNOMED CT + MeSH 0.642 0.817 0.762 0.740

SNOMED CT + MeSH + WordNet 0.656 0.825 0.773 0.787

tological way. WordNet contains words (nouns, verbs, ad-
jectives and adverbs) that are linked to sets of cognitive
synonyms (synsets), each expressing a distinct concept.
Synsets are linked by means of conceptual-semantic and lex-
ical relations such as synonymy, hypernymy (subclass-of),
meronymy (part-of), etc. To properly compare the results,
we use WordNet version 2 in our tests as it is the same ver-
sion used in related works.

The Systematized Nomenclature of Medicine, Clinical
Terms (SNOMED CT)1 is one of the largest sources in-
cluded in the Unified Medical Language System (UMLS)
of the US National Library of Medicine. It covers most
of the medical concepts, including them in one or several
hierarchies. It contains more than 311,000 concepts with
unique meaning organised into 18 overlapping hierarchies.
SNOMED CT concepts typically present a high degree of
multiple inheritance represented with approximately 1.36
million relationships.

The Medical Subject Headings (MeSH)2 ontology is
mainly a hierarchy of medical and biological terms defined
by the U.S National Library of Medicine to catalogue books
and other library materials, and to index articles for inclu-
sion in health related databases including MEDLINE. It
consists of a controlled vocabulary and a hierarchical tree.
The controlled vocabulary contains several different types
of terms such as Descriptors, Qualifiers, Publication Types,
Geographic and Entry terms. MeSH descriptors are organ-
ised in a tree which defines the MeSH Concept Hierarchy.
In the MeSH tree there are 16 categories, with more than
22,000 terms appearing on one or more of those categories.

5.3 Evaluation with missing terms

In the first experiment, we have taken all word pairs of the
biomedical benchmarks proposed by [56] using physicians’,
coders’ and both ratings, and [57], and the three ontologies
introduced above as sources. We have evaluated each word

1http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html.
2http://www.nlm.nih.gov/mesh/MBrowser.html.

list with several mono and multi-ontology configurations:
SNOMED CT, MeSH and WordNet in an independent way
(mono-ontology scenario), ontologies taken by pairs, and all
of them at the same time (multi-ontology scenario).

Regarding Pedersen et al.’s benchmark, note that the term
pair “chronic obstructive pulmonary disease”–“lung infil-
trates” was excluded from the test as the latter term was
not found in any of the three ontologies. For the remain-
ing 29 pairs, all of them are contained in SNOMED CT,
25 of them are found in MeSH and 28 in WordNet. For
the Hliaoutakis’ benchmark, all 36 word pairs are found in
MeSH and WordNet, but only 35 are contained in SNOMED
CT. These values indicate that there will be some situations
in which one of the words is missing in some of the ontolo-
gies but found in another. In these cases, a multi-ontology
approach will potentially lead to a better accuracy, because it
is able to calculate the similarity of these missing terms from
the combination of multiple knowledge sources. To intro-
duce a proper penalisation in the correlation when missing
word pairs appear in a mono-ontology setting and to enable
a fair comparison with regards to the multi-ontology setting,
the similarity value of missing word pairs is computed in
the mono-ontology setting as the average similarity for the
benchmark’s word pairs found in each ontology. Correlation
values against expert’s ratings obtained for all benchmarks
and for all ontology combinations are shown in Table 3.

Analysing the results, we can extract several conclusions.
First, we observe a surprisingly good accuracy using Word-
Net as ontology, especially for the Pedersen et al.’s bench-
mark, with correlation values that are only marginally worse
than those obtained from the medical ontologies. For the
Hliaoutakis’ benchmark, which was designed from MeSH
terms, WordNet is able to improve the correlation obtained
with SNOMED CT alone. This shows that WordNet, even
being a general purpose ontology, offers a good coverage of
relatively common biomedical terms, possibly because parts
of the WordNet taxonomy have been taken from UMLS. In
fact, a 25.1 % of MeSH terms are also covered in WordNet.

Secondly, we observe that, in most situations, the use of
several ontologies improves accuracy in comparison to the

http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
http://www.nlm.nih.gov/mesh/MBrowser.html


use of ontologies individually. It is particularly interesting to
see how the addition of WordNet to each medical ontology
slightly improves the results. For the Pedersen et al.’s bench-
mark: from 0.69 to 0.72 for MeSH and from 0.72 to 0.74 for
SNOMED CT. For the Hliaoutakis’ benchmark: from 0.75
to 0.77 for MeSH and from 0.56 to 0.73 for SNOMED CT.
This means that, at least, parts of WordNet taxonomy bet-
ter correlate with human judgements than, potentially overs-
specified, hierarchies of SNOMED CT or MeSH. The rela-
tive improvement obtained from the combination of the two
medical ontologies (SNOMED CT and MeSH) also leads to
a higher accuracy in most situations. This is reasonable be-
cause of the biomedical nature of evaluated word pairs. Fi-
nally, the combination of all ontologies provides the highest
correlation in all cases (the correlation obtained against the
Pedersen et al.’s medical coders is 0.825 when using all the
ontologies vs. 0.788 when using only SNOMED CT, 0.769
when using MeSH and 0.747 when using WordNet). These
results show that the more available knowledge, the better
the estimations there will be. This is motivated both for the
resolving of missing values and thanks to the selection of
the most accurate assessment from those provided by each
overlapping ontology.

We can also observe that our method and, in conse-
quence, the underlying similarity measure, correlates better
with coders than with physicians for the Pedersen et al.’s
benchmark. On the one hand, this is motivated by the
higher amount of discrepancies observed in physician rat-
ings, which correlate lower than coders (Pedersen et al. re-
ported a correlation between human subjects of 0.68 for
physicians and 0.78 for coders). On the other hand, coders,
because of their training and skills, were more familiar than
physicians to hierarchical classifications and semantic simi-
larity which lead to a better correlation with the design prin-
ciples of our similarity approach.

5.4 Evaluation without missing terms

Since, in the experiments reported above, some of the tests
presented missing terms whose similarity estimation ham-

pered the final correlation values in a mono-ontology set-
ting, we ran an additional battery of tests considering only
word pairs appearing in all the ontologies. In this manner,
our method will always face the situation described in case 2
of Sect. 4.2, in which it should select the best assessment
from those provided by several overlapping ontologies. In
addition to the benefits obtained by solving missing cases
evaluated above, in the current tests, we will evaluate the
absolute performance of the proposed heuristic, which takes
the assessment with the highest similarity as the final result,
as described in Sect. 4.2.

In this case, only 24 of the 29 word pairs of Pedersen
et al.’s benchmark and 35 of 36 word pairs of Hliaoutakis’
benchmark have been found in the three ontologies. In order
to quantify the differences between each individual ontol-
ogy, we first computed the correlation between the similarity
values obtained for each one with respect to the others. For
the Hliaoutakis’ benchmark the correlation between the sim-
ilarity computed for each word pair in SNOMED CT with
respect to the same word pairs when evaluated in MeSH was
0.636, between WordNet and SNOMED CT was 0.505 and
between WordNet and MeSH was 0.630. The relatively low
correlation values show a discrepancy on the way in which
knowledge is represented in each ontology for this bench-
mark, especially for WordNet with respect to SNOMED CT,
and, in consequence, a higher variance on the similarity val-
ues obtained for each ontology with respect to the same pair
of words. For the Pedersen et al.’s benchmark, correlations
between ontologies were much higher and constant: 0.914
for SNOMED with respect to MeSH, 0.914 for WordNet
with respect to SNOMED CT and 0.904 for WordNet with
respect to MeSH. In this case, the three ontologies model
Perdersen et al.’s terms in a very similar manner and the dif-
ferences between ratings and the potential improvement af-
ter the heuristic is applied in a multi-ontology setting, would
be less noticeable than for the Hliaoutakis’ benchmark.

The re-evaluation of the same scenarios introduced in the
previous section and the comparison of the similarity val-
ues with respect to human ratings results in the correlation
values shown in Table 4.

Table 4 Correlation values
obtained by the proposed
method for Pedersen et al.’s
benchmark (with 24 word pairs)
for physicians’, coders’ and
both ratings and for Hliaoutakis’
benchmark (with 35 pairs) using
SNOMED CT, MeSH, and
WordNet

Ontologies Pedersen
physicians

Pedersen
coders

Pedersen
both

Hliaoutakis

SNOMED CT 0.588 0.777 0.717 0.558

MeSH 0.588 0.782 0.716 0.7496

WordNet 0.541 0.745 0.6745 0.610

SNOMED CT + WordNet 0.610 0.787 0.734 0.727

MeSH + WordNet 0.580 0.775 0.708 0.772

SNOMED CT + MeSH 0.615 0.798 0.744 0.740

SNOMED CT + MeSH + WordNet 0.638 0.812 0.760 0.786



Analysing the results new conclusions arise. First, those
ontologies which, for the previous tests, presented a higher
amount of missing concepts, now offer a higher correla-
tion as they are not hampered by missing term pairs (e.g.
0.782 vs. 0.769 for MeSH with Pedersen et al.’s coders).
In other cases in which all the word pairs were available,
the correlation is lower, showing that some accurately as-
sessed word pairs were removed from the test (e.g. 0.777 vs.
0.788 for SNOMED CT with Pedersen et al.’s coders). We
see again that the combination of several ontologies leads
to better results in most cases. Even though, the increase
in the correlation is lower than for the first battery of tests
because there are no missing concepts to solve (0.787 vs.
0.799, 0.775 vs. 0.79 and 0.798 vs. 0.817 for Pedersen et al.’s
coders for SNOMED CT + WordNet, MeSH + WordNet
and SNOMED CT + MeSH respectively). Only the com-
bination of MeSH and WordNet provided a slightly lower
correlation than when using MeSH alone (for the Perdersen
et al.’s benchmark), even though it significantly improves
WordNet’s correlation alone (0.74 vs. 0.61 for WordNet and
0.749 for MeSH). In the same manner as in previous tests,
the combination of all the three ontologies leads to the best
results, showing the benefits of integrating the assessments
from different ontologies even when missing word pairs are
not considered.

Moreover, the correlation improvement is also coher-
ent with the differences observed between each ontol-
ogy. For example, assessments based on SNOMED CT
for Hliaoutakis’ benchmark improved from 0.558 to 0.727
when WordNet is also used; as stated above, the corre-
lation between these ontologies was 0.505 (they model
Hliaoutakis’ words in a noticeable different manner). On
the contrary, similarity based on SNOMED CT for Perder-
sen et al.’s coders slightly improved from 0.777 to 0.787
when WordNet is also used; as stated above, both ontolo-
gies presented a high correlation of 0.914 indicating that
Perdersen et al.’s words are modelled in a very similar way
and the potential benefits of combining them would be less
noticeable.

All these results show that the proposed heuristic which
selects the most appropriate assessment for overlapping
terms, that is, the one with the highest similarity behaves
as hypothesised in Sect. 4.2.

5.5 Comparison

Finally, in order to directly compare our method in a multi-
ontology setting with the one proposed by [34], which rep-
resents, as far as we know, the most recent and complete
related work, we reproduced their most complex test. In
that case, the Rubenstein and Goodenough’s benchmark
were joined to Pedersen et al.’s and Hliaoutakis’ biomedi-
cal benchmarks individually and to both of them at the same
time. Note that, with regards to the human ratings, only
those provided by the medical coders for the Pedersen et al.’s
benchmark were used. The reason argued by Al-Mubaid and
Nguyen was that medical coders’ judgments were more re-
liable than physicians’ ones because more human subjects
were involved (9 coders vs. 3 physician) and because the
correlation between coders were higher than between physi-
cians (0.78 vs. 0.68).

In [34], the set of word pairs resulting from joining the
two and three benchmarks were evaluated with the com-
bination of MeSH and WordNet in first place, and with
SNOMED CT and WordNet in second place. WordNet was
selected as the primary ontology in all their tests. Obvi-
ously, since Rubenstein and Goodenough’s terms are general
words, they can only be found in WordNet, whereas the rest
can be found in both WordNet and the medical ontologies in
an overlapping way. It is important to note that the human
ratings of the benchmarks of Pedersen et al., Hliaoutakis
and Rubenstain and Goodenough have to be converted to a
common scale in order to properly compute the correlation
value.

In a first experiment, we used WordNet and MeSH on-
tologies. As stated above, 25 out of 30 pairs of Pedersen
et al.’s benchmark and all the 36 pairs of Hliaoutakis’s
benchmark were found in MeSH. Following the experiment
performed in [34], missing word terms were removed. Their
correlation values in comparison with those obtained in our
test are shown in Table 5.

In the second experiment, WordNet and SNOMED CT
ontologies were used. Again, 29 out of 30 pairs of Pedersen
et al.’s benchmark and 35 out of 36 pairs in Hliaoutakis’
benchmark were found in SNOMED CT. Missing word
pairs were removed. The results are shown in Table 6.

Analysing both tables, in all cases, our method is able
to improve the results reported in [34]. This is motivated

Table 5 Correlation values obtained when joining Rubenstain and Goodenough (R&G) benchmark (65 words) with Pedersen et al.’s benchmark
(with 24 pairs, only coders’ ratings are considered), and Hliaoutakis’ benchmark (with 36 pairs) using MeSH and WordNet

Method Ontologies R&G + Ped.
(coders)

R&G +
Hliaoutakis

R&G +
Ped. (coders) +
Hliaoutakis

Al-Mubaid & Nguyen MESH + WordNet 0.808 0.804 0.814

Our Method MESH + WordNet 0.848 0.825 0.830



Table 6 Correlation values obtained when joining Rubenstain and Goodenough (R&G) benchmark (65 words) with Pedersen et al.’s benchmark
(with 29 pairs, only coders’ ratings are considered) and Hliaoutakis’ benchmark (with 35 pairs) using SNOMED CT and WordNet

Method Ontologies R&G + Ped.
(coders)

R&G +
Hliaoutakis

R&G +
Ped. (coders) +
Hliaoutakis

Al-Mubaid & Nguyen SNOMED CT + WordNet 0.778 0.700 0.757

Our Method SNOMED CT + WordNet 0.850 0.811 0.816

both from the higher accuracy of the underlying similarity
measure in comparison with path-based ones [33] and be-
cause of the differences in the method used to select the
most appropriate assessment for overlapping word pairs. In
the first case, our method is able to exploit the benefits of
considering additional taxonomical knowledge (all concept
subsumers) instead of the path. In the latter case, the fact
of relying on a primary ontology implies that Al-Mubaid
and Nguyen’s method, in many situations, omits potentially
more accurate assessments which could be obtained from
ontologies considered as secondary. On the contrary, our
approach evaluates each word pair and ontology individu-
ally and homogeneously, which avoids the necessity of pre-
selecting a primary one. This exploits the benefits that each
one may provide with regards to knowledge modelling.

Summarising, these results support the hypothesis intro-
duced in Sect. 4.2 about the benefits that our approach is
able to provide not only in cases in which the pair of con-
cepts belongs to a unique ontology, but also with multiple
and overlapping ontologies.

6 Conclusions

In this paper, we studied several approaches to compute the
semantic similarity in the multi-ontology scenario. Some
limitations were identified, such as the fact of relying (su-
pervision) on a predefined primary ontology, omitting the
benefits that secondary ontologies may provide, the neces-
sity to scale results in order to compare them or the com-
plexity the integration of partial results.

To tackle these problems, we proposed a new method
that avoids most of the limitations and drawbacks introduced
above. The method has been designed as a set of heuristics to
be applied according to the different situations that may ap-
pear when comparing concept pairs spread through several
ontologies. On the contrary to [40, 41, 43, 47] we consid-
ered all possible configurations of concept pairs, considering
both the case in which overlapping knowledge is available
and also the one in which partial knowledge should be inte-
grated. Another difference is the fact that only taxonomical
knowledge is needed for the similarity assessment, which

is the most commonly available in ontologies. This config-
ures a general approach that can be applied to any combi-
nation of ontologies. On the contrary to [34], our method is
unsupervised, because it does not require the pre-selection
of a primary ontology. All input ontologies are considered
equally important. On the one hand, this configures a sim-
pler scenario of only three cases instead of five. On the
other hand, the adaptive heuristic proposed when overlap-
ping knowledge is available, allows exploiting the benefits
of individual ontologies for each concept pair. On the con-
trary to [34, 47], who relied on the path to compute similar-
ities, we exploited a similarity measure [33] that considers
all taxonomical ancestors. Our ontology integration method
when partial knowledge is available also enabled the evalu-
ation of superconcepts sets rather than paths, exploiting ad-
ditional taxonomical evidences of similarity.

As shown in the evaluation, these theoretical advantages
have been reflected in an improved similarity accuracy when
compared with related works. General purpose ontologies
(WordNet) and overlapping biomedical ones (SNOMED CT
and MeSH) and several standard benchmarks have been
used to enable an objective comparison.

The proposed method can be potentially applied to
any similarity measure fulfilling a set of requisites: to be
ontology-based, to provide normalised values according to
ontological dimensions and, preferably, to base the assess-
ment solely on taxonomical knowledge. As discussed in
Sect. 4, several similarity measures fulfil these requirements.
As future work, we plan to apply/adapt our method to other
similarity measures in order to test its generality. Non trivial
adaptations would be necessary to integrate, for example,
relative taxonomical depths. Then, to test the benefits of our
method in a practical setting, we plan to apply it to data
mining of textual sources by means of ontology-based clus-
tering. Because of the lack of structure of textual features
and the difficulty to properly compare textual attributes are
some of the most important problems of clustering algo-
rithms dealing with textual sources, our method could aid
to improve the reliability and accuracy of the final clas-
sifications when several knowledge sources are available
as background. Moreover, other ontological features (e.g.
OWL features like properties, class restrictions and other
non-taxonomical knowledge) could be considered. In that



case, the more general notion of semantic relatedness, in
comparison to the semantic similarity, which state the taxo-
nomic resemblance and in which our work is framed, would
be captured. Finally, considering the limitations of the ex-
isting standard benchmarks (small size and a few human
experts evaluating it), we let for future work the design of
a new benchmark specially focused on the multi-ontology
scenario.
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