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Abstract

Linear systems are frequently encountered in low, mid and high vibroacoustics modelling of mechanical
built-up structures. It has recently been proved that the solution to those systems can be always factorized
as an infinite (weighted) Neumann series summation, which accounts for signal transmission through paths
connecting system elements. The key to path expansion relies on the concept of direct transmissibility. In
this work, we explore some additional theoretical aspects of transmissibility-based transmission path analysis
(TPA), which is known to constitute a valuable tool to remedy noise and vibration problems. In particular,
we show that it is also possible to expand the solution of a matrix linear system as a finite summation of
transmission paths. Furthermore, our goal is to provide mathematical and physical insight into such path
factorization. As regards the former, we exploit the relationship between graph theory and matrix algebra
to interpret the terms appearing in the series expansion as combinations of open and closed paths in a
graph. In what concerns the second, two benchmark examples are addressed that benefit from the graph
theory outcomes. The first one consists of a mass-damping-stiffness system representative of vibroacoustic
modelling at low frequencies. A relation is established between the relative weights of the paths, the global
system resonances and the resonances of complementary systems, which contain elements not belonging to
the paths. The second example involves a statistical energy analysis (SEA) model made of connected plates.
The meaning of the relative weights of open paths in the finite expansion for energy transmission between
SEA subsystems is analyzed and compared to the results of infinite SEA path factorization.

Keywords: Direct transmissibility, Transfer path analysis, Open and closed paths, Vibroacoustic
modelling, Neumann series

1. Introduction

Transfer path analysis (TPA) comprises a set of methodologies for inspecting the transmission of struc-
tural vibrations and acoustic waves in mechanical systems. The applications of TPA are multiple and usually
involve determining the influence of forces entering a buit-up structure on the response at a target degree of
freedom (dof), factorizing the response at the target dof in terms of other system dof responses, or resolving
the vibroacoustic behaviour of a coupled structure in terms of the vibroacoustic behavior of its individual
components. From the multiple and partial coherence analysis in [1–4] and its evolution into operational
TPA [5–7], to classical force TPA factorization approaches [8–12] and transmissibility methods based on
responses [8, 13, 14], a large variety of TPA approaches cohabit nowadays. Rig-based strategies [15], in-situ
blocked forces and free velocity techniques [16], and pseudo-force methods [10] can also be viewed as TPA
methods. The reader is referred to the very complete review in [17] for an introduction to most of them.
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This work is concerned with some applications of transmissibility-based TPA to general vibroacoustic
linear systems. In particular, we are interested in determining whether the response signal at a target dof
(or subsystem) can be factorized as a finite summation of path contributions, linking the dof where the
external input is applied and the target dof. The key concept to define transmission paths is that of direct
transmissibility, which was first introduced in [8]. In a nutshell, a direct transmissibility is nothing but the
ratio between the responses at two dof when one of them is excited and all other dof in the system remain
blocked [8, 18]. Direct transmissbilities gave place to the so called GTDT (Global Transmissibility Direct
Transmissibility) TPA method, also known as ATPA (Advanced TPA) in industrial applications. Theoretical
works on the GTDT have involved both continuous and discrete systems. In [19], the method was applied
to analyze flexural wave propagation in beams, while in [18] a connection was established between direct
transmissibilities and the stencils of some finite element and finite difference numerical schemes. Besides,
the effects of path blocking were studied in a discrete mass-damping-stiffness system in [19]. Experimental
controlled tests to assess the validity of the GTDT have been reported in [20, 21] and industrial applications
in the railway sector are described in [22–24]. Direct transmissibilities are also at the basis of an experimental
statistical energy analysis (ESEA) approach that does not require measuring external input powers into the
system [25], as required in the standard power injection method [26]. Recent developments have concerned
the application of the GTDT to the finite element method (FEM) [27], the definition of transmissibilities
between groups of subsystems and the introduction of force transmissibilities [28], addressing the problem
of structural coupling [29] and facilitating the experimental acquisition of transmissibility functions [30].
Linear systems of equations, on the other hand, appear in a large variety of vibroacoustic problems. At low
frequencies, they are encountered, for example, in mechanical systems characterized by a dynamic stiffness
matrix and in numerical FEM models as well. In the mid-frequency range, they can describe, for instance,
statistical modal energy distribution analysis (SmEdA) [31–33] and energy distribution (ED) models [34],
among others. The statistical energy analysis (SEA) method for high frequencies also ends up with a matrix
linear system to determine subsystem energies [35–37]. In recent years it has been found that, as mentioned
before, the direct transmissibilities introduced in the GTDT method allow one to expand the solution of
any matrix linear system in terms of an infinite summation of path contributions. Put another way, the
response at any system target dof can be built adding the signal carried out by all infinite paths connecting
those dof with external input signal to the target.

The situation is easy to understand in the case of SEA systems where the transmitted variable is energy.
Transmission paths in SEA were first recognized in [38]. Soon after that, it was proved in [39] that the
subsystem energy vector solving an SEA system admits a Neumann series decomposition whose generating
matrix entries consist of direct transmissibilities between subsystems. The n-th power of the generating
matrix contains the contributions of groups of n-th order paths to subsystem energies. Nonetheless, this
factorization does not provide a sorted classification of transmission paths, which is necessary to remedy
vibroacoustic problems (e.g. for reducing the vibration or sound pressure at a receiver subsystem). In
this sense, one step forward was carried out in [40] by establishing a formal connection between SEA and
graph theory. The generating matrix of the development in [39] was identified in [40] with the adjacency
matrix of a graph. This permitted exploiting powerful graph theory algorithms to classify dominant paths
in SEA models in a very fast an efficient way [41, 42]. Such algorithms have been latterly applied to analyze
vibration problems in naval structures [43, 44]. Graph cut algorithms have been also proposed to mitigate
energy transmission in SEA models [45]. Furthermore, it is worthwhile noting that bond graph theory has
been recently applied to TPA [46, 47].

The basic premise for a proper system path factorization is that the infinite series expansion converges.
This can be proved without much difficulty in SEA (see e.g., [39, 41, 37] for different alternatives) but turns
out to be more difficult for mid and low frequency vibroacoustic linear systems. The decomposition was
demonstrated to be feasible for SmEdA models in [48] and with some restrictions for ED models in [49]. A
more general result which somewhat encompasses all previous ones has been recently proved in [50]. If the
terms in the Neumann series are properly weighted, path factorization is possible for any system of linear
equations. This means that regardless of the linear vibroacoustic system we have (low, mid or high frequency
models), its solution can always be expressed in terms of paths. Admittedly, though, while paths have an
easy physical interpretation for mid to high frequency models (e.g. in SmEdA and SEA), their meaning is
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not so clear for low frequency models.
All the above cited works contemplate the system solution expansion in terms of an infinite number of

paths, with independence of the dimension of the analyzed system. In practice, the latter will be almost
always finite even for continuous complex structures (note that discrete numerical approximations are often
employed to simulate them). This means that paths connecting two different dof always contain cycles. In
this work, we wonder whether it is possible to factorize the solution of any linear vibroacoustic system by
way of a finite set of properly weighted open paths (i.e. without cycles), instead of an infinite one. More
specifically, for a system characterized with n degrees of freedom, only paths of order up to n − 1 shall
be required. It is shown in the paper that such factorization is viable and its mathematical and physical
meanings are investigated. Concerning the former, the connection with graph theory is exploited and the
different components of the Leibniz formula for a matrix determinant are interpreted in terms of loops,
closed and open paths in a graph. As regards the physical meaning, the finite open path factorization is
implemented for two benchmark problems: a low frequency mass-damping-stiffness mechanical system and
a high frequency SEA model. Physical explanations are attempted for the weights in their respective series
developments.

The outline of the remainder of this manuscript is as follows. The basic problem is introduced in section 2.
Section 3 is devoted to factorize the inverse of a matrix as a finite sum of paths in a graph representing the
analyzed vibroacoustic system. The two illustrative examples typifying low and high frequency vibroacoustic
models are presented in section 4. The graph theory results of section 3 are applied to them and the different
physical interpretation of path weights is highlighted for both cases. Remarks on dissimilarities with infinite
series factorization are also reported. Conclusions close the paper in section 5.

2. Problem statement

Let us consider the linear matrix system
Ax = b (1)

in which A is an invertible real or complex n × n matrix, x an n × 1 vector of unknowns and b an n × 1
constant vector. As said in the Introduction, the system in Eq. (1) can represent many different problems
in vibroacoustics. For instance, at high frequencies it could stand for an SEA model in which A denotes
the matrix of loss factors, x the subsystem energy vector and b the external power per radian frequency,
input into the system. In the mid-frequency range, Eq. (1) could be an energy distribution model with A
being now the inverse of an influence energy coefficient matrix, x standing again for the vector of subsystem
energies and b for the external input power. Alternatively, in SmEdA Eq. (1) would involve a matrix of
modal loss factors, an unknown vector of modal energies and a constant vector of external input modal
power. Besides, at low frequencies the system matrix would typically correspond to a dynamic stiffness e.g.,
A = (−ω2M + K), with ω being the radian frequency, M a real mass matrix and K a complex stiffness
matrix, in the particular case of a system with structural damping. The entries of x would be the d.o.f
displacements and b would represent an external force vector. The system matrix could be built either from
experimental results, numerical modelling (e.g., using FEM) or derived from analytical developments.

The system in Eq. (1) can be straightforwardly solved by means of an appropriate direct (i.e. Gaussian) or
iterative (i.e. Krylov) solver. However, in practice this provides little, if any, information on the underlying
physics of Eq. (1). Therefore, other options are favoured. In the low frequency regime, one would typically
resort to a modal decomposition of the solution x. Another option consists in factorizing the response x in
terms of the transmission paths that the external inputs follow from a system entrance point to a receiver
one. For example, in SEA the energy at any receiver subsystem can be expressed adding the contributions
of all energy transmission paths connecting a source subsystem (where external energy is input) with the
receiver one. As cycles are permitted, there exist an infinite amount of paths. In SEA though, the longer the
path the less the contribution so in practice the susbsystem energies can be approximately well recovered
from a finite set of dominant transmission paths [41].

To decompose the solution of Eq. (1) in terms of paths it becomes necessary to introduce a transmissibility
matrix T (see [50]), such that

T = −D−1(L + U), (2)
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where D = diag(A) is assumed to be invertible, and L and U are the strict lower and upper triangular
matrices of A. It shall be noted that the off-diagonal entries of T are exactly those of the direct transmis-
sibility matrix defined in [8, 18]. The only difference is that T contains zeros in its diagonal. Given that
A = D + L + U, it is clear that A = D(I−T) so the solution to Eq. (1) can be expressed as

x = (I−T)−1D−1b. (3)

The key to path factorization consists in expressing (I−T)−1 as a summation of powers of T. Whenever
the spectral radius of T is less than unity, ρ(T) < 1, the inverse (I−T)−1 can be expanded as a convergent
Neumann series,

(I−T)−1 =

∞∑
k=0

Tk. (4)

As mentioned before, in vibroacoustics it has already been proved that SEA systems admit such type of
development [39, 41, 37]. This was also proven for SmEdA [48] and for some ED models as well [49]. More
recently, it has been demonstrated that expressing (I−T)−1 in terms of modified Neumann series is in fact
always possible, even if ρ(T) > 1 [50]. In this case, the main difference with Eq. (4) is that the powers of T
beyond a certain value of k need to be appropriately weighted.

For mid-high frequency vibroacoustic models, an expansion like Eq. (4) has a clear physical meaning
in terms of transmission of energy through paths connecting subsystems [39, 41], or connecting individual
modes belonging to different subsystems [48]. As mentioned in the Introduction, this has opened the door
to potential practical applications to mitigate noise and vibration problems. Unfortunately, the physical
interpretation of the series is not so clear in the case of low frequency models for which ρ(T) > 1, though
the underlying concept of direct transmissibility in the entries of T is totally valid and lies at the basis of
widely employed TPA methods in vibroacoustics.

The Neumann series in Eq. (4) and its modified analogous for ρ(T) > 1 involve an infinite number of
terms. In the next sections, we provide an alternative expansion to Eq. (4) for the system solution in Eq. (3).
The main difference is that the proposed factorization only involves a finite number of paths instead of an
infinite one. The general vibroacoustic linear system in Eq. (1) is considered with independence of the value
of its spectral radius. The results therefore apply to low, mid and high frequency vibroacoustic models.
Both a mathematical interpretation of the finite expansion in the framework of graph theory and a physical
one are suggested.

3. The inverse of a matrix as a finite sum of paths

3.1. Relation between the entries of matrix B and the entries of its adjugate matrix B[ji]

Let B ∈ Cn×n (for damped systems) or Rn×n (for undamped systems) be an invertible matrix. It may
be regarded as a weighted directed digraph, see Fig. 1: the off-diagonal entries bij with i 6= j represent the
directed (i, j)-arcs, whereas the diagonal entries bii represent loops.

The inverse of matrix B may be computed by means of the adjugate matrix (i.e. transpose matrix of
cofactors) as

B−1 = adj(B)/det(B) (5)

with
adj(B) =

(
(−1)i+jMji

)
1≤i,j≤n (6)

where Mji is the (j, i)-minor of B (that is, the determinant of matrix B[ji] ∈ R(n−1)×(n−1) that results from
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Figure 1: Matrices and graphs: (a) a matrix of dimension n = 4; (b) associated weighted graph.

deleting row j and column i of matrix B):

B[ji] =



b11 · · · b1,i−1 b1,i+1 · · · · · · · · · · · · b1n
...

. . .
...

...
...

bi−1,1 · · · bi−1,i−1
...

...
...

... bi,i+1

...
...

...
. . .

...
bj−1,1 · · · bj−1,i−1 bj−1,j bj−1,n
bj+1,1 · · · bj+1,i−1 bj+1,j+1 · · · bj+1,n

...
...

...
. . .

...
bn1 · · · bn,i−1 · · · · · · · · · bn,j+1 · · · bnn



(7)

Note that, for j 6= i, some of the diagonal entries of B[ji] are not diagonal entries of B. For the case j > i
illustrated in Eq. (7), the diagonal entries of B[ji] are

bpp for p = 1, . . . , i− 1, j + 1, . . . , n ; bp,p+1 for p = i, . . . , j − 1 (8)

More generally, the entries of matrices B and B[ji] are related by

(b[ji])PQ = bpq (9)

with subscripts PQ connected to pq by

P =

{
p for p = 1, . . . , j − 1

p− 1 for p = j + 1, . . . , n
; Q =

{
q for q = 1, . . . , i− 1

q − 1 for q = i+ 1, . . . , n
(10)

or, inversely,

p =

{
P for P = 1, . . . , j − 1

P + 1 for P = j, . . . , n− 1
; q =

{
Q for Q = 1, . . . , i− 1

Q+ 1 for Q = i, . . . , n− 1
. (11)

3.2. Determinant of matrix B

The determinant of matrix B is expressed by Leibniz formula as

det(B) =
∑
τ∈Sn

sgn(τ)
∏
i∈Nn

bi,τ(i) (12)

where Sn is the set of all permutations τ of Nn = {1, 2, . . . , n} and sgn is the sign operator. We will now
explore the summands in Eq. (12).
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3.2.1. Case with no loops
Let us consider first a permutation such that τ(i) 6= i for all i ∈ Nn. Then

∏
i∈Nn bi,τ(i) is the weight of

a directed path with the following properties:

• order n (because it contains n arcs)

• no loops (because there are no diagonal entries bii)

• all nodes are the tail and the head of exactly one directed arc (because i spans Nn and τ is a permu-
tation)

With these conditions,
∏
i∈Nn bi,τ(i) is necessarily one cycle (i.e. closed path) or a disjoint union of

cycles1, see Fig. 2. No open paths are possible.
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Figure 2: Case with no loops: if the permutation τ ∈ Sn moves all indices, then
∏
i∈Nn bi,τ(i)

represents either (a) one cycle or (b-c) a disjoint union of cycles.

3.2.2. Case with loops
Let us assume now that the permutation τ verifies τ(i) = i for all i ∈ F, a subset of Nn with f elements.

Note that the two extreme cases are F = ∅, f = 0 (as assumed in section 3.2.1) and F ≡ Nn, f = n.
Intermediate cases correspond to f = 1, . . . , n− 2 (but not f = n− 1). Let us explore one such intermediate
case: ∏

i∈Nn

bi,τ(i) =
∏
i∈F

bii
∏
i/∈F

bi,τ(i) (13)

The first product in the right-hand-side of Eq. (13) represents f loops, see Fig. 3. The second product
represents a directed path of order n−f consisting of one cycle or a disjoint union of cycles. Again, no open
paths are present.

3.3. Determinant of the adjugate matrix B[ji]

According to Leibniz formula,

Mji ≡ det(B[ji]) =
∑

τ∈Sn−1

sgn(τ)
∏

P∈Nn−1

(b[ji])P,τ(P )
(14)

Note that Sn−1 is the set of all permutations of Nn−1 = {1, 2, . . . , n− 1}. Let us explore the summands in
Eq. (14).

1Or, more precisely, the weight of one cycle or a disjoint union of cycles; we will omit “weight” for brevity in the remainder.
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Figure 3: Case with loops: if the permutation τ ∈ Sn leaves f indices fixed, then
∏
i∈Nn bi,τ(i)

contains f loops and (a) one cycle or (b-c) a disjoint union of cycles.

3.3.1. Case with no loops
Consider a permutation τ ∈ Sn−1 such that p(P ) 6= q(τ(P )) for all P ∈ Nn−1. This means that the

product
∏
P∈Nn−1

(b[ji])P,τ(P )
contains no diagonal terms of matrix B. The associated directed path has the

following properties:

• order n− 1

• no loops

• all nodes are the tail of exactly one directed arc except node j, because p(P ) does not take value j

• all nodes are the head of exactly one directed arc except node i, because q(τ(P )) does not take value i

With these conditions, the path consists of an open directed path of order m (with m = 1, . . . , n − 1)
that starts at node i and ends at node j, and a cycle or a disjoint union of cycles with a total of (n− 1)−m
arcs2, see Fig. 4.

j

i

(a)

j

i

(b)

(a) (b)

Figure 4: If the graph
∏
P∈Nn−1

(b[ji])P,τ(P )
contains no loops, it consists of one open directed path with the tail in

node i and the head in node j, and (a) one cycle or (b) a disjoint union of cycles.

3.3.2. Case with loops
Let us assume now that the permutation τ ∈ Sn−1 verifies p(P ) = q(τ(P )) for all P ∈ F, a subset of

Nn−1 with f elements. Then ∏
P∈Nn−1

(b[ji])P,τ(P )
=
∏
P∈F

bp(P ),p(P )

∏
P /∈F

bp(P ),q(τ(P )) (15)

2Except for i = j. In this case, the path is a cycle or a disjoint union of cycles with a total of (n− 1) arcs.
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As discussed above in sections 3.2.2 and 3.3.1, the first product in the right-hand-side of Eq. (15) represents
f loops, whereas the second product represents one open directed path connecting nodes i and j, and cycle(s)
connecting all remaining nodes3, see Fig. 12.

j

i

(a)

j

i

(b)

Figure 5: In the general case, the path
∏
P∈Nn−1

(b[ji])P,τ(P )
contains f loops, an open path of order m that connects

nodes i and j, and cycle(s) with a total of (n− 1)− f −m arcs.

3.4. Open paths are weighted by complementary cycles
The solution of a linear system by means of the transmissibility matrix T requires the computation of

the inverse of matrix I − T, see Eq. (3). Taking B = I − T results in bii = 1 for i = 1, . . . , n (that is,
the loops in figures 3 and 12 have weight 1) and bij = −tij for i 6= j. A careful inspection of the resulting
expression reveals that the cofactors of Eq. (6) can be expressed as

(−1)i+jMji =

n−1∑
k=1

nk∑
l=1

open path︷ ︸︸ ︷∏
P∈Nopen,l

(t[ji])P,τl(P )

complementary subsystem︷ ︸︸ ︷
det
(

(I−T)[ji]Ncomp,l×Ncomp,l

)
(16)

In Eq. (16), all the permutations in Eq. (14) have been grouped according to their open path. Index k
denotes the order of the open path, and ranges from 1 (that is, the (i, j)-arc) to n−1 (that is, open paths that
visit all nodes in the graph). Index l is a counter of open paths of order k; a simple combinatorics exercise
shows that the number of open paths of order k that connect nodes i and j is nk = (n − 2)!/(n − 1 − k)!.
For each open path l of order k, we consider a partition Nn−1 = Nopen,l ∪ Ncomp,l, where Nopen,l is a subset
of k integers (i.e. the tail numbers of the arcs in the open path) and Ncomp,l is the complementary subset.
Eq. (16) shows that each open path is weighted by the determinant of the complementary subsystem. This
determinant accounts for all possible cycles that complement that particular open path.

Finally, by dividing Eq. (16) by det(I−T), according to Eq. (5), one gets[
(I−T)−1

]
ij

=
(−1)i+jMji

det(I−T)
=∑

open paths

(weight of open path)× (relative weight of complementary subsystem)
(17)

Eq. (17) shows that the entry ij of matrix (I−T)−1 is a weighted sum of all the (weights of) open paths
that connect nodes i and j. Each open path is weighted by the ratio of (the weights of) the cycles of the
complementary subsystem over (the weights of) the cycles of the overall system. As regards the latter, it is
to be mentioned that as T has zeros on the diagonal it can be identified with the weighted adjacency matrix
of a directed graph and it is a well-known result in graph theory that det(I − T) can be expanded as the
summation of the weights of all cycles in the graph (see [51, 52]; note this is still a topic of some research in
graph theory e.g., [53, 54]).

3Except for i = j. In this case, the path contains f loops and cycle(s) connecting all remaining (n− 1)− f nodes.
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Figure 6: 5 dof mechanical system with structural damping.

4. Physical interpretation and illustrative examples

In the previous section, we have shown that Eq. (17) has a clear geometrical interpretation in the
framework of graph theory. In this section, we would also like to provide a certain physical meaning for
it. We believe the best way to do so is by means of some examples. Two of them will be considered. The
first one consists of a mass-damping-stiffness mechanical system, which typifies low frequency vibroacoustic
problems. The second one deals with high frequency vibroacoustics modelling and involves an SEA system.

4.1. First example: a 5 dof mass-damping-stiffness mechanical system
4.1.1. Model description

Let us first address the case of a mechanical system with structural damping, which is made of five
masses mi, i = 1 . . . 5, linked by springs of complex stiffness kij , according to the configuration in Fig. 6.
The values of mi and kij are collected in Table 1. The dynamic stiffness matrix A = (−ω2M + K) can be
built as usual from the values of mi and kij , with M ∈ R5×5 and K ∈ C5×5. Furthermore, in section 2 we
have seen that A = D(I−T), which allows one to obtain the transmissibility matrix T as

T(ω) = I−D−1(−ω2M + K). (18)

Note that we have explicitly indicated the dependence of T ∈ C5×5 with the radian frequency ω for the sake
of clarity in forthcoming explanations.

4.1.2. Relation between the mechanical resonances of the dynamic stiffness matrix and the eigenvalues of T

Before starting the transmission path analysis of the system in Fig. 6, we elaborate a little bit on the
relation between the resonances of a mechanical system with structural damping and the eigensolutions
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Table 1: Mass and stiffness values for the discrete system in Fig. 6.

Mass (kg) Stiffness (N/m)
m1 = 0.15 k01 = 1× 105(1 + i0.05)
m2 = 0.13 k12 = 2× 105(1 + i0.05)
m3 = 0.15 k13 = 5× 105(1 + i0.05)
m4 = 0.13 k24 = 3× 104(1 + i0.05)
m5 = 0.17 k32 = 3× 105(1 + i0.05)

k35 = 2× 105(1 + i0.05)
k45 = 5× 105(1 + i0.05)

of the transmissibility matrix T. Unless specified, the herafter reported results will be valid for a general
system with A ∈ Cn×n, n = 5 being a particular case. Taking b = 0 in Eq. (1) and A = (−ω2M + K)
yields the generalized eigenvalue problem

(−ω2M + K)x = 0, (19)

with solution eigenpairs (ω2
i ,Ψi) (ω2

i ∈ C , Ψi ∈ Cn×1) satisfying (−ω2
iM + K)Ψi = 0. The resonances of

the mechanical system take place at ωi and the modal shapes are given by Ψi. On the other hand, suppose
that (λk,Φk) are eigenpairs of T, i.e.,

T(ω)Φk = λkΦk, (20)

with λk(ω) ∈ C and Φk(ω) ∈ Cn×1, both depending on ω. If we next evaluate T at the system resonance
ωi and take the product with its corresponding modal shape vector Ψi, we get

T(ωi)Ψi = [I−D−1(−ω2
iM + K)]Ψi = Ψi. (21)

This means that the system modal shape vector Ψi is also an eigenvector of T(ωi), i.e., Ψi ≡ Φk with
eigenvalue λk such that Re(λk) = 1 and Im(λk) = 0.

We can check this assertion for our particular five-dimensional problem in Fig. 6, which has the complex
resonances fA,i = ωi/2π in Table 2. In Fig. 7, we present five subplots exploring the complex plane for
ω ∈ C such that Re(ω) ≥ 0 ∧ Im(ω) ≥ 0, to locate where the complex eigenvalues of T match the system
mechanical resonances. Let us first focus on the top left subplot. This contains five red squares which
indicate the resonance values of Table 2, in the complex plane. For every frequency value ω ∈ C in the
figure, we compute the first eigenvalue λ1(ω) of T(ω), using a resolution of 0.11 Hz in the real axis and
0.013 units in the imaginary one. If 1 − εRe ≤ Re(λ1(ω)) ≤ 1 + εRe a blue dot is plotted for f = ω/2π
in the plane. Here, εRe is a predetermined tolerance value that has been taken as εRe = 5 × 10−3 for a
better visualization of the curves in the figure (smaller values can be used for better accuracy). Likewise,
if −εIm ≤ Im(λ1(ω)) ≤ εIm (with εIm = 10−4), we plot a yellow dot in the figure. The value of ω at which
both conditions are satisfied corresponds to the first mechanical resonance of the system (i.e., ω = ω1) so
the blue and yellow curves cross at fA,1 = ω1/2π, as observed in the figure and predicted from Eq. (21).
The other four subfigures in Fig. 7 present akin results for the other four eigenvalues of T, namely λ2(ω),
λ3(ω), λ4(ω) and λ5(ω). It is to be noted that similar results would have been obtained if considering other
dynamic stiffness matrices or numerical models for A, instead that of structural damping.

4.1.3. Solution in terms of transmission paths
Let us next focus on the path analysis and therefore on matrix (I−T)−1. As demonstrated in section 3,

any entry ij of this matrix can be decomposed as a weighted finite sum of open paths connecting i with j

Table 2: Complex resonance frequencies for the mass-damping-stiffness system in Fig. 6.

fA,1 fA,2 fA,3 fA,4 fA,5
54.73 + 1.36i 181.98 + 4.39i 381.89 + 9.15i 438.81 + 2.2i 499.15 + 11.5i
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Figure 7: Finding the matching between eigenvalues ofT and system resonances in the complex plane. Each subplot corresponds
to one eigenvalue of T. The blue lines indicate eigenvalues of T with real part close to one while yellow lines indicate eigenvalues
of T with imaginary part close to zero. When both conditions are met the mechanical system resonances in Table 2 are recovered
(red squares).

and we would like to figure out its physical meaning for the mass-damping-stiffness example at hand. The
graph associated to the transmissibility matrix T is shown in Fig. 8, the arcs being represented by grey lines.
Please note that no lines are drawn between masses that are not physically connected and would therefore
have an arc with zero weight. Our goal is to apply the factorization of Eq. (17) in terms of open paths to one
of the elements of matrix T. Before proceeding, however, we shall introduce some notation. In forthcoming
expressions, T{ijk} will designate the square block matrix of T made of rows i, j, k and columns i, j, k.
For instance, T{345} is the 3 dof mass-damping-stiffness system built suppressing rows and columns 1 and
2 from T. Moreover, we will denote by λm{ijk} the m-th eigenvalue of T{ijk}.

If we were to apply Eq. (17) to, say, the i = 2, j = 1 element of (I − T)−1, namely, (I − T)−121 , and
assume that all masses were connected to each other (i.e. the graph in Fig. 8 was a complete digraph with
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Figure 8: Graph of the 5 dof mechanical system. Closed paths t35t53 and t45t54 weighting the open path t12.

no missing grey lines), we would get

[(I−T)−1](2,1) =
∑

open paths

(weight of open path)× (relative weight of complementary subsystem)

=
1

det(I−T)
{t21(1− t34t43 − t45t54 − t35t53 − t34t45t53 − t35t43t54)

+ t23t31(1− t45t54)

+ t24t41(1− t35t53)

+ t25t51(1− t34t43)

+ t23t34t41 + t24t43t31 + t23t35t51 + t25t53t31 + t24t45t51

+ t25t54t41 + t23t34t45t51 + t23t35t54t41 + t24t45t53t31

+ t24t43t35t51 + t25t54t43t31 + t25t53t34t41},

(22)

which can be rewritten as

[(I−T)−1](2,1) =
det(I−T{345})

det(I−T)
t21

+
det(I−T{45})

det(I−T)
t23t31 +

det(I−T{35})

det(I−T)
t24t41 +

det(I−T{34})

det(I−T)
t25t51

+
1

det(I−T)
t23t34t41 +

1

det(I−T)
t24t43t31 +

1

det(I−T)
t23t35t51

+
1

det(I−T)
t25t53t31 +

1

det(I−T)
t24t45t51 +

1

det(I−T)
t25t54t41

+
1

det(I−T)
t23t34t45t51 +

1

det(I−T)
t23t35t54t41

+
1

det(I−T)
t24t45t53t31 +

1

det(I−T)
t24t43t35t51

+
1

det(I−T)
t25t54t43t31 +

1

det(I−T)
t25t53t34t41.

(23)

Note that Eq. (23) has been expressed in such a way that the first line in the equation contains the
weighted contribution of the direct link between masses m1 and m2, i.e. the first order path between them.
The second line contains the weighted contributions of second order paths linkingm1 andm2. Likewise, lines
third and fourth account for the third order paths and lines five to seven for the fourth order paths, which
involve all masses in the system. Nonetheless, in our model of Fig. 6 with graph in Fig. 8 not every mass is
linked to all other masses, and one can appreciate that t14 = t41 = t15 = t51 = t25 = t52 = t34 = t43 = 0.
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Consequently, Eq. (23) strongly simplifies to

[(I−T)−1](2,1) =
det(I−T{345})

det(I−T)
t21

+
det(I−T{45})

det(I−T)
t23t31

+
1

det(I−T)
t24t45t53t31.

(24)

with det(I − T{345}) = (1 − t45t54 − t35t53). For illustrative purposes, in Fig. 8 we have plotted the two
closed paths with weights t45t54 and t35t53 (see first line in Eq. (24) and the blue and orange arrows in the
figure) affecting the relative weight of the first order open path from m2 to m1 (black line in the figure).

A close inspection of the relative weights in the paths of Eq. (23) (and/or the particular case in Eq. (24))
reveals their physical meaning. All paths share the same denominator det(I−T), which can be written in
terms of the eigenvalues of matrix I−T, namely,

det(I−T) =

5∏
m=1

[1− λm(ω)]. (25)

When the frequency ω equals a system resonance ωi, det(I − T) becomes zero, as shown in the previous
section. The factorization is then singular because there is no transmission through specific paths but the
whole system is vibrating according to one of its modal shapes. Moreover, the numerators of the weights
in Eqs. (23) and (24) contain the determinants of the complementary block matrices of those masses not
involved in the considered paths. For example, the numerator of the relative weight contribution for the
direct path linking m2 to m1 (i.e., the term multiplying t21) is given by det(I−T{345}), while that for t23t31
is det(I−T{45}). The numerators of the third order paths weights are unity because I−T has ones in the
diagonal, and thus coincide with the weights of fourth order paths, which have no complementary systems
because, as said, they comprise all masses in the system. Next consider, for instance, the numerator of the
relative weight of a second order path in Eq. (23) (there is only one of them in Eq. (24), from m2 to m3 and
then to m1). Such path connects three masses so the complementary block matrix is 2× 2. Therefore, the
numerator of the relative weight will be of the type det(I−T{ij}), which can be expanded as

det(I−T{ij}) =

2∏
m=1

[1− λm{ij}(ω)]. (26)

As said before, λm{ij}(ω) correspond to eigenvalues of the reduced complementary system T{ij}. When the
frequency coincides with a resonance of the complementary system, i.e., the resonances when all other masses
but mi and mj in the 5 dof system are blocked, det(I − T{ij}) becomes zero and no signal is transmitted
through the path. This is logical since the masses in the path at those frequencies stand still while the
complementary ones vibrate at their local resonance value.

The above explanations are illustrated for the 5 dof mechanical system in Fig. 9, where we have plotted
the relative weights of the open paths connecting m2 and m1 in Eq. (24). As observed, all three weights
det(I−T{345})/ det(I−T), det(I−T{45})/det(I−T) and 1/ det(I−T) tend to infinity at the five resonances
of the system (indicated with dashed vertical lines in the figure, see Table 2) because det(I−T) = 0 at such
frequencies. Likewise, det(I−T{345})/ det(I−T) weighting the direct connection between m2 and m1 (first
line in Eq. (24)) exhibits three drops tending to minus infinity, which correspond to the local resonances of
the complementary system involving masses m3, m4 and m5, where det(I−T{345}) = 0 (vertical green lines
in Fig. 9). Analogously, det(I−T{45})/ det(I−T) weighting the second order open path from m2 to m3 and
then to m1, in the second line of Eq. (24), presents two drops related to the resonances of the complementary
system made of m4 and m5 (frequencies at which det(I − T{45}) = 0, highlighted by blue vertical lines in
the figure). Finally, the relative weight of the third order open path in the third line of Eq. (24) involves
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Figure 9: Modulus of the relative weights det(I−T{ij})/det(I−T) of the open paths in Eq. (24), for the mechanical system
in Fig. 6 with graph in Fig. 8.

all masses so there is no complementary system to resonate. Therefore, the relative weight never becomes
zero and the logarithmic plot shows no drop for it to minus infinity. To summarize, if the system is excited
at a frequency that is far from the system and complementary system resonances, the eigenvalues of T and
T{ij} are small compared to unity and Eq. (25) and Eq. (26) get close to one. Consequently, so do the
relative weights in Eq. (23) and the displacement of one mass due to the displacement of another mass can
be directly expanded in terms of the contributions of all open paths connecting them. The relative weights
do not play a relevant role in such situation. As long as the frequency approaches a system resonance,
the weights augment and become infinite when the resonance is matched. Note that the closed cycles in
section 3.2 for det(I−T{ij}) can be therefore somehow identified with the system resonances. Besides, if the
considered frequency coincides with a resonance of the complementary system of a given path, that path will
transmit no signal because its weight would be negligible. This makes sense as in such situation the masses
in the path remain still. The closed paths of the adjugate matrix in section 3.3 account for the influence
of the resonances of the complementary systems. Interestingly, similar results were found in control theory,
when analyzing the meaning of transmission zeros for lumped electro-mechanical systems. Their relation
with substructure resonances was reported in [55, 56], though following a totally different argumentation
neither related to graph theory nor to physical interpretation in terms of transmission paths.

4.2. Second example: a 5 subsystem SEA model
4.2.1. SEA model description

Our second example, which is representative of vibroacoustic modelling in the high frequency range,
consists of an SEAmodel. For the ease of exposition, we also consider a simple mechanical system made of five
plates that are linked together according to the sketch in Fig. 10. For simplicity, we only deal with five SEA
subsystems that account for the flexural resonant modes of each plate (neither shear nor longitudinal modes
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Figure 10: SEA system with the same connectivity pattern than the system in Fig. 6.

are taken into account, which are important for wave conversion at junctions see e.g., [57]). Computations
have been carried out for 1/3 octave frequency bands ranging from 500 Hz to 20,000 Hz. This guarantees
the number of modes per band is greater than 5. However, for the sake of brevity we will only present results
for the bands centered at fc = {500, 1000, 2000, 5000} Hz. Besides, note that the connectivity of the plates
is identical to that of the masses in the previous example of Fig. 6. Therefore, the graph in Fig. 8 will also
characterize the current SEA model assigning appropriate weights to its arcs.

Matrix A ∈ R5×5 is now identified with the SEA loss factor matrix,

Aij =

{
−ηji i 6= j
ηi i = j

, (27)

where ηij designates the coupling loss factor between subsystems i and j, and ηi the total loss factor of
subsystem i (ηi := ηid +

∑
i 6=j ηij , with ηid being the damping loss factor).

The values of the SEA loss factors are provided in Table 3 and have been computed using stan-
dard SEA formulas (see e.g. [35–37]). The vector x in Eq.(1) contains the five subsystems energies,
x = (E1, E2, E3, E4, E5)> while vector b = (E0

1 , E
0
2 , E

0
3 , E

0
4 , E

0
5)> is the external energy input into the

system, often written as b = ω−1(W1,W2,W3,W4,W5)>, Wi being the external power input at subsystem
i at the octave (or 1/3 octave) band with central frequency ω.

Making use again of T = I−D−1A, we get the following entries for the transmissibility matrix T,

Tij =

{
ηji/ηi i 6= j

0 i = j
. (28)

In SEA, T directly acts as the generating matrix of the Neumann series in Eq.(4) (see [39–41]).

4.2.2. Relation between the eigenvalues of the SEA loss factor matrix and the eigenvalues of T

As for the mass-damping-stiffness example, prior to proceeding with the path analysis, let us make some
general observations on the eigenvalues of the loss factor and transmissibility matrices. Consider again the
eigenpairs (λi,Φi) of T satisfying T(ω)Φi = λiΦi. Note that λi ∈ C and Φi ∈ Cn×1 because T is now
real but still non-symmetric. In an SEA system whose subsystems all have non-zero damping loss factor
(which will be the case in any realistic model), it is easy to prove that the summation of any column of T is
smaller than unity, i.e., Rj :=

∑
i(ηji/ηj) < 1 ∀ j (see e.g. [37]). The Gershgorin circle theorem then implies
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Table 3: Total loss factors (ηi) and coupling loss factors (ηij) for the SEA plate example at the 1/3 octave bands centered at
fc = {500, 1000, 2000, 5000} Hz.

500 Hz 1000 Hz 2000 Hz 5000 Hz

η11 0.0790 0.0705 0.0645 0.0592
η21 0.0100 0.0071 0.0050 0.0032
η31 0.0231 0.0163 0.0115 0.0073
η12 0.0179 0.0126 0.0089 0.0057
η22 0.0764 0.0687 0.0632 0.0584
η32 0.0268 0.0189 0.0134 0.0085
η42 0.0398 0.0282 0.0199 0.0126
η13 0.0111 0.0078 0.0055 0.0035
η23 0.0061 0.0043 0.0031 0.0019
η33 0.1456 0.1176 0.0978 0.0802
η53 0.0136 0.0096 0.0068 0.0043
η24 0.0103 0.0073 0.0051 0.0033
η44 0.1223 0.1011 0.0862 0.0729
η54 0.0079 0.0056 0.0039 0.0025
η35 0.0457 0.0323 0.0228 0.0145
η45 0.0324 0.0229 0.0162 0.0103
η55 0.0715 0.0652 0.0607 0.0568

|λ − Tjj | = |λ| ≤ Rj < 1, with λ being any eigenvalue of T (i.e., |λi| < 1 ∀ i = 1 . . . n). Besides, from the
relation between A and T it follows that

D−1AΦi = (1− λi)Φi. (29)

Given that |λi| < 1, D−1A will never have a null eigenvalue.
The situation for the SEA system clearly contrasts with that found for the mass-damping-stiffness exam-

ple, where the eigenvalues of T become unity at the resonances of the system. Obviously, no global resonances
are expected in SEA. Neither the eigenvalues λm(ω) of T in Eq.(25) nor the eigenvalues λm{ij}(ω) of the
complementary systems T{ij} in Eq.(26) will reach a unit value. Consequently, in SEA the physical meaning
of the relative weights in the factorization Eq.(23) (see also Eq.(24)) is better explained in terms of energy
transmission paths than in terms of nonexistent global and complementary system resonances. The modulus
of the five eigenvalues of the plate model in Fig. 10 are plotted in Fig. 11. Although it only makes sense in
SEA to present results for averaged frequency bands, in the figure we have swept the whole frequency range
to confirm the mathematical prediction that all eigenvalues of T are smaller than one.

4.3. SEA solution in terms of transmission paths
Given that the connectivity of the SEA model in Fig. 10 coincides with that of the mass-damping-

stiffness system and can be represented by the graph in Fig. 8, it follows that the factorization of the
element (I − T)−121 of the plate model exactly matches that in Eq. (23), substituting tij by ηji/ηi. It shall
be noted that (I−T)−121 will now represent paths going from plate 1 to plate 2 (instead of going from plate
2 to 1), because loss factors appear transposed in an SEA matrix. The expansion in Eq. (23) becomes

[(I−T)−1](2,1) =
det(I−T{345})

det(I−T)

η12
η2

+
det(I−T{45})

det(I−T)

η13
η3

η32
η2

+
1

det(I−T)

η13
η3

η35
η5

η54
η4

η42
η2
,

(30)
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Figure 11: Eigenvalues of matrix T corresponding to the plate SEA system in Fig. 10.

and involves the only three existent open paths between plates 1 and 2, namely P12, P132 and P13542 (see
Fig. 8). The weights of P12, P132 and P13542 are respectively η12/η2, η13η32/η3η2 and η13η35η54η42/η3η5η4η2,
in accordance with the standard definition of SEA paths (see [38, 39, 41]). The factorization in Eq. (30)
justifies the energy transmitted from plate 1 to plate 2 as contributions of the three open paths between
them. These contributions must be compensated so that their overall value matches that obtained from
the infinite amount of paths linking the two plates (see [39, 41]). This is the role of the relative weights
det(I−T{ij...})/ det(I−T) in the expression, which account for the influence of the complementary cycles
on open paths.

The numerator of the relative weight of P13542 is one (third line in Eq. (30)) because all plates are involved
in it and there is no complementary system. The numerator for P132, namely det(I−T{45}) = 1−η45η54/η5η4
(second line in Eq. (30)) contains all complementary system cycles to P132. The scalar 1 accounts for the
product of the weights of loops from plate 4 to itself, i.e., P44, and from plate 5 to itself, i.e., P55 (both loops
have unit weight which results in an overall product weight of 1). Besides, η45η54/η5η4 is the weight of the
other complementary cycle, namely the closed path P454. As regards the open path P12, its relative weight
numerator has the expression det(I−T{345}) = (1−η45η54/η5η4−η53η35/η3η5) (first line in Eq. (30)). Each
term in it involves plates 3, 4 and 5 and we have plotted them in Fig. 12 for illustrative purposes. The
scalar 1 corresponds to the product of the weight of the loops P33, P44 and P55 (see Fig. 12a). The term
η45η54/η5η4 now stands for the product of the weights of cycle P454 and loop P33 (let us denote the cycle
set as P454 ∪ P33, see Fig. 12b). Finally, η53η35/η3η5 is the total weight for P535 ∪ P44, which is represented
in Fig. 12c.
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On the other hand, the denominator of the relative weights, det(I−T), can be expanded as

det(I−T) = 1

− η12
η2

η21
η1
− η13

η3

η31
η1
− η23

η3

η32
η2
− η24

η4

η42
η2
− η35

η5

η53
η3
− η45

η5

η54
η4

+
η13
η3

η31
η1

η24
η4

η42
η2

+
η12
η2

η21
η1

η35
η5

η53
η3

+
η12
η2

η21
η1

η45
η5

η54
η4

+
η13
η3

η31
η1

η45
η5

η54
η4

+
η23
η3

η32
η2

η45
η5

η54
η4

+
η24
η4

η42
η2

η35
η5

η53
η3

− η12
η2

η23
η3

η31
η1
− η13

η3

η32
η2

η21
η1

+
η12
η2

η23
η3

η31
η1

η45
η5

η54
η4

+
η13
η3

η32
η2

η21
η1

η45
η5

η54
η4

− η23
η3

η35
η5

η54
η4

η42
η2
− η24

η4

η45
η5

η53
η3

η32
η2

− η12
η2

η24
η4

η45
η5

η53
η3

η31
η1
− η13

η3

η35
η5

η54
η4

η42
η2

η21
η1
.

(31)

This contains all cycles in the graph of Fig. 8, associated to the SEA model in Fig. 10. For instance, the
unit scalar in the first line of Eq. (31) is the weight of the cycle set P11 ∪ P22 ∪ P33 ∪ P44 ∪ P55. The second
line of Eq. (31) comprises sets made of three loops and a second order closed path. The first term in this
line, for example, is the weight of the cycle set P121 ∪ P33 ∪ P44 ∪ P55. In the third line of Eq. (31) we find
weights of cycle sets made of two second order closed paths and one loop, such as P131 ∪ P242 ∪ P55. The
fourth line exposes combinations of third order closed paths and two loops, e.g., P1231 ∪P44 ∪P55. Likewise,
in the fifth line we find cycle sets built from the combination of a third order closed path and a second order
one, as P1231 ∪P454. The sixth line of Eq. (31) contains the weights of fourth-order paths plus one loop, like
P23542 ∪ P11. Finally, the seventh and last line presents the weights of the two cycles visiting all plates in
the graph, namely P124531 and P134531.

In Fig. 13, we compare the energy contributions of the open paths with relative weights, with that of
an infinite summation of standard SEA paths admitting cycles. The latter have been computed using the
algorithm for ranking dominant energy transmission paths in [41]. Results are presented for the 1/3 octave
bands with central frequencies fc = {500, 1000, 2000, 5000} Hz, when unit external energy is input into
plate 1 in Fig. 10. At each band, Fig. 13 plots the cumulative energy level at plate 2 when increasing the
number of paths. As expected, once considered all three weighted open paths the total energy at plate 2
is recovered (dashed horizontal lines in Figs. 13a-d), while for standard SEA paths one can only expect an
asymptotic approach to it. To reach 99% of the energy of plate 2 at the band of 500 Hz we require 34
different paths, while 14, 8 and 5 paths are respectively needed for the bands centered at 1000 Hz, 2000 Hz
and 5000 Hz.

All paths except the three open ones contain cycles (i.e., at least some plates are visited more than once),
so one could understand the relative weights as some way of packaging all information on cycles and assign
it to open paths. Note that if the eigenvalues of the SEA matrices T and T{ij} were such that λm(ωc)� 1
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Figure 12: Graphs corresponding to the three terms in the numerator det(I − T{345}) of the relative weight for the
open path P12: a) P33 ∪ P44 ∪ P55, b) P454 ∪ P33 and c) P535 ∪ P44.
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Figure 13: Cumulative contribution of weighted open paths and paths with cycles to the total energy of plate 2, when exciting
plate 1, for the 1/3 octave bands centered at fc = {500, 1000, 2000, 5000} Hz.

and λm{ij}(ωc) � 1, ωc = 2πfc, all weights would equal unity and the energy at a subsystem could be
practically recovered from the summation of non-weighted open paths. The factorization in terms of open
paths could provide a quick way to try to detect and remedy vibroacoustic problems in SEA models. It can
be viewed as an alternative, or complement, of other proposed path analysis strategies [41, 42, 45].

5. Conclusions

The vibroacoustic behavior of many structures can be modelled by means of linear systems of equations.
While it is known that the solution to the latter can be expanded as infinite series of paths connecting input
degrees of freedom to target ones, in this work we have proved that it is also possible to obtain the system
solution as a finite summation of paths. To prove this assertion, we have exploited the connection between
matrix algebra and graph theory. The components in Leibniz formula for the determinant of a matrix have
been interpreted in terms of open and closed paths in a graph. This has allowed us to express any element
in the inverse of a matrix as a finite summation of weighted open paths connecting its two indices.

The above result is totally general and applies to any square invertible real or complex matrix, so we
can consider it for the transmissibility matrix of a linear vibroacoustic system. For better understanding its
physical meaning, we have addressed two representative cases of low and high vibration modelling. First, we
have dealt with finite path analysis in a 5 dof mechanical system made of masses and springs with structural
damping. It has been shown that the relative weights of the open paths connecting any two masses account
for the influence of the complementary masses not belonging to the path. Actually, the weights are singular
at the system global resonances, where path decomposition is meaningless, and vanish at the complementary
system local resonances, because the masses in the path do not move at such frequencies. Providing a physical
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explanation for the finite path factorization of low frequency vibroacoustic systems is one of the significant
outcomes of this work, given that the infinite one is hard to interpret. In some sense, the contribution of the
infinite number of loops involving complementary dofs in the infinite series expansion has been reinterpreted
as the complementary system resonances in the weights of the finite one.

The second example has consisted of a statistical energy analysis (SEA) model for a set of five connected
plates. It has been known for years that an SEA system solution can be expanded in terms of the contri-
butions of an infinite number of energy transmission paths. The herein proposed finite SEA expansion in
terms of open paths has the particularity that the information of all paths containing loops can be viewed
as somewhat packaged in the relative weights of the open paths. A geometric interpretation of these weights
has been given in terms of cycles of the whole SEA graph and cycles in complementary graphs containing
subsystems not included in the open paths. A comparison has also been made between the finite and infinite
series contributions for recovering the energy at one plate when exciting another one. It is expected that the
finite factorization in this work could be useful to derive new transfer path analysis strategies, or complement
current ones, for effectively addressing noise and vibration problems.
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