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Abstract. Being able to teach complex capabilities, such as folding garments, to
a bi-manual robot is a very challenging task, which is often tackled using learning
from demonstration datasets. The few garment folding datasets available nowadays
to the robotics research community are either gathered from human demonstrations
or generated through simulation. The former have the huge problem of perceiving
human action and transferring it to the dynamic control of the robot, while the latter
requires coding human motion into the simulator in open loop, resulting in far-
from-realistic movements. In this article, we present a reduced but very accurate
dataset of human cloth folding demonstrations. The dataset is collected through a
novel virtual reality (VR) framework we propose, based on Unity’s 3D platform
and the use of a HTC Vive Pro system. The framework is capable of simulating
very realistic garments while allowing users to interact with them, in real time,
through handheld controllers. By doing so, and thanks to the immersive experience,
our framework gets rid of the gap between the human and robot perception-action
loop, while simplifying data capture and resulting in more realistic samples.

Keywords. Garment manipulation, learning by demonstration, virtual reality
framework, cloth folding dataset

1. Introduction

Non-rigid object manipulation has gained a lot of attention during the last decade since
it has proven to be one of the big milestones to reach in the field of robotics in order to
come closer to achieving full human-like capabilities. But the robotic manipulation of de-
formable objects is certainly not an easy task. There are two main difficulties that robots
must face when manipulating a deformable object. On the one hand, there is the problem
of fully estimating its state. Due to their ability to deform, non-rigid objects can take an
infinite amount of configurations in space. Since fully observability is impossible to have
in a real scenario, estimations must be made. Whereas rigid objects’ pose can be easily
estimated once a portion of its body is identified and located in 3D space, the correct
deformable objects’ state is nearly impossible to detect with just partial observability. On
the other hand, there is the problem of gracefully manipulating a deformable object for
fulfilling a task. Among others, factors such as the friction, elasticity and thickness of the
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(a) (b)

Figure 1. The manipulation is done on top of a real table that has its virtual version inside of the framework. To
make sure that both of the objects are located in the same space (virtual and real worlds) we used HTC trackers
for extrinsic calibration. (a) Real setup showing HTC’s tracker (top left), headset (middle) and controllers (bot-
tom). (b) Virtual setup showing HTC’s tracker (top left), controllers (bottom) and simulated garment (center).

fabrics, the weight, size and shape of the garment, determine, not only the possible type
of grasping, but also which actions can be taken and which ones not. Probably, due to
these difficulties, there are not as many good datasets of deformable objects as there are
of their rigid counterparts. This fact slows down the development of new artificial intel-
ligence algorithms capable of understanding this type of objects, and therefore, creates a
knowledge gap that this work pursues to fill.

One of the main challenges when trying to develop a garment-based dataset is
whether to use real pieces of fabric or to use simulated ones. Currently, most of the avail-
able datasets are based on RGB-D images coming from real clothing data [1–8]. Despite
the convenience of having real data, it is very hard to extract the ground truth information
from garments and humans during a manipulation sequence. Moreover, data tend to have
noise and multiple occlusions, and post-processing is always needed in order to have
good estimated labeling. On the other hand, other approaches exploit the use of simula-
tion environments to easily obtain fully observable ground truth data, although they must
program the cloth manipulation behaviours with scripts. Therefore, this type of data lacks
human-like demonstrations, losing the crucial manipulation dexterity contributions that
would be provided by having the human perception into the loop. Imagine, for instance,
the movement followed by a human hand previous to the prehension of a deformable
object. That trajectory will, first, determine whether the grasping point will be successful
or not and, second, which are going to be the next possible actions over that object in
order to fulfill the assigned task. Recall that deformable objects may change their state
after a manipulation and that, depending on that action, that change may be irreversible
without adding extra manipulations.

In order to overcome those challenges, we propose a new approach that combines
the use of simulated garments with human-based manipulation trajectories. Thanks to a
virtual reality (VR) framework, humans can interact in real time with simulated pieces of
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(a) 1 PPc (b) 1 LLm (c) 2 PPc+c (d) 2 PPm+m (e) 2 PPc+m

Figure 2. Classification of the different types of garment manipulations studied in this work: (a) One corner
double point grasp (PPc) with extrinsic planar contact (Πe), (b) one middle edge double line grasp (LLm) with
(Πe), (c) two corner double point grasp (PPc+c) with (Πe), (d) two middle edge double point grasp (PPm+m),
and (e) one corner, one middle edge double point grasp (PPc+m) with (Πe).

cloth (see Fig. 1a). In this work, we present a reduced but very accurate dataset of human
cloth folding demonstrations.2

This article is structured as follows. Section 2 analyzes the related work in the liter-
ature. In Section 3 we present the different parts of our virtual reality set-up. Section 4
defines and explains our dataset storage format as an XML file. Section 5 introduces the
different garments used in our experiments and the way we have classified them. Finally,
Section 6 concludes this article.

2. Related Work

During the last decade, thanks to the creation of cloth manipulation datasets, a lot of
progress in garment state detection and classification has been made. These datasets use
either real or simulated fabrics in order to provide rich, and as accurate as possible, data
reservoirs of cloth types, manipulation actions and garment states distribution.

2.1. Garment Datasets

In the context of garments, several attempts have been made to create various datasets.
Some of those classify the garments by type [9–13], studying only static properties.
Therefore, not useful when trying to understand manipulation processes. Others focus on
the actions performed by a human when manipulating garments [14, 15]. Those works
are mainly centred in studying the actions rather than the states of the piece of fabric, and
for that reason, may not be as useful when trying to understand the evolution of garments
between folding sates. Others use RGB-D (or RGB) images to perceive the distribution
of the garment [1–8]. These approaches have to estimate the occluded parts of the piece
of fabric and, for that reason, might not be as helpful when high precision methods are
required.

At the time of the writing, and despite the broad variety of approaches, the authors
have no knowledge of any other studies that provide both the actions developed by a
human while manipulating garments and, at the same time, the tracking the full evolution
of the piece of fabric from an original state (before manipulation) to an ending state (after
manipulation). As previously stated, our approach aims to fill this void.

2The dataset can be found in: http://www.iri.upc.edu/groups/perception/clothingDataset/Data.rar
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Figure 3. Perception and Manipulation Lab’s apartment mock-up.

2.2. Cloth State Manipulation

A problem encountered when starting to develop the dataset was to define a proper way
to classify the different cloth states during a manipulation. As we already know, garments
can have an infinite number of configurations, and, consequently, an infinite number of
possible manipulations can be applied to them. In order to be able to plan a sequence of
actions to take a deformable object from one state to another one, we must simplify the
state-action representation. For that reason, some researchers have classified the types
of manipulation based on both cloth and grasp type attributes, such as type of contact
(single point, linear or planar), number of grippers used (single handed or bi-manual), or
its final manipulation state. Some examples of these classifications can be found in [16].

For this work, we have classified the manipulations depending on the number of
grippers used (one or two), the type of contact (single point P, linear L, or planar Π) and
the part of the garment where the contact is made. We have used a classification method
similar to the one showed in [17] (See Fig. 2).

Despite having chosen this method, due to the full observability properties and the
recorded ground truth information of the data, any other type of garment manipulation
classification could be applied. This has been one of the reasons for developing this
framework, providing the community with a tool to test and compare different classifica-
tion methods, given that we believe that the value for each classification method depends
on the manipulation task performed.

3. Set-up

This work has been developed in the Perception and Manipulation Laboratory at the
Institut de Robòtica i Informàtica Industrial (CSIC-UPC), using an HTC Vive Pro headset
for creating an immersive VR experience thanks to the scenes created under the Unity
framework (see Fig. 1). The Perception and Manipulation Lab hosts a life-scale mock-up
of a fully-equipped apartment (see Fig. 3). Inside the apartment, researchers can study
the interaction between robots and users in close-to-reality domestic environments.
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3.1. HTC Vive Pro

As previously stated, we wanted to develop a framework that not only allows the visu-
alization of garments, but also allows to create realistic garment manipulations. In order
to do so, we believed that virtual reality could create the desired interactive experience.
With that objective, we used an HTC Vive Pro, a virtual reality headset developed by
HTC Corporation in collaboration with Valve Corporation. This type of devices are fa-
mous for offering the possibility of entering into an immersive experience in which the
user is able to interact into Virtual Reality (VR), Mixed Reality (MR) or Augmented
Reality (AR) worlds.

Despite of its main use, HTC headsets are also used by developers in other fields, for
example, several research teams are developing AR applications to enhance the learning
of manual assemblies [18]. Besides the headset, the HTC Corporation also offers some
accessories that help making a more immersive experience. The two devices used in this
project are the HTC Tracker and the HTC Controller (see Fig. 1). The tracker eases the
connection between the real and the virtual world, making it possible to connect virtual
objects with its real counterpart (as long as it has the tracker attached). The controller not
only sends its real position to the virtual world but it can also send some basic information
using its integrated buttons. More precisely, the HTC Vive’s controller offers a total of
three different buttons, one pressure-sensitive trigger and a trackpad.

The HTC hardware can easily be connected to Unity downloading SteamVR’s ap-
plication and its asset (downloadable from Steam’s store and Unity’s asset store, respec-
tively). The asset implements basic prefabs that allow the creation of VR experiences
where all of HTC components can be used.

3.2. Unity

For the development of the framework, we decided to use the Unity engine. Unity is
a cross-platform game engine developed by Unity Technologies [19]. Unity’s engine is
mainly used for game developing due to its versatile and easygoing interface. Despite
of that, it is also used for several engineering and AI applications. For example, the
implementation of intelligent agents capable of overcoming obstacles or solving basic
games such as mazes or arcade-like games [20–23].

In this work, Unity is used to build a framework where the information coming from
the HTC Vive Pro system is displayed in a 3D environment. Moreover, the game en-
gine will also work as a data reading and processing tool. Out of the possible simulators
that could have been used to develop this work Unity was chosen for having fast sim-
ulation and providing a flexible control [24]. On top of that, the game engine was also
used because of its user-friendliness, allowing future research groups interested in this
framework to reproduce it or to apply their own changes to the simulations, if desired.

3.2.1. Obi Cloth Unity asset

Once a simulation engine was chosen, the next step was to study how to simulate the
garments within the 3D environment. After some research into the different asset exten-
sions for cloth simulation within Unity, we discovered a dedicated collection of particle-
based physics plugins for deformable objects, such as cloth, fluids, ropes and soft-bodies,
called Obi [25]. Every Obi object is made by a set of particles that can interact with each
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Figure 4. Sequence of point clouds obtained during a PPc +Πe manipulation, with a z-axis heat map.

other, and affect or be affected by other objects within the scene. Moreover, particles can
be constrained to have a customized behaviour. Compared to the other physics systems
available in Unity’s assets store, Obi Cloth asset goes one step further by allowing much
more constraints per cloth and by setting each particle’s restriction separately.

4. Methodology

This section provides a brief explanation on how the dataset has been collected. Each
manipulation is stored in a XML document with three main fields: Name, Mesh and
Frames. The Name field corresponds to a string representing the name’s experiment that
has been performed. The Mesh field indicates the index of all the vertices that create a
mesh element. Finally, the Frames field stores the evolution of the data at each timestamp.

For this dataset, we wanted to keep track of all the elements involved in a cloth
manipulation task. In our current experiments, four elements were completely tracked.
The first one, the garment per se. The dataset collects the coordinates of each particle
of the fabrics, saving it under the tag name of vertices, inside of the geometry field
within each frame (see Fig. 4). In order to easily export each mesh frame, data has been
recorded maintaining Ogre’s mesh XML data-structure [26]. Secondly, we wanted to
keep track of each of the HTC controllers used for manipulating the garments. In the
case of a bi-manual operation, the tag names for each controller are ControllerRight and
ControllerLeft. For each controller we store its pose components (position and rotation),
a variable telling whether a grasping point is being held and a variable tracking the state
of the trigger. This value was added thinking about future upgrades where changing the
pressure over the surface of the grasped objects could be necessary for carrying out tasks
such as edge tracing. Thirdly, it is also important to keep track of the position and rotation
of the grasping points. Besides from that, and similarly to the controllers, we added a
variable that indicates whether the right or left controller is holding the object or not. That
third object type can be found under the tag of GripPoint[i], where i is an integer value
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Figure 5. Graph of possible states for the napkin garment classified by manipulation using [17] method. The
coloured dots indicate the different types of manipulation that can be performed in order pass from the previous
state to the next one.

between one and the number of total simulated grasping points. Finally, the last object
added to the dataset is the simulated table. From this object, the position and rotation are
recorded under the name of Table.

All the experiments within the dataset have been conducted by a human using the
HTC controllers as grippers. All the stated variables are recorded in XML files at 10 Hz.
Finally, the dataset comes with two .txt files explaining both the format template of the
XML documents and the data subsets distribution format.
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5. Experiments

For a better versatility of the collected data, the conducted experiments have been divided
into states. Each experiment starts in one described state and ends into another. With that
methodology, if data of new experiments were required, only the new states would have
to be recorded, given that the processes that follow the same sequence of actions can be
reused.

A total of three different garments were used in these experiments, the properties of
which can be seen in Table 1. These garments have been extracted from the household
cloth object set studied in [27].

Table 1. Types of garment used in the experiments.

Name Size [m] Weight [kg]

Small Towel 0.3 x 0.5 0.08
Napkin 0.5 x 0.5 0.05
Tablecloth 0.90 x 1.30 0.188

In order to keep the dataset as brief and as rich as possible, we tried to just perform
the most representative garment manipulations that are equivalent to all the studied gar-
ments. We use both single handed and bi-manual interactions, and we used them over
different combinations of point, line and plane contact types. Due to the data format, it
is easy to filter the manipulations by contact or interaction types with the objective of
applying learning algorithms. Fig. 5 shows the complete sequence of states that have
been studied for the Napkin case. As shown in the graph, some states can be achieved by
performing different types of manipulation. For this garment, a total of nineteen manipu-
lation sequences have been performed, with three repetitions each. These sequences cor-
respond to all of the possible combinations of manipulations that start with the top-left
state of Fig. 5 and end with one of the states on the right of the image. Whereas the Small
Towel garment shares nearly the same state transition diagram, the Tablecloth garment is
far too big for carrying on the examples within the state transition diagram. Despite that,
we have included into our dataset a special case where the Tablecloth garment is hanging
from a bar and has to set on the table thanks to a bi-manual manipulation and by taking
advantage of the dynamics of the fabrics (see Fig. 6).

Figure 6. Manipulation of Tablecloth: From initial hanging position (top-left) to set on the table (bot-
tom-right). The images in-between show frames from the two corner double point grasp manipulation per-
formed on the Tablecloth garment.
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6. Conclusions

In this work, we presented a Unity virtual reality framework to perform garment manipu-
lation experiments. The approach used on the development differs form others in that we
not only perform a full-mesh tracking but we also keep track of the position, rotation and
interactions of other key features of the manipulation (like grippers or grasping points).
Moreover, the implementation of the virtual reality allows the creation of an immersive
experience that gets rid of the gap between the human and robot perception-action loop.

Later, we use the developed framework to create a rectangular garment manipulation
dataset which is divided in states to allow a more versatile study. This new dataset aims
to help the garment manipulation AI community by providing more realistic human-
like garment manipulation data, which can be used in learning-from-demonstration ap-
proaches.

As a future work, we are planning on implementing a way to keep track of the states
of the garments, by providing data such as how many corners are folded or if part of the
garment is on top of another.
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