
Generalized Planning with Positive and Negative Examples

Javier Segovia-Aguas1, Sergio Jiménez2 and Anders Jonsson3

1IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC
2VRAIN - Valencian Research Institute for Artificial Intelligence, Universitat Politècnica de València

3Universitat Pompeu Fabra

Abstract

Generalized planning aims at computing an algorithm-like
structure (generalized plan) that solves a set of multiple plan-
ning instances. In this paper we define negative examples for
generalized planning as planning instances that must not be
solved by a generalized plan. With this regard the paper ex-
tends the notion of validation of a generalized plan as the
problem of verifying that a given generalized plan solves the
set of input positives instances while it fails to solve a given
input set of negative examples. This notion of plan validation
allows us to define quantitative metrics to asses the general-
ization capacity of generalized plans. The paper also shows
how to incorporate this new notion of plan validation into a
compilation for plan synthesis that takes both positive and
negative instances as input. Experiments show that incorpo-
rating negative examples can accelerate plan synthesis in sev-
eral domains and leverage quantitative metrics to evaluate the
generalization capacity of the synthesized plans.

Introduction
Generalized planning studies the computation of plans that
can solve a family of planning instances that share a com-
mon structure (Hu and De Giacomo 2011; Srivastava, Im-
merman, and Zilberstein 2011; Jiménez, Segovia-Aguas,
and Jonsson 2019). Since generalized planning is compu-
tationally expensive, a common approach is to synthesize
a generalized plan starting from a set of small instances and
validate it on larger instances. This approach is related to the
principle of Machine Learning (ML), in which a model is
trained on a training set and validated on a test set (Mitchell
1997).

Traditionally, generalized planning has only focused on
solvable instances, both for plan synthesis and for val-
idation (Winner and Veloso 2003; Bonet, Palacios, and
Geffner 2010; Hu and Levesque 2011; Srivastava et al. 2011;
Hu and De Giacomo 2013; Segovia-Aguas, Jiménez, and
Jonsson 2018; Segovia-Aguas, Celorrio, and Jonsson 2019).
However, many computational problems in AI benefit from
negative examples, e.g. SAT approaches that exploit clause
learning (Angluin, Frazier, and Pitt 1992), grammar induc-

R

R

R

a) Three goal configurations.

Π:

q0 q1 q2 q3
paint(X) inc(X) inc(X)

Π∗:

q0 q1 q2
paint(X) inc(X)

inc(X)

Π+:

q0 q1 q2 q3
paint(X) inc(X) inc(X)

paint(X)

b) Algorithm-like plans.

Figure 1: a) Robot in 2 × 1, 6 × 1 and 1 × 1 corridors; b) Three
candidate generalized plans.

tion (Parekh, Honavar, and others 2000), program synthe-
sis (Alur et al. 2018) and model learning (Camacho and
McIlraith 2019). If used appropriately, negative examples
can help reduce the solution space and accelerate the search
for a solution.

In this paper we introduce negative examples for gener-
alized planning as input planning instances that should not
be solved by a generalized plan. An intuitive way to come
up with negative examples for solutions that generalize is
to first synthesize a solution with exclusively positive exam-
ples, and identify cases for which the solution did not gener-
alize as desired, somewhat akin to clause learning in satisfi-
ability problems (Biere et al. 2009). Imagine that we aim to
synthesize the generalized plan (paint(X), inc(X), inc(X))+

that makes a robot paint every odd cell black in a N ×1 cor-
ridor, starting from the leftmost cell (we use Kleene notation
to represent regular expressions, and Z+ indicates the repe-
tition of Z at least once). Action paint(X) paints the current
cell black while inc(X) increments the robot’sX coordinate.
The positive example of a 2×1 corridor (whose goal config-
uration is illustrated at Figure 1a) is solvable by all three

automata plans in Figure 1b) (acceptor states are marked
with overlines e.g., q). These automata plans, namely Π,
Π∗ and Π+, compactly represent the three sets of sequential
plans (paint(X), inc(X), inc(X)), (paint(X), inc(X), inc(X))∗

and (paint(X), inc(X), inc(X))+. Hence the single positive
example of a 2 × 1 corridor is not enough to discriminate
among these three generalized plans. Adding a second posi-
tive example, the 6× 1 corridor in Figure 1a), discards plan
Π. Adding a third 1 × 1 negative example, where the initial
and goal robot cell are the same and no cell is required to be
painted, discards Π∗ preventing over-generalization because
Π∗ solves this negative example.

The problem of deriving generalized plans has been a
longstanding open challenge. Compared to previous work
on generalized planning, the contributions of this paper are:

1. Negative examples to more precisely specify the seman-
tics of an aimed generalized plan.

2. A new approach for the synthesis of plans that can gen-
eralize from smaller input examples thanks to negative
examples.

3. The definition of quantitative evaluation metrics to as-
sess the generalization capacity of generalized plans.

The paper is organized as follows. We start with some
background notation of classical planning and generalized
planning (GP). Then we formalize the concept of a neg-
ative example for generalized planning. We continue with
a description of a generalized planning problem with posi-
tive and negative examples that can be compiled to classical
planning. We show proofs of soundness and completeness
for the two main tasks in GP that are synthesis and valida-
tion. We continue with the experiments where we compare
the impact of negative examples, and finally we conclude
with a discussion on the presented work.

Background
This section formalizes the planning models used in this
work as well as planning programs (Segovia-Aguas, Celor-
rio, and Jonsson 2019), an algorithm-like representation for
plans that can generalize.

Classical planning with conditional effects
We use F to denote the set of fluents (propositional vari-
ables) describing a state. A literal l is a valuation of a fluent
f ∈ F , i.e. l = f or l = ¬f . A set of literals L on F rep-
resents a partial assignment of values to fluents (WLOG we
assume that L does not assign conflicting values to any flu-
ent). Given L, ¬L = {¬l : l ∈ L} is the complement of L.
Finally, we use L(F) to denote the set of all literal sets on
F , i.e. all partial assignments of values to fluents. A state s
is a set of literals such that |s| = |F |, i.e. a total assignment
of values to fluents. The number of states is then 2|F |.

A classical planning frame is a tuple Φ = 〈F,A〉, where
F is a set of fluents and A is a set of actions with condi-
tional effects. Conditional effects can compactly define ac-
tions whose precise effects depend on the state where the
action is executed. Each action a ∈ A has a set of literals

pre(a), called the precondition, and a set of conditional ef-
fects, cond(a). Each conditional effect C B E ∈ cond(a)
is composed of a set of literals C (the condition) and E
(the effect). Action a is applicable in state s if and only if
pre(a) ⊆ s, and the resulting set of triggered effects is

eff(s, a) =
⋃

CBE∈cond(a),C⊆s

E,

i.e. effects whose conditions hold in s. The result of applying
a in s is the successor state θ(s, a) = (s \ ¬eff(s, a)) ∪
eff(s, a).

A classical planning problem with conditional effects is
a tuple P = 〈F,A, I,G〉, where F is a set of fluents and
A is a set of actions with conditional effects as defined for a
planning frame, I is an initial state andG is a goal condition,
i.e. a set of literals to achieve.

A solution for a classical planning problem P can be
specified using different representation formalisms, e.g. a
sequence of actions, a partially ordered plan, a policy, etc.
Here we define a sequential plan for P as an action sequence
π = 〈a1, . . . , an〉 whose execution induces a state sequence
〈s0, s1, . . . , sn〉 such that s0 = I and, for each i such that
1 ≤ i ≤ n, ai is applicable in si−1 and generates the succes-
sor state si = θ(si−1, ai). The plan π solves P if and only
if G ⊆ sn, i.e. if the goal condition is satisfied following the
execution of π in I .

Planning programs
Given a planning frame Φ = 〈F,A〉, a planning pro-
gram (Segovia-Aguas, Celorrio, and Jonsson 2019) is a se-
quence of instructions Π = 〈w0, . . . , wn〉. Each instruction
wi, 0 ≤ i ≤ n, is associated with a program line i and is
drawn from the set of instructions I = A ∪ Igo ∪ {end},
where Igo = { go(i′, !f) : 0 ≤ i′ ≤ n, f ∈ F} is the set of
goto instructions. In other words, each instruction is either
a planning action a ∈ A, a goto instruction go(i′, !f) or a
termination instruction end.

The execution model for a planning program Π is a pro-
gram state (s, i), i.e. a pair of a planning state s ⊆ L(F)
(with |s| = |F |), and a program counter 0 ≤ i ≤ n. Given a
program state (s, i), the execution of instruction wi on line i
is defined as follows:

• If wi ∈ A, the new program state is (s′, i + 1), where
s′ = θ(s, w) is the successor for planning state s and
action w.

• If wi = go(i′, !f), the program state becomes (s, i+ 1) if
f ∈ s, and (s, i′) otherwise. Conditions in Goto instruc-
tions can represent arbitrary formulae since f can be a
derived fluent (Lotinac et al. 2016).

• If wi = end, execution terminates.

To execute a planning program Π on a planning problem
P = 〈F,A, I,G〉, the initial program state is set to (I, 0),
i.e. the initial state of P and program line 0. A program Π =
〈w0, . . . , wn〉 solves a planning problem P = 〈F,A, I,G〉
iff the execution terminates in a program state (s, i) that sat-
isfies the goal conditions, i.e. wi = end and G ⊆ s.

Segovia-Aguas, Celorrio, and Jonsson (2019) contains a
detailed analysis of the failure conditions on planning pro-
grams, which we summarize here as follows:
Corollary 1 (Planning Program Failure). If a planning pro-
gram Π fails to solve a planning problem P , the only possi-
ble sources of failure are:

1. Incomplete Program. Execution terminates in program
state (s, i) but the goal condition does not hold, i.e. (wi =
end) ∧ (G 6⊆ s).

2. Inapplicable Action. Executing an action wi ∈ A in pro-
gram state (s, i) fails because its precondition does not
hold, i.e. pre(w) 6⊆ s.

3. Infinite Loop. The program execution enters into an infi-
nite loop that never reaches an end instruction.

Generalized planning
We define a generalized planning problem as a finite set of
classical planning problems P = {P1, . . . , PT } that are
defined on the same planning frame Φ. Therefore, P1 =
〈F,A, I1, G1〉, . . . , PT = 〈F,A, IT , GT 〉 share the same
fluents and actions but differ in the initial state and goals.

A planning program Π solves a given generalized plan-
ning problem P iff Π solves every planning problem Pt ∈
P , 1 ≤ t ≤ T .

Segovia-Aguas, Celorrio, and Jonsson (2019) showed that
a program Π that solves a generalized planning task P can
be synthesized by defining a new classical planning problem
Pn = 〈Fn, An, In, Gn〉, where n is a bound on the num-
ber of program lines. A solution plan π for Pn programs
instructions on the available empty lines (building the n-line
program Π), and validates Π on each input problem Pt ∈ P .

The fluent set is defined as Fn = F ∪Fpc∪Fins∪Ftest∪
{done}, where:
• Fpc = {pci : 0 ≤ i ≤ n} models the program counter,
• Fins = {insi,w : 0 ≤ i ≤ n,w ∈ I ∪ {nil}} models the

program lines (nil indicates an empty line),
• Ftest = {testt : 1 ≤ t ≤ T} indicates the classical

planning problem Pt ∈ P .
Each instruction w ∈ I is modeled as a planning action,

with one copy endt of the termination instruction per input
problem Pt. Preconditions for the goto and end instructions
are defined as pre(go(i′, !f)) = ∅ and pre(endt) = Gt ∪
{testt}. The authors define two actions for each instruction
w and line i: a programming action P (wi) for programming
w on line i, and an execution action E(wi) that uses the
previous execution model to execute w on line i:

pre(P (wi)) = pre(w) ∪ {pci, insi,nil},
cond(P (wi)) = {∅B {¬insi,nil, insi,w}},

pre(E(wi)) = pre(w) ∪ {pci, insi,w}.
The effect of E(wi) depends on the type of instruction:
cond(E(wi)) = cond(w) ∪ {∅B {¬pci, pci+1}}, w ∈ A,
cond(E(wi)) = {∅B {¬pci}} ∪ {{f}B {pci+1}}

∪ {{¬f}B {pci′}}, w = go(i′, !f),

cond(E(wi)) = resett+1, w = endt, t < T,

cond(E(wi)) = {∅B {done}}, w = endT .

Initial State Goal State

1 2 3 4 5 6 6 5 2 3 4 1

1 2 3 4 5 6 6 5 4 3 2 1

Figure 2: Positive example (upper row) and negative example
(lower row) for the generalized planning task of reversing a list.

The conditional effect resett+1 resets the program state to
(It+1, 0), preparing execution on the next problem Pt+1.

The initial state is In = I1∪{pc0}∪{insi,nil : 0 ≤ i ≤ n}
indicating that, initially, the program lines are empty and the
program counter is at the first line. The goal isGn = {done}
and can only be achieved after solving sequentially all the
instances in the generalized planning problem.

Negative examples in generalized planning
This section extends the previous generalized planning for-
malism to include negative examples for the validation and
synthesis of programs.

Negative examples as classical planning problems
Negative examples are additional solution constraints to
more precisely specify the semantics of an aimed general-
ized plan and prevent undesired generalizations.

Definition 1 (Negative examples in generalized planning).
Given a generalized planning problem P , a negative exam-
ple is a classical planning instance P− = 〈F,A, I−, G−〉
that must not be solved by solutions to P .

Figure 2 shows an input/output pair
(1, 2, 3, 4, 5, 6)/(6, 5, 4, 3, 2, 1) that represents a posi-
tive example for computing a generalized plan that reverse
lists of any size. This example can be encoded as a classical
planing problem, where the set of fluents are the state
variables necessary for encoding a list of arbitrary size plus
two pointers over the list nodes. The initial state encodes,
using these fluents, the particular list (1, 2, 3, 4, 5, 6). The
goal condition encodes the target list (6, 5, 4, 3, 2, 1).
Finally, actions encode the swapping of the content of
two pointers as well as actions for moving the pointers
along the list. In this regard, the input/output example
(1, 2, 3, 4, 5, 6)/(6, 5, 4, 3, 2, 1) is a positive example while
(1, 2, 3, 4, 5, 6)/(6, 5, 2, 3, 4, 1) or (4, 3, 2, 1)/(2, 3, 4, 1)
are negative examples for the generalized planning task of
reversing lists.

In this work both positive and negative examples are clas-
sical planning problems P1 = 〈F,A, I1, G1〉, . . . , PT =
〈F,A, IT , GT 〉 defined on the same fluent set F and action
set A. Each problem Pt ∈ P , 1 ≤ t ≤ T encodes an in-
put specification in its initial state It while Gt encodes the
specification of its associated output. Although the exam-
ples share actions, each action in A can have different inter-
pretations in different states due to conditional effects. For
instance, back to the example of Figure 1, we can encode in-
dividual planning tasks with different corridor sizes (the set

UNSAT

SAT

Positives

P1+ , . . . , PT+

Negatives

PT++1, . . . , PT

Figure 3: Taxonomy of instances in generalized planning.

of fluents F can include fluents of type max(N) that encode
different corridor boundaries (Segovia-Aguas, Celorrio, and
Jonsson 2019)).

Negative examples should not be confused with un-
solvable planning instances. The goals of negative exam-
ples are reachable from the given initial state (see Fig-
ure 3). For instance the goals of the negative example
(1, 2, 3, 4, 5, 6)/(6, 5, 2, 3, 4, 1) shown in Figure 2 can be
reached from the associated initial state by applying the
corresponding actions to swap the content of pointers and
moving appropriately those pointers. On the other hand
(4, 3, 2, 1)/(1, 1, 1, 1) would represent an UNSAT classical
planning instance, because (1, 1, 1, 1) is not reachable start-
ing from (4, 3, 2, 1) and provided the mentioned actions for
reversing lists.

Program validation with negative examples
In generalized planning the process of plan validation is im-
plicitly required as part of plan synthesis, since computing
a solution plan requires us to validate it on all the given in-
put instances. Next, we extend the notion of validation to
consider also negative examples.
Definition 2 (Program Validation with Positive and Negative
examples). Given a program Π and a set of classical plan-
ning problems P = {P1, . . . , PT } labeled either as posi-
tive or negative, validation is the task of verifying whether Π
solves each P ∈ P labeled as positive, while it fails to solve
each P ∈ P that is labeled as negative.

Validating a sequential plan on a classical planing prob-
lem is straightforward because either a validation proof,
or a failure proof, is obtained by executing the plan start-
ing from the initial state of the planning problems (Howey,
Long, and Fox 2004). Validating a program on a classical
planning problem is no longer straightforward because it re-
quires a mechanism for detecting infinite loops (checking
failure conditions 1. and 2. is however straightforward).

The execution of plans with control flow on a given plan-
ning problem is compilable into classical planning. Exam-
ples are compilations for GOLOG procedures (Baier, Fritz,
and McIlraith 2007), Finite State Controllers (Bonet, Pala-
cios, and Geffner 2010; Segovia-Aguas, Jiménez, and Jons-
son 2018) or planning programs (Segovia-Aguas, Jiménez,
and Jonsson 2016; Segovia-Aguas, Celorrio, and Jonsson
2019). These compilations encode the cross product of the
given planning problem and the automata corresponding to
the plan to execute. The plan is valid iff the compiled prob-
lem is solvable. If a classical planner proves the compiled

problem is unsolvable, then the plan is invalid because its
execution necessarily failed.

Besides current planners do not excel at proving that a
given problem is unsolvable (Eriksson, Röger, and Helmert
2017), none of the cited compilations can identify the pre-
cise source of a failed plan execution. Next, we show that the
classical planning compilation for the synthesis of planning
programs (Segovia-Aguas, Celorrio, and Jonsson 2019) can
be updated with a mechanism for detecting infinite loops,
that is taken from an approach for the computation of in-
finite plans (Patrizi et al. 2011). This updated compilation
can identify the three possible sources of execution failure
(namely incomplete programs, inapplicable actions and
infinite loops) of a program in a given classical planning
problem. What is more, the compilation can be further up-
dated for solving generalized planning problems with posi-
tive and negative examples.

A compilation for program validation
Given a generalized planning task P = {P1, . . . , PT } and a
program Π, program validation is compilable into a planning
instance P ′n = 〈F ′n, A′n, I ′n, Gn〉, that extends Pn from the
background Section . The extended fluent set is F ′n = Fn ∪
Fneg ∪ Fcopy , where
• Fneg = {checked, holds, stored, acted, loop} contains

flags for identifying the source of execution failures,
• Fcopy = {copyf , correctf : f ∈ F ∪ Fpc} contains the

fluents used to store a copy of the program state with the
aim of identifying infinite loops.
Unlike An, the action set A′n does not contain program-

ming action (these actions are only necessary for program
synthesis but not for program validation). However,A′n con-
tains a new type of action called check action that verifies
whether the precondition of an instruction holds. For an in-
struction w and line i, the check action C(wi) is defined as

pre(C(wi)) ={pci, insi,w,¬checked,¬loop},
cond(C(wi)) ={∅B {checked}} ∪ {pre(w) B {holds}}.

After applying C(wi), execution fails if holds is false, ei-
ther because the goal condition Gt is not satisfied when we
apply a termination instruction endt, or because the precon-
dition pre(w) of the action w ∈ A does not hold (which
corresponds precisely to failure conditions 1. and 2. above).
A similar mechanism has been previously developed for
computing explanations/excuses of when a plan cannot be
found (Göbelbecker et al. 2010).

Each execution action E(wi) is defined as before, but we
add precondition {checked, holds} and the conditional effect
∅ B {¬checked,¬holds, acted}. As a result, C(wi) has to
be applied before E(wi), and E(wi) is only applicable if
execution does not fail (i.e. if holds is true).

To identify infinite loops A′n is extended with three new
actions:
• store, which stores a copy of the current program state.

pre(store) = {¬checked,¬stored, acted},
cond(store) = {∅B {stored,¬acted}}

∪ {{f}B {copyf} : ∀f ∈ F ∪ Fpc}.

This action can be applied only once, after an action ex-
ecution E(wi) and before checking an action C(wi). It
simply uses conditional effects to store a copy of the pro-
gram state (s, i) in the fluents of type copyf .

• compare, which compares the current program state (s, i)
with the stored copy.

pre(compare) = {¬checked, stored, acted,¬loop},
cond(compare) = {∅B {¬stored,¬acted, loop}}
∪{{f, copyf}B {correctf} : f ∈ F ∪ Fpc}
∪{{¬f,¬copyf}B {correctf} : f ∈ F ∪ Fpc}.

The result of the comparison is in the fluents of type
correctf . Note that acted is not true after applying store
so, to satisfy the precondition of compare, we have to ap-
ply an execution action first (otherwise the current pro-
gram state would trivially equal the stored copy). For a
fluent f to be correct, either it is true in both the current
program state and the stored copy, or it is false in both.

• process, which processes the outcome of the comparison.

pre(process) = {loop} ∪ {correctf : f ∈ F ∪ Fpc},
cond(process) = {∅B {¬loop, checked}}.

This action can only be applied if all fluents in F ∪ Fpc

are correct, adds fluent checked, and resets other auxiliary
fluents to false. The purpose of adding checked is to match
the state of other failure conditions (checked is true and
holds is false).

Finally, A′n contain also actions skipt, 1 ≤ t ≤ T , that
terminate program execution as a result of a failure condi-
tion. These actions are applicable once a failure condition is
detected, of either type (checked is true and holds is false).

pre(skipt) = {testt, checked,¬holds},
cond(skipt) = cond(endt)

∪ {∅B {¬checked,¬stored}}
∪ {∅B {¬copyf ,¬correctf : f ∈ F ∪ Fpc}}.

Note that the action applied immediately before skipt
identifies the source of the execution failure of the program
Π on Pt. This action is either:

1. C(endt,i), identifying an incomplete program.

2. C(wi) such that w ∈ A, which proves that w ∈ A is an
inapplicable action.

3. process, identifying that the execution of the program en-
tered an infinite loop.

The precondition ¬stored is added to all check actions
C(endt,i), to avoid saving a stored copy of the program state
from one input instance to the next. The goal condition is the
same as before and in the initial state I ′n the instructions of
the program Π are already programmed in the initial state:

I ′n = I1 ∪ {pc0} ∪ {insi,w : 0 ≤ i ≤ n ∧ wi ∈ Π}.

Program synthesis with positive and negative
examples
We define a generalized planning problem with positive and
negative examples as a finite set of classical planning in-
stances P = {P1, . . . , PT+ , . . . , PT } that belong to the
same planning frame. In this set there are T+ positive and
T− negative instances such that T = T+ + T− (see Fig-
ure 3). We assume that at least one positive instance is nec-
essary (T+ > 0) because otherwise, the one-instruction pro-
gram 0.end, covers any negative instance whose goals are
not satisfied in the initial state.

To synthesize programs for generalized planning with
positive and negative examples we extend the compilation
P ′n with programming instructions. The output of the fi-
nal extension of the compilation is a new planning instance
P ′′n = 〈F ′′n , A′′n, I ′′n , Gn〉:
• The fluent set F ′′n is identical to that of the compilation
P ′n, except that F ′′n now includes a fluent negex, which is
used to constrain the application of actions E(endt,i) and
skipt, respectively. By adding a precondition ¬negex to
E(endt,i) and a precondition negex to skipt, we require
program execution to succeed for positive examples, and
to fail for negative examples.

• The action set A′′n is identical to A′n except that we rein-
troduce programming actions P (wi) in the action set A′′n
and we add a precondition ¬negex toE(endt,i) and a pre-
condition negex to skipt to require program execution to
succeed for positive examples, and to fail for negative ex-
amples. Moreover, precondition negex is added to all ac-
tions related to infinite loop detection (e.g. store, compare
and process).

• All program lines are now empty in I ′′n (so they can
be programmed) and the goal condition is still Gn =
{done}, like in the original compilation.

Theorem 1 (Soundness). Any plan π that solves the plan-
ning instance P ′′n induces a planning program Π that solves
the corresponding generalized planning task with positive
and negative examples P = {P1, . . . , PT+ , . . . , PT }.

Proof. To solve the planning instance P ′′n , a solution π has to use
programming actions P (wi) to program the instructions on empty
program lines, effectively inducing a planning program Π. Once
an instruction w is programmed on line i, it cannot be altered and
can only be executed using the given execution model (that is, us-
ing a check action C(wi) to test its precondition, followed by an
execution action E(wi) to apply its effects). To achieve the goal
Gn = {done}, π has to simulate the execution of Π on each input
instance Pt, 1 ≤ t ≤ T , terminating with eitherE(endt,i) or skipt,
which are the only two actions that allow us to move on to the next
input instance (if t < T) or add fluent done (if t = T). Because
of the preconditions of E(endt,i) and skipt, termination has to end
with E(endt,i) if Pt is a positive example, and with skipt if Pt is
negative proving that Π solves each positive example and fails to
solve each negative example.

Theorem 2 (Completeness). If there exists a pro-
gram Π within n program lines that solves P =
{P1, . . . , PT+ , . . . , PT } then there exists a classical plan π
that solves P ′′n .

Proof. We can build a prefix of plan π using programming actions
that insert the instructions of Π on each program line. Now, we de-
termine the remaining actions of π building a postfix that simulates
the execution of Π on each input instance Pt ∈ P . Since Π solves
each positive example and fails to solve each negative example, it
means that there exists an action sequence that simulates the execu-
tion of Π on Pt and ends with action E(endt,i) (if Pt is a positive
example) and with skipt (if Pt is negative).

Experiments
This section reports the empirical performance of our ap-
proach for the synthesis and evaluation of programs for gen-
eralized planning1. All experiments are run on an Intel Core
i5 2.90GHz x 4 with a memory limit of 4GB and 600 sec-
onds of planning timeout. In order to compare with pre-
vious approaches, we use Fast Downward (Helmert 2006)
in the LAMA-2011 setting (Richter, Westphal, and Helmert
2011) to synthesize and evaluate programs using the pre-
sented compilations.

Experiments are carried out over the following general-
ized planning tasks. The Green Block consist of a tower of
blocks where only one greenish block exists and must be col-
lected. In Fibonacci the aim is to output the correct number
in the Fibonacci sequence. In Gripper a robot has to move
a number of balls from room A to room B, and in List the
aim is to visit all elements of a linked list. Finally, in Trian-
gular Sum we must calculate the triangular sum represented
with the formula y =

∑N
0 x. We also introduce in this paper

RoboPainter (RP), where a robot should paint, given differ-
ent constraints, odd cells in a corridor (see Figure 1).

Computing programs with positive and negative
examples
For the synthesis of programs that solve the previous gen-
eralized planning tasks, we compare two versions of our
compilation, PN-Lite and PN, with the results from some
problems whose solutions where solved and reported as
“One Procedure” in Segovia-Aguas, Jiménez, and Jons-
son (2016). We use PN to denote the version with positive
and negative examples that detect the three possible failures
of a planning program, whereas PN-Lite is a simpler sound
version that detects incomplete programs and inapplicable
actions but not infinite loops.

In this experiment we have run almost 100 random config-
urations with at most 5 instances that could be either positive
or negative (where at least one is forced to be positive, see
the previous section). The idea behind this experiment is to
evaluate the use of negative examples as counter-examples
to prevent undesired generalizations of programs that are
synthesized from small input instances. Some domains from
previous approaches are simple enough that they can gener-
alize from few positive instances, so our compilations will
only add complexity to the domain, requiring extra search-
ing time required for failure detection.

1The source code, benchmarks and scripts are in the Automated
Programming Framework (Segovia-Aguas 2017) such that any ex-
perimental data in the paper can be reproduced.

In Table 1, columns PN-Lite and PN report the obtained
results when we synthesize programs that are validated on
both positive and negative examples. Recall that the P ′′n
compilation has additional fluents and actions compared to
Pn, which imposes an extra searching time. However, in-
cluding negative examples often makes it possible to syn-
thesize programs from fewer positive examples and with
fewer fluents (planning instances of smaller size) which,
in general, increases the percentage of programs found.
Also, the process of synthesis from few examples is a
benefit in generalized planning compilations akin to few-
shot learning (Lake, Salakhutdinov, and Tenenbaum 2015;
Camacho and McIlraith 2019).

We briefly describe the best solutions that generalize for
each domain in Table 1. In Green Block, we repeat the drop
and unstack instructions while the green block is not hold,
then we collect the holding green block. In the Fibonacci
domain there are 4 variables called A, B, C and D that rep-
resent Fn, n, Fn−1 and Fn−2 respectively. The program as-
signs C to D, then A to C, then adds D to A and decreases
B, repeating this sequence while B is different from 0. The
planning program found in Gripper picks up a ball with the
left hand, moves to room B, drops the ball, and goes back
until no more balls are in room A. The List program vis-
its the current node, moves to the next node and repeats the
process until it reaches the tail. Finally, the program for Tri-
angular Sum has a variable A initialized to 0 and countdown
variable B that is added iteratively to A.

Evaluating generalized plans with test sets of
positive and negative examples
Negative examples are useful for defining quantitative met-
rics that evaluate the coverage of generalized plans with re-
spect to a test set of unseen examples. Given a labeled clas-
sical planning instance P and a program Π:

• If P is labeled as positive and Π solves P this means P
is a true positive. Otherwise, if Π fails to solve P this
means P is a false positive.

• If P is labeled as a negative example and Π solves P this
means P is a false negative. Otherwise, if Π fails to solve
P this means P is a true negative.

Our notion of positive and negative examples allows us to
adopt metrics from ML for the evaluation of planning solu-
tions that generalize with respect to a test set. These metrics
are more informative than simply counting the number of
positive examples covered by a solution and also consider
the errors made over the test set (Davis and Goadrich 2006):

• Precision, pr(Π) = p
(p+p−) , and Recall, re(Π) =

p
(p+n−) , where p is the number of positive examples
solved by Π, p− the number of false positives (classical
planing problems labeled as negative that are solved by
Π) and n− is the number of false negatives (instances la-
beled as positive examples that cannot be solved by Π).

• Accuracy is a more informed metric frequently used in
ML, ac(Π) = p+n

p+n+p−+n− . In our case, n represents the
number of negative examples unsolved by the program Π.

Only Positive PN-Lite PN
n max(T) Avg. Search(s) Found(%) Avg. Search(s) Found(%) Avg. Search(s) Found(%)

RoboPainter 5 5 64.58 50% 140.44 60% 86.43 40%
Green Block 4 5 45.40 81.25% 154.35 67.5% 99.12 90%
Fibonacci 5 5 190.14 25% 93.96 27.5% - 0%
Gripper 4 5 48.19 43.75% 67.77 27.5% 107.14 27.5%
List 3 5 0.04 31.25% 0.07 27.5% 0.21 45%
T. Sum 3 5 143.36 100% 192.13 100% 141.74 100%

Table 1: Program synthesis with positive and negative examples: number of program lines (n), max number of input instances (T), average
search time (secs) and, percentage of found solutions (with only positive and with positive and negative examples).

re(ΠP) pr(ΠP) ac(ΠP) re(ΠPN-Lite) pr(ΠPN-Lite) ac(ΠPN-Lite) re(ΠPN) pr(ΠPN) ac(ΠPN)
RoboPainter 71.74% 100.00% 95.19% 70.90% 100.00% 94.58% 75.63% 100.00% 95.57%
Green Block 68.86% 80.93% 91.48% 60.48% 75.00% 88.76% 80.89% 88.38% 94.43%
Fibonacci 17.86% 71.43% 85.47% 22.22% 100.00% 85.97% -% -% -%
Gripper 41.54% 85.71% 87.68% 62.38% 88.73% 91.35% 35.44% 84.88% 86.30%
List 8.08% 72.73% 81.89% 5.96% 65.00% 81.00% 4.75% 47.22% 80.27%
T. Sum 71.74% 100.00% 95.19% 75.63% 100.00% 95.57% 70.90% 100.00% 94.58%

Table 2: Program evaluation wrt a set of positive and negative tests using the recall, precision and accuracy metrics. The -% symbol refers
either to value not found because of an invalid operation.

For this experiment we considered the planning program
as given, i.e. the computed programs in the previous syn-
thesis experiment. Then we compile a set of positive and
negative instances but include the planning program in the
initial state instead of having empty lines (as in the Pn and
P ′n compilations). The execution of the computed programs
on these instances must solve the positive instances while
failing to solve the negative instances, verifying plan failure
due to a failed condition or the detection of an infinite loop,
as explained in the previous section.

We have used a framework for validating planning pro-
grams that reports success or specifies the source of failure
when executing the program for each randomly generated
planning instance. The results are shown in Table 2 where
we report the precision, accuracy and recall of programs
synthesized using only positive examples, and programs syn-
thesized using the positive and negative examples. The list
domain is the only case where positive examples yield to a
better accuracy, while the rest of domains using positive and
negatives improves only positives in all metrics.

Conclusion
Generalized planning provides an interesting framework to
bridge the gap between ML and AI planning (Geffner 2018).
On the one hand generalized planning follows a model based
approach with declarative definitions of actions and goals, as
AI planning. On the other hand generalized planning, as in-
ductive ML, computes solutions that generalize over a set
of input examples. Generalized planning has however little
work dedicated to the assessment of the generality of plans
beyond the given input planning tasks (positive examples
only). ML however, has a long tradition on the empirical
assessment of the generality of solutions. The fact that our
compilation identifies the source of failures of program ex-
ecution on a particular planning instance allows us to intro-
duce negative examples and to bring the evaluation machin-

ery from ML to define evaluation metrics that empirically
assess the generality of plans beyond the given input plan-
ning tasks, e.g. using test sets.

Model checking (Clarke, Grumberg, and Peled 1999) pro-
vides effective solvers for automatically verifying correct-
ness properties for diverse finite-state systems. More pre-
cisely when actions have non-deterministic effects, program
validation becomes complex since it requires proving that
all the possible program executions reach the goals. In such
a scenario, model checking (Clarke, Grumberg, and Peled
1999) and non-deterministic planning, like POMDP plan-
ning, are definitely more suitable approaches for plan val-
idation (Hoffmann 2015). An interesting research direction
is to study how to leverage model checking techniques for
the synthesis of generalized planning form both positive and
negative examples. Plan constraints are also a compact way
of expressing negative information for planning and reduce
the space of possible solution plans. Plan constraints have al-
ready been introduced to different planning models using the
LTL formalism (Baier, Bacchus, and McIlraith 2009; Bauer
and Haslum 2010; Patrizi, Lipovetzky, and Geffner 2013;
Camacho et al. 2017).

Acknowledgments

The research leading to these results has received fund-
ing from the European Unions Horizon 2020 research and
innovation programme under grant agreement no. 731761,
IMAGINE; and it is partially supported by grant TIN-2015-
67959 and the Maria de Maeztu Units of Excellence Pro-
gramme MDM-2015-0502, MEC, Spain. Sergio Jiménez
is supported by the Ramon y Cajal program, RYC-2015-
18009, the Spanish MINECO project TIN2017-88476-C2-
1-R, and the generalitat valenciana project GV/2019/082.
Anders Jonsson is partially supported by the Spanish grants
TIN2015-67959 and PCIN-2017-082.

References
Alur, R.; Singh, R.; Fisman, D.; and Solar-Lezama, A. 2018.
Search-based program synthesis. Communications of the
ACM 61(12):84–93.
Angluin, D.; Frazier, M.; and Pitt, L. 1992. Learning con-
junctions of horn clauses. Machine Learning 9(2-3):147–
164.
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence 173(5-6):593–
618.
Baier, J. A.; Fritz, C.; and McIlraith, S. A. 2007. Exploit-
ing procedural domain control knowledge in state-of-the-art
planners. In International Conference on Automated Plan-
ning and Scheduling, 26–33.
Bauer, A., and Haslum, P. 2010. Ltl goal specifications
revisited. In ECAI, volume 10, 881–886.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T. 2009.
Conflict-driven clause learning sat solvers. Handbook of
Satisfiability, Frontiers in Artificial Intelligence and Appli-
cations 131–153.
Bonet, B.; Palacios, H.; and Geffner, H. 2010. Automatic
derivation of finite-state machines for behavior control. In
AAAI.
Camacho, A., and McIlraith, S. A. 2019. Learning inter-
pretable models expressed in linear temporal logic. In Inter-
national Conference on Automated Planning and Schedul-
ing, volume 29, 621–630.
Camacho, A.; Triantafillou, E.; Muise, C.; Baier, J. A.; and
McIlraith, S. A. 2017. Non-deterministic planning with tem-
porally extended goals: Ltl over finite and infinite traces. In
AAAI.
Clarke, E. M.; Grumberg, O.; and Peled, D. 1999. Model
checking. MIT press.
Davis, J., and Goadrich, M. 2006. The relationship between
precision-recall and roc curves. In ICML, 233–240. ACM.
Eriksson, S.; Röger, G.; and Helmert, M. 2017. Unsolv-
ability certificates for classical planning. In International
Conference on Automated Planning and Scheduling.
Geffner, H. 2018. Model-free, model-based, and general
intelligence. In IJCAI.
Göbelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and
Nebel, B. 2010. Coming up with good excuses: What to do
when no plan can be found. Cognitive Robotics 10081.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J. 2015. Simulated penetration testing: From
”dijkstra” to ”turing test++”. In International Conference
on Automated Planning and Scheduling, 364–372.
Howey, R.; Long, D.; and Fox, M. 2004. Val: Automatic
plan validation, continuous effects and mixed initiative plan-
ning using pddl. In ICTAI, 294–301. IEEE.
Hu, Y., and De Giacomo, G. 2011. Generalized planning:
Synthesizing plans that work for multiple environments. In
International Joint Conferences on Artificial Intelligence.

Hu, Y., and De Giacomo, G. 2013. A generic technique
for synthesizing bounded finite-state controllers. In Interna-
tional Conference on Automated Planning and Scheduling.
Hu, Y., and Levesque, H. J. 2011. A correctness result
for reasoning about one-dimensional planning problems. In
International Joint Conferences on Artificial Intelligence,
2638–2643.
Jiménez, S.; Segovia-Aguas, J.; and Jonsson, A. 2019. A re-
view of generalized planning. The Knowledge Engineering
Review 34.
Lake, B. M.; Salakhutdinov, R.; and Tenenbaum, J. B. 2015.
Human-level concept learning through probabilistic pro-
gram induction. Science 350(6266):1332–1338.
Lotinac, D.; Segovia-Aguas, J.; Jiménez, S.; and Jonsson, A.
2016. Automatic generation of high-level state features for
generalized planning. In International Joint Conferences on
Artificial Intelligence.
Mitchell, T. M. 1997. Machine Learning. New York, NY,
USA: McGraw-Hill, Inc., 1 edition.
Parekh, R.; Honavar, V.; et al. 2000. Grammar inference,
automata induction, and language acquisition. Handbook of
natural language processing 727–764.
Patrizi, F.; Lipoveztky, N.; De Giacomo, G.; and Geffner, H.
2011. Computing infinite plans for ltl goals using a classi-
cal planner. In International Joint Conferences on Artificial
Intelligence.
Patrizi, F.; Lipovetzky, N.; and Geffner, H. 2013. Fair ltl
synthesis for non-deterministic systems using strong cyclic
planners. In International Joint Conferences on Artificial
Intelligence.
Richter, S.; Westphal, M.; and Helmert, M. 2011. Lama
2008 and 2011. In International Planning Competition.
Segovia-Aguas, J.; Celorrio, S. J.; and Jonsson, A. 2019.
Computing programs for generalized planning using a clas-
sical planner. Artificial Intelligence.
Segovia-Aguas, J.; Jiménez, S.; and Jonsson, A. 2016. Gen-
eralized planning with procedural domain control knowl-
edge. In International Conference on Automated Planning
and Scheduling.
Segovia-Aguas, J.; Jiménez, S.; and Jonsson, A. 2018.
Computing hierarchical finite state controllers with classi-
cal planning. Journal of Artificial Intelligence Research
62:755–797.
Segovia-Aguas, J. 2017. Automated programming frame-
work. https://github.com/aig-upf/automated-programming-
framework. Accessed: 2019-11-12.
Srivastava, S.; Immerman, N.; Zilberstein, S.; and Zhang, T.
2011. Directed search for generalized plans using classical
planners. In International Conference on Automated Plan-
ning and Scheduling, 226–233.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for general-
ized planning. Artificial Intelligence 175(2):615–647.
Winner, E., and Veloso, M. 2003. Distill: Learning domain-
specific planners by example. In ICML, 800–807.

