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We propose a mechanism for liquid formation in strongly correlated lattice systems. The mech-
anism is based on an interplay between long-range attraction and superexchange processes. As an
example, we study dipolar bosons in one-dimensional optical lattices. We present a perturbative
theory and validate it in comparison with full density-matrix renormalization group simulations
for the energetic and structural properties of different phases of the system, i.e., self-bound Mott
insulator, liquid, and gas. We analyze the non-equilibrium properties and calculate the dynamic
structure factor. Its structure differs in compressible and insulating phases. In particular, the low-
energy excitations in compressible phases are linear phonons. We extract the speed of sound and
analyze its dependence on dipolar interaction and density. We show that it exhibits a non-trivial
behavior owing to the breaking of Galilean invariance. We argue that an experimental detection of
this previously unknown quantum liquid could provide a fingerprint of the superexchange process
and open intriguing possibilities for investigating non-Galilean invariant liquids.

Introduction. Ultracold atoms in optical lattices
might serve as a quantum simulator of the Hubbard
model that plays a vital role in our understanding of
strongly correlated solid-state materials [1]. Particularly,
the Hubbard model at strong coupling displays superex-
change processes which can be employed to simulate
different quantum magnetic systems [2–6]. Moreover,
the recent experimental progress with atoms possessing
strong magnetic moments, like Dy, has led to the first re-
alization of an extended Bose-Hubbard model (eBH) in
3D [7] and 1D [8]. The eBH phase diagram remains vastly
uncharted. The addition of a long-range potential to the
interplay between on-site repulsion and periodic confine-
ment holds promise for exciting new physics to emerge,
e.g. quasi-localization [9, 10] and unexpected topological
phases [11, 12].

The classical van der Waals theory of fluids states
that self-bound liquids exist due to the attractive finite-
range part of the interparticle interaction stabilized by
the repulsive short-range core [13]. Recently, a novel
paradigmatic quantum liquid has been observed in ul-
tracold systems that is simultaneously ultradilute and
coherent [14–21]. Contrary to van der Waals mecha-
nism, the weakly-interacting quantum gases undergo liq-
uefaction due to the zero-point energy fluctuations [22]
— the so-called Lee-Huang-Yang (LHY) term [23–25].
Notably, quantum liquids are even more robust in lower
dimensions owing to an enhanced role of quantum fluc-
tuations for both two-component and dipolar gases [26–
34], while in classical systems the van der Waals mecha-
nism cannot prevent a collapse of the classical system
with long-range interactions in lower dimensions. In-
terestingly, microscopic foundations of quantum liquid
formation for weakly-interacting Bose-Bose mixtures can

FIG. 1. (a) Schematic representation of a density profile in
self-bound Mott insulator (B-MI) having a unit filling and
liquid drop (LIQ) in which particles are bound but holes are
present. Arrows indicate the different superexchange pro-
cesses through doublon formation. (b) Phase diagram for
dipolar bosons in a one-dimensional optical lattice. Different
phases can be characterized by their respective equilibrium
densities n0. We encounter a gaseous phase (GAS), a liquid
one, and a self-bound Mott-insulator. Dashed and dotted-
dashed lines denote respectively LIQ-to-B-MI and GAS-to-
LIQ transitions obtained in perturbation theory. The dotted
line indicates the threshold for a bound state (dimer) in the
two-body problem.

be studied in one-dimensional optical lattices [35, 36].
In this Letter, we study an unconventional microscopic
mechanism of liquid formation for a system confined to
a one-dimensional optical lattice with strong on-site re-
pulsion — in the vicinity of the Tonks-Girardeau limit
(TG) — and long-range attraction. Notably, we show
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that the appearance of superexchange processes liquefies
the gas state close to an insulator phase transition ren-
dering a quantum droplet for moderate and large system
sizes. Furthermore, we study the dynamic structure fac-
tor and show that it differs substantially in compressible
and incompressible phases. In gas and liquid phases, the
excitation spectrum is exhausted by two-particle exci-
tation with linear low-momentum dispersion, justifying
the applicability of the Luttinger Liquid theory. Instead,
in the insulating phase, a gap opens, and doublon exci-
tations become dominant. Finally, we study the speed
of sound of the system. We observe changing behav-
ior as a result of the interplay between interactions and
the breaking of the Galilean invariance in lattice systems.
Our theoretical predictions should be applicable to a vast
range of physical systems realizing eBH models like dipo-
lar bosons [8, 37], Rydberg atoms [38, 39] or even exci-
tonic platforms [40].

Setup and model. We consider a one-dimensional
(1D) system of ultracold dipolar bosons loaded to a deep
optical lattice comprising Ns sites. The correspond-
ing Hamiltonian is given by an extended Bose-Hubbard
(eBH) model,

Ĥ=

Ns∑
i=1

[
U

2
n̂i (n̂i−1)− J

(
b̂†ib̂i+1+h.c.

)]
+ V

Ns∑
i<j

n̂in̂j
|i−j|3 ,

(1)

with hopping J , on-site interaction U and dipolar
strength V . Importantly, it is possible to tune U/J
and V/J separately in experiments with 1D optical lat-
tices [37], e.g. by using Feshbach resonances and adjust-
ing the polarization angle of the magnetic moment in
the system. Thus, all the phases considered should be
accessible for future experiments with Dy or Er atoms
similar to existing state-of-art settings [8, 37], see the
Supplemental Material [41]. A typical transverse length
of a trapping potential in current experiments with ul-
tracold gases σ⊥ ≈ 50 nm [37] is much smaller than a
typical lattice spacing a ≈ 500 nm. We thus use pure
dipolar interaction in 1D instead of the effective poten-
tial for quasi-1D geometries [42], as the latter includes
corrections only at short distances of the order of σ⊥.
Hereafter, we fix the length scale a = 1 to the lattice
spacing. In the following, we study the ground state of
the system described by Hamiltonian (1) for large values
of the on-site repulsion (U/J � 1) by developing pertur-
bation theory and performing numerical simulations.

Insulator instability. We start by investigating an
impenetrable lattice TG gas (U/J → ∞) perturbed by
an attractive dipolar interaction (|V | ∼ J). We de-
velop an analytical theory by assuming a lattice TG
state |ψTG〉 at a density n = N/Ns and calculating
the effective equation of state (EoS) perturbatively as
E = 〈ψTG|Ĥ|ψTG〉. The resulting energy per particle
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FIG. 2. Equation of state of dipolar bosons in a one-
dimensional optical lattice for different dipolar strength V/J
and fixed on-site repulsion U/J = 20. Filled symbols de-
note inhomogeneous solutions. Dashed lines show the Tonks-
Girardeau perturbative result [41]. The dotted line shows
the behavior expected for a lattice soliton solution [43]. Liq-
uid forms when the equation of state shows a minimum at
some finite value of density n0 with the energy per particle
E/(Nsn0) < −2J , see V/J = −1.4,−1.5,−1.6 curves. A gas
occurs when the minimum is located at zero density with the
energy per particle E/N > −2J , see the V/J = −1.0 curve.

e ≡ E/N reads e = eJ + eV , where

eJ = −2J sin(nπ)/(nπ), (2)

eV = V
(
ζ(3)n− ζ(5)

2nπ2
+

1

4nπ2

[
Li5
(
e2iπn

)
+Li5

(
e−2iπn

)])
,

indicate the kinetic energy of the fermionized bosons and
the dipolar interaction energy accordingly. We also in-
troduce the polylogarithm function Liβ(n) of order β.

We classify the different phases of the system based on
the value of the equilibrium density n0, defined as the
density at which the energy per particle is minimal. The
gaseous (GAS) phase is characterized by a vanishing equi-
librium density n0 = 0 and it appears for V < VB-MI [44].
At the critical value V = VB-MI, the minimum of the EoS
jumps to unit density n0 = 1 signaling a first-order tran-
sition to an insulator state. Furthermore, the insulator
state has a lower energy per particle than the free parti-
cle energy −2J . It is thus a self-bound state, to which we
refer as a self-bound Mott insulator (B-MI). The thresh-
old of the B-MI state is defined by the condition that
the energy per particle at unit filling equals the free en-
ergy per particle e(n = 1) = −2J , giving the critical
value of the long-range interaction VB-MI/J = −2/ζ(3).
B-MI states feature complete incompressibility. Thus in
finite systems they become completely localized exhibit-
ing compact density profiles with a saturated density cor-
responding to strictly one particle per site n = 1 (see
Fig. 1). Although the density profile for these states
bears similarity to quantum droplets, quantum correla-
tions are completely suppressed in the B-MI case (see
also Fig. 3). Therefore, one should not consider them as
genuine liquids. In fact, they can be related to phase-
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separated states in spin systems [45].
Importantly, lattice physics significantly differs from

what one expects to find in a continuous analog of the
described system. In the 1D continuum, the addition
of attractive dipolar interaction to TG gas leads to the
collapse of the system as the quantum fluctuations can-
not compensate for the diverging dipolar attraction. The
feature of a lattice is that it provides a natural regular-
ization of the problem since, for hard-core particles, the
maximum density allowed is fixed by the lattice spacing
(n ≤ 1) [46]. Notice, however, that genuine self-bound
droplets in the TG limit for quasi-1D dipolar bosons,
where the existence of transverse structure regularizes
short-range divergence, were predicted recently [32].

Superexchange processes and liquefaction. The
mechanism lying behind B-MI formation is based on a
near cancellation between the effective repulsion coming
from the kinetic energy of lattice hard-core particles and
the long-range dipolar attraction. This scenario resem-
bles a droplet formation for weakly interacting bosons
with canceling mean-field contributions and stabilization
due to beyond mean-field LHY terms. In the following,
we study the effects of relaxing the hard-core condition
in our system.

We consider penetrable bosons with large but finite
on-site interaction U/J � 1. We thus move away from
the TG limit that opens the possibility of next-to-nearest
neighbor hopping through a virtual intermediate process
of two bosons occupying the same site — the so-called
superexchange process. Explicitly, this extra contribu-
tion eU to the total energy e can be derived using the
effective fermionic Hamiltonian within the second-order
degenerate perturbation theory [41, 47], and it reads:

eU = −4J2

U
n

(
1− sin(2πn)

2πn

)
. (3)

Note that the superexchange correction effectively intro-
duces additional attraction of order J2/U � 1 in the
system for all densities.

Remarkably, by inspecting the modified EoS of the
ground state, we encounter a gas-to-liquid transition
close to the B-MI boundary owing entirely to the emerg-
ing superexchange process, which diminishes on-site re-
pulsion. The found liquid phase is characterized by a
negative energy per particle smaller than for the free case
E/N < −2J and a finite equilibrium density 0 < n0 < 1
(see Fig. 1). By increasing the attractive long-range cou-
pling, the density saturates with one particle per site,
and consequently, the system enters the B-MI state.

Notably, the discovered mechanism of liquefaction in
the strongly-correlated regime bears certain similarities
with the one vastly studied in the opposite limit of weak
interactions. As therein, quantum liquids appear due to
the subleading terms when dominating contributions of
opposite signs cancel each other. Nonetheless, contrary
to the LHY term as a small beyond mean-field effect, the
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FIG. 3. Density and its variance as a function of V/J for a
fixed U/J = 20. Top: Saturated density n0 (circles). Dashed
line: unit filling, n0 = 1 (B-MI); zero filling, n0 = 0 (GAS);
linear interpolation (LIQ). We have performed o.b.c numerical
simulations up to a density n = 50/800. Bottom: Particle
number variance ∆n2

0 = 〈n̂2
0〉 − 〈n̂0〉2 (squares). The dotted

line denotes the particle number variance obtained in a TG-
like state, see the main text. Inset: Characteristic density
profiles obtained for V/J = −1.8 (B-MI), V/J = −1.5 (LIQ)
and V/J = −1.3 (GAS).

superexchange correlations occur for strongly interacting
systems well beyond the mean-field applicability.

Equilibrium properties. To benchmark the per-
turbative EoS, we calculate the ground-state energy of
Hamiltonian (1) using the density matrix renormalization
group (DMRG) algorithm, see the Supplemental Mate-
rial for details. We compute the ground state for different
strengths of the long-range interaction V/J keeping fixed
a large but finite on-site interaction U/J , see Fig. 2. In
the case of larger densities (n & 0.8), an excellent agree-
ment is found for any value of the long-range interaction,
especially when approaching the unit filling limit n = 1
owing to suppressed quantum correlations. For smaller
densities (n . 0.5), the effective EoS deviates signifi-
cantly, as it does not include the presence of few-body
bound states. In DMRG simulations, we always observe
that the appearance of the liquid phase coincides with
the formation of a two-body bound state in the system,
see Fig. 1. Details on solving the two-body problem are
given in [41]. In the few-body limit, the equation of state
is well approximated by a lattice soliton solution [43]
E
N + 2J ∼ (N−1)

2 εb with εb being the two-particle bound-
state energy, see Fig. 2. The appearance of the lattice
soliton shows that the long-range effects of the dipolar
interaction at small densities can be absorbed into the
binding energy εb.

The EoS allows one to differentiate three distinct
phases in the system, see Fig. 2. The gaseous phase fea-
tures a minimum in the EoS at zero density n0 = 0 and
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a positive energy per particle compared to the free case
e > −2J . On the other hand, the liquid and B-MI phases
are characterized by negative binding energies e < −2J
in the minimum. The equilibrium density of a liquid
ranges within 0 < n0 < 1, and saturates to n0 = 1 in
the B-MI phase, making its EoS singular. Moreover, the
liquid state is compressible while the B-MI is not.

One of the qualitative differences between the pre-
dictions of perturbative theory and DMRG results is
the presence of a narrow liquid phase in the TG limit
J/U = 0. This liquid state is sandwiched between the
gas and B-MI phases for VMI < V < −1.61J , see Fig. 1.
The weakest attraction, for which the liquid forms, is
defined by the existence of a two-body bound state. Re-
markably, for the dipolar interaction, the formation of a
two-body bound state does not coincide with the forma-
tion of a self-bound MI state in the many-body problem
for J/U = 0, in contrast to faster decaying potentials.
We thus relate the presence of the liquid phase to the
long-range nature of the dipolar interaction.

The equilibrium properties differ dramatically among
the various phases, as shown in Fig. 3. The equilibrium
density ranges from 0 < n0 < 1 in the liquid phase and
saturates to n0 = 1 in the B-MI phase. DMRG simula-
tions result in density profiles that do not fill the entire
lattice for these phases, contrary to the gaseous state,
see inset of Fig. 3. Moreover, the value of the saturated
density agrees excellently with the equilibrium density
found from the EoS. Its value increases almost linearly
for the growing attractive long-range interaction in the
liquid phase. Upon reaching the B-MI phase, the equi-
librium density saturates to n0 = 1 and becomes inde-
pendent of the dipolar coupling.

Another important observable pertains to the parti-

cle variance ∆n0 =
√
〈〈n̂02〉 − n20〉, as it quantifies the

fluctuations of density and probes the structure of pair
correlations. Particularly, it vanishes in the gas phase
(due to vanishing equilibrium density) and in the B-MI
phase becomes of order J/

√
U . We find that the maxi-

mal value of ∆n is reached in the liquid phase close to
half-filling n0 ∼ 1/2. Fascinatingly, the lattice TG model
captures the particle variance model well and provides a
precise analytic description, see Fig. 3.

Non-equilibrium properties. As non-equilibrium
properties can be experimentally measured [54, 55], we
investigate the dynamic structure factor S(k, ω). It quan-
tifies the structure and strength of the two-particle exci-
tations allowing an additional verification of the phases.
In Figs. 4(a-c), we provide characteristic examples of
S(k, ω) in different phases. The structure of the excita-
tions differs drastically whether the system is compress-
ible or not. A single mode exhausts the spectrum in the
GAS and LIQ phases. Indeed, the position of the peak in
S(k, ω) is close to the prediction of the Feynman relation,

ω(k) =
〈b̂†i b̂i+1〉ε(k)

nS(k) , derived in the single-mode approxi-

FIG. 4. (a-c) Dynamic structure factor for (a) the GAS phase
(V/J = −0.5, U/J = 20 and n = 25/50), (b) the LIQ phase
(V/J = −1.4, U/J = 20 and n = 25/50) and (c) the B-MI
phase (V/J = −1.4, U/J = 20 and n = 50/50). Upper and
lower bounds to the excitation energies for V/J = 0 are ob-
tained from Bethe ansatz [48, 49] (dashed lines) for GAS and
LIQ and from first-order perturbation theory [50–53] (dotted
lines) for B-MI . (d) Speed of sound as a function of the den-
sity for different values of V/J and a fixed U/J = 20. Symbols
from lattice Feynman relation, see the main text; lines from
perturbative results; black diamonds extracted from the dy-
namic structure factor.

mation. Such behavior profoundly varies from that of a
spinon-like spectrum expected at half-filling [48, 49], in
which modes are populated from the lower (one-particle
or -hole excitation) up to upper (two-particle excitation)
branches, see dashed lines in Figs. 4(a-b). The pres-
ence of dipolar interactions strongly affects the excita-
tions, creating a dominant mode located close to the
upper branch. Such a behavior is typical of systems
that are softer than the TG gas and possess larger val-
ues of the Luttinger parameter, K > 1 [56]. We verify
that the lowest-energy modes in compressible phases are
linear phonons, validating the applicability of the Lut-
tinger Liquid theory. By employing a flat-top model,
i.e., S(k, ω) = const, ω−(k) < ω < ω+(k) (see SM for de-
tails), we demonstrate that the spectral weight diverges
S(k, vsk) ∝ 1/k2 as k → 0, that is the phonon mode is
greatly populated, in agreement with the numerical simu-
lations. The structure of excitations differs dramatically
in the B-MI phase, wherein a gap ∆ opens. From the flat-
top model analysis, we infer that the spectral weight van-
ishes at small momenta, S(k,∆) ∝ k2 for k → 0. Instead,
the edge of the Brillouin zone, kBZ = π/a, gets strongly
populated, and a sharp peak is formed in S(kBZ , ω) so
that the lattice Feynman relation captures well the value
of the gap. In absence of dipolar interactions, the upper
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and lower bounds are no longer given by one- or two-
particle excitations but rather by doublon-holon excita-
tions, shown with dotted lines.

Having studied the dynamic structure factor in the
three phases, we focus now on the speed of sound. The
presence of a lattice has strong consequences on sound
propagation [57, 58] and other transport properties [59],
as can be traced to the loss of Galilean invariance in the
lattice. This produces a non-trivial dependence of the
sound on the density. Since we have shown the lattice
Feynman relation correctly captures the sound velocity
in GAS/LIQ phases, we will use it in the following. To
obtain the speed of sound vs, we calculate static struc-
ture factor S(k), compute the compressibility κs from the
EoS, and employ the non-Galilean version of the Feyn-
man relation [41, 60], S(k) = κsvsnk/2 applicable for
small momenta. In Fig. 4d, we present the sound veloc-
ity as a function of the density for different values of the
long-range coupling. For weak dipolar attraction, the
speed of sound decreases above half-filling and reaches
zero at unit filling, signaling the transition to a MI state.
As the dipolar strength increases, a liquid state forms,
and the sound velocity also vanishes at spinodal density
ns ≤ 1. Zero value of vs signals that the homogeneous
solution becomes unstable. Finally, when approaching
the B-MI phase, the sound velocity nears zero for any
value of density showing no stable homogeneous solution
exists for |V | > |VB-MI|.

For an analytical estimation of the speed of sound, we
employ the non-Galilean invariant Luttinger liquid the-
ory [57, 58]. Within it, the sound velocity vs =

√
vNvJ

is determined through the phase vJ and density vN stiff-
nesses. Assuming the TG state, we explicitly compute
the response of the system and the speed of sound [41],
see Fig. 4b. For weak dipolar attraction, we note an
agreement between the perturbative theory and exact
numerical analysis. For the increased strength of attrac-
tion, the analytical approach predicts the appearance of
a spinodal point, albeit at an incorrect density value.
Additionally, we report a qualitative difference at small
densities where perturbative theory predicts a finite value
of the speed of sound, in stark contrast with numerical
results where no stable homogeneous solution exists for
n ≤ ns. We associate this discrepancy with the forma-
tion of molecules at small densities, which is overlooked
in the perturbative description.

Discussion and outlook. Our work shows an un-
conventional mechanism for liquid formation in strongly
correlated lattice systems. Specifically, liquefaction arises
due to an interplay between non-local attraction and the
superexchange processes originating from short-range re-
pulsion. Our work presents a non-trivial extension of
the quantum van der Waals theory to lattice systems.
Our predictions apply to lattice systems described by
one-dimensional extended Bose-Hubbard Hamiltonians.
These could be realized experimentally in different ultra-

cold atomic platforms like dipolar bosons [8, 37], Rydberg
atoms [38, 39] or even excitonic systems [40]. Recently,
one-dimensional dipolar bosonic systems were produced
experimentally [37] and loaded into corresponding optical
lattices [8].

Parallelly, these lattice liquids can be a platform for
studying the intriguing properties of non-Galilean invari-
ant liquids with long-range interactions and, for example,
their implications on superfluidity. Potential connections
between the investigated liquid phases and the magnetic
orders expected in the underlying effective spin model
also warrant further exploration. Finally, our theory
could also be applied to fermionic systems with density-
correlated hopping and long-range attraction.
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Supplementary Material for ’Superexchange liquefaction of strongly correlated lattice
dipolar bosons’

LATTICE FERMIONS WITH A LONG-RANGE
INTERACTION

One can obtain a correct description of relevant fea-
tures of the system by perturbatively adding an attrac-
tive long-range interaction to the non-interacting lattice
Fermi gas. By considering the Fermi gas state we can
estimate the energy as,

E = EK + EV (S1)

= −2JNs sin(nπ)/π + V

Ns∑
i<j=1

〈n̂in̂j〉
|i− j|3 .

The first term represents the kinetic energy of the lattice
Fermi gas that we obtain in the thermodynamic limit
N,Ns → ∞ for a fixed particle density n = N/Ns. The
second term is the dipolar energy, which can be computed
in a perturbative manner by employing Wick’s theorem
〈n̂in̂j〉/n2 = 1 − sin2(kF |i − j|)/(kF |i − j|)2, where we
introduce the Fermi momentum kF = πn, and we employ
〈ĉ†i ĉj〉 = sin(kF |i − j|)/(π|i − j|). After some algebraic
manipulations, we obtain the total energy per particle,

E/N = −2J sin(nπ)/(nπ) + V ξ(3)n (S2)

− V ξ(5)

2nπ2

+
V

4nπ2

[
Li5
(
e2iπn

)
+ Li5

(
e−2iπn

)]
.

The liquid phase becomes energetically favorable when
the energy per particle is smaller as compared to its
value in the gas phase at zero density, that is when
E/N < −2J . In principle, the attractive long-range in-
teraction lowers the energy per particle and the system
will liquefy for a critical value of V/J . Since we deal with
hard-core particles, the system cannot have more than
one particle per site. This imposes limitations on the
equilibrium density, which should lie in the 0 < n0 ≤ 1
range. Therefore, there is a critical point of the long-
range interaction strength for which the equilibrium den-
sity of the liquid corresponds to the occupation of one
particle per site. In that situation, self-bound Mott in-
sulators appear in finite-size systems while bulk systems
exhibit insulator properties and are completely incom-
pressible. The perturbative equation of state Eq. (S2)
allows for estimating a critical value for the long-range
strength at which the equilibrium density touches one,

VMI/J = 2/ξ(3). (S3)

−2.0 −1.5 −1.0 −0.5 0.0
V/J

−120

−100

−80

−60

E
/J

U/J → 20

U/J →∞

FIG. 1. Energy E of dipolar bosons loaded in a one-
dimensional optical lattice as a function of the dipolar
strength V for the case of hard-core bosons U/J → ∞ and
a strong but finite on-site interaction U/J = 20. The sim-
ulations are performed with N = 50 particles in a lattice of
Ns = 100 sites. Perturbative energy calculations for a fixed
density n = 1 (dashed line) and n = 0.5 (dotted-dashed line).

To see the appearance of a liquid phase, we need to
obtain E/N < −2J before reaching the self-bound
Mott-insulator phase V > VMI. By evaluating the
energy per particle at the transition point we obtain
E/N |n=1,V=VMI = −2J . Therefore, we see that there
is no intermediate regime where a liquid phase can be
found with E/N < −2J and 0 < n0 < 1. The pertur-
bative equation of state Eq. (S2) predicts a direct tran-
sition between a gas and a self-bound Mott-insulator at
a strength given by Eq. (S3).

QUASI-TONKS-GIRARDEAU REGIME WITH
ON-SITE AND LONG-RANGE INTERACTIONS

After examining the upshots of adding long-range in-
teraction to an ideal Fermi system, we also include the
effect of having realistic bosons (not hard-core ones) with
strong on-site interaction U . This effect can be taken into
account at second order in degenerate perturbation the-
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ory in U/J [47], leading to the effective Hamiltonian,

Ĥ = −J
Ns∑
i=1

(
ĉ†i ĉi+1 + h.c.

)
+

2J2

U

Ns∑
i=1

(
ĉ†i−1n̂iĉi+1 + h.c.

)
− 4J2

U

Ns∑
i=1

n̂in̂i+1 + V

Ns∑
i<j=1

n̂in̂j
|i− j|3 , (S4)

where ĉ†i and ĉi represent creation and annihilation
fermionic operators at site i. The energy of the system
is given by,

E = EK + EV + EU , (S5)

where EK and EV are given by Eq. (S2) and the on-site
energy reads,

EU/N = −4J2

U
n

(
1− sin(2πn)

2πn

)
. (S6)

We observe that the reduction of infinite on-site repul-
sion to a finite one has an attractive effect and EU < 0.
Therefore, the quasi-TG fluid is less repulsive than the
Fermi fluid for the same long-range coupling. Due to the
different density dependence of the energy contributions,
the on-site interaction can liquefy the system. Thus, by
reducing the on-site interaction, we expect to observe a
gas-to-liquid transition. In the dilute regime n � 1, the
perturbative terms remain small compared to the rest of
Eq. (S5). On the other hand, for larger densities they
play an important role. In particular, one can observe
the non-monotonous behavior of the energy as a func-
tion of the density. This will have strong implications on
many thermodynamic observables of the quasi-TG liquid
such as its compressibility.

To test predictions of the developed perturbative the-
ory, we perform DMRG simulations of Hamiltonian by
fixing a number of particles in the system and varying
the long-range strength V with a large on-site interac-
tion U , see Fig. 1. When V < VMI, see Eq. (S3), the
homogeneous solution is stable and the perturbative cal-
culations with a homogeneous density given by n = N/Ns
correctly predict the behavior of the energy of the sys-
tem as a function of the long-range strength. When it
exceeds the critical value V > Vc, the homogeneous so-
lution becomes unstable with respect to the formation of
a self-bound MI which is a droplet with a saturated den-
sity n = 1. By employing the same perturbative equa-
tions for a fixed density n = 1, we can also predict the
dependence of the self-bound MI energy on the dipolar
interaction strength. The abrupt change of the energy
as the long-range strength reaches the critical value Vc
signals the presence of a first-order phase transition be-
tween the homogeneous liquid and an inhomogeneous,
completely incompressible self-bound insulator.

THE TWO-BODY PROBLEM

A problem of two dipolar bosons in a one-dimensional
lattice can be solved by separating the center of mass and
relative motion and using the following set of states,

|ψ〉 =
1√
Ns

∑
i,j

eiQRψQ(z)|i, j〉, (S7)

where we introduce the total quasi-momentum Q of a
pair, relative z = i−j and total R = (i+j)/2 coordinates,
a wavefunction of the relative motion ψQ(z) and the two-
particle state |i, j〉 = b̂†i b̂

†
j |0〉. After inserting Eq. (S7)

into Hamiltonian, we obtain the equation of motion for
the relative wavefunction,

EQψQ(z) =
∑
e=±1

−2J cos(Q/2)ψQ(z + e) (S8)

+ Uδ(z)ψQ(z) + 2V

Ns∑
n=1

δ(|z| − n)

n3
ψQ(z).

Above, we introduce the energy of the pair EQ that de-
pends parametrically on the quasi-momentum Q. By
numerically solving Eq. (S8), we get a spectrum of the
system as a function of the pair quasi-momentum pre-
sented in Fig. 2. We notice that for large values of the
on-site interaction U � J , there is a critical negative
value of the dipolar strength Vc/J , for which a bound
state appears in the spectrum. This bound state appears
below the two-particle scattering continuum and its en-
ergy has a minimum at Qa = 0. It is characterized by
a negative binding energy EB/J defined as a difference
between the energy of the state and the minimum of the
scattering band. For larger negative values of the dipo-
lar strength, more bound states can be found. For the
deepest bound state in the system, we compute a typ-
ical relative distance between the two particles z∗ as a
function of the dipolar strength. We observe that after
crossing the critical dipolar strength Vc/J , the two parti-
cles already localize in adjacent sites. This indicates the
local nature of the bound state even though the presence
of a long-range dipolar interaction. We conclude that
the typical distance between two particles is set by the
lattice spacing z∗ ∼ a. We also explore the dependence
of the critical dipolar strength Vc/J for bound state for-
mation on the on-site interaction U/J , see Fig. 3. The
critical value Vc/J decreases rapidly for small values of
the on-site interaction U/J . For larger on-site repulsion,
it slowly tends to the critical value Vc/J ∼ −1.61 in the
fermionization limit (U/J →∞). This is also the critical
dipolar strength obtained for the fermionic case, where
the relative wavefunction ψQ(z) is completely antisym-
metric.
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FIG. 2. Energy of two dipolar bosons in a 1D optical lattice
as a function of the total quasi-momentum Qa of the pair.
The on-site interaction is U/J = 20 and the dipolar strength
V/J = −10. The filled gray region represents the scattering
continuum and dashed lines depict bound state solutions.

−1.5 −1.0 −0.5 0.0
Vc/J

0
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20

30

40
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FIG. 3. Critical value of the dipolar strength Vc/J for bound
state formation for different values of the on-site interaction
U/J . The dashed line represents the critical dipolar strength
obtained in the fermionized limit U/J →∞.

NUMERICAL METHOD

To support our analytical theory, we employ unbi-
ased tensor network simulations. For obtaining the
ground state we employ the density-matrix renormaliza-
tion group (DMRG) algorithm. For performing real-time
evolution we make use of the time-dependent variational
principle (TDVP), see Sec. .

We employ the standard two-site update DMRG and
infinite-DMRG algorithms in order to find the ground
state of Hamiltonian (1). To calculate various properties

of different phases exhibited by the considered system, we
performed simulations with Ns = 100 − 800 lattice sites
and N = 50−100 particles. To obtain the density depen-
dence, we imposed the periodic boundary conditions on
Hamiltonian (1) and employed DMRG. We find an ex-
cellent agreement between these results and the ones ob-
tained with the iDMRG method where the homogeneous
solution is mechanically stable. To obtain the quantum
droplets in Fig. 3, we used open boundary conditions en-
suring that the system size does not affect the profiles. In
our code, to go beyond the nearest-neighbor interaction
and couple two arbitrary distant dipolar bosons, we fit
the power-law decaying dipolar interaction with a sum of
ten exponential functions [61], when having open bound-
ary conditions. Thus, we are not cutting the range of
the interaction in the numerical implementation of our
model. For systems with periodic boundary conditions
we define the distance between two particles as the arc
of the respective ring. To test the MPS representation
of the ground state, we have checked the convergence in
terms of the bond dimension χ up to χ = 800. The quan-
tities presented in the main text, such as the energy or
particle variance, show a fast convergence with the bond
dimension. At the same time, we have implemented a
cutoff in the maximum number of bosons per site Nm.
Our perturbative theory hints that doublons play a cru-
cial role in the formation of the liquid state. We thus also
checked the convergence for the varying cutoff Nm. For
the case U = 20 and V = −1.5, which shows the maxi-
mum particle variance (see the main text), we observe an
excellent convergence already obtained for Nm = 3. The
energy and entanglement entropy difference with respect
to Nm = 4 are ∆E = 10−7 and ∆S = 10−7. Therefore,
all the results presented in the main text are performed at
Nm = 3. The excellent agreement between our perturba-
tive theory and the DMRG results shows that doublons
created through superexchange processes are the main
mechanism for liquefaction.

GAS TO LIQUID TRANSITION

To detect the gas-to-liquid phase transition, we study
the stability of the homogeneous gas as a function of the
interactions for a very small density n = 0.1. To fix the
density of the system, we impose the periodic boundary
conditions on the Hamiltonian and then employ DMRG.
For increasing dipolar interaction, the many-body gas
state becomes self-bound E/N < −2J and a transition
to a liquid phase occurs, see Fig. 4. To ensure the many-
body transition, we study the dependence of the energy
per particle with the number of particles for fixed density
n = 1/10. This allows us to extrapolate the observables
to the thermodynamic limit.

The energy per particle depends almost linearly on
the strength of dipolar interactions. This points to a
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FIG. 4. Main panel: Energy per particle in the thermody-
namic limit for a system density n = 1/10 as a function of
the dipolar strength V/J for different values of on-site inter-
action U/J . The gas-to-liquid phase transition occurs when
E/(NJ) = −2. Dashed lines indicate a two-body decoupling,
see the main text. Inset panel: Energy per particle depen-
dence with the number of particles at fixed density for the
case of hard-core bosons.

two-body decoupling. All interaction effects can be ab-
sorbed in a two-body coupling strength g0 = (V − V0),
V0 being the point at which a two-body bound state ap-
pears. The energy per particle can be thus estimated
as E/N = 1

2g0n. Remarkably, this gives a good estima-
tion of the energy per particle close to the liquid-to-gas
transition, see Fig. 4.

PARTICLE VARIANCE

The local particle variance can be directly related with
the local pair-correlation function g2 = 〈b̂†b̂†b̂b̂〉/n2,

∆n ≡
√
〈n̂2〉 − n2 =

√
g2n2 + n− n2. (S9)

By employing the Hellmann-Feynman theorem, the local
pair-correlation function can be written as,

g2 =
2

n2
∂

∂U

(
EU
Ns

)
=

8J2

U2n2

(
1− sin(2πn)

2πn

)
, (S10)

which leads to particle variance,

∆n ≡
√
n− n2 +

8J2

U2

(
1− sin(2πn)

2πn

)
. (S11)

The particle variance can be used to detect different
phases present in the system. The gas-to-liquid phase
transition is characterized by a discontinuity in the first
derivative of the local particle variance at equilibrium
∆n0 ∼

√
n0. On the other hand, when crossing the

transition from liquid to self-bound Mott-insulator, the
particle variance is an analytic differentiable function

∆n0 ∼ 2
√

2J/
√
U − (n0 − 1) 8J2+U

4
√
2J
√
U

for any value of
finite on-site interaction U/J � 1. However, it shows
a kink at the transition point owing to the presence of
a discontinuity of the first derivative of the equilibrium
density. In the Tonks-Girardeau limit U/J → ∞, the
particle variance also exhibits a discontinuity in its first
derivative ∆n0 ∼

√
1− n0.

DENSITY AND PHASE RESPONSE

Lattices naturally break Galilean invariance since the
particle current is not a conserved quantity in any two-
particle collision even though the total quasi-momentum
is conserved. This has dramatic consequences on many
thermodynamic and transport observables. It also im-
plies that the low-energy Luttinger theory cannot be de-
scribed by a single parameter but rather needs two dis-
tinct phenomenologic parameters. These two parameters
can be introduced by measuring the response of the sys-
tem to a change in particle number and to a phase shift,

vN =
Nsa

π

∂2E

∂N2

∣∣∣
N=N0

, vJ = πNsa
∂2E

∂φ2

∣∣∣
φ=0

. (S12)

Notice that for a Galilean invariant system, one parame-
ter is immediately reduced to the Fermi velocity vJ = vF ,
which is fully fixed by the linear density vF = πn. In that
case, the low-energy properties are entirely characterized
by the adiabatic compressibility. Instead, for a lattice
system, one has to compute both parameters in a micro-
scopic calculation. The low-energy properties of the fluid
can be expressed in terms of these parameters,

K =

√
vJ
vN

, vs =
√
vJvN , (S13)

vs being the speed of sound of the low-energy phonons
and K the Luttinger parameter determining the long-
range correlations in the fluid. The velocity vN is in-
versely proportional to the compressibility of the system
showing that the more incompressible the fluid, the larger
the velocity vN . On the other hand, the speed of sound
vs is also affected by the response to phase fluctuations
and both vJ and vN have an effect on it. The compress-
ibility can already be computed from Eq. (S5) leading to
the density response,

vN = 2J sin(πn) +
8J2

πU
(cos(2πn)− n sin(2πn)− 1)

+
V

π

[
2ξ(3) + Li3

(
e−2iπn

)
+ Li3

(
e2iπn

)]
. (S14)

To compute the response to phase fluctuations, we also
performed a perturbative calculation imposing twisted
boundary conditions ĉi+Ns = eiφĉi. In the thermody-
namic limit, this leads to a phase shift in the correlation
function 〈ĉ†i ĉj〉 = eiφ|i−j|/Ns sin(kF |i− j|)/(π|i− j|). By
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employing Wick’s theorem, we can again obtain pertur-
batively the dependence of the energy on the phase φ.
After some manipulations, the phase response is given
by,

vJ = 2J sin(πn) +
8J2

πU

[
2 sin2(πn)− πn sin(2πn)

]
(S15)

In our perturbative calculation, we observe that the dipo-
lar interaction does not lead to any modification of the
phase response in the system. This is already expected
since it is a density-density interaction, and it only affects
the compressibility of the system.

Combining our calculations, we are able to calculate
the speed of sound in the lattice TG with a non-local
interaction,

vs = 2J sin(πn)− 16J2

U
n sin(πn) cos(πn)

+
V

2π

[
2ξ(3) + Li3

(
e−2iπn

)
+ Li3

(
e2iπn

)]
. (S16)

FEYNMAN RELATION IN A LATTICE

In absence of an optical lattice, the Feynman relation
provides an upper bound to the lower branch of the ex-
citation spectrum ω−(k), in terms of the static structure
factor S(k) according to ω−(k) ≤ ~2k2/[2mS(k)]. The
bound becomes exact when excitations are exhausted by
a single mode. It happens, for example, at low momenta
in compressible phases where linear phonons are strongly
populated, that is in the regime in which the Luttinger
Liquid description applies. The lattice analog of the
Feynman relation can be found by employing the non-
Galilean invariant Luttinger theory. The long-distance
decay of density-density correlation is then dictated by
the Luttinger parameters Eq. (S13),

〈δniδnj〉 ∼
K

2π2|i− j|2 , |i− j| → ∞ (S17)

where δni = ni − n. The pair correlation function is
defined as an expectation value of the density-density
distribution,

g = 1 +
1

n2
〈δniδnj〉. (S18)

The static structure factor quantifies two-body correla-
tions in momentum space and can be obtained from the
pair correlation function by using Fourier transform,

S(k) = 1 + n
∑
j

eikj(g − 1). (S19)

The long-distance inverse-square decay of the density-
density correlations (S17) results in a linear low-
momentum dependence of the static structure factor,

S(k) =
K

2nπ
k, |k| → 0. (S20)

By using the thermodynamic relation for the compress-
ibility κ and using Eq. (S13), we obtain the following
relations

κ−1s = n2
∂µ

∂n
= πvNn

2 =
πvsn

2

K
, (S21)

between the inverse compressibility κ−1s , the speed of
sound vs and the Luttinger parameter K. By inserting
these relations into the low-momentum expansion of the
static structure factor, Eq. (S20), we obtain,

S(k) =
κsvsn

2
k. (S22)

The above is the lattice analog of the Feynman relation in
the continuum. By knowing the low-momentum behavior
of the static structure factor and the compressibility of
the system, we can calculate the speed of sound and hence
the phononic part of the excitation spectrum, ω(k) =
vsk.

To recover the continuum limit, one just has to set
vJ = vF = πn, which sets the inverse compressibility
κ−1s = v2sn and thus obtaining

S(k) =
k

2vs
, (S23)

which corresponds to the Feynman relation in the con-
tinuum with ~ = m = 1. In the continuum, one thus
has a direct relationship between compressibility and the
speed of sound. Namely, when a system becomes less
compressible, its speed of sound increases.

DYNAMIC STRUCTURE FACTOR

To unravel the excitation spectrum of the system, we
compute the dynamic structure factor S(K,ω). To this
end, we calculate the space and time-dependent density-
density correlation function in terms of (x, t) variables
and perform a Fourier transform in order to express it in
conjugate (k, ω) variables

S(k, ω) =

∞∫
−∞

dt
∑
j

〈δnj(t)δn0(0)〉 eikxj−iωt, (S24)

where 0 index indicates the reference lattice site taken
at the center of the system. To perform the time evolu-
tion, we employ the two-site TDVP algorithm [62, 63].
We choose a time step dt = 0.1 and a bond dimension
χ = 800. Since time evolution is not accurate at very
long times, we employ the linear predictor to extrapolate
our data to longer times [64, 65]. Then, we use a Gaus-
sian envelope. In Fig. 5, we show a typical time evolution
obtained in the gas phase for the full model with dipolar
interactions. The sound cone is formed, with an inter-
ference pattern within it. We find that the edge of the
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FIG. 5. A characteristic example of the space and time de-
pendence of the correlation function 〈δnj(t)δn0(t = 0)〉 at
U/J = 20 and V/J = −0.5 (GAS phase) with N = 30 parti-
cles in a lattice of Ns = 60 sites. The dotted line shows the
slope given by the speed of sound extracted from the static
structure factor according to Eq. (S22).

sound cone propagates with the same speed of sound vs
as the one extracted through the lattice Feynman rela-
tion (S22).

LATTICE SUM RULES

The dynamic structure factor obeys specific sum rules
in the lattice [66]. The three main ones are given by,

m1 =

∫
dωS(k, ω)ω = Ns〈b̂†i b̂i+1〉εk, (S25)

m0 =

∫
dωS(k, ω) = NS(k), (S26)

m−1 =

∫
dω
S(k, ω)

ω
=
N2

Ns

κs
2
, (S27)

where ε(k) = 4J sin(ka/2)2 is the single-particle dis-
persion relation in the lattice. Assuming the energy
spreading of the dynamic structure factor is small δω =
ω+−ω− � ω and the dynamic structure factor is almost
constant in that interval gives,

S(k, ω)ωδω = Ns〈b̂†i b̂i+1〉ε(k), (S28)
S(k, ω)δω = NS(k), (S29)

S(k, ω)
δω

ω
=
N2

Ns

κs
2
. (S30)

The above relations allow us to extract two possible Feyn-
man relations by either using the zeroth and plus one (f -
sum rule) or zeroth and minus one (compressibility) sum

rules,

ω(k) =
〈b̂†i b̂i+1〉

n

ε(k)

S(k)
, (S31)

ω(k) =
2

nκs
S(k). (S32)

In the main text, we employed these Feynman relations.
The first one can be applied to either compressible and
incompressible phases. While the second one assumes
a finite compressibility. Noteworthy, by using the com-
pressibility (S27) rule and assuming a linear phononic
spectrum ω(k) = vsk one recovers the Feynman rela-
tion (S22) which was derived using the non-Galilean in-
variant version of the Luttinger theory.

Sum rules are also useful for the estimation of the
weight of the dynamic structure factor. For a gapped
phase ω(k) ∼ ∆, we obtain,

S(k, ω) ∼ Ns
〈b̂†i b̂i+1〉
δw∆

ε(k). (S33)

Moreover, in the gapped phase, the kinetic energy can be
estimated 〈b̂†i b̂i+1〉 ∼ n(n+ 1)/∆ giving,

S(k, ω) ∼ JNsn(n+ 1)

δw∆2
sin2

(
ka

2

)
. (S34)

Using the analytical expression for the lower and up-
per bounds of the excitation spectrum in the insulating
phase [50–53],

w±(k) = U ± 2J
√

5 + 4 cos(ka), (S35)

we obtain the dependence of the dynamic structure factor
weight with the momenta,

S(k, ω) ∝ sin2
(
ka
2

)√
5 + 4 cos(ka)

. (S36)

Thus, the weight vanishes quadratically at small mo-
menta and reaches a maximum at the edge of the Bril-
louin zone. This result is compatible with our numerical
results in the B-MI phase.

At small dipolar interaction the bounds of the excita-
tion spectrum can be estimated from the Bethe ansatz
solution at zero dipolar strength [48, 49],

w+(k) = 4J
∣∣ sin(ka

2

) ∣∣, w−(k) = 2J | sin(ka)|. (S37)

This gives a dynamic structure factor that diverges at
small momenta,

S(k,w) = Ns〈b̂†i b̂i+1〉
ε(k)

δω(k)ω(k)
(S38)

=
Ns〈b̂†i b̂i+1〉

vs

(
2

ka

)2

+O(1). (S39)
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EXPERIMENTAL IMPLEMENTATION

Ultracold atoms provide an ideal experimental plat-
form to realize a strongly interacting lattice bosonic sys-
tem with an attractive long-range interaction. Specifi-
cally, dipolar bosons loaded to a one-dimensional opti-
cal lattice are perfect candidates to produce a long-range
interaction with a power-law decay. One can obtain a
pure dipolar interaction by assuming that the charac-
teristic transverse length σ⊥ is much smaller than the
lattice spacing in the longitudinal direction ax, which is
fulfilled in recent experiments [37]. Moreover, the on-
site interaction can also be tuned by employing Feshbach

resonances. Finally, the strength of the dipolar interac-
tion can be tuned by changing the polarization angle θ
between the dipoles,

V =
Cdd
4π

1− 3 cos2(θ)

a3x
, (S40)

being Cdd the dipolar coupling.
Considering the recent quasi one-dimensional setting

for 162Dy atoms [37] (Cdd ≈ (9.93µB)2µ0) with σ⊥ =
952a0, a0 being the Bohr radius, V⊥ = 30E⊥ and
E⊥/~ = 2π × 2.24kHz and a longitudinal optical lattice
of lattice spacing ax = 532nm with a height Vx = 14Ex,
one can cross all the phases encountered in the main text
by changing the polarization angle.


