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Abstract: In this paper, we present a novel framework for enriching time series data in smart cities
by supplementing it with information from external sources via semantic data enrichment. Our
methodology effectively merges multiple data sources into a uniform time series, while addressing
difficulties such as data quality, contextual information, and time lapses. We demonstrate the efficacy
of our method through a case study in Barcelona, which permitted the use of advanced analysis
methods such as windowed cross-correlation and peak picking. The resulting time series data can
be used to determine traffic patterns and has potential uses in other smart city sectors, such as air
quality, energy efficiency, and public safety. Interactive dashboards enable stakeholders to visualize
and summarize key insights and patterns.
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1. Introduction

In today’s data-driven world, the amount of data generated and collected is increasing
at an exponential rate, making it difficult to make sense of it and extract valuable insights
from large amounts of data. Since raw data cannot provide an accurate representation
of the underlying information and its relationships to other data points, adding context
and meaning to data is becoming increasingly important, because it helps to improve the
accuracy and value of data analysis [1]. Enriching data with semantic information aids in
the clarification of relationships between data points, the identification of patterns, and
the extraction of insights that would, otherwise, be missed. In other words, semantic
enrichment is the process of enhancing raw data with semantic annotations or metadata
to make it more meaningful, machine-readable, and usable. Semantic enrichment aims to
convert unstructured, or poorly structured, data into structured, semantically rich, data that
humans and computers can easily understand, and process, leading to improved results in
tasks, such as information retrieval, text classification, and sentiment analysis [2,3].

Figure 1 illustrates the comprehensive process of semantic data enrichment, which
begins with the collection of raw data from various sources. Following that, the raw
data must be acquired by accessing and importing it into a suitable data management
system. After that, the pertinent data is extracted from the acquired dataset, utilizing an
array of techniques, such as data mining, text analysis, etc. Following data extraction,
the data preprocessing phase begins, which involves cleaning and normalizing the data,
resulting in the organization of the extracted data into a standardized and consistent
format. This standardization makes data comparison and analysis more straightforward.
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The normalized data is then supplemented with metadata or labels to provide additional
information about the data type, structure, and semantics.

Subsequently, ontology languages are used to create a formal representation of the
domain-specific concepts and relationships found in the enriched data. To provide a more
comprehensive understanding of the data, the enriched data is linked with other relevant
datasets, either within the same system or from external sources. The final step is to
integrate the enriched data with existing data systems and applications, making it more
accessible and useful to end-users.

Data Collection

Data Acquisition Data Extraction Data Normalization
Data Annotation

Entity Recognition

Data Pre-processing
Ontology Creation and Linking

Wikipedia
Databases

Data Integration

Semantic Enrichment

Figure 1. Semantic Data Enrichment.

Improving interoperability is another significant advantage of semantic data enrich-
ment. When different systems and applications share a common understanding of the
data being used, they can work more effectively together. This can result in better data
exchange and more efficient data use, reducing the need for manual data entry and the
risk of errors. For instance, Bouaicha and Ghemmaz [4] proposes a method for integrating
and harmonizing data from various IoT sources in order to facilitate the exchange and
processing of meteorological data. The approach makes use of semantic technologies to
provide a common understanding of the data and to solve any semantic inconsistencies
that may exist between various IoT sources. The authors conducted tests to determine the
efficacy of the proposed solution and reported positive results. Additionally, semantic data
enrichment can lead to increased data reuse. Organizations can reuse data more effectively
by improving data quality and understanding. Bassier et al. [5] describes a process for
transforming existing building geometry data into linked data, which is a form of semantic
enrichment. The linked data contains additional information about the geometry of the
building, making it more meaningful and usable for a variety of applications. The authors
increase the value and reuse potential of the building geometry data by converting it to
linked data. Furthermore, semantic data enrichment can be used in a variety of industries
(i.e., healthcare, finance, logistics, manufacturing, telecommunications, government, etc.),
to improve performance by providing a better understanding of data and the relationships
between data points [6].

However, despite its numerous advantages, implementing semantic data enrichment
is not without difficulties. Data quality, scalability, and security are three major challenges.
To provide a clear understanding of the data, semantic annotations must be accurate,
complete, and consistent. The process of identifying, extracting, and validating semantic
annotations is time-consuming and resource-intensive, making improved data quality a
difficult task. Another challenge is scalability, because, as the amount of data generated
and collected grows, the ability to process and enrich large amounts of data in real-time
becomes increasingly difficult. Even though sensitive information may be included in
the enriched data, security is a challenge. Maintaining trust in data requires a delicate
balance in ensuring the privacy and security of sensitive data while still allowing its use
for analysis. Furthermore, smart cities can improve their data collection, management,
and analysis by leveraging this technology. This data can then be used to improve the
quality of life for citizens, increase efficiency and sustainability, and improve the overall
functioning of the city. Semantic data enrichment is, thus, a critical component of the
smart city ecosystem, serving as a foundation for advanced applications, such as traffic
management, environmental monitoring, public safety, and many others [7,8].
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Motivation and Context: Barcelona Smart City Research Project

With the rise of urbanization around the world, and the increasing demand for sus-
tainable and efficient city transport and mobility operations, it has become essential for
cities to develop projects that take into account new available technologies and possibilities
opening up in the global market, such as services on-demand and online accessible prod-
ucts. Furthermore, zero-emission vehicles are increasingly common in cities (e.g.,: electric
vehicles, unmanned aerial vehicles, autonomous vehicles, etc.) and new sensibilities from
public institutions for sustainable, transparent, and effective development have created
an urge from these entities to rethink and redevelop how public transportation, and its
interaction with its users, is established.

Having all these needs as end goals, Barcelona City Council –Ajuntament de Barcelona–
has been developing different initiatives that aim to meet the new needs that Barcelona’s
citizens have inquired about over the past years. One of them is the Open Data Barcelona
initiative [9], a project that started in 2010, and which fosters a “pluralistic digital economy”
and develops a “new model of urban innovation based on the transformation and digital
innovation of the public sector and the implication among companies, administrations, the
academic world, organizations, communities, and people, with a clear public and citizen
leadership”. The Open Data Barcelona service is transversal to several of the pillars of the city’s
planning strategy, giving citizens access to all data available from the main administrative
departments of the city council.

Another initiative taken by the city council is the Optimizing Carsharing and Rideshar-
ing Mobility in Smart Sustainable Cities project within the Barcelona Science Plan 2020–
2023 [10], which analyzes the possible impact that carsharing and ridesharing strategies
can have in the Greater Barcelona Metropolitan area, together with intelligent systems that
redistribute the available resources for optimal and sustainable performance, using mainly
Open Data Barcelona assets for its development. These new strategies can directly impact
the cost reduction of carsharing and ridesharing operations, an aspect that would have,
indirectly, an impact on the final cost for citizens of many products and services. Moreover,
its final aim is to promote universal user-friendly access to cost-effective transport and mo-
bility options without compromising safety and security. Thus, these new strategies could
reduce direct and indirect costs. In addition, these concepts and solutions facilitate new
carsharing and ridesharing business models that contribute to more sustainable transport
and mobility practices.

This project presents research findings that use different data sources, such as em-
pirical time-series data and various algorithms, predictive models, and simulations, to
simulate traffic flows in a city. However, these data sources may have heterogeneity in their
definitions and structures, which can limit their interoperability and usefulness. To address
this issue, this paper proposes a common framework that homogenizes and merges all
available data sources into a single, semantically enriched database. The resulting database
can be used to support real-time decision-making in city transport and mobility operations
for carsharing and ridesharing. This paper introduces a new framework for enriching time
series data quality in smart city applications. The framework supplements time series
data with external data sources using semantic data processing techniques to improve data
quality and provide contextual information. This paper also demonstrates the effectiveness
of the proposed framework by using traffic density data from Open Data Barcelona in a
case study in the context of Barcelona’s smart city.

The primary objective of this article is to present and develop an application of
semantic technology in order to create a data semantic model that can effectively enrich
time series data, specifically within the context of a smart city. By leveraging the semantic
data model developed, several notable contributions are made by this article, which are
outlined in detail below.

• The first contribution is the enhancement of data quality for asynchronous time series
data, which is crucial for ensuring that accurate and reliable insights can be drawn
from the information.



Axioms 2023, 12, 349 4 of 25

• Secondly, the article showcases the ability to integrate and unify data that originates
from various, heterogeneous sources, thus facilitating a more comprehensive under-
standing of the smart city ecosystem.

• Another key aspect of this work is the increased availability of data, which can be used
to support a wide range of smart city applications and initiatives aimed at improving
urban living conditions. By making data more accessible, the article contributes to the
advancement of smart city technologies and the development of innovative solutions
to address the challenges faced by urban communities.

• Lastly, the article generates a methodology for handling all sorts of smart city data,
making it possible for different actors and stakeholders involved in smart city applica-
tions to effectively utilize and benefit from the insights provided. This methodology
ensures that the semantic data model can be applied to a broad range of scenarios and
contexts, thereby increasing its overall value and impact.

Overall, the article emphasizes the importance of semantic technology in the context of
smart cities and demonstrates its potential to significantly enhance the quality, availability,
and utility of time series data. By doing so, the article contributes to ongoing efforts to
harness the power of data and technology to create more sustainable, efficient, and livable
urban environments.

The rest of the paper is organized as follows. We discuss related work on semantic data
enrichment in Section 2. Next, in Section 3, we introduce our data semantic enrichment
model and its implementation. To demonstrate the effectiveness of our approach, we
present a case study and computational results in Section 4. In Section 5, we summarize
our main findings. Finally, in Section 6, we conclude with an outlook on future research
directions.

2. Related Work

The use of semantic technologies has received a lot of attention in recent years. In
the context of the Internet of Things (IoT), Honti and Abonyi [11] summarized recent
advances in the application of semantic sensor technologies, and investigates the various
approaches and techniques used for the semantic enrichment of sensor data, as well as the
field’s challenges and future directions. The review provides a comprehensive overview
of the research in this area, emphasizing the significance of semantic sensor technologies
in improving interoperability and data quality in IoT systems. Xhafa et al. [12] assessed
the performance of an edge computing layer for IoT stream processing, with a particular
emphasis on semantic data enrichment. The findings indicated that edge computing is a
promising solution to improve the efficiency and effectiveness of semantic data enrichment
by lowering latency and increasing data processing reliability. The study sheds light on the
potential of edge computing in supporting the growth of IoT and improving the quality
of semantic data across multiple domains. Chen et al. [13] investigated the design and
implementation of a data infrastructure that supports urban analytics using semantics. To
provide a comprehensive view of the urban environment, the authors propose a semantic-
enabled infrastructure that integrates multiple data sources. The infrastructure makes use
of ontologies to represent data relationships and provide a common understanding of the
data. The authors describe the infrastructure’s implementation in practice and assess its
effectiveness in supporting urban analytics tasks. They demonstrated that the semantic-
enabled infrastructure could effectively integrate and analyze data from multiple sources,
providing valuable insights for urban decision-making. In the field of semantic models
for the analysis of data from IoT sensors, Zappatore et al. [14] proposed a system that
extracts relevant data from IoT sensors using semantic models and then analyzes the data
to infer relationships between environmental factors and human well-being. According
to the study, the use of semantic models can lead to a more accurate and efficient analysis
of IoT sensor data and valuable insights into how environmental factors impact human
health and well-being.
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Additionally, Buchmann and Karagiannis [15] discusses a method for transforming
diagrammatic conceptual models into a more semantically rich Web of Data representation.
The authors presented a pattern-based approach for converting these models into a format
that computers can better understand and process, allowing for easier integration and
interoperability between various data sources on the web. This approach aims to improve
web data interoperability and make it easier for computers to understand and process
information.

To facilitate the integration of multiple data sources in smart cities, Djenouri et al. [16]
proposed a method for matching different ontologies. To match ontologies and resolve
semantic mismatches between them, the method employs a combination of techniques,
such as semantic similarity, instance-based matching, and domain knowledge. The authors
assessed the proposed method’s performance in a case study involving the integration
of multiple data sources for smart city applications. Xu et al. [17] proposed a system for
annotating data in the IoT ecosystem that uses both domain-specific and general ontologies,
as well as a hybrid approach to semantic annotation. According to the study, using semantic
annotations can improve the efficiency and accuracy of data processing in IoT ecosystems,
as well as the interoperability of different IoT devices. Xue et al. [18] describe recent
advances in the semantic enrichment of building and city information models. The authors
investigated the various approaches and techniques used for semantic enrichment, as well
as the field’s challenges and future directions. The review spanned ten years and provides
an in-depth look at the research in this field. The findings showed that semantic enrichment
has been widely adopted in the field of building and city information modeling, resulting
in improved data interoperability, data quality, and data usability. According to the authors,
semantic enrichment continues to play an important role in the development of smart cities
and the built environment.

The application of semantic technologies is not limited to these sectors, as simi-
lar studies have been conducted in the field of semantic sensor technologies, wherein
Amato et al. [19] proposed a semantically enriched data model for improving sensor net-
work interoperability. The authors presented a semantic enrichment technique that com-
bines metadata with raw data to make it more meaningful and machine-readable. The
method relies on ontologies and vocabularies to represent the meaning and relationships
between data elements. The authors evaluated the proposed approach’s performance in a
real-world scenario and demonstrated that it can effectively improve sensor network inter-
operability. The study provides valuable insights into the potential of semantic enrichment
for improving data quality in sensor networks and offers a promising solution for overcom-
ing data interoperability challenges in this domain. Furthermore, Jiang et al. [20] discuss the
use of neural networks to represent computer code in an hierarchical, semantically-aware
manner. The authors proposed a method for improving computer code representation
in order to better capture its meaning and structure. This is accomplished by incorporat-
ing semantic information into the code representation, which allows the neural network
to comprehend the relationships between various parts of the code. The resulting code
representation is hierarchical, allowing for the effective representation of complex code
structures, and it can be used for tasks like code summarizing, completion, and search. The
authors assessed their method and demonstrated that it outperformed existing methods in
a variety of tasks.

Ataei Nezhad et al. [21] presented a secure IoT data aggregation method that utilizes
an authentication mechanism to ensure data integrity and confidentiality. The proposed
methodology uses a two-tier architecture, in which data is aggregated locally by trusted
nodes before being sent to a central aggregator for processing. The authentication mecha-
nism is built on a symmetric key encryption scheme that ensures secure communication be-
tween nodes, while also preventing unauthorized data access. The authors also conducted
simulation experiments to evaluate the proposed method’s performance and compared
it to other existing methods, demonstrating its effectiveness in terms of data accuracy,
security, and energy efficiency. Iatrellis et al. [22] proposed a new approach to managing
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smart city-related competencies that makes use of cloud computing and semantic web
technologies. The authors discuss the increasing complexity of smart cities necessitating
a more efficient method of managing competencies across multiple domains and stake-
holders. They describe a system that uses a cloud-based platform to integrate competency
management, learning management, and assessment tools, all while utilizing semantic web
technologies to ensure interoperability and accuracy. The system is intended to be flexible,
adaptable, and scalable, and the authors believe it has the potential to revolutionize the
way we manage competencies in smart city contexts.

Furthermore, Ribeiro and Braghetto [23] provides a scalable data integration architec-
ture for smart cities, which allows for the integration of heterogeneous data from various
sources. The architecture is composed of three layers: data collection, data processing,
and data analysis. According to the authors, the proposed architecture can address the
challenges associated with integrating and analyzing large amounts of data generated by
smart city systems. The article also includes a case study that used real-world data from
a smart city project to assess the performance of the proposed architecture. The study’s
findings showed that the proposed architecture is effective and scalable for integrating
and analyzing data from multiple sources. The authors in Tao [24] proposed a framework
based on semantic ontologies for modeling, retrieval, and inference of incomplete mobile
trajectory data. To represent domain knowledge and improve the accuracy of trajectory
data analysis, the framework employs semantic ontology. It also uses a probabilistic model
to handle missing data in trajectories and a graph-based retrieval method to search for
trajectory similarity. The experimental results showed that the proposed framework is
effective and efficient in dealing with incomplete trajectory data and improving trajectory
retrieval accuracy.

Psyllidis et al. [25] described a platform for urban analytics and the integration of
semantic data in city planning. The platform aims to facilitate collaboration among various
stakeholders involved in urban planning by providing tools for collecting, analyzing, and
visualizing data from various sources in an intuitive and interactive manner. The platform
makes data from various domains accessible to both experts and non-experts by utilizing
semantic technologies. According to the authors, this platform can help cities become more
responsive to their citizens’ needs and more sustainable in the long run.

The authors in Costa and Santos [26] proposed SusCity, a big data warehousing
approach for smart cities that aims to address the challenges of managing and analyzing
the large and diverse data generated by smart city systems. The approach is built on a
three-layer architecture that includes a data ingestion layer, a data warehousing layer, and
an analytics layer. The data ingestion layer includes tools for data collection, cleansing, and
transformation, whereas the data warehousing layer includes a data model and storage
system optimized for big data. The analytics layer includes data analysis and visualization
tools, as well as machine learning algorithms for predictive analytics.

Table 1 summarizes the various approaches of the reviewed literature, as well as the
area of study and specific methods used.

Despite the extensive research conducted in this field, none of the papers discussed
have addressed the issue of combining asynchronous spatial data collected from different
coordinates and moments in time. This problem can arise when dealing with the geograph-
ical, physical, and logistical complexities involved in smart city monitoring. However,
our paper introduces an innovative approach that incorporates information from external
sources through semantic data enrichment to augment smart city time series data. Our
technique effectively unifies multiple data sources into a consistent time series, addressing
challenges such as data quality, context, and time gaps.
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Table 1. Summarized reviewed work.

Article Year Area of Study Methods Contributions

[11] 2019 IoT, & Semantic sensor technologies Literature review Semantic sensor technologies improve interoperability and data
quality in IoT systems.

[12] 2020 IoT, & Edge computing Experimental study Edge computing is a promising solution for improving the efficiency
and effectiveness of semantic data enrichment.

[13] 2020 Urban Analytics & Semantic-enabled
infrastructure Case study

Semantic-enabled infrastructure can effectively integrate and analyze
data from multiple sources, providing valuable insights for urban
decision-making.

[14] 2023 IoT & Semantic models for data analysis System proposal
Semantic models can lead to a more accurate and efficient analysis of
IoT sensor data and valuable insights into how environmental factors
impact human well-being.

[15] 2015 Web of Data & Diagrammatic
conceptual models Pattern-based approach Pattern-based approach improves web data interoperability.

[16] 2020 Smart cities & Ontology matching Case study Proposed method effectively matches ontologies and resolves
semantic mismatches between them.

[17] 2023 IoT & Semantic annotation System proposal
Semantic annotations can improve the efficiency and accuracy of data
processing in IoT ecosystems and the interoperability of different IoT
devices.

[18] 2021 Building and city information modeling
& Semantic enrichment Literature review Semantic enrichment improves data interoperability, data quality, and

data usability.

[19] 2021 Semantic sensor technologies &
Semantically enriched data model Experimental study Semantically enriched data model effectively improves sensor

network interoperability.

[20] 2022 Hierarchical & semantically-aware code
representation System proposal Incorporating semantic information into code representation

improves comprehension of code structure.

[21] 2022 IoT Authentication-based secure data aggregation Proposed a two-tier architecture for secure data aggregation in IoT
using symmetric key encryption.

[22] 2021 Smart Cities
Cloud-based platform, Semantic web technologies,
Competency management, Learning management,
Assessment tools

Proposed system is flexible, adaptable, and scalable, and has the
potential to revolutionize the way we manage competencies in smart
city contexts.
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Table 1. Cont.

Article Year Area of Study Methods Contributions

[23] 2022 Smart Cities
Scalable data integration architecture, Three-layer
architecture for data collection, processing, and
analysis, Case study using real-world data

Proposed architecture is effective and scalable for integrating and
analyzing data from multiple sources.

[24] 2023 Mobile Trajectory Data
Semantic ontology, Probabilistic model for
handling missing data, Graph-based retrieval
method

Proposed framework is effective and efficient in dealing with
incomplete trajectory data and improving trajectory retrieval
accuracy.

[25] 2015 Urban Analytics Platform for urban analytics and integration of
semantic data in city planning

Platform facilitates collaboration among various stakeholders
involved in urban planning by providing tools for collecting,
analyzing, and visualizing data.

[26] 2017 Smart Cities

Big data warehousing approach, Three-layer
architecture for data ingestion, warehousing, and
analytics, Machine learning algorithms for
predictive analytics

Approach addresses the challenges of managing and analyzing the
large and diverse data generated by smart city systems.
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3. Data Semantic Enrichment Model and Implementation
3.1. Model

In this section, we provide a detailed description of the model used to associate
an initial set of values with the closest available measurements based on geographical
proximity and minimum difference in timestamps, while considering the availability of
additional data. This model is designed to provide an accurate representation of the
predefined conditions in different sections of a city, based on the closest measurements
available. In the following section, we describe the model in detail, including the inputs,
outputs, and the development of the data enrichment process.

3.1.1. Input

Let C be the set of sections of the city, and let T be the set of timestamps. For each
section c ∈ C, let Dc be a dataset of initial values for c at different timestamps t ∈ T. Let S be
a set of geographic locations associated with each dataset Dc. For each timestamp t ∈ T, let
Mt be a set of measurements taken at different locations s ∈ St at time t. Each measurement
m ∈ Mt has a geographic location sm and a timestamp tm, and may be associated with
additional data D′m that is available only at sm.

3.1.2. Output

For each section c ∈ C and timestamp t ∈ T, find the closest measurement mc,t in
Mt to the initial values dataset Dc, based on both geographical proximity and minimum
difference on timestamps. If additional data D′m is available for mc,t, associate it with the
corresponding initial dataset value in Dc.

3.1.3. Semantic Data Model

For each section c ∈ C and timestamp t ∈ T, we can compute the closest measurement
mc,t in Mt as follows:

STEP 1. Compute the geographic distances d(s, Dc) between each location s ∈ S associated
with Dc and each location s′ ∈ St in Mt:

d(s, Dc) = min
s′∈St
{distance(s, s′)}, (1)

where distance(s, s′) is the geographical distance between s and s′.

STEP 2. Find the measurement mc,t that minimizes the sum of the geographic distance
and the absolute time difference with Dc:

mc,t = arg min
m∈Mt

{d(sm, Dc) + | min
m′∈Mt

{|tm − tm′ |} − t|}. (2)

In other words, we find the measurement m in Mt that has the minimum sum
of geographic distance with Dc and the absolute time difference with the closest
measurement in Mt to t. The closest measurement in Mt to t is obtained by computing
the minimum time difference between all pairs of measurements in Mt.

STEP 3. If additional data D′m is available for mc,t, associate it with the corresponding
initial set value in Dc:

initial set(c, t) =

{
(initial set(c, t), value(mc,t)) if D′m@ for mc,t,
(initial set(c, t), value(mc,t), D′m) otherwise.

(3)

In other words, if additional data is not available for mc,t, we simply associate the
initial dataset value from the closest measurement in Mt to Dc. Otherwise, we associate
both the initial set value and the additional data D′m.
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3.2. Implementation

The implementation of our proposed methodology involves the use of an algorithm
that associates initial dataset values with measurements and additional data, considering
both geographical proximity and the availability of additional data. The algorithm aims
to find the closest measurement to each section of the city and associates it with the
corresponding initial dataset value. By implementing this algorithm, we can efficiently
associate traffic density values with the closest and most relevant measurements, while
ensuring the accuracy and reliability of the results.

Algorithm 1 associates the initial values with measurements and additional data, as
depicted on the Figure 2, by first looping through each section of the city and each dataset,
and finding the closest measurement in the dataset to the section of the city based on
geographical proximity and the minimum time difference between the measure and the
subset (s, t). The closest measurement is identified as the one with the shortest distance to
the section of the city. Once the closest measurement is identified, the algorithm checks if
there is any additional data available for the measurement in the corresponding dataset. If
additional data is available, the algorithm associates the traffic density value for the section
of the city with the corresponding measurement and additional data.

Algorithm 1: The methodology for associating initial geographical values in
time with asynchronous measurements and additional data

for each initial section s do
generate geographical coordinates and associate them with the location
for each timestamp measurement t do

for each dataset d do
mind = mind∈D(mc,t)
Associate s with mind
if D′m ∃ for mind then

Associate D′m with s
end

end
end

end

Following Algorithm 1, we can estimate the complexity cost by analyzing each of the
steps defined and their implications. That is:

• Initializing geographical coordinates for each initial section has a computational cost
of O(|C|).

• The computation of the distance d(s, Dc) between each location associated with Dc
and each location in St, following the definition of the step where we have two sets of
locations, requires iterating over them. This step has a time complexity of O(|C||St|).

• Finding the measurement mc,t that minimizes the sum of geographic distances and
absolute time differences involves finding minimum values across data points. This
step in the worst-case complexity is O(|Mt|2).

• If additional data is available for a measurement, we need to associate it with its corre-
sponding initial dataset value. This step incurs an extra cost if there exist additional
data; otherwise, it adds no extra computational expense. The association process
requires constant time which can be achieved using hash tables or similar structures.

Therefore, the overall running time can be expressed as:

T(n) = O(|C||St| · |Mt|2) (4)
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where:

n : represents the input size.
|C| : denotes number of sections in city C.
|St| : denotes number of locations within timestamp set.
|Mt|2: denotes evaluation of all possible pairs from measurements at given timestamps t.

Figure 2. Graphical representation of the flow on the Algorithm 1 for a given dataset with two
different measure stations and a section s.

The implementation of Algorithm 1 is performed in Python using the libraries pandas
and geopandas (see Code Listing A1) in Appendix A. pandas is a popular data manipulation
library that provides data structures and functions to work with time-series data, as well
as tools for data cleaning, exploration, and visualization. On the other hand, geopandas
extends the functionality of pandas by adding support for geospatial data, which is essential
for analyzing and visualizing the spatial distribution of traffic density and pollution. The
main reasons behind the usage of pandas as the main library for data manipulation and
structuring are the following:

• Efficient data manipulation: Pandas provides efficient data structures like DataFrame
and Series, making it easy to manipulate large datasets.

• Time-series support: Pandas offers built-in functionality for handling time-series data,
which is useful for analyzing temporal patterns in data.

• Data cleaning and exploration: Pandas provides tools for handling missing data,
filtering, and transforming data, which are essential for preparing datasets for analysis.

• Visualization: Pandas integrates with popular visualization libraries, allowing for easy
creation of plots and charts to explore data patterns.

• Geospatial data handling: Geopandas extends pandas by adding support for geospa-
tial data types, which is crucial when working with spatial information like coordinates
and geometries.

• Spatial analysis: Geopandas offers spatial operations and functions that enable the
analysis of spatial relationships, distances, and intersections between geospatial objects.

• Geospatial visualization: Geopandas integrates with visualization libraries to create
maps and other spatial visualizations, which help in understanding spatial patterns and
distributions.

Using these libraries, we were able to preprocess and analyze the original collected
data by cleaning, merging, and organizing it in a way that made it easier to work with. The
data was then transformed into a format that could be used to generate maps, graphs, and
other visualizations that aided in handling the data for geographical distances. The use of
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Python and the pandas and geopandas libraries provided the necessary tools to generate a
comprehensive dataset that covered variations on data availability, while also considering
asynchronous data collection and different geographical points for the measurements.

The asynchronous_join, as shown at Code Listing function A1 in Appendix A. per-
forms an asynchronous geospatial join operation between an initial dataset and an extra
dataset using the methodology described above. The function finds the station with the
minimum combined distance, in terms of both geographic distance and time difference,
from each location in the initial dataset, and extracts the desired measure and any additional
measures from the selected station.

For this code implementation we defined the following inputs and outputs and ana-
lyzed its overall performance.

3.2.1. Inputs

The correct function of this implementation needs a set of variables with a predefined
structure:

• initial_dataset: A pandas DataFrame containing the initial dataset to join. It should
be structured accordingly with the following description of parameters:

– Column Coordinates: Column with GeoPandas geometry objects.
– Column Timestamp: Column with datetime objects representing timestamps.

• extra_dataset: A GeoDataFrame containing the extra dataset to join. It should be
structured accordingly with the following description of parameters:

– Column Coordinates: Column with GeoPandas geometry objects representing
spaces with real coordinates

– Column Timestamp: Column with datetime objects representing timestamps.
– Columns for measurements: One or more columns with structured values that

are associated with the two previous columns.

• measure: A string representing the measure to extract from the GeoDataFrame
extra_dataset. It should match the name of the column being extracted.

• extra_values: A Boolean, indicating whether to extract additional measures from the
GeoDataFrame extra_dataset.

• names_extra_measures: A list of strings representing the additional measures to
extract from the GeoDataFrame extra_dataset. They have to match the name of the
columns being extracted.

3.2.2. Outputs

The expected output of this implementation is a GeoDataFrame containing the joined
data in the following structure:

• Column original_index: indices from the original dataset are stored here to make it
easier to perform joins with other data.

• Column section: Column with GeoPandas geometry objects.
• Column timestamp: Column with datetime objects representing timestamps.
• Column geography: Column with GeoPandas geometry objects representing spaces

with real coordinates.

3.3. Computational Complexity and Performance

We denote n as the number of rows in the initial_dataset input variable and m as
the number of rows in the extra_dataset input variable. Since the initial definition of the
algorithm contains nested loops that search for the closest measuring station and timestamp
for each point in the initial dataset, the computational complexity is defined as O(n3). This
means that the running time increases significantly as the size of the dataset grows.

Due to this limitation on scalability, improvements were made on the final implemen-
tation bringing the complexity down to O(nm2), with the use of two main improvements
that sped up the search for the closest station and timestamp shown at Code Listing A2,
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in Appendix A. This resulted in a significant improvement in performance, especially for
large datasets.

The asyncronous_join function has a loop that iterates over every point in the initial
dataset, having a size proportional to n. For each point, the function must calculate the
distance to every point in the extra dataset, which has a size proportional to m. The
calculation of normalized distances between the initial point and every point in the extra
dataset has a time complexity of O(m), as it must loop over every point in the extra dataset.
Similarly, the normalization of the timestamps has a time complexity of O(m) as it also
must loop over every point in the extra dataset. After normalization, the function must
combine the two measures into a single distance value for each point in the extra dataset.
This operation has a time complexity of O(m), as it involves element-wise addition of
two arrays of length m. Finally, the function must find the point in the extra dataset that
has the minimum combined distance from the current initial point. This operation has a
time complexity of O(m), as it must loop over every point in the extra dataset to find the
minimum distance.

Therefore, the total time complexity of the asynchronous_join() function is O(nm2).
This is because for every point in the initial dataset, the function must perform O(m2)
calculations to find the point in the extra dataset with the minimum distance. Any other
computational improvement had to be discarded, since the complexity of the possible
geographical references could not be supported by the definition of the implementation.

In terms of space complexity, the function creates a new GeoDataFrame to store the
output, which has a size proportional to n. Additionally, the function creates a spatial index
for the extra dataset, which has a size proportional to m. With this, we can state that the
total space complexity of the function is O(n + m).

4. Case Study: From Time Series Data to Semantically Enriched Data

The growth of urban areas has brought about a significant increase in the number of
vehicles on the roads, resulting in an unprecedented level of traffic congestion. As a result,
it has become increasingly important for city planners and transportation authorities to
gain insights into traffic patterns and trends, in order to optimize traffic flow and reduce
congestion. In this case study, we explore the use of an algorithm for associating traffic
density values with measurements and additional data, as a means of moving from time
series data to semantically enriched data. By applying this algorithm to a real-world
dataset, we aim to demonstrate the potential of this approach in improving the accuracy
and reliability of traffic analysis, and in supporting the development of more effective
traffic management strategies.

4.1. Challenges of the Real Life Problem of Car Traffic in the City

In order to study alternatives to car traffic in the city of Barcelona, the Optimizing Carshar-
ing and Ridesharing Mobility in Smart Sustainable Cities project [9] requires geographical
data with a timestamp component, like traffic density and air pollution, among others.
Consequently, the need to study the relationship between these variables led to the demand
for datasets that provide a comprehensive understanding of the issue. However, generating
such datasets comes with two main challenges that can impede the research process.

The first challenge faced when generating a dataset about traffic density, pollution,
and other variables is the asynchronous data collection. Traffic density and pollution are
collected at different times and depend on physical devices that measure the data in an open
environment, making them susceptible to damage and downtime. As a result, generating a
comprehensive dataset that covers these variations requires a robust data collection method
that captures the fluctuations in traffic density and pollution levels, while accounting for
the unavailability and potential downtime of the measuring devices. The method defined
above includes a predefined merge structure that allows the data to be paired with a logic
that considers these external situations to ensure the accuracy and completeness of the
resulting dataset.



Axioms 2023, 12, 349 14 of 25

The other significant challenge in generating these homogeneous datasets is the differ-
ent geographical points for the measurements. Each measurement is taken from different
locations, making it necessary to collect data from different geographical points, generating
a logic that decides which data better represents the reality for each section of the city. Stan-
dardized protocols can help ensure that data is collected consistently and in a compatible
format, making integration and management more straightforward.

4.2. Definition of Requirements and State of the Original Data

The motivation behind this case study was driven by the need for traffic-related data
from the Open Data Barcelona portal, as well as the need to study relevant time series
data with different coordinate ranges and periodicity of measure, all of which are included
within the same source. In particular, the data requires a comprehensive analysis of traffic
flow in Barcelona, along with additional measures, such as pollution levels and alternative
transportation capacities.

To facilitate an in-depth analysis of different sections of the city, it is essential to
incorporate geographic filters for all the data provided. This enables the study of individual
neighborhoods, streets, and other relevant city subdivisions, enabling more targeted and
effective urban planning strategies.

One of the main challenges in working with Open Data Barcelona is the lack of
standardization in the original data. Some datasets, particularly those that rely on a limited
number of measuring stations spread across the city, often include two columns labeled
’Longitude’ and ’Latitude’ that indicate the location of the measurements. Other datasets
may relate to specific sections of streets or districts within the city, and may not contain
direct geographic data. In these cases, additional preprocessing may be necessary to add
geographic data to the dataset. The heterogeneous presentation of the data can make it
difficult for the public to access the information, as well as hinder efforts to interconnect and
create a comprehensive picture of the city. This challenge underscores the importance of
preprocessing the data to ensure standardization and consistency, enabling more effective
data analysis and visualization.

4.3. Preprocessing, Feature Engineering and Standardization

A preprocessing method is defined with the ultimate goal of standardization and
interoperability, with the adoption of time and space filters, and it involves several key
steps (see processing workflow in Figure 3).

In the first step, the user selects a dataset of interest from the Open Data Barcelona
portal, specifying a specific time and geographic range. Subsequently, built-in methods
request the data through an API, returning the raw dataset in its original form. It is
important to emphasize that each chosen dataset requires a unique preprocessing and
cleaning method due to the differences in data sources and structures.

To ensure the necessary treatment for each dataset, we developed a modular approach
that involves the removal of invalid and redundant data, identification and elimination of
duplicate entries, and standardization of geographical and temporal properties. Special
emphasis was given to generating GeoPandasDataframes with geometries derived from
the coordinates provided in the original data, which could be Points, Linestrings, or
Polygons, depending on the nature of the data. Moreover, after cleaning and standardizing
the data, we restructured the initial dataset to ensure that the data was presented in a
consistent format for further analysis.

Finally, this method employed built-in predefinitions of different sections of the city
to extract the selected period and section of data chosen by the user. This facilitated
targeted analysis of specific neighborhoods, streets, and other relevant city subdivisions. In
summary, the proposed preprocessing method plays a crucial role in enabling the analysis
of Open Data Barcelona datasets by providing clean and standardized data that is readily
available for further exploration and analysis.
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Figure 3. Preprocessing flow diagram designed for the use case.

4.4. Open Data Barcelona Data Selection and Geographic Sections Definition

In Table 2 we present the datasets included in the case study for the asynchronous join
process. The table includes information on the number of different geographical locations
contained in each dataset, their geographic definitions, and the types of information that
can be retrieved from them. Additionally, the estimated update rate and periodicity in
which the data was updated was in accordance with what Open Data Barcelona stated in
each dataset metadata.
Table 2. Datasets used in the case study.

Dataset Geographical
Locations Information Periodicity

Traffic Density
(Geographic

definition: Lines)

534 sections of streets
defined in the city
map of Barcelona

Traffic Density values
and Initial Locations

in a categorical
internal system (from

no traffic to jam).

Every 15 min (when
there is data

available)

Pollutants
(Geographic

definition: Points)

Eight pollution
sensors coordinates

(points) spread out on
Barcelona city

Pollutant Values:

• SO2 (µg/m3),
• NO (µg/m3),
• NO2 (µg/m3),
• PM2.5 (µg/m3),
• NOx (µg/m3),
• O3 (µg/m3),
• CO (µg/m3),
• PM10 (µg/m3),
• C (µg/m3),
• BiomassC (%).

Every hour (when
there is data

available)

Public Bike
Availability
(Geographic

definition: Points)

519 public bike
system stations

Bike availability
number by type:

• Mechanic Bikes,
• Electric Bikes,
• Parking spots.

Every 20 to 40 s
(when there is data

available)

To establish the formal definitions for the geographic filter, we referred to the defini-
tions provided by the Barcelona City Council—Ajuntament de Barcelona, which are made
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available to the final user as a parameter for geographic filtering. These definitions are
illustrated in Figure 4, and can be narrowed down to:

Figure 4. Geographic sections defined for Barcelona city.

• city: This filter includes the entire city of Barcelona. This is the largest geographic
area and encompasses all of the neighborhoods and districts within the city.

• district: Barcelona city is divided into 10 administrative districts, for which some
data is only available on this division.

• neighbourhood: Each district in Barcelona city is further subdivided into neighborhoods.
• urbanauditzone: The Urban Audit project is a European-wide initiative that aims to

provide comparative urban statistics. This filter allows focus to be directed on data
from specific zones defined by the Urban Audit project.

• basicstatarea: These areas are used by the Barcelona City Council for statistical
purposes only, and there are 233 different areas. This filter allows focus to be directed
on data from a specific area that is relevant to the statistical analysis being performed.

• censusarea: These areas are defined by the Spanish National Institute of Statistics
(INE) for census purposes. This filter allows focus to be directed on data from a specific
area that is relevant to the census analysis being performed.

• street: This filter allows focus to be directed on data from specific street segments
within the Barcelona city. This can be useful for analyzing data that is related to traffic
patterns, foot traffic, and other street-level activities.
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4.5. Computational Results

In this section, we present the computational results obtained from using the method-
ologies and implementations discussed in this study, including the asynchronous_join
method, to merge the selected data into a homogeneous time series for the different street
sections in Barcelona, while keeping the original objective of providing a comprehensive
view of the traffic data in Barcelona and presenting unified time series data that incorporate
the information from all three data sources.

Combining data from different sources provides a broader perspective of the city’s
traffic and helps in identifying trends and patterns that may not have been apparent in
individual datasets, as shown in Figure 5. The resulting time series provides a valuable
resource for analyzing and understanding the traffic patterns in Barcelona. For example,
correlations between certain pollution levels and areas of the city that are more prone to
traffic congestion can now be evaluated, along with tracking changes in traffic patterns
over time based on the availability of other methods of public transportation.

Figure 5. Comparison of three time series: original traffic density (top), generated normalized
NO/NO2 pollution (middle), and generated normalized public bike availability in Barcelona
(bottom).
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One significant advantage of the proposed methodology is that it enables the applica-
tion of more advanced analysis methods, like windowed cross-correlation [27], a time series
analysis technique used to identify correlations and time lags between different time series
data points. With this kind of tool now available, users can identify time lags between
two time series that came from different sources. For example, Figure A1, in Appendix B,
displays the windowed cross-correlation and its rolling variate between traffic density and
pollution levels over time. It is possible to identify the effects of different dimensions in
which the original data was defined on the resulting dataset. In sources with a less frequent
update rate, the results show a more static output than their counterparts.

With the proposed methodology, it is also possible to perform another time series
analysis technique to identify correlations, like peak picking data points from different
sources. This enables users to identify local maxima in their time series correlation by the
changes in the offsets. For example, one could calculate the Pearson correlation between
traffic density and pollution levels over time, as shown in Figure A2 in Appendix B. By
doing so, it would be possible to determine the strength of the relationship between the two
variables and potentially identify periods and offsets of high correlation, or even discard
correlations.

The use of asynchronous_join also allows for the creation of interactive dashboards
that can be used to display the time series data in a more comprehensible format with com-
patibility between geopandas packages and folium, a Python library for creating interactive
maps and visualizations using Leaflet.js. These dashboards can provide visualizations
and summaries of the key insights and patterns identified in the data, making it easier for
stakeholders to understand and act upon the information. An example can be observed
in Figure 6, where pollution data and traffic density data are shown on a synchronous
interactive display code, whereby a dashboard displays real-time pollution data from
multiple monitoring stations across a city and represents them in the closer street sections,
so they provide a better understanding of the original issue.

Figure 6. Dashboard for interactivemaps and visualizations. (Right) NO2 Pollution rates (µg/m3).
(Left) Traffic Density (scalar scale).
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Overall, the use of the asynchronous_join method, along with other methodologies
presented in this study, allows us to merge data from multiple sources into a unified time
series, providing a comprehensive view of traffic data in Barcelona. This approach enables
the identification of trends and patterns in the data, and provides a valuable resource for
developing more advanced analyses and predictive models.

5. Summative Evaluation

The use of semantic data enrichment, merging and processing techniques, such as
asynchronous_join, have proven to be powerful tools for enriching, homogenizing and
merging different and multiple data sources into a unified time series. A more comprehen-
sive view of the data can be achieved that enables identification of patterns and trends that
may not have been visible in individual datasets.

In the case of traffic data in Barcelona city, merging data from multiple sources allowed
us to identify correlations between traffic density and pollution levels, as well as to identify
patterns in the availability of public bicycles and traffic congestion. By applying time series
analysis techniques, such as windowed cross-correlation and peak picking, it is possible
to go further and explore the correlations and patterns, providing valuable insights for
city officials and other stakeholders. The use of interactive dashboards and visualizations
can also facilitate communication of the insights, making it easier for stakeholders to
understand and act upon the information. This has potential benefits for urban planning,
infrastructural development, and public health policies.

It should be noted, however, that the process of merging data from multiple sources
does not come without challenges. One significant challenge is the lack of synchronization
between datasets. This might result in missing data, outliers, and other inconsistencies that
can affect the accuracy of the results. The use of data cleaning and processing techniques,
as well as careful selection of compatible datasets, is crucial to mitigate these issues.

In summary, the integration of data from multiple sources through techniques such as
asynchronous_join, provides a powerful tool for analyzing and understanding complex
phenomena, such as traffic patterns in urban areas. By leveraging time series analysis
techniques and interactive dashboards, we can obtain valuable insights and communicate
these insights effectively to stakeholders. However, care must be taken to address the
challenges of data synchronization and cleaning to ensure the accuracy and reliability of
the results.

6. Conclusions and Future Works

In this article, we proposed a semantically based enrichment methodology for merging
data from multiple sources even when the original data collection datasets are not syn-
chronized. We started by discussing a methodology that effectively merges these different
datasets from multiple sources by creating a unified time series. We explained how this
method works by identifying the geospatial and temporal similarities between datasets. We
applied the methodology to different datasets from the Barcelona city public data service,
like traffic densities, public bicycle availability, and pollution monitoring stations to create
a unified time series that provides a comprehensive view of traffic patterns in the city. We
also discussed how combining data from different sources enables us to identify correla-
tions and patterns that may not have been apparent in individual datasets. The obtained
computational results showed the usefulness of the proposed approach to analyze complex
datasets, and to identify trends and patterns, while the creation of interactive dashboards
to display the time series data in a more comprehensible format can support stakeholders
(urban planners, policymakers, etc.) in understanding and acting upon the information.
The proposed approach can be applied to a wide range of fields where data from multiple
sources needs to be merged and analyzed, such as healthcare, finance, and environmental
studies. Furthermore, while this approach has been applied specifically to traffic patterns
and pollution levels in Barcelona, it has the potential to be utilized in other domains and
cities with multiple sources of data. For instance, this method could be employed to study
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public transportation usage and its relationship to urban development, or to investigate
patterns of energy consumption and their associations with climate change.

Although the asynchronous geospatial join function presented has a number of
strengths, there are also several potential weaknesses to consider.

One potential weakness is the reliance on Euclidean distance as a measure of proximity
between points. While this is a common approach in geospatial analysis, it may not always
be the most appropriate measure, particularly when dealing with datasets that span large
geographic areas or have complex spatial structures. In these cases, other distance measures,
such as geodesic distance or network distance, may be more appropriate.

Another potential weakness is the assumption that the time difference between two
points is proportional to the distance between them. While this may be a reasonable
assumption in some cases, it may not hold true in all situations. For example, the relation-
ship between distance and travel time may vary depending on factors such as mode of
transportation, traffic conditions, and topography.

Future work could explore the use of alternative distance measures and time normal-
ization techniques to improve the accuracy of the function. Additionally, incorporating
uncertainty measures and error propagation into the geospatial join operation could im-
prove the reliability of the results.

Another direction for future work could be the integration of machine learning algo-
rithms into the geospatial join process. For example, clustering algorithms could be used to
group similar points together before performing the geospatial join operation, or regression
models could be used to predict missing values or correct errors in the input datasets.

Overall, while the asynchronous geospatial join function presented has its strengths,
there are also potential weaknesses to consider and areas for future research and improve-
ment.

Author Contributions: Conceptualization, F.X. and C.S.; methodology, E.G. and F.X.; implementation,
E.G.; validation, F.X. and C.S.; literature review, E.G. and M.P.; writing—original draft preparation,
E.G., M.P. and F.X; writing—review and editing, E.G., F.X. and C.S.; supervision, F.X. and C.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by the Spanish Ministry of Science (PID2019-111100RB-C21
/AEI/ 10.13039/501100011033), as well as by the Barcelona City Council and Fundació “la Caixa”
under the framework of the Barcelona Science Plan 2020-2023 (grant 21S09355-001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study were obtained from Open Data Barcelona.

Acknowledgments: This research was supported by Departament de Recerca i Universitats de la
Generalitat de Catalunya (Spain) (2021 SGR 01421 (GRBIO)).

Conflicts of Interest: The authors declare no conflict of interest.



Axioms 2023, 12, 349 21 of 25

Appendix A. Python Code

Listing A1. Python code for the implementation of the Algorithm 1.

import geopandas as gpd
import numpy as np

def asynchronous_join(initial_dataset , extra_dataset , measure , extra_values=
False , names_extra_measures=None):

"""
A function that performs an asynchronous geospatial join operation between an
initial dataset and an extra dataset using a specified measure.
"""
if names_extra_measures is None:
names_extra_measures = [’’]

# Create a spatial index for the extra dataset
extra_dataset_sindex = extra_dataset.sindex

# Create a GeoDataFrame to store the output
output_columns = gpd.GeoDataFrame(columns=[’original_index ’, measure , ’

geometry ’], geometry=’geometry ’)
output_columns = output_columns.set_crs(epsg=4326)

for i in range(len(initial_dataset)):
# Get the current location
location = initial_dataset.iloc[i]

# Calculate the normalized distances and time differences between the current
location and all stations

normalized_distances = calculate_normalized_distances(extra_dataset.geometry.
iloc[:].values[i], extra_dataset.
geometry.x.iloc[:].values[i],
extra_dataset.geometry.y.iloc[:].
values[i])

normalized_timestamps = normalize_timestamps(extra_dataset.timestamp.values -
location.timestamp)

# Find the station with the minimum combined distance
combined_distance = normalized_distances + normalized_timestamps
selected_station_index = np.argmin(combined_distance)
selected_station_data = extra_dataset.iloc[selected_station_index]

# Extract the desired measure and any additional measures from the selected
station

output_columns.loc[i] = [i, selected_station_data[measure],
selected_station_data[’geometry ’]]

# Extract additional measures , if requested
if extra_values:
for extra_measure in names_extra_measures:
output_columns.loc[i, extra_measure] = selected_station_data[extra_measure]

return output_columns
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Listing A2. Auxiliary Python methods for performance improvement.

def normalize_timestamps(timestamps):
"""
A function that normalizes a series of timestamps to the range [0, 1].
"""
min_ts , max_ts = timestamps.min(), timestamps.max()
return (timestamps - min_ts) / (max_ts - min_ts)

@jit(nopython=True)
def calculate_normalized_distances(geometry , x, y):
"""
A JIT -compiled function that calculates the normalized distance between
two arrays of points , lines , or polygons using Euclidean distance.
"""
if geometry.type == ’Point ’:
min_x , max_x , min_y , max_y = np.min(x), np.max(x), np.min(y), np.max(y)
distance_x = (x - min_x) / (max_x - min_x)
distance_y = (y - min_y) / (max_y - min_y)
return np.sqrt(distance_x ** 2 + distance_y ** 2)

elif geometry.type == ’LineString ’ or geometry.type == ’MultiLineString ’:
distances = []
for i in range(len(x)):
distances.append(np.sum(np.sqrt(np.sum(np.diff(np.vstack ((x[i], y[i])).T,

axis=0) ** 2, axis=1))))
min_distance = np.min(distances)
max_distance = np.max(distances)
return (distances - min_distance) / (max_distance - min_distance)

elif geometry.type == ’Polygon ’ or geometry.type == ’MultiPolygon ’:
distances = []
for i in range(len(x)):
poly = geometry.buffer(0.00001) # buffer to ensure polygons are valid
dist = poly.exterior.distance(Point(x[i], y[i]))
distances.append(dist)
min_distance = np.min(distances)
max_distance = np.max(distances)
return (distances - min_distance) / (max_distance - min_distance)
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Appendix B. Computational Results

Figure A1. Windowed Time Lagged Cross Correlation (Right) and Rolling Windowed Time Lagged
Cross Correlation (Left) for a subset of variables compared to traffic density.
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Figure A2. Overall lagged cross-correlations for different variables in the resulting dataset compared
to traffic density.
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