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Abstract

Climate change effects on subdaily rainfall (from 5 min to a few hours) can

hardly be measured in mid-latitude climates due to the high natural variability

of the precipitation patterns and their effects on local topography. The goal of

this study was to obtain change projections of intensity–duration–frequency
(IDF) curves, for up to 2-h precipitation events, comparing two approaches

that use the daily outputs of the downscaled Coupled Model Intercomparison

Project Phase 5 (CMIP5) multi-model projections: (a) direct scaling of the

expected probable precipitation, from 2-year to 500-year return periods of daily

rainfall and (b) a new semi-stochastic approach, built by combining the physi-

cally forced outputs of climate models (on a daily scale) and stochastic simula-

tion given by the probability distribution of a concentration index (n-index) for

individual rainfall events (on a subdaily scale). The approaches were applied

to a set of 27 stations located around Barcelona, Spain, including a long refer-

ence series (with 5-min rainfall records since 1927), representing the highly

variable Mediterranean climate. The validation process showed a systematic

error (bias) generally smaller than 10%, especially for rainfall extreme events

with durations of less than 2 h. The concentration n-index and IDF curves

were projected by 10 downscaled CMIP5 climate models under 2 emission sce-

narios (RCP4.5 and RCP8.5), obtaining a consensual increase in both relative

concentration and absolute intensities in Barcelona. Ensemble projection of

rainfall concentration (n-index) showed an increase up to 10% by 2071–2100
and about 20% (15%–30% range) for maximum intensities of 2-year to 500-year

return periods. Results provide robustness in decision-making regarding the

design of stormwater management infrastructure at a local scale.
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1 | INTRODUCTION

1.1 | Motivation

Rainfall presents self-similarity in several time scales,
which is a geometric property known as fractality (due to
chaotic dynamical systems). This implies that rainfall
intensity has a geometric dimension that is neither punc-
tual (dimension = 0) nor linear (dimension = 1) but frac-
tional (between 0 and 1) that may or may not depend on
the time scale. When dimension depends on the time-
scale, it is known as multifractal, while a weak temporal
dependency is assumed under the monofractal hypothe-
sis. This study tested the performance of the simple scal-
ing approach (monofractal hypothesis) to describe the
behaviour of point extreme rainfall in the intensity–dura-
tion–frequency (IDF) relationship at a local scale. A dou-
ble method was designed to obtain consensual results for
subdaily rainfall, which is significant because its extreme
events present stratiform and convective origin features,
that is, with different temporal-dimension behaviours.
Finally, this work also aimed to connect four different
perspectives of the fractal dimension related to the power
law of rainfall intensities: (a) IDF curves, (b) hyetograph
in synthetic design storms, (c) rainfall concentration
within a real event and (d) daily-to-subdaily rainfall dis-
aggregation, detailed below.

1.2 | State of the art

1.2.1 | Climate modelling of rainfall

Global extreme precipitation (e.g., annual maximum
daily precipitation) experienced a statistically significant
increase due to global warming at a rate of between 5.9%
and 7.7% K−1 in average (1900–2009 period), depending
on the method of analysis (Westra et al., 2013). According
to the Clausius–Clapeyron relation, atmospheric water
content increases at about 6.8% K−1, but the climate
change signal in subdaily rainfall can be very different
due to regional weather patterns, mesoscale processes
and local convection (Barbero et al., 2017; Hardwick-
Jones et al., 2010; Westra et al., 2013). Regarding precipi-
tation in Europe, climate change scenarios are strongly
conditioned by regional/local geographical features that
should be considered using dynamical or statistical
downscaling methods (Gutiérrez et al., 2019; Ribalaygua
et al., 2013). Currently, regional and local climate scenar-
ios are available from the downscaled outputs of the
Coupled Model Intercomparison Project Phase 5 (CMIP5),
with international initiatives such as CORDEX (Jacob
et al., 2014) and European projects such as RESilience to

cope with Climate Change in Urban arEas (RESCCUE),
among others (Velasco et al., 2018). In this context,
dynamical models have an advantage over statistical
methods regarding the spatial distribution and parame-
terization of convective processes on subdaily timescales
(Chan et al., 2014; Meredith et al., 2019). However, biases
in rainfall probability distribution of dynamical model
outputs need to be corrected (with statistical methods) to
analyse extreme precipitation, and therefore the dynami-
cal and statistical approaches are complementary (Monjo
et al., 2014, 2016).

Statistical approaches to spatial downscaling provide
climate change scenarios on a daily timescale, and then a
temporal downscaling (or time scaling) is required to
obtain future regimes of subdaily rainfall, including
extreme events. Expected maximum precipitation for a
return period and on a subdaily duration is described
using IDF curves, which are useful to create the well-
known ‘design storms’ through synthetic hyetograph
methods (Casas-Castillo et al., 2018a).

IDF curves are estimated based on empirical cumula-
tive distribution functions (ECDFs) of annual maximum
precipitation (at several time intervals) from peaks over
thresholds or using the entire time series. They can be
simulated by fitting theoretical distributions
(i.e., parametric probability models). The most common
functions to model the frequency term of the IDF curves
are the Gumbel distribution, Weibull distribution, and
the generalized extreme value (GEV), which are also used
in temporal downscaling procedures (Monjo et al., 2016;
Nguyen et al., 2007; Yeo et al., 2021).

1.2.2 | Rainfall disaggregation

Synthetic hyetographs are key in the modelling of subda-
ily rainfall events. Most classical approaches are based on
observed cumulative curves, such as the alternating block
technique, the Huff's quantiles (Huff, 1967), the Pilgrim–
Cordery curves (Cordery & Pilgrim, 1984), and the Soil
Conservation Service/Natural Resource Conservation
Service (SCS/NRCS) Type I, II and III curves (Mishra
et al., 2018). Other semi-empirical methods fit some
smooth curves (e.g., Gaussian or Gamma distribution)
akin to the Huang (2011) approach, using triangles as in
the Yen–Chow method, or piecewise functions such as
the Sifalda storm and the Keifer–Chu curves (or Chicago
method), among others (Na & Yoo, 2018).

From a more theoretical viewpoint, synthetic hyeto-
graphs can also be obtained from stochastic processes of
rainfall disaggregation. For instance, the method of frag-
ments is a daily-to-subdaily scaling that uses a nonpara-
metric resampling approach and conditional probability
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distribution functions to relate daily rainfall vectors and
the corresponding subdaily fragments from at-site records
or other stations such as neighbouring or more correlated
ones (Li et al., 2018; Rafatnejad et al., 2022).

Weather generators based on multi-state Markov
chains are commonly used to concatenate wet/dry values
of a synthetic time series (Peleg et al., 2017; Rayner
et al., 2016). Convective features of rainfall can also be
simulated by stochastic approaches, considering synthetic
power law spectrums in filtered autoregressive models
such as the RainFARM method (D'Onofrio et al., 2014)
or using cumulative functions for extreme simulations as
in the Stochastorm technique (Wilcox et al., 2021).

1.2.3 | Multifractal cascade approach

Random cascade models provide many ways to time-
scaling rainfall, although they were developed originally
for turbulence studies (Mandelbrot, 1974; Müller-
Thomy, 2020). Sun and Barros (2010) used universal mul-
tifractal parameters to simulate rainfall time series
according to several values of the Levy index, which indi-
cates the deviation from the monofractal case. Multiplica-
tive cascade models, such as the micro-canonical cascade
processes, are also used to analyse the time-scaling of pre-
cipitation (Gaume et al., 2007; Müller-Thomy, 2020).
However, Gao et al. (2018) used standard normal spaces
from a log-ratio transformation of the intensities.

According to the probability distribution of multifrac-
tal fields (e.g., the rainfall intensity), the average of the
statistical q-moment of the field is proportional to the
power of the ratio or fraction of the scales involved
(Garcia-Marin et al., 2013; Schertzer & Lovejoy, 1987;
Zhang et al., 2021). Therefore, for scaling a synthetic
rainfall event from t0 to t duration, that is

Iq tð Þ� � � Iq t0ð Þ� � t0
t

� �ζ qð Þ
ð1Þ

where the operator < � > indicates average, Iq(t0) and
Iq(t0) are the q-moments of the field for the timescales
t < t0, and ζ(q) is the scaling moment function (multifrac-
tal spectrum), which is from the Legendre transformation
of the codimension function for the field considered
(Masugi & Takuma, 2007; Sun & Barros, 2010). If the
monofractal hypothesis is assumed for intensity or veloc-
ity fields, an asymptotic power law is found:

ζ qð Þ≈ ňq ð2Þ

where 0 ≤ ň ≤ 1 is the simple scaling parameter or
simple-scale cascading dimension that, for averaged

rainfall intensities, is approximately equivalent to the
Lipschitz–Hölder exponent and the monofractal Rényi
dimension (see Appendix A). Under a purely geometric
viewpoint, it is the Minkowski–Bouligand box-counting
dimension, which is the upper limit for the Hausdorff
dimension (Bäcker et al., 2019; Metzler & Klafter, 2000;
Schmitt & Huang, 2016).

1.2.4 | Approximation of the monofractal
dimension by a concentration n-index

Applying the extreme value theory to the (q = 1)-moment
(i.e., average) of the maximum probable intensity I(T, t)
for a return period T, Equation (1) is separable into two
functions (h and λ), representing the dependency with
the return period T and with the duration t (Casas-
Castillo et al., 2018a, 2018b):

I T, tð Þ≔ h Tð Þλ tð Þ≔ h Tð Þ I1 tð Þh i ð3Þ

and the linked precipitation is directly P(T, t) = I(T, t)�t.
Coherently with the theoretical approach of monofractal
or simple scaling, the dependency function λ(t) over the
duration t was empirically modelled by many authors
using a constant exponent (Casas-Castillo et al., 2018b;
Yu et al., 2004). The most employed versions were intro-
duced (still no fractal interpretation) by Sherman (1931)
and Chow (1962), respectively.

f tð Þ= a

t+bð Þň
ð4Þ

f tð Þ= a

tň+b
ð5Þ

where a, b and ň are fitting parameters. For real hyeto-
graphs (and not necessarily extreme events), approximat-
ing b � 0, the parameter ň is comparable to an index
which describes how concentrated the rainfall is within
an event (Moncho et al., 2009; Monjo, 2016), named n-
index. The n-index is an approximation to the monofrac-
tal dimension (ň) for the case of the order of moments
q = 1 (Equation 2 and Appendix A), applied to observed
hyetographs (corresponding to a wet spell, and no neces-
sarily extreme). In this case, maximum averaged intensity
(I) varies over duration (t) according to a power law,

I tð Þ=I0
t0
t

� �n

ð6Þ

where 0 ≤ n ≤ 1 is the fitted value for the n-index and I0
is the reference intensity, fitted for a given t0 (e.g., 5 min).

MONJO ET AL. 3
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For each rainfall event (i.e., wet spell with at least three
consecutive nonzero values), a value of the n-index can
be obtained by sorting and then fitting the maximum
averaged intensities as a function of durations ranged
between the minimum t0 and the total event duration d.
This method can be applied for a large set of timescales
and durations (from a few minutes to supradaily scales),
resulting different ranges of values of n, even for the
same location. Particularly, Monjo et al. (2016) found
that, for two different time resolutions (r1 and r2)
between 1 and 12 h, the corresponding n-index (n1 and
n2) varies as Δn = n2 – n1 ≈ k�ln(r2/r1), where
k = 0.028 ± 0.003 was fitted for individual rainfall events
of 5347 subdaily time series around the world (with n1
typically ranged between 0.2 and 0.8).

Under the monofractal hypothesis, the value of n is
assumed to be approximately independent of the dura-
tion and time resolution. In this case, it represents the
relative concentration linked to the time structure of
convective-stratiform processes (Figure 1). For instance,
on the hourly scale, rainfall with mostly stratiform origin
(i.e., with predominant advection) usually shows low n-
index values (n < 0.4), while mesoscale convective sys-
tems (i.e., convection fed by organized warm-wet advec-
tion) present values of about 0.4–0.6, and purely
convective systems (mostly vertical flows) are character-
ized by a fast evolution and short life cycle with n > 0.6
(Moncho et al., 2009, 2011; Monjo, 2016). In contrast, on
a daily scale and calculated from annual maximum rain-
fall series, values of the fractal-related parameter (ň) are
usually greater than 0.7 (Bara et al., 2010; Casas-Castillo
et al., 2018b).

Notice that Equation (6) is the same as Equation (1)
with Equation (2) for the statistical one-moment (aver-
age). The n-index is very close to the monofractal dimen-
sion of rainfall obtained, for example, from box-counting

and provides information about its more or less convec-
tive nature (Meseguer-Ruiz et al., 2019; Monjo, 2016;
Monjo & Martin-Vide, 2016).

Methods based on fractal (chaotic) properties of rain-
fall are also suitable to model subdaily extreme rainfall
for Mediterranean climates (Ghanmi et al., 2013; Rodrí-
guez-Solà et al., 2017). The power law (Equations 4 and 5
with b � 0) is commonly used as an envelope curve to
estimate the values of Probable Maximum Precipitation
for the entire time series (Casas-Castillo et al., 2018a,
2018b; Galmarini et al., 2004; Gonzalez & Bech, 2017;
Moncho et al., 2011). However, self-similarity properties
of the fractal-based nature provide not only scaling of
maximum intensities for all timescales of the rainfall but
also modelling of wet/dry spells and drought lacunarity
(Monjo, 2016; Monjo et al., 2020).

To test time-scaling methods, the Jardí gauge of the
Fabra Observatory of Barcelona (Spain) can be consid-
ered a standard reference because of the high time reso-
lution (5-min data since 1927) and many previous studies
performed using the Fabra time series (Llasat, 2001;
Rodríguez-Solà et al., 2017). For instance, Burgueño et al.
(1994) carried out the digitalization of the paper rolls
recorded by the pluviograph and its calibration to obtain
statistics of hourly rainfall. Earlier, Puigcerver et al.
(1986) analysed the maximum rain rates for Barcelona,
and then Llasat and Puigcerver (1997) studied the con-
vective ratio of rainfall in the region. Casas et al. (2011)
combined physical and statistical methods to obtain max-
imum precipitation expected. Rodríguez et al. (2013,
2014) analysed multifractal parameters for local rainfall
under different synoptic configurations and estimated the
effects of climate change on the IDF curves in Barcelona.
More recently, Rodríguez-Solà et al. (2017) focused on
the time-scaling properties of rainfall to generate IDF
curves from Spanish daily records, including the Fabra
Observatory.

1.2.5 | Objectives of the study

In the context of climate change modelling, this study
aims to analyse the monofractal features of subdaily rain-
fall to compare two methods of obtaining IDF curves
from climate models, downscaled to Barcelona with a
daily time resolution. The first method calculates the cli-
mate change factors (CCFs) according to Arnbjerg-Niel-
sen (2012), combining the monofractal downscaling
method (Rodríguez-Solà et al., 2017) and statistical
extreme value analyses. The CCF compares future projec-
tions and historical experiments of climate models, and it
is expressed as a ‘multiplicative factor’, applied to the
historical IDF curves to obtain new ones. The second

FIGURE 1 Example of same-duration hyetographs with

similar maximum intensity but for different concentrations of

rainfall according to the n-index: (a) high concentrated rainfall

(n = 0.7) and (b) more uniform rainfall (n = 0.18). [Colour figure

can be viewed at wileyonlinelibrary.com]
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method leads to the generation of a semi-stochastic sub-
daily time series, using several properties of the point-
rainfall data (i.e., measured in a rain gauge), combining
daily physical forcing and the (stochastic) probability dis-
tribution of the concentration n-index for the individual
rainfall events. As a novelty, this work obtains and ana-
lyzes projected changes of the concentration n-index
throughout the 21st century, used as an approximation of
the simple-scaling exponent or monofractal parameter (ň).

2 | STUDY AREA AND DATA

2.1 | Observation data

As statistical methodologies try to simulate point obser-
vations by using their records, geographical coherence
and granularity depend on the density and spatial dis-
tribution of the used reference stations. In this study,
projections of extreme rainfall could be spatially ana-
lysed because of the subdaily time series of 27 observato-
ries located around Barcelona (Catalonia, Northern
Spain) and, to support the spatial interpolation, also
300 time series with daily rain gauges (Figure 2) distrib-
uted throughout the Ter-Llobregat hydrological system,
which corresponds to Barcelona. The time series of
daily data (with at least 75% of the records in the 1980–
2021 period) was provided by the Spanish State Meteo-
rology Agency (AEMET, Spanish acronym), while sub-
daily precipitation (with at least 90% of records in the
same period) was collected from the Barcelona Cicle de
l'Aigua S.A. (BCASA).

Barcelona is an example of a climate change hotspot
within the Mediterranean region, with high natural vari-
ability in extreme climate events impacting the water sys-
tems (Monjo et al., 2016; Rodríguez et al., 2014; Velasco
et al., 2018). It has a hot dry-summer climate (Csa accord-
ing to the Köppen climate classification), with an annual
rainfall that varies between 300 and 1000 mm, especially
depending on the Western Mediterranean Oscillation
phases (Bonsoms et al., 2021; Martin-Vide & Lopez-
Bustins, 2006). The highest efficiency in rainfall is
recorded generally during autumn, related to heavy pre-
cipitation events caused by organized (mesoscale) con-
vective systems embedded in synoptic formations (Casas
et al., 2011; Gonzalez & Bech, 2017). The physical fea-
tures of its extreme rainfall events combine fast currents
(typically convective upward and downward flows) and
slow streams derived by advective flows from the Medi-
terranean Sea, which provide a higher efficiency in the
moisture feeding to storms. This phenomenon is known
as mixed (convective-stratiform) rainfall (Llasat, 2001),
and it can also be modelled by the monofractal dimen-
sion (Monjo, 2016; Monjo et al., 2020).

To deeply analyse the temporal behaviour of the
rainfall projections, this work was especially focused on
its most commonly used station for climate analysis of
subdaily precipitation in Spain, namely the Jardí gauge
of Fabra Observatory of the Royal Academy of Sciences
and Arts of Barcelona, with collaborations with the
Spanish and Catalan meteorological agencies. This
observatory is a remarkable reference for other time
series of subdaily rainfall because it has provided 5-min
resolution records since June 1927, with only one gap

FIGURE 2 Location of the stations used in this study: (a) set of 300 high-quality stations (75% of records in the 1980–2021 period)

located in Ter-Llobregat System (Catalonia, Spain) with daily records of precipitation (AEMET) and (b) network of subdaily recording from

27 stations (90% of records in the same period) located in the Barcelona area for precipitation (BCASA). The Jardí gauge of Fabra

Observatory (Royal Academy of Sciences and Arts of Barcelona) is highlighted with a small square within the city of Barcelona (red

shadow area). [Colour figure can be viewed at wileyonlinelibrary.com]
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between October 1992 and July 2008. That is, the time
series contains more than 8 million 5-min rainfall
records up to 2021. The gap was filled by 5-min data
available in the closest station, applying a quantile-
mapping adjusted from the common period with Jardí
Fabra (specifically, we used a parametric approach
described in Monjo et al., 2016). Throughout the manu-
script, we refer to these data as observed data.

Several tests were applied to all the observed time
series for quality control, including general consistency
(e.g., possible false zeros, accumulation in 2 days, etc.). In
particular, outliers/inhomogeneity analysis based on the
Kolmogorov–Smirnov (KS) test was performed following
the protocol developed by Monjo et al. (2013).

2.2 | Climate model data

Atmospheric variables were collected from the ERA-
Interim reanalysis and 10 CMIP5 model outputs for both
historical experiments (1951–2005) and future projections
(2006–2100) (Table 1). Atmospheric fields (specific
humidity at 700 hPa and wind speed and direction for
both 1000 and 500 hPa) were selected as predictor vari-
ables in a statistical downscaling method (see Section 3.2).
For the climate projections, the Representative Concen-
tration Pathways 4.5 and 8.5 (RCP4.5 and RCP8.5) were
considered. The raw run, r1i1p1, was taken for all climate
models except for CanESM2, for which the r2i1p1 run
was available. They consist of the complete forcing

conditions (i1p1) applied to the available run in each case
(r1 or r2).

3 | METHODOLOGY

3.1 | General scheme of methodologies
used and their motivation

This work applied a statistical spatial downscaling to
CMIP5 model outputs (Table 1) to obtain daily time
series at a local scale (Section 3.2), combined with two
different approaches for scaling the time resolution from
the day to the 5-min detail in IDF curves. For this pur-
pose, a simple scaling is directly applied to the past
extreme events with low computational cost (Section 3.3)
and, on the other hand, a sophisticated semi-stochastic
technique is proposed to obtain future projections of fea-
sible subdaily time series, and to analyse the rainfall con-
centration of all the individual rainfall events to finally
obtain climate projection of extreme events (Section 3.4).
This new method aims to help better understand the pos-
sible changes in the typical time-structure of subdaily
rainfall events, not only for extreme events. In summary,
the semi-stochastic approach consists of generating ran-
dom subdaily data by using observed fractal features and
physically consistent with the daily local climate projec-
tions. To obtain the IDF curves, extreme values are esti-
mated from the daily time series in the direct method
and from the subdaily time series in the semi-stochastic

TABLE 1 Available CMIP5 climate models with outputs on a daily timescale. The table shows the responsible institution, climate model

version, respective references and spatial resolution for the AGCM and the OGCM. The case of lon(i, j) × lat(i, j) denotes longitudes and

latitudes depending on each grid point (represented as indices i and j).

Institution CMIP5 model References
AGCM resolution
(Lon × Lat)

OGCM resolution
(Lon × Lat)

CSIRO, BOM ACCESS1-0 Bi et al. (2013) 1.87� × 1.25� lon(i,j) × lat(i,j)

BCC BCC-CSM1-1 Xiao-Ge et al. (2013) 2.8� × 2.8� 1.0� × 0.33�

CC-CMA CanESM2 Chylek et al. (2011) 2.8� × 2.8� 1.41� × 0.93�

CNRM-CERFACS CNRM-CM5 Voldoire et al. (2013) 1.4� × 1.4� lon(i,j) × lat(i,j)

GFDL GFDL-ESM2M Dunne et al. (2012) 2� × 2.5� 1.0� × 0.33�

MOHC HADGEM2-CC Collins et al. (2008) 1.87� × 1.25� 1.0� × 0.33�;
1.25� × 0.25�

JAMSTEC, AORI,
NIES

MIROC-ESM-
CHEM

Watanabe et al.
(2011)

2.8� × 2.8�; 1.4� × 1.4� 1.7� × 0.56�; 0.5� × 0.5�

MPI-M MPI-ESM-MR Marsland et al. (2003) 1.8� × 1.8� lon(i,j) × lat(i,j)

MRI MRI-CGCM3 Yukimoto et al.
(2011)

1.2� × 1.2� 1.0� × 0.5�

NCC NorESM1-M Iversen et al. (2012) 2.5� × 1.9� lon(i,j) × lat(i,j)

6 MONJO ET AL.
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method (Figure 3). Details of all the methods used are
described below.

3.2 | Spatial downscaling of daily values

We downscaled CMIP5 climate simulations using a statis-
tical method that links surface point observations (from
rain gauges) and large-scale predictor fields (obtained
from the climate simulations). The spatial downscaling
method uses a two-step analogue/transference approach,
validated in international comparatives for climate
models and reanalysis (Gutiérrez et al., 2019; Ribalaygua
et al., 2013). The output of this spatial downscaling is
directly the same point as the rain gauge of the time
series used for training the method. However, the spatial
distribution of the projected changes is obtained using
the thin plate spline (TPS) interpolation approach. A
summary of the statistical downscaling is presented here:

3.2.1 | Analogue stratification

The first step is based on an analogue stratification (Zorita
and von Storch, 1999), applied to the CMIP5 climate simu-
lations (Table 1); that is, the N most similar days to a tar-
get day (of the climate simulations) are selected from the
ERA-Interim. The reanalysis is considered as a reference
basis to reduce the nonlinearity in subsequent steps
regarding the links between point observations and the
atmospheric configurations that produce dry or wet days.
In particular, the number was set as N = 30 according to

the previous studies (Monjo et al., 2016; Ribalaygua
et al., 2013). The similarity between the 2 days (i.e., target
and reference days) was measured using a weighted
Euclidean distance (between CMIP5 model fields and
ERA-Interim fields) in three nested synoptic windows by
using six large-scale fields as predictors. The distance was
calculated and standardized for each predictor by repla-
cing it with the closest percentile of a reference population
of distances for that predictor. The predictor fields used
were wind speed and direction for both 1000 and 500 hPa,
equally weighted, which represent the large-scale synoptic
situation. To analyse the performance of the analogue
stratification in the past, it was also applied to the ERA-
Interim itself by cross-validation, disallowing the selection
of similar days between the 7 days before and after each
targeted day, and then obtaining analogue-based values
compared to the target days. Temporal continuity of the
downscaled ERA5-Interim enables to simulate past values
in the entire time series even in dates when no observed
values are recorded, thus avoiding gaps in the new
reference data.

3.2.2 | Model output statistics

The second step applies three transfer functions to obtain
increasingly refined precipitation amounts:

1. The earliest function is a set of N quotients of specific
humidity at 700 hPa, estimated between each target
day (simulated by the CMIP5 models) and their
N analogous days (found from the ERA-Interim

FIGURE 3 General scheme of the

methodologies used in this paper: links

between the approaches (circles), main

inputs (dark boxes), intermediate

outputs–inputs (light boxes) and final

output (box on the right). [Colour figure

can be viewed at

wileyonlinelibrary.com]
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reanalysis) over the vertical of a particular rain gauge
(i.e., taking the closest grid points). This humidity
field was chosen as a simplified indicator of the water
content to predict precipitation amounts on rainy
days. To consider better physical links, a group of
M = 30 target days were downscaled together because
it is assumed that climatic characteristics of rainfall
vary little within a month of a particular year. For
each of these targeted days, a ‘preliminary precipita-
tion amount’ was obtained by averaging the precipita-
tion amount (recorded in the observatory) of its
N most analogous days, weighing by the target/
analogous ratio of specific humidity at 700 hPa.

2. The second transfer function is a mixing process: The
M target days are sorted from the highest to the lowest
‘preliminary precipitation amount’. Then, all precipi-
tation amounts of the weighted M × N analogous days
are sorted and clustered in M groups to obtain a set of
M ‘refined precipitation amounts’. These quantities
are assigned, in order, to the M days previously sorted
by the ‘preliminary precipitation amount’
(Ribalaygua et al., 2013). The mixing process of the
M × N analogous days ensures a better probability dis-
tribution of the final precipitation simulated within
the set of M target days.

3. A final refinement procedure was applied to eliminate
the residual systematic error of all climate simula-
tions, by using parametric quantile mapping (Monjo
et al., 2014, 2016). In this process, the ECDFs of the
simulated time series were compared with the
observed ECDFs. The theoretical cumulative distribu-
tion functions (F) were fitted to the ECDF of the daily
time series (from observations and from the down-
scaled climate projections), applying inference with
the profile log-likelihood approach (Monjo
et al., 2014, 2016). To reduce the systematic errors of
fit, several cumulative distribution functions were
tested according to Monjo et al. (2016): two-, three-
and four-parametric Gamma (Equation 7), Weibull
(Equation 8), Gumbel (Equation 9), reversed Gumbel
(Equation 10), log-logistic (Equation 11) and the
three-parametric version of the GEV (Equation 12).
After the bias correction of the downscaled climate
outputs, the fitted theoretical functions were
employed to obtain the daily values (x) for different
return periods (T = 1/[1 − F]): 2, 5, 10, 25, 100 and
500 years.

F1 xð Þ=
γ h, x−ξ

α

� �w� �
Γ hð Þ ð7Þ

F2 xð Þ=1− exp −
x−ξ

α

� 	w

−h

� 	
ð8Þ

F3 xð Þ= exp − exp −
x−ξ

α

� 	w

−h

� 	
 �
ð9Þ

F4 xð Þ=1− exp − exp
x−ξ

α

� 	w

+h

� 	
 �
ð10Þ

F5 xð Þ=1−
1

1+ x−ξ
α

� �w+k x−ξ
αð Þ ð11Þ

F6 xð Þ=
exp − 1−k x−ξ

α

� �� 1
k

� �
if k≠ 0

exp − exp −
x−ξ

α

� 	� 	
if k=0

8>><
>>:

ð12Þ

where α > 0 is the scale, w ≥ 0 and k ≥ 0 are shape
parameters, while ξ and h are the main and secondary
positions (real numbers), respectively. The three-
parametric versions of all of them are found for h = 0,
while the two-parametric versions are additionally found
for w = 0 = h, or setting k. Notice that, for k = 0, the
GEV distribution becomes a two-parametric Gumbel dis-
tribution (type I). Reversed Weibull (type III) distribution
is found if ξ = −α−1 < 0. The KS test was used to discrim-
inate which theoretical distribution performs better and
to validate the downscaling of the climate model's out-
puts. KS p value < 0.05 was used for rejecting the null
hypothesis that ‘the samples are from the same popula-
tion’. The uncertainty derived by the climate modelling
was estimated for each emission scenario and also
bounded by gathering the 20 projections (10 climate
models × 2 emission scenarios) as a unique ensemble,
due to the nonlinearity of mid-latitude precipitation pat-
terns regarding the variation of temperature (i.e., some
climate models show a higher increase in the extreme
precipitation under the RCP4.5 than under the RCP8.5
because the higher temperature can lead to longer drier
periods, with more evapotranspiration). Spatial distribu-
tion of that uncertainty was analysed by using a
multi-projection ensemble of the interpolated down-
scaled outputs (TPS fields) and also in a separated way
for each emission scenario.

3.3 | Direct time scaling

The scheme used is as follows: observed rainfalls are
available and allow the calculation of the IDF curves
with both subdaily and supradaily intensities. The

8 MONJO ET AL.
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climate models provide past and future rainfall series
with daily time steps, which allow the derivation of
supradaily IDF curves (Figure 4), and it needs to be
scaled to obtain the subdaily IDF curves.

Direct scaling was applied to the daily time series pro-
vided by the (spatially) downscaled model outputs
(Section 4.1) to obtain CCF for rainfall intensities of dura-
tions down to 5 min. Therefore, future (If) and past (Ip)
simulated rainfall intensities are the main variables.
According to the monofractal hypothesis, the rainfall
intensities scale is as follows (Monjo et al., 2014; Rodrí-
guez-Solà et al., 2017):

Ii T, tð Þ= Ii T, t0ð Þ t0
t

� �ňi
ð13Þ

where the subscript i refers to the future (f ) or past (p)
simulations, t0 is the reference duration, that is
t0 = 1 day, while ňi is the scaling factor in each case,
obtained at subdaily (from 5 min to 1 day) and at supra-
daily (from 1 to 5 days) timescales. We do not use the
same values for supradaily and subdaily scales, but the
relative change (CCF) estimated from supradaily scales is
assumed to be approximately the same at subdaily scales
too, as an additional hypothesis of our work
(Equation 14). Therefore, model-derived supradaily scal-
ing factor ňi was directly used to estimate changes in the
subdaily parameter ň. The rainfall intensities, Ip(T, t) and
If(T, t), for different return periods, T, were obtained fit-
ting several cumulative distributions according to
Section 3.2 (Equations 7–12). Then, CCF is calculated

from these model-based IDF curves as a function of both
return period T and duration t (Arnbjerg-Nielsen, 2012):

CCF T, tð Þ= If T, tð Þ
Ip T, tð Þ =

If T, t0ð Þ
Ip T, t0ð Þ

t0
t

� �ňf − ňp
ð14Þ

To analyse the performance of the direct time scaling,
the observed rainfall time series of Fabra was divided into
two similar long periods: a first time period (1928–1975)
and a second time period (1976–2021) were selected for
cross-validation. Then, the CCFs were obtained in two
different phases:

1. Using the original 5-min resolution rainfall time series
and applying the following steps:
� Extracting the first (1928–1975) and second (1976–

2021) time series of the annual maximum value of
different rainfall durations (from 5 min to 24 h).

� Fitting the theoretical distributions to all the series
to obtain the IDF curves.

� Calculating the CCF as a ratio of the second versus
the first set of sorted intensities.

2. Using the monofractal scaling applied to a daily rain-
fall time series and applying the following steps:

• Resampling the observed series into first (1928–1975)
and second (1976–2021) daily series.

• Extracting a series of annual maximum of daily rain-
falls from each one to obtain supradaily IDF curves.

• Applying monofractal downscaling to the supradaily
IDF curves to obtain subdaily IDF curves.

• Calculating the CCF as a ratio of the second (1976–
2021) versus the first (1928–1975) set of intensities of
the downscaled IDF curves.

Finally, the CCF error introduced by the approach
based on monofractal downscaling was calculated as the
ratio between the CCF obtained with downscaling and
the CCF obtained using the 5-min resolution rainfall time
series (without downscaling). Logically, this validation
process cannot be applied to the historical experiments of
the climate models because subdaily values are not avail-
able from the climate model outputs. As a basis for the
direct scaling, the empirical IDF curve (with observed
value of ň ≈ 0.74) was used and then CCF quotient is
applied to obtain projected IDF curves, whereby system-
atic errors tend to disappear.

3.4 | Semi-stochastic time scaling

Daily time series is obtained from the spatial downscaling
(Section 3.1) and are used as a reference (‘physical’ time

FIGURE 4 Conceptual scheme of how future and past (daily)

projections derive changes in the supradaily IDF curves, while local

observations establish the reference IDF curves for both subdaily

and supradaily intensities. The climate change factor obtained on a

supradaily timescale is then extrapolated to the subdaily scale by

using the changes in the monofractal parameter (ň). IDF, intensity–
duration–frequency.
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series) for combining with a purely stochastic time series.
Subdaily time series were simulated using statistical fea-
tures of the concentration n-index. A total of four steps
were designed here to obtain the subdaily time series
from the daily time series:

1. The first step comprised aggregating the observed
5-min values of rainfall into a simple daily time series
(summing all the rainfall records of each day) to fit
transfer functions to the empirical quantile–quantile
mapping (between both timescales) for three main fea-
tures (according to Equation 6): (i) wet spell duration,
(ii) fitting reference intensity I0 and (iii) fitting n-index
(Figure 5). At this stage, only original rain-gauge values
(i.e., without gap filling) could be used to find empirical
relationships between the subdaily and daily scales.

2. All the transfer functions are applied to every (observed
or simulated) daily time series to obtain the hypotheti-
cal features for the subdaily timescale, maintaining sta-
tistically significant relations among them. That is, the
distribution of the n-index can depend on the distribu-
tion of rainfall intensities or wet spell durations, so the
distributions were simulated regarding these time
structure relationships using stepwise regression plus a
random generator. From the second step onward, it
can also applied to all the ‘physical’ time series.

3. Entire time series of feature values are randomly sim-
ulated from the distribution functions obtained in
Step 2. This step has three substeps: (i) First, a time
series of ‘wet/dry spell’ is obtained; (ii) then the time
series of ‘n-index’ and ‘reference intensity’ values are
generated, both with the same length as that of the
wet spell and (iii) finally, the 5-min values of rainfall
are obtained for each wet spell (synthetic hyetograph)

according to the previous ‘n-index’ and ‘reference
intensity’ sequences.

4. The stochastic time series generated in Step 3 is aggre-
gated at a daily scale to compare with the (complete)
daily time series obtained from the downscaled model
outputs (‘physical’ time series). Both these daily time
series are sorted to identify the rescaling factors
applied to the subdaily values of the stochastic series
for each day, according to the physical series. The cor-
rected sequence of subdaily values becomes the final
semi-stochastic time series, with the same daily
amounts as the physical series (Figure 6).

Similar to the simulation validation applied to daily
values, the KS test was also computed to check the good-
ness of the semi-stochastic scaling of subdaily values.
This includes simulating the other rainfall features (n-
index, reference intensities and wet/dry spell duration).
Finally, IDF curves are estimated from the simulated
time series and thus CCF according to Equation (14) by
estimating the probable maximum intensity and the frac-
tal parameter ň, which are respectively equivalent to ref-
erence intensity (I0) and the n-index of a synthetic
rainfall event given by each return period.

4 | RESULTS

4.1 | Validation of methods

4.1.1 | Spatial downscaling of daily values

According to the KS test, the spatial downscaling
obtained good performance for simulating the probability

FIGURE 5 Example of empirical quantile–quantile mapping and theoretical transfer functions between daily and subdaily features:

(a) wet spell duration, (b) average intensity (I0) and (c) n-index values. [Colour figure can be viewed at wileyonlinelibrary.com]
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distribution of daily precipitation in Barcelona, compar-
ing downscaled historical outputs of five climate models
(ACCESS1-0, BCC-CSM1-1, MPI-ESM-MR, MRI-CGCM3,
and NorESM1-M) to the observed probability distribution
(Figure 7a). The other model outputs (CanESM2, CNRM-
CM5, GFDL-ESM2M, HADGEM2-CC, and MIROC-ESM-
CHEM) did not pass the KS test for the positive values of
precipitation in some seasons. However, after the correc-
tion (Section 3.2.1, step 3), all of them passed the KS test
for the entire time series. Moreover, the maximum daily
precipitation is also well simulated by most of the model
outputs compared to the observed reference values, with
a systematic error smaller than 10% in all cases.

4.1.2 | Direct time scaling

As regards the direct scaling applied to the daily time
series (observed or provided by the spatially downscaled
model outputs), the CCF presented an expected system-
atic error as a function of rainfall duration, obtained from
the cross-validation (Section 3.3, step 1). Comparing the
results obtained with temporal downscaling and with the
original subdaily data, the systematic error is negative,
which is interpreted such that the CCF obtained by direct
downscaling is underestimated compared to the obtained
from actual subdaily values (Figure 8a). The errors have
lower values (<5%) ranging between 0- and 120-min
durations, then they increase up to a peak value at
approximately 360 min (about 10%–20%), and reduce
with increasing duration (down to 5%–10%), ranging
errors with the return period (Figure 8b).

This underestimation obtained by downscaling the
(calendar) daily time series is partially due to the differ-
ence between the aggregated rainfall values (in daily time
series) and the actual rainfall values for a duration of
24 h. In fact, the 24-h rainfall is generally greater than

FIGURE 7 Kolmogorov–Smirnov (KS) p value of the

validation process for 10 downscaled CMIP6 outputs compared to

observed probability distribution. The model outputs are:

(a) uncorrected and corrected daily rainfall values and (b) semi-

stochastic simulation of 5-min rainfall features (rainfall values, n-

index values, reference intensities, wet spells and dry spells). KS

p value < 0.05 is used for rejecting (red boxes) the null hypothesis

(the samples are from the same population). CMIP6, Coupled

Model Intercomparison Project Phase 6. [Colour figure can be

viewed at wileyonlinelibrary.com]
FIGURE 6 Example of semi-stochastic generation of subdaily

rainfall for Barcelona: (a) daily time-series observed, (b) subdaily

time-series observed and (c) subdaily time-series simulated.

Dark bars are all the rainfall values, while light shaded areas

(represent rainy days > 0.1). Notice that the lower panel does not

intend to reproduce the observed values one by one, since it is

stochastic at a subdaily scale and deterministic at a daily scale

(given by the physical simulation of the daily values before

disaggregating). [Colour figure can be viewed at

wileyonlinelibrary.com]
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the 1-day values because the usual duration of extreme
precipitation within a calendar day is about 4–12 h on
average (Llasat, 2001; Morbidelli et al., 2020). According
to Equation (14), using a climatic average (e.g., ň = 0.5),
the 24 h/1 day differences can be up to 100%. However,
the differences are less than 20% in all cases because the
systematic errors of rainfall measure (1 day vs. 24 h) and
of ň parameter almost disappear when the CCF quotient
is used, especially for durations shorter than 2 h. There-
fore, we used this duration as the primary time scale for
the CCF analysis.

4.1.3 | Semi-stochastic time scaling

Subdaily rainfall is well simulated for Barcelona at a time
resolution of 5 min. That is, the probability distribution
of wet spell precipitation and n-index values (see, for
instance, Figure 4) passed the KS test for most cases,

comparing historical experiments of the multi-model
approach and the observed time series (Figure 7b). How-
ever, three downscaled climate models (ACCESS1-0,
CanESM2 and CNRM-CM5) presented difficulties in sim-
ulating the n-index for wet spells. Despite this problem,
the bias of the n-index distribution is zero and, therefore,
it does not affect the results (because the method of
applying empirical transfer functions is unbiased).

4.2 | Projection of the climate change
factors

An increment in 12-h extreme rainfall up to 30%–40% is
projected for 2071–2100, according to both time scaling
techniques applied to the (spatially downscaled) climate
model outputs. Specifically, the return period of annual
maximum 12-h extreme values was analysed for the
study area (Figure 9). Statistical significance of this incre-
ment is found especially in the inner of the region for
2-year and 10-year return periods for the 2041–2070
period and for the 2-year to 100-year return periods by
the end of the century.

Analysing the climate change in a separated way for
each emission scenario, projections of the IDF curves
showed significant changes according to the semi-
stochastic monofractal scaling for both scenarios
(Figure 10). In 75% of the cases, the CCF is higher than
1, ranging up to 1.4 or 1.5 for the higher return periods,
especially in the 2071–2100 period under the RCP8.5 sce-
nario. The uncertainty levels are lesser for the RCP8.5
than for the RCP4.5 scenario in the 2041–2070 and 2071–
2100 periods. However, results for monofractal time scal-
ing show that the median climate of CCFs for all the
cases is practically equal to one in the period 2011–2040
and then increases to values above one in the 2041–2070
and 2071–2100 periods (Figure 11). In addition, the
median of CCFs presents similar values for all the
extreme events except for the 2011–2040 period under
the RCP4.5 scenario and the 2071–2100 period under the
RCP8.5 scenario, where the higher the return period, the
higher the median of the CCFs. The uncertainty bounds
of CCFs also increase from the 2011–2040 to 2041–2070
periods and finally to the 2071–2100 period.

Overall, the results showed two differentiated main
results: on the one hand, a high uncertainty comparing
both methods for the early 21st century (2011–2040 aver-
age) with no significant changes according to the direct-
scaling approach and some climate change signal for the
higher return periods if the semi-stochastic approach is
considered. On the other hand, the subdaily patterns are
clearer for the medium period (2041–2070) with a con-
sensual increase in the CCF according to both methods.
The CCF ranges between 1 and 1.3 for all the return

FIGURE 8 Validation process for the direct-scaling approach

applied to the observed time series: (a) example of CCF obtained

for a 10-year return period with temporal downscaling applied to

calendar daily data compared to the CCF of the original subdaily

data (marked as ‘without temporal downscaling’), and the error

introduced when the downscaling approach is used, and b) the

difference (error) between the CCF calculated on downscaled and

not-downscaled values. This example corresponds to the CCF of the

1976–2021 period compared to the 1928–1975 period. CCF, climate

change factor. [Colour figure can be viewed at

wileyonlinelibrary.com]
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periods within the projected 2-h extreme event. At the
end of the century (2071–2100), the uncertainty is high
again, but some consensus is obtained for the higher
return periods with a CCF up to 1.5 for 1-h extreme
events. Similar results were found for the Barcelona met-
ropolitan area and the inner region of Barcelona (not
shown).

5 | DISCUSSION

5.1 | Strengths and weaknesses

From the assumption of fractal self-similarity between
daily and subdaily timescales, it is expected that stochas-
tic downscaling of subdaily precipitation inherits the geo-
metrical (and therefore some physical) features of the
time structure of the daily rainfall; that is, it was possible
to find statistical relationships between ‘how rainfall is
concentrated within a multiday event’ and ‘how rainfall
is concentrated within a day’ (as a result of the observed
time series). For this purpose, two monofractal
approaches were analysed, with some pros and cons. The
advantages of the direct method are the simplicity of cal-
culation (with less computational cost); however, it does
not allow the evaluation of the performance of each cli-
mate model to simulate the temporal concentration of
the precipitation because it is applied directly to the
model outputs. It can only be validated using the
observed subdaily time series by simulating a CCF
between two separated historical parts. In contrast, the
semi-stochastic approach simulates subdaily time series
for each climate model, which allows a comparison of
the historical simulation of the climate models with the

observed subdaily time series regarding the rainfall fea-
tures (n-index, wet/dry spells and reference intensities).
Nevertheless, the physical part of the semi-stochastic
technique is limited to the day-to-day combination of the
stochastic subdaily time series with the daily time series
simulated with the spatial downscaling (which uses
atmospheric fields as physical predictors).

As a positive point of that combination, the good per-
formance of the spatial downscaling of precipitation
ensures low systematic errors (less than 10%) in the daily
time scale for Barcelona and passing the KS test in more
than 75% of the cases (combination between historical
experiments and daily rainfall features). Similar confi-
dence is obtained for the semi-stochastic monofractal
approach with an adequate simulation of the subdaily
rainfall features (wet/dry spells, maximum intensities
and n-index). The validation of the direct scaling of the
CCF also provides an idea of the errors that are intro-
duced when the method is applied to daily series with a
general underestimation for all the durations (between
0% and 20%) and with low values (<5%) for periods
shorter than 2 h.

Of course, the large set of required calculus makes
semi-stochastic technique has much high computational
cost than the direct approaches. A key idea of this work
is to check whether consensual changes are projected
under both simple and sophisticated methods, and
another important point is to analyse their systematic
contribution to the uncertainty cascade (i.e., in the vali-
dation process and in the statistical significance of the
projected climate signal). The added value of the semi-
stochastic technique is that enables to estimate not only
extreme events but also statistics of general subdaily wet
spells, for example, to estimate rainfall concentration and

FIGURE 9 Multi-projection

ensemble of extreme precipitation:

median of changes in extreme events of

12-h precipitation projected for the Ter-

Llobregat system, according to 2-year,

10-year, and 100-year return periods

(rows) and for three future time periods

(2011–2040, 2041–2070 and 2071–2100,
second to fourth columns) with respect

to the reference period 1976–2005 (first
column) by using the semi-stochastic

approach. Significant changes

(p values < 0.05) are highlighted with

dotted shadow areas. [Colour figure can

be viewed at wileyonlinelibrary.com]
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FIGURE 10 Projected IDF curves for Barcelona city according to absolute values (first column) and the change factor (second and third

columns) for three future periods: 2011–2040 (top), 2041–2070 (centre) and 2071–2100 (bottom), according to the semi-stochastic

monofractal time scaling. The figure shows a multi-projection ensemble of IDF curves by combining the downscaled outputs of 10 climate

models and two emission scenarios (RCP4.5 and RCP8.5), where lines representing the median and shaded areas indicating the 25th and

75th percentiles as a function of different rainfall durations. Dashed lines correspond to the empirical IDF curves (from the observed 1976–
2005 period), used as a reference to correct the simulated IDF curves under the CMIP5 Historical experiment (also for the 1976–2005 period).
CMIP5, Coupled Model Intercomparison Project Phase 5; IDF, intensity–duration–frequency. [Colour figure can be viewed at

wileyonlinelibrary.com]
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its hydrological effects. Notice that some hydrological
models need entire (subdaily) time series instead of just
synthetic hyetographs from IDF curves (Ficchì
et al., 2019), and therefore semi-stochastic techniques
could be applied to project future hydrological features at
subdaily scales.

5.2 | Significant changes

After correcting the systematic errors of the final IDF
curves, random errors remained in the uncertainty cas-
cade. They were evaluated using the multi-model
approach with two emission scenarios, which showed a

FIGURE 11 Same as Figure 10 but using the direct monofractal approach. [Colour figure can be viewed at wileyonlinelibrary.com]
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0%–30% variation range for the CCF. Therefore, the sys-
tematic error of the methods (about 5%–10%) is lower
than the expected increase in subdaily intensities for IDF
curves in Barcelona. According to the two analysed
methods, a CCF of about 1.15 ± 0.15 is expected for the
2041–2070 period in all the return periods between 2 and
500 years. This result is similar to the previous analysis
obtained for Barcelona at a subdaily scale using CMIP4
climate models, which projected a CCF between 1 and
1.1 for low-emission scenarios and between 1.1 and 1.3

under the worst scenarios (Rodríguez et al., 2014). More-
over, these changes are consistent with the projection of
12-h extreme precipitation in the 27 rain gauges located
in the watershed of Ter-Llobregat system around Barce-
lona, which will experience an increase of up to 10%–20%
in the 2041–2070 period and 20%–40% in the 2071–2100
period (Monjo et al., 2019). An exception is found for
10-year return-period 12-h rainfall by the 2071–2100
period, for which an increase higher than 40% is pro-
jected (Figure 9), in contrast with the projection of less

FIGURE 12 Multi-ensemble projection of subdaily wet spells with precipitation amounts higher than 50 mm in Barcelona (set of

27 stations): Number of events (top-left), duration (top-right), n-index (bottom-left) and reference intensity (bottom-right). The ensemble

median (solid lines) and the 10th–90th percentile values (shaded areas) are displayed. The vertical dashed line marks the end of historical

data (2005). [Colour figure can be viewed at wileyonlinelibrary.com]
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than 30% in 2-year and 100-year return-period values
(consistent with the projection of CCF up to 2-h duration
under both methods). This conclusion is also consistent
with the increase in the n-index projected for the wet
spells in Barcelona, showing a change up to 8%–10%,
from n = 0.38 to n = 0.41, especially under the RCP8.5
scenario (Figure 12 shows the wet spells of more than
50 mm, but projections are also similar for more
than 2 mm).

Results showed consensual changes in extreme events
and moreover, the simulation of the monofractal parame-
ter (ň) by the direct scaling is consistent with the
obtained from the statistics of individual rainfall events
(n). This result validates the initial assumption used in
the direct scaling, that is, the change of the parameter ň
at subdaily scales can be approximated by the changes of
the parameter ň obtained from supradaily scales
(Equation 14). In general terms, the physical coherence
and the consensus between the results of both methods
show that the analysis of CCF is robust under the mono-
fractal hypothesis, despite the complexity of the Barce-
lona rainfall regimes.

On a daily scale, Monjo et al. (2016) found a slight
possible increase in extreme precipitation for return
periods between 10 and 100 years under the RCP4.5 sce-
nario, but with low statistical significance (Monjo
et al., 2016). In fact, the RCP8.5 scenario projects a
decrease in the daily precipitation (consistent with the
lower amount of annual rainfall) with shorter wet spell
durations and longer drought periods due to more evapo-
transpiration (Gait�an et al., 2020). In summary, some cli-
mate models showed a higher increase in extreme
precipitation under RCP4.5 than under RCP8.5, and
therefore both ensembles project a similar increase in
rainfall concentration (as shown in Figure 12). The physi-
cal interpretation is that mid-latitude precipitation pat-
terns are nonlinear with the variation of temperature. A
warmer atmosphere increases both the evapotranspira-
tion potential and the atmospheric water content, and
therefore the variation of precipitation depends on their
local balance. More specifically, the return period of a
particular precipitation amount is given by the balance
between the increase of the rainfall intensity within an
event (determined by specific humidity) and the reduc-
tion of the number of wet events (determined by some
synoptic-scale atmospheric situations). Figure 12 shows
that both emission scenarios converge in a similar way
for the maximum reference intensity projected for the
end of century (about +20%) but with a little more con-
centration (i.e., higher n-index) under the RCP8.5
scenario.

On the other hand, a higher fractal dimension of rain-
fall in the Mediterranean region is associated with more

frequent anticyclonic regimes (Meseguer-Ruiz
et al., 2019). Therefore, the increment of the n-index is
consistent with the poleward expansion of the Hadley
cell that affects the Southern Europe (Hu & Fu, 2007;
Yang et al., 2020).

6 | CONCLUSIONS

To obtain the CCF of 5-min-resolution IDF curves from
local climate scenarios on a daily scale, this paper com-
pares two monofractality-based methods: a semi-
stochastic method and a direct method. For both, the val-
idation process showed that systematic errors (5–10%) are
smaller than the climate change signal (about 15%–30%).
This result allows the measurement of changes in rainfall
concentration (linked to the monofractal dimension) and
in intensity distribution (as a basis of IDF curves). As an
example of the application of the methods, an increase in
rainfall concentration/intensity is obtained by analysing
local climate scenarios for reference time series with a
Mediterranean climate (with high climate variability).

Completing the discussion for the studied area, the
general conclusion is that the hydrological cycle is accel-
erating with more evapotranspiration impacting on the
longest rainfall regimes (reduction of rainfall amounts
from the day to the century timescales) and more avail-
able atmospheric water content during the wet subevents
(within the more extreme rainfall episodes, shorter than
2 h). Moreover, the increase of rainfall fractality, concen-
tration or inequality (in temporal and spatial distribu-
tion) is linked to more frequent anticyclonic weather
regimes in the Mediterranean regions.

Despite the advances in earth system modelling (from
CMIP4 to CMIP5 experiments), the new results obtained
through the two techniques project trends similar to
those found in previous studies for Barcelona. This con-
sistency of the results is especially relevant for policy
makers as it provides robustness in decision-making
regarding the design of stormwater management infra-
structure. In this case, the consensual result of both
monofractal approaches showed that the rainfall regime
of Barcelona would be 8%–10% more concentrated in
short periods, and therefore more intense with increases
in maximum rates for 2-h periods of up to 15% or 30%.
However, some systematic uncertainties are found when
both methods are compared. For instance, the semi-
stochastic technique projects an increase higher than 40%
for 10-year return-period 12-h rainfall by the 2071–2100
period, which could be an overestimation compared to
2-year and 100-year return period, because they project
an increase lower than 30%, like the direct scaling for 2-h
durations.
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After this analysis, further research will focus on the
possible generalization of both the semi-stochastic and
direct approaches to incorporate multifractal analysis. In
this case, it is expected that the modification of the
methods could introduce a second-order correction
because the theoretical functions used showed an ade-
quate goodness-of-fit (passing KS tests) for simulating
extreme rainfall between 5 and 120 min. Therefore,
although the methods are applied to a few reference time
series in Spain, it is expected that they will be applicable
to any time series.
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APPENDIX A: MONOFRACTAL DIMENSION OF
RAINFALL INTENSITY

This appendix shows that the scaling exponent of the
rainfall intensity is approximately equals to the mono-
fractal Rényi dimension:

Let t < t0 be a time given to scale a real (one-dimen-
sion) random variable I, for instance rainfall intensity,
and δ = t/t0 be the relative size of the measuring i-th time
box selected from a time series partition (i.e., regular
δ-lattice cover). At each i-th time box, the scaling is pro-
vided by the Lipschitz-Hölder exponent αi, which defines
the degree of singularity or concentration of I at i-th time
box (that is the rate of approach to infinity when δ
approaches to 0). Thus, given a probability pI of measur-
ing I, the probability measure PI in the distribution
domain for the i-th time box scales as (Masugi &
Takuma, 2007; Sun & Barros, 2010):

PI δð Þ � pIδ
−αi , ðA1Þ

And also the average value

I tð Þh i=
X

PI δð ÞI � δ−αi
X

pII � δ−αi ðA2Þ

In general terms, the exponent α(q) is related to a
mass exponent function τ (q) by

α qð Þ= d
dq

τ qð Þ ðA3Þ

where q �(−∞, ∞) is the raw q-moment. Moreover, the
number of boxes whose Lipschitz-Hölder exponent is α
scales as

Nα � δ− f αð Þ ðA4Þ

while f(α) = qα(q) –τ(q) is a singularity function also
known as multifractal spectrum, obtained by Legendre
transformation of (Masugi & Takuma, 2007):

τ qð Þ= q−1ð ÞDq ðA5Þ

with a family {Dq} of the multifractal Rényi dimensions
(e.g. D0 is the box-counting or capacity dimension, D1

is the entropy or dimension and D2 is the correla-
tion dimension). Therefore, taking q = 0, one can see that
f(α) = −τ(0) = D0 coincides with the box-counting dimen-
sion, and if the monofractal hypothesis (i.e., constant
Dq ≈ D0 ≈ D1) is considered, it leads to:

α qð Þ≈ d
dq

q−1ð ÞD00ð Þ≈D0, ðA6Þ

f αð Þ≈ qD0− q−1ð ÞD0 ≈D0 ðA7Þ

On the other hand, the expected q-moment of the
rainfall intensity is given by (Garcia-Marin et al., 2013;
Zhang et al., 2021):

Iq tð Þ� � � Iq t0ð Þ� �
δ− ňq ! I tð Þh i≔ I1 tð Þh i � I1 t0ð Þh iδ− ň

ðA8Þ

Finally, taking q = 1 in Equation (A8) and equalizing
to Equations (A2) and (A6), the monofractal dimension
(ň) of the rainfall intensity is approximately equal to
Lipschitz-Hölder exponent (α), and also to the monofrac-
tal Rényi dimensions (i.e., when box-counting dimension,
information-entropy dimension and correlation dimen-
sion coincide).
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