
Performance analysis of V2X technologies
802.11p and LTE-PC5

Master Thesis
submitted to the Faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona
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Abstract

Nowadays, Vehicular-to-Everything (V2X) communications are becoming an essential el-
ement to improve safe driving conditions and autonomous driving. This thesis presents a
comparison of two V2X communication technologies: IEEE 802.11p, and Cellular-V2X.
The objective of this study is to evaluate the performance of both technologies in terms
of the Medium Acces Control (MAC) layer, especially in a congested environment. There-
fore, we analyze the different schemes used on these technologies to access shared channel
resources and avoid interferences. The study is conducted using several simulation tools:
SUMO which allows us to create personalized scenarios, and OMNeT++ used to simulate
the network and transmit all the V2X messages between the vehicles. With SUMO we
created a highway scenario that can support a high density of vehicles. And OMNeT++ is
used to change the main simulation parameters, and obtain results such as all the packets
received and sent through the network. Finally, we defined some performance metrics to
analyze the results and observe how the technologies react over a congested scenario, with
high densities of vehicles.
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1 Introduction

Over the past decade, significant advancements have been made in cellular communi-
cations and the automotive industry. The goal to increase safety and achieve fully au-
tonomous cars has led to a focus on the role of cellular communications. To encompass
these requirements, a new term, ”Vehicle to Everything (V2X),” has emerged. V2X tech-
nology is designed to enable vehicles to communicate with other vehicles, infrastructure,
pedestrians, and networks, and can be used for a variety of applications such as cooper-
ative awareness, advanced driver assistance systems, and even fully autonomous driving.
Overall, V2X technologies have the potential to revolutionize the way we think about
transportation and make our roads safer for everyone.

This project is performed in the framework of the foundation i2CAT, a research and inno-
vation center based in Barcelona, more specifically, in the department of Mobile Wireless
Internet with the focus set on V2X technologies. As will be seen in section 3, some of
the topics that have been developed in this thesis are involved with several Spanish and
European projects like FEM-IoT, INTEGRA, and CPSoSAware.

FEM-IoT: is a consortium of 12 Catalan research centers to boost the emerging sector
of the Internet of Things. One of their research sub-projects is “Connected Street
Infrastructure”, whose objective is to achieve an integrated, flexible, and multi-
technology ICT infrastructure. With that mindset, V2X technologies are used to
analyze the mobility and latency requirements of an urban scenario.

INTEGRA: is a Spanish project focused on the development of digital instrumenta-
tion applicable to assisted driving to increase safety through anti-collision sensory
systems and intelligent networks. So, in this project, i2CAT is leading the actions
related to intelligent networks, specifically using simulation tools to develop connec-
tivity systems.

CPSoSAware: CPSoSAware is a European project aimed to develop the models and
software tools to allocate computational resources to the cyber-physical systems’
end devices. This project extends to the automotive sector with a mixed traffic en-
vironment with semi-autonomous connected vehicles. Here, i2CAT is responsible to
implement the security stack for vehicle communications and to develop simulation
tools to test those services.

1.1 Scope

This project is divided into two main sections with different objectives. The first one is
devoted to studying the main simulator tools related to V2X technologies. In this section,
we analyze and combine the simulators to create different scenarios related to specific
V2X use cases. These scenarios are used to obtain a high variety of results which had
been used as a contribution to several research projects. Therefore, the implementation
of these use cases is a really good opportunity to study the strengths and weaknesses of
the simulators, which are used to develop the next section of this thesis.

The second and principal objective of this study is to analyze and compare the main
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standards used in V2X technologies. So, in this section, we use the previous simulation
tools to analyze the performance of the IEEE 802.11p standard, usually named Dedicated
Short-Range Communications (DSRC), and the later introduced Cellular V2X technology,
which is specifically designed to achieve the main V2X requirements and use cases. In this
case, the target is to compare their performance related to the Medium Acces Control
(MAC) layer, so modified some parameters of the physical layer for a better analysis.

1.2 Work Plan

The development of this thesis had a duration of 5 months corresponding to the first
semester of the academic year 2022/2023. It started in mid September 2022 and lasted
until January 2023. Nevertheless, we started this project with some background knowl-
edge due to a previous internship in i2CAT, where we begin working with some of the
simulators. In figure 1 we can see a Gantt Diagram of the work plan followed, which is
divided into several work packages (WP) explained above:

Figure 1: Types of Vehicle-to-Everything communications.

• WP1 - Study V2X technologies: The first WP lasted a month and was dedicated
to studying the state of the art of the technologies that are analyzed in this thesis:

1.1. IEEE 802.11p

1.1. Cellular V2X - Mode 4

• WP2 - Simulation tools deployment: The second WP is related to the first
objective of this thesis, to study the simulation tools and obtain some initial results.
And since all the initial simulations were done using only 802.11p technology, we
added a sub-WP dedicated to introducing LTE-PC5 Mode 4 into the simulator
OMNeT++.

2.1. Creation of scenarios: In this section, we created the two main scenarios with
SUMO simulator, which will be later analyzed on OMNeT++. Since these
scenarios are used to collaborate in several research projects, we took more
time in order to obtain feedback from the partners involved, so it lasted around
a month and a half.

12



2.2. Extract results: Once created the scenarios, we can simulate the network
elements with OMNeT++ and obtain different results. And as happened in
the previous section, we also needed to obtain feedback from the partners of
the project to arrange a valid format for the results, so it latest more than a
month.

2.3. Add C-V2X into OMNeT++: And last, since all the previous simulations were
done with 802.11p technology, we had to modify the OMNeT++ simulator in
order to include a module named “open C-V2X”, which implements the LTE-
PC5 protocol.

• WP3 - Results: This WP is focused on the second and main objective of this
project, which is to compare the two most used V2X protocols: 802.11p and C-
V2X.

3.1. Map creation: First, we need to create a new scenario that can contain a
higher density of vehicles in order to study both technologies in a congested
environment.

3.2. Generate simulations: Then, we need to execute several simulations with both
technologies, and with different densities of vehicles. This part was specifically
time-consuming since each simulation could last from 12 to 36 hours to be
completed (depending on the density of vehicles used).

3.3. Obtain results: In this last section, we will collect the results of all the previous
simulations and compute some performance parameters to compare them. We
plot the results and then extract conclusions from them.

• WP4 - Work documentation: Finally, the last WP is used to document all the
results and write the final version of this master’s thesis.

1.3 Budget

Regarding the budget of this project, it has been developed in the framework of the
foundation i2CAT. All the software used for the simulator was open source, so no cost is
involved. However, i2CAT provided us with a computer to do all the simulations, which
has an estimated price of 1500€.

In terms of manpower, the project had a duration of 20 weeks from mid-September 2022
to the end of January 2023, and it required one person working full-time. Therefore, an
8-hour workday for 20 weeks corresponds to 800 hours.

13



2 State of the art

In this section, we explain the main characteristics of the V2X technologies, how are im-
plemented, and which are their objectives. Also, we introduce which are the two principal
technologies used to implement V2X communication: IEEE 802.11p and Cellular V2X or
LTE-V.

2.1 Vehicle-to-Everything Communications (V2X)

The automotive industry is increasingly using wireless communications to enhance the
driving experience, improve safety and make transportation more efficient. In this con-
text, many companies and organizations have started to develop a new type of technology
called V2X, referred to as Vehicle-to-Everything communication. Some examples of ad-
vancements regarding V2X technologies include the development of 5G networks that
provide faster and more reliable communication, the use of machine learning to improve
traffic flow, and the use of blockchain technology to secure communication between vehi-
cles.

V2X technologies denote various forms of communication that allow vehicles to communi-
cate with other vehicles, infrastructure, and devices. The main communication is classified
as follows, and can be seen in Figure 2:

• V2V (Vehicle-to-Vehicle) Communication: This technology allows vehicles to com-
municate with each other in real-time, and share information such as their position,
speed, and direction. This information can be used to prevent collisions and improve
traffic flow.

• V2I (Vehicle-to-Infrastructure) Communication: This technology allows vehicles to
communicate with infrastructure such as traffic lights, road signs, and weather sen-
sors. This information can be used to optimize traffic flow, reduce emissions, and
improve safety.

• V2P (Vehicle-to-Pedestrian) Communication: This technology allows vehicles to
communicate with pedestrians, and alert them of the presence of a nearby vehi-
cle.

• V2N (Vehicle-to-Network) Communications: This technology allows vehicles to com-
municate with other internet-based networks in order to access real-time information
and services. This can include things like weather updates, traffic reports, and even
parking availability.

14



Figure 2: Types of Vehicle-to-Everything communications.

However, there are still challenges that need to be overcome in order for V2X technologies
to reach their full potential. These include issues related to data privacy and security,
as well as the need for standardization and cooperation between different stakeholders.
Despite these challenges, V2X technologies have the potential to significantly improve
safety, reduce emissions, and optimize traffic flow, making them a key area of focus for
the future of transportation.

In this thesis, we focus on analyzing the two main technologies used to implement V2X
communications: IEEE 802.11p and C-V2X LTE-V.

The first technology to be implemented was the IEEE 802.11p, a wireless communication
standard known as Direct Short Range Communications (DSRC) [1], and the ITS-G5
standard (Intelligent Transport System specified in Europe by ETSI). This standard was
made in 2009, so it has been widely used in the past years. It operates in the 5.9 GHz
frequency band and is characterized by high-speed, low latency, and secure communication
between vehicles. However, the initial intention of DSRC was to transmit short-range
(around 300 m) basic safety messages between vehicles and therefore it is not intended
for high bandwidth requirements of V2N applications.

The second technology considered is Cellular-V2X, based on the 3GPP Long-Term Evolu-
tion (LTE) Release 14 standard [2]. This standard is an evolution of the LTE Release 12
proximity services (ProSe), which was focused on public safety and some V2V communi-
cations. However, to cover all the requirements needed for V2X communications, Release
14 includes some new features, for instance, Device-to-Device (D2D) communications as
an evolution of the previous ProSe. C-V2X implements several modes, and with Mode-4
we can also operate at the ITS 5.9 GHz band, and is centered on supporting day-1 safety
services. In future releases, 3GPP has introduced 5G into vehicular communications with
Release 16 NR-V2X (5G-New Radio). However, this new release is focused in cover new
and advanced use cases like adding services using licensed spectrum.
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2.2 V2X Protocol Architecture

The protocol architecture for V2X technologies is guided by the Cooperative Intelligent
Transport Systems (C-ITS), which is composed of several ITS stations:

• Personal ITS station: Regarding the devices used by pedestrians, such as smart-
phones.

• Vehicle ITS station: Used on On-Board Units (OBUs) installed inside the vehicles.

• Central ITS station: For traffic management centers.

• Roadside ITS station: Used on Roadside Units (RSUs), located on traffic infrastruc-
ture like traffic lights and signals.

With all these types of ITS stations, we can establish different communication modes,
which follow a common reference architecture, as seen in Figure 3. This protocol has the
same functionalities as the Open System Interconnection model (OSI), which is divided
into seven layers. However, the ITS protocol combines some of these layers resulting in
four main blocs: application layer, facilities layer, network & transport layer, and access
layer, and on top of that, there are two vertical entities responsible for the management
and the security of the system. A comparison between both architectures can be seen in
Table 1:

Figure 3: ITS reference architecture.
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ITS Reference Architecture OSI Model
Application -

Application
PresentationFacilities

Session
Transport

Network and Transport
Network
Data Link

Access
Physical

Table 1: Mapping between ITS and OSI architectures.

Now we explain in detail the main characteristics of these layers.

Applications

The ITS application layer has been added to incorporate new applications and uses cases
into the stack. A group of applications is called Basic Set of Applications (BSA) [3], and
is divided into three main classes, each with different objectives and requirements:

1. Active road safety: The goal of this class is to improve traffic safety by exchanging
periodically information between vehicles to create cooperative awareness, and as a
result, prevent road casualties.

2. Cooperative traffic efficiency: The goal of this class is to improve road traffic man-
agement, and increase traffic efficiency in terms of travel times, fuel consumption
emissions, etc. Implementing these use cases is usually needed to obtain information
from the infrastructure.

3. Other applications: These include applications providing other services such as those
for infotainment.

Facilities

The ITS facility layer covers the application, presentation, and session layers of the OSI
model, so it covers all those functionalities. Since the main objective of this layer is to
provide information to the upper layer, ITS applications, the ITS facility layer is also
known as basic service. These facilities can be classified regarding the type of support
provided, where we have:

• Application support facilities: to support the application functionalities.

• Information support facilities: to provide data and manage the functionalities of a
database.

• Common support facilities: to provide services for communication and session man-
agement.

Moreover, the facilities layer implements several types of messages to enable V2X com-
munications, which are standardized under the ETSI ITS protocol (European Standard-
ization). We have a huge variety of messages centering on different purposes, such as:

17



• Cooperative Awareness Messages (CAMs): Periodic messages sent by all stations
giving information about the status and attribute information of the originating
device. It contains information like the time, position, speed, direction, etc. . .

• Decentralized Environmental Notification Messages (DENMs): Event-driven mes-
sages sent by OBUs and RSUs upon detection of an abnormal situation (traffic jam,
break down vehicle, roadworks ...) to alert other vehicles or road users within a
geographical area.

• Vulnerable Road User (VRU) Awareness Message (VAM): Enhance the protection
of road users such as pedestrians, bicyclists, motorcyclists as well as animals that
may pose a safety risk to other road users.

• Collective Perception Message (CPM): Contains information about the onboard
sensors (like the range or the field of view), and the detected vehicles or objects
(with information like their position, speed, and size).

• Signal Phase and Timing (SPAT) Message: These messages contain information
about the state of traffic lights, including the current phase and timing information.
They are used to provide vehicles with information that can be used to optimize
traffic flow and improve safety.

• Signal Request Message (SRM): Used to request services from an intersection signal
controller.

• Signal Status Message (SSM): Contains information about the internal state of the
controller.

In the framework of this thesis, we are simulating CAMmessages to study the performance
of different technologies

Network and Transport

The transport layer is responsible for ensuring that data is transmitted correctly and
reliably between different devices. The ITS architecture uses the Basic Transport Protocol
(BTP) which provides an end-to-end transport service. It is responsible for multiplexing
the messages from the different processes at the ITS facilities layer, and demultiplexing
the messages received through the GeoNetworking protocol. The multiplexing technique
used is based on ports, where each port corresponds to a different identifier associated
with a specific process. For example, to implement the facilities for CAMs and DENMs the
ports 2001 and 2002 are selected respectively. Additionally, the BTP allows the Facilities
layer to access the services provided by the GeoNetworking protocol.

There are two types of BTP headers (BTP-A and BTP-B) and their selection is specified
in the GeoNetworking Common header. BTP-A is for interactive packet transport and
contains information about the source and destination ports. On the other hand, BTP-
B is designed for broadcast communications and only contains information about the
destination.

Next, the network layer is responsible for routing and relaying information between differ-
ent devices and is implemented through the GeoNetworking protocol. This protocol uses

18



geographical positions and areas to route packets across the ITS ad hoc network. It en-
ables infrastructure-less communication and meets the vehicle networking requirements,
such as support for high node mobility and continuously changing network topology [4].

The GeoNetworking protocol has two main functions: geographical addressing, which is
based on sending a packet to a specific node, or selecting a specific geographical area and
sending the packet to all the nodes in it. And geographical forwarding, which uses the
network topology information stored on the nodes to make forwarding decisions based on
the selected destination.

And regarding the routing techniques of the GeoNetworking protocol, there are three
different packet forwarding schemes, as can be seen in Figure 4:

Figure 4: GeoNetworking routing schemes.

• GeoUnicast: A single destination is defined and the packet is continuously forwarded
by intermediate nodes.

• GeoBroadcast: Once selected a destination geographical area, the packet is con-
tinuously forwarded until reaching that area, and all the nodes of that area will
re-broadcast that packet.

• Topologically-scoped broadcast: We define a certain number of hopes and the packet
is continuously re-forwarded until it reached the n-hop nodes.
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Access

And last, the ITS Access Layer covers the Medium Access Control (MAC), the Logical
Link Control (LLC), and the Physical Layer (PHY). This layer is responsible for the
physical communication between devices and has defined several standards to implement
wireless V2X communications. In this case, we are comparing two technologies, first, the
802.11 Wireless Local Area Network (WLAN), developed by the IEEE, and second the
Cellular V2X proposed by the 3GPP. Both technologies will be analyzed in more detail
in the following sections.

2.3 IEEE 802.11p

IEEE 802.11p was the first implementation of V2X technologies and is the basis for the
DSRC and the ITS-G5 (specified in Europe by the ETSI) standards. This standard is the
direct evolution of the IEEE 802.11a, which was improved in order to handle high node
mobility and gradually changing vehicular environments.

The Physical layer of the IEEE 802.11p is really similar to its predecessor. IEEE 802.11a
used a frequency bandwidth of 20 MHz in the 5 GHz band, however, the new standard
works at the 5.9 GHz band with a channel bandwidth of 10 MHz, which makes it more
robust to fading and other propagation effects. Also, IEEE 802.11p incorporates OFDM
(Orthogonal Frequency Division Multiplexing) into the physical layer and uses the same
modulation and coding scheme as IEEE 802.11a. It can reach data rates from 3 to 27 Mbps,
using coding rates 1/2, 2/3, or 3/4, and it implements several modulations like BPSK
(binary phase shift keying), QPSK (quadrature phase shift keying), 16-QAM (quadrature
amplitude modulation), or 64-QAM.

Now, with regards to the MAC layer, the IEEE 802.11p uses the Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA) algorithm, where the nodes have to sense
the medium to check if it is idle, and a mechanism based on random backoff is performed
to reduce the probability of collisions. If the medium is sensed idle during a period of time
called the Distributed Inter-Frame Space (DIFS), the station is allowed to transmit. And,
if the channel is sensed as busy, that node can not transmit a packet until the current
transmission has ended. To define if the medium is busy or not, the received power has
to surpass a sensitivity threshold, which must be higher that the receiver’s sensitivity
level. Once the busy period has finished, the node needs to wait a random backoff time to
avoid two nodes to start transmitting at the same time. That backoff time is computed
by multiplying a constant aSlotTime and a random integer selected from a Contention
Window (CW). The CW is standardized as 15, and the aSlotTime is defined as 13µs.
Moreover, the backoff timer is decreased as long as the channel is sensed idle, paused
when a transmission is in progress, and resumed when the channel returns to idle for
more than the DIFS. After each data frame is successfully received, the receiver transmits
an acknowledgment (ACK) frame after a Short Inter-Frame Space (SIFS) period, which
is implemented on unicast communications. However, in vehicular Ad-Hoc networks, we
can not transmit ACKs since the vehicles may be out of range before receiving them.
Therefore, broadcast communications are used, which don’t require ACKs and remove
their exponential backoff added to unicast communications. A deeper analysis of these
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protocols is shown in [5].

Additionally, IEEE 802.11p improves this system by adding different access categories
(ACs) with different priorities, which is known as Enhanced Distributed Coordination
Access (EDCA). These changes were defined in standard 802.11e, which improved the
quality of service by substituting the DIFS with 4 Arbition Inter-Frame Space (AIFS).
The AIFS is a method of prioritizing one AC over the other, and functions by shortening
or expanding the period a wireless node has to wait before it is allowed to transmit its
next frame. This system is used in vehicular communications to define different priority
levels among distinct types of V2X messages, as can be seen in table 2:

AC TC ID CW (min) CW (max) AIFS Intended Use
AC-VO 0 3 7 58 µs High priority DENM
AC-VI 1 7 15 71 µs DENM
AC-BE 2 15 1023 110 µs CAM
AC-BK 3 15 1023 149 µs Multi-hop DENM and other data

Table 2: ITS-G5 Traffic priority classes

In an ITS ad hoc network, there isn’t any central infrastructure, and all the moving ve-
hicles are connected to each other forming a mesh-like structure. This makes the network
topology vary constantly, and have an unpredictable number of vehicles within the com-
munication range. Consequently, in the case of high-density scenarios, the vehicles may
require a number of resources beyond the channel capacity. As such, the Decentralized
Congestion Control (DCC) mechanism is used to avoid channel congestion and allow fairer
access to limited resources. The way DCC works is that the vehicle adapts its transmis-
sion parameters according to the measured channel load. There are different DCC access
techniques to help balance the channel, like the followings:

• Transmit Power Control: Reducing the output transmitted power to reduce the
resulting interferences.

• Transmit Rate Control: Increases the time between consecutive packets.

• Transmit Data rate Control: Reduces the transfer rate.

However, the DCC mechanism is not used in the scope of this project, since we pretend to
study the performance of the MAC layer, and how it manages highly congested scenarios
(without using any congestion control scheme).

2.4 LTE-PC5

The second access technology that we study is C-V2X, which is based on the 3GPP
LTE Release 14 standard. This standard has a lot of improvements compared to its
previous releases making it achieve all the requirements needed to perform vehicular
communications. In this section, we analyze these improvements and all the characteristics
of the resulting LTE-PC5 technology.
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One of the main improvements made in Release 14 was the addition of sidelink (SL) com-
munications, which allows the vehicles to directly communicate with each other without
the need for any infrastructure. As a result, LTE-V can work with two different interfaces,
as shown in Figure 5:

• E-UTRAN Uu radio interface: This is the cellular interface that is present in
all LTE systems. It is an interface between the evolved Node B (eNB) and the user
equipment (UE). This interface has unicast communications over the physical chan-
nels of LTE (like Physical Uplink Shared Channel, PUSCH, or Physical Downlink
Shared Channel, PDSCH), and it can be used to implement V2I communications.

• PC5 interface (V2X Sidelink): This new interface allows us to support direct
communication between vehicles (V2V) based on the LTE SL. Also, this interface
supports multicast and broadcast communications since all the vehicles can transmit
a message to all the vehicles in their range.

Figure 5: V2X communication interfaces.

Considering that the Uu interface implements V2I communications, and the PC5 interface
implements V2V communications, both can be used simultaneously and independently
for transmitting and receiving information. In this case, PC5 is explicitly addressed to
support a scenario with a high density of vehicles, moving at high speed. It also works at
the 5.9 GHz band, and it is appropriate to transmit periodic information like the positions
and the speed of the vehicles. Moreover, the SL transmissions avoid the need to cross the
whole network, which significantly improves the latency.

Now, we analyze the possible D2D communications made over the PC5 interface. First,
there were implemented two different modes (mode 1 and mode 2) whose objective was to
improve the battery of the devices when they were out of coverage. But that also produced
an increase in latency when the vehicles recover the coverage. Then, with LTE Release 14,
there were included two new modes to implement V2V communications. A representation
of the modes can be seen in Figure 6:

• Mode 3: In this mode, the cellular network (eNB) is responsible to select and

22



manage the radio resource that will be used in the V2V communications. Therefore,
it will dynamically assign the resource to each vehicle using the Uu interface, and
then the vehicles will communicate with each other using the PC5 interface. So, the
vehicles will have to request the resources needed by the eNB before communicating
to other vehicles. For obvious reasons, this mode is only available when the vehicles
are on coverage.

• Mode 4: This mode is the direct competitor for the IEEE 802.11p DSRC protocol.
In this case, the vehicles will select autonomously the radio resources needed to
establish direct V2V communications. It is based on a distributed scheduling scheme
where vehicles select their resources from a specific resource pool. It also allows the
addition of the DCC to reduce the congestion of the channel. With mode 4 the
vehicles can operate without the coverage of an eNB, which makes it one of the
most important features of the LTE-V. For these reasons, we base this thesis on
comparing the LTE-PC5 Mode 4, with the IEEE 802.11p protocol.

Figure 6: V2X communication modes.

Another one of the changes added in LTE Release 14 was the introduction of a new
resource grid that combines the time and the frequency domain. As seen in Figure 7,
the time domain is divided into subframes of 1 ms, and the frequency domain is divided
into physical Resource Blocks (RB). These are all the parameters involved to define the
physical layer of the protocol:
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Figure 7: Structure of the LTE-PC5 resource grid with 10 subchannels per subframe.

• Channelization: Frequency channel bandwidth of 10 MHz or 20 MHz.

• Channel division: Each channel is divided into subframes (time), and subchannels
(frequency). And these subchannels are also divided into resource blocks (RBs).

• Subframes: One subframe is 1 ms long and contains 14 symbols.

• Resource block: It is defined as the smallest unit of frequency resources that can
be allocated to a user. One RB occupies 180 kHz and contains 12 subcarriers which
implies a subcarrier spacing of 15 kHz. With a channelization of 10 MHz, the channel
can contain a total of 50 RBs, but with 20 MHz, we achieve 100 RBs.

• Subchannel: A subchannel is defined as a certain group of RBs in the same sub-
frame. Therefore, a channel can be defined as a certain number of subchannels with
a given number of RBs/subchannel. The subchannel is used to transmit data and
control information.

• UE properties: UE properties: The maximum transmission power of a vehicle is
23 dBm, and the typical sensitivity of the receiver is around -92 dBm.

• Modulation and coding schemes: The modulation used depends on the type
of data to be sent. For data transmission can be used QPSK and 16-QAM, but,
for control information transmission only can be used QPSK modulation. Also, are
used some coding schemes like turbo coding and normal cyclic prefix.

Once defined the resource grid that will be used, we need to specify which physical channels
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are implemented in the LTE-V protocol. All the data is transmitted in Transport Blocks
(TBs), which contain the information of a full packet and are transmitted over the Physical
Sidelink Shared Channel (PSSCH). The other type of data is the control information
which is known as the Sidelink Control Information (SCI) and is transmitted through the
Physical Sidelink Control Channel (PSCCH).

In the standard, there are defined different transmission rates such as 10 packets per
second (pps), 20 pps, or 50 pps. In this thesis, we use the default value of 10 pps, which
transmits a data packet every 100 subframes (100 ms).

The SCI is used as a scheduling assignment since it includes information about the modu-
lation and the coding schemes used to transmit the TBs, the number of RBs used, and the
Resource Reservation Interval (RRI) for the Semi Persistent Scheduling (SPS). Due to this
correlation between the control information and the data sent, the transmission is known
as a pair SCI+TB, where both blocks must be transmitted in the same subframe. To
implement the transmission of this SCI+TB pair, LTE-V defines two subchannelization
schemes, which are shown in Figure 8:

Figure 8: LTE subchannelization schemes.

• Adjacent PSCCH + PSSCH: In this scheme, the SCI+TB pair is transmitted
in adjacent RBs. The SCI occupies always the first two RBs of the first selected
subchannel by the vehicle, and the TB is transmitted after the RBs of the SCI.
Depending on its size, the TB can occupy more than one subchannel. If this is the
case, it will be able to occupy the first two RBs of any of the extra subchannels that
it needs.

• Non-Adjacent PSCCH + PSSCH: In this scheme, the SCI+TB pair is trans-
mitted in non-adjacent RBs. The frequency-time scheme is divided into two pools.
The first one is only committed to transmitting the SCIs (always occupying only
two RBs), and the second pool is divided into subchannels that are used to transmit
only TBs.

25



At the PHY and MAC layers, C-V2X relies on the same single carrier frequency divi-
sion multiple access (SC-FDMA), used by the LTE uplink. Also, the resource allocation
is normally associated with the SPS and the DCC mechanisms which improve the SL
communications. The sensing-based SPS is performed in the MAC layer and is used to
support the vehicle UE to autonomously select appropriate radio resources, and the UE
can also reuse these resources for several consecutive periods. The number of consecutive
transmitted packets with the same selected resource is defined as Resource Counter (RC),
which, by default, selects a random value from the interval [5, 15]. This counter is reduced
after each transmission, and once the RC goes to zero, we maintain the same resource
with a keep probability of Pk, or else, we trigger the selection of a new resource with a
probability 1−Pk. In addition, the vehicle cannot retransmit a packet if it has been lost.

The SPS scheme can be seen in figure 9, and its procedure works as follows:

• When a vehicle wants to select a new subchannel in time T1, it has a time window
from T1 and T2, where T2 adds a latency constraint to T1 (the latency should
be lower or equal to 100 ms). This time is called Selection Window and is used to
identify the Candidate Single-Subframe Resources (CSRs), which consist of a set of
contiguous subchannels in a single subframe. The number of consecutive subchannels
depends on the size of the message.

• Then, the vehicle analyzes all the information received in the last 1000 subframes
known as Sensing Window. This information is used to create 2 lists L1 and L2,
where L1 contains all the CSRs in the Selected Window, and L2 is declared empty.

• If a SCI is correctly received and specifies that the CSR is used at that same time,
the corresponding CSR will be removed from list L1.

• Also, the vehicle measures the average Reference Signal Received Power (RSRP)
and compares it to a threshold, so if a CSR has a RSRP measurement higher than
the threshold, that one is also excluded from the list L1.

• These two steps are repeated until the CSRs represent less than 20% of the initial
resources, and in each iteration, the threshold is decreased by 3 dB.

• Finally, the CSRs with lower average Received Signal Strenght Indicator (RSSI)
from list L1, will be added to list L2, and that list is reported to higher layers. Then
on the MAC layer is selected a random candidate resource is.
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Figure 9: Semi-Persisten Scheduling in C-V2X. Sensing and Selection Windows.

And regarding the DCC protocol, it is not used in the framework of this thesis, since this
one is focused on analyzing the performance of different technologies in the MAC layer,
and we pretend to put the channel resources at their limit by congesting the network with
a high number of vehicles.
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3 Deployment of simulation environments and re-

sults

This chapter is devoted to presenting all the simulators used to perform this thesis, as
well as studying their capabilities. The main simulators used are SUMO, OMNeT++, and
CARLA. SUMO is a simulator focused on creating network scenarios and implementing
their mobility models, so it is used to create all the roads and vehicles of the simulation.
Then, OMNeT++ is used to simulate the network and transmit all the V2X messages
between vehicles. It can implement different technologies like IEEE 802.11p and LTE-PC5,
and is really useful to extract statistics from those communications. And last, CARLA
is an open-source simulator used for autonomous driving research, which provides a 3D
representation of the scenarios. Also, CARLA can introduce and control vehicles inside
the simulation, making emphasis on collecting information about their sensors [6], such
as cameras, GPS, line detectors, and RADARs among many others. However, despite the
correlations that this simulator may have with the orders, it is not used in this project. As
it is explained in this section, CARLA is taken into account in the decision of scenarios,
and for future related works, but it is not needed in the framework of this project.

Moreover, this section presents the main results obtained from each simulator, and how
are they involved in the development of the FEM-IOT, INTEGRA, and CPSoSAware
projects.

3.1 Simulation environments

3.1.1 SUMO

The SUMO, “Simulation of Urban Mobility” is an open-source, portable simulator that
handles vehicular traffic simulations and their characterizations. It allows the experimen-
tation of several mobility models over an infinite possibility of road topologies, which can
be created and modified on the simulator.

To start a new simulation we need three essential files: a network file, a routing file, and
a configuration file.

• Network file: Contains the description of the physical topology of the scenario.
This may include all roads and intersections of the map, as well as other elements
like the traffic logic, and roundabouts. Using the sumo naming convention, the roads
or streets are referred to as edges and the intersections as junctions. Two edges are
connected by junctions.

• Routes file: Species the types of vehicles that will be added to the simulation and
all the possible routes that these vehicles can follow. In this file, we can prede-
fine different types of vehicles (like cars, motorcycles, vans, buses, etc. . . ), and the
physical properties of the vehicle (such as the shape, the color, the maximum and
minimum values of speed, and acceleration, and the minimum gap distance with
the vehicles ahead). Also, different routes are identified by their road id, and each
of them specifies all the edges and junctions that define that route.
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• Configuration file: A general configuration file that indicates which network and
routes file is used. It can contain other types of files to add more elements to the
simulation like inserting buildings into the scenario or controlling the traffic lights,
and some global configuration parameters such as the duration of the simulation and
the step length, which defines the interval of time between consecutive simulations
steps (its minimum value is 1 ms).

The SUMO simulator has implemented many features that allow us to create and cus-
tomize a large number of different scenarios. The main tool for creating these scenarios is
Netedit, which is a visual editor that allows us to modify or create traffic networks from
scratch, an example of the interface is shown in figure 10.

Figure 10: Netedit’s visual interface.

Here we can see that there are many different options that allow us to personalize a sce-
nario: modify the networks, create highways or intersections, add traffic lights, or modify
the direction of the vehicles on each road. All these elements are the ones recorded in
the “network file”. In addition, we can customize the traffic of this simulation by adding
”demand elements”, where we can select what type of vehicle we want (car, motorcycle,
bicycle, truck, bus...), and predefine specific routes for each vehicle in the simulation. The
same goes for pedestrians, who can walk on sidewalks and pedestrian crossings. These
parameters are stored on the “routes file”. Therefore, one of the best advantages of using
Netedit is that it generates all the files needed to run the simulation: the network file
with a “.net.xml” extension, the routes file with a “.rou.xml” extension, and also the
configuration file with a “.sumocfg” extension.

With all these elements we can create some accurate simulations, but we are only using a
few functionalities of SUMO. Now we only can create and personalize a scenario, but we
can’t extract information from the simulation, nether modify it. In these circumstances
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is when we introduce the TraCI “Traffic Control Interface”, which is a SUMO interface
that allows us to retrieve the value of different parameters in an ongoing simulation and
manipulate them in real-time. It does not have an interface like Netedit, but it has a large
number of commands to modify all aspects of a simulation.

The general structure of Traci is organized according to the following actions: ”Retrieve
values” and ”Change state”, both related to the following topics:

• Traffic Objects: Including different types of pedestrians and vehicles, and their
respective routes.

• Detectors and Outputs: Such as induction loops, area detectors, multiple input-
output detectors, and calibrators.

• Network elements: related to edges, junctions, and lanes.

• Infrastructure: related to traffic lights, bus stops, parking areas, overhead wires,
and the rerouter.

• Simulation elements: related to obtaining values, displaying information, or an-
alyzing certain points of interest in the simulation.

These TraCI commands can be executed from a Python script and allowed us to customize
the scenarios and extract a large number of parameters from the simulations. As will be
seen in the following sections, TraCI is used to modify the vehicles in the simulation,
create routes, produce collisions, and obtain some simulation results.

Taking into account all of that, SUMO is our main simulator to create and define new
scenarios for our simulations, and using TraCI we also manage to integrate these maps with
other simulations like OMNeT++ and CARLA. Once we integrate a SUMO scenario with
OMNeT++ we can simulate V2X messages between all the vehicles, as will be explained
in section 3.1.2. And since CARLA can provide us a 3D representation of the same map,
we can do a co-simulation with SUMO and CARLA, where both are using the same
scenario at the same time, as can be seen in figure 11.
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Figure 11: CARLA and SUMO co-simulation.

3.1.2 OMNeT++

OMNeT++ (Objective Modular Network Testbed in C++) is an extensible and modular
simulation library and framework for the research and development of complex distributed
systems. Countless simulation models and model frameworks have been written on top
of OMNeT++ by researchers in diverse areas, and vehicular networks are one of them.
OMNeT++ works by assembling individual components/models into larger ones, which
makes the models easier to be reused and incorporated into different applications. More-
over, OMNeT++ is also considered a network simulator platform since it has a large
number of users, and allows us to use diverse model frameworks to implement more spe-
cific functionalities. An example of the framework used to implement the IEEE 802.11p
technology is shown in figure 12.

As it can be seen, the first important framework is INET, which is an open-source li-
brary containing various models to simulate communication networks, and was created
particularly for the OMNeT++ environment. Some of its main features are:

• Models for the Internet stack like IPv4, IPv6, Transmission Control Protocol (TCP),
and User Datagram Protocol (UDP).

• Wired and wireless interfaces such as Ethernet or IEEE 802.11.

• Support for physical environment modeling, like the propagation model or the pres-
ence of obstacles.

• Can be used as a base to create other simulation frameworks.
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Figure 12: Simulation framework overview.

Another useful framework is Artery, which was originally developed as an extension of
Veins, yet now it can be used independently. Artery corresponds to the application and
facilities layers, which enable the generation of V2X messages like CAMs and DENMs.
Moreover, Artery’s middleware provides common facilities for multiple ITS-G5 services
running on individual vehicles. Its architecture is depicted in figure 13.

Figure 13: Artery simulation framework.

In this case, the SUMO and OMNeT++ simulators are running simultaneously. On the
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left side, there is the traffic simulator SUMO that provides information about the position
of the vehicles, and on the right side, we have the OMNeT++ runtime environment, which
simulates and evaluates the cooperative awareness basic service (implementing vehicular
communication and computing the propagation of the packets). The interaction of these
simulators is made possible using a TCP socket and a standardized protocol known as
the TraCI. This connection allows us to identify the movements of the vehicles on SUMO
and replicate it over the corresponding nodes on OMNeT++.

With all these modules we managed to carry out the necessary simulations with IEEE
802.11p technology, nonetheless, to analyze other technologies we need other frameworks.
The module OpenCV2X is an open-source implementation of the 3GPP standard C-V2X
(Rel 14) Mode 4 [7]. It is based on an extended version of the SimuLTE framework which
enables LTE network simulations. It also can be integrated with Artery to provide full
ITS-G5 standardization across the entire communication stack.

ROS

With this description of the OMNeT++ simulator we manage to obtain a lot of results,
but we still need an efficient way to extract those results or even send them to other
applications like CARLA simulator or a database to store the results. For this purpose,
we integrate ROS in the OMNeT++ simulator.

The Robot Operating System (ROS) is a set of software libraries and tools that help create
robot applications, providing a huge variety of services such as hardware abstraction, low-
level device control, inter-process message passing, and packet management.

ROS processes are represented as nodes in a graph structure, and the edges that connect
the processes are called topics. These nodes can have several functionalities like sending
messages through a specific topic, calling services from other nodes, or providing services
to a subscribed node. All this is orchestrated by a process called ROS Master, which reg-
isters the connected nodes, establishes node-to-node communications for different topics,
and updates the parameter server. Messages and services do not pass through the ROS
Master, it only establishes peer-to-peer communication between all node processes after
they have registered.

All ROS nodes must have a unique name to distinguish the running processes on the
ROS network, and those can be used to create clients to interact with other nodes. Also,
nodes can be used to advertise services, representing the actions that can be performed.
To complete this interaction, we need to use ROS topics, which are information buses that
send and receive messages between nodes. These topics also must have a unique name
and can have different contents depending on the type of service to be implemented, like
sensor data, motor control commands, or status information among other possibilities.

Finally, implementing ROS into our simulations allows us to share the messages generated
with external applications, for example: to store the messages on a database, or to compute
and predict the trajectories of the vehicles in order to avoid a collision. Also, another
reason to choose ROS over other tools is its compatibility with the CARLA simulator,
which has a “ROS Bridge” module. This module sends external information to the vehicles
and this one can be interpreted as an added sensor to the vehicle.
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3.2 Creation of scenarios

Once introduced the two main simulators, we need to create the scenarios that will be
used, and therefore define the network and the routes to be used by each vehicle. Also, to
make the most of SUMO we created two different scenarios with different methods and
for different purposes.

3.2.1 Collisions scenario

The first scenario we created is a realistic scenario located on the Eixample of Barcelona,
in particular, the intersection between “Passeig de Gràcia” and “Carrer Aragò”, and some
surrounding streets, as it can be seen on figure 14. The main objective of this scenario
will be to simulate vehicle collisions in a realistic environment and extract information
about them, with the objective of generating a dataset that could be used to study the
trajectories of the vehicles to predict or detect collisions.

Figure 14: Map view of Aragó with Passeig de Gràcia streets.

As we introduced before, we can create the whole scenario manually on Netedit, but since
we know the location of those routes, SUMO has a tool named OpenStreetMaps (OSM)
that helps us to extract the network structure of a map. OSM is a free editable map of
the whole world that creates and provides free geographic data such as street maps. This
tool provides us with all the network data, but to use it on the simulation we have to use
the OSMWebWizard, a tool implemented by SUMO. Once we run OSMWebWizard, it
opens a web browser where we can select a specific location in the world and it generates
the corresponding network file of that spot. Its interface is shown in figure 15. Also, with
this tool, we can select what kind of vehicles we want in the simulation and its duration,
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but since we want to personalize those parameters, we only used the network file as a base
to create our scenario.

Figure 15: OpenStreetMap Web Wizard tool.

Figure 16: Junction with prohibited lane changes.
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Next, we need to modify and correct some errors from the loaded network file. OSM is
really useful since it creates all the roads on the map, which are also geolocalized with
their latitude and longitude coordinates. However, we still need to correct some elements
like connections between edges and junctions, changes of lanes, or the traffic lights of an
intersection. A closer look at the changes made in an intersection can be seen in figure
16.

Once we had checked and corrected all network elements of the map, we can start adding
on-demand elements, like adding vehicles and defining roads on the map.

Since our main objective was being able to recreate collisions on the simulation, we decided
to personalize the main parameters of the vehicles created, so we generated 100 different
types of vehicles with their main parameters randomized by the following distributions:

• acceleration: the acceleration ability of the vehicle, in m/s². Follows a gaussian
distribution N(3.3, 0.5).

• deceleration:the deceleration ability of the vehicle, in m/s². Follows a gaussian
distribution N(5.5, 0.5).

• length and width: the size of the car in the simulation. 5.5m x 1.5m.

• maximum speed: Maximum velocity of the vehicle in m/s. follows a gaussian
distribution N(8.3, 4), and only accepts values larger than 7.

• sigma: The driver imperfection (0 denotes perfect driving). Follows a gaussian dis-
tribution N(0.5, 0.3), but only accepts values from 0 to 1

• tau: The driver’s desired (minimum) time headway, based on the net space between
the leader’s back and the follower’s front. Follows a gaussian distribution N(1, 0.25),
but only accepts values from 0 to 1.

• apparent deceleration: the apparent deceleration of the vehicle in m/s². The
follower uses this value as the expected maximal deceleration of the leader. Follows
a gaussian distribution with a deviation of 0.5 regards the original declaration of
the leader, N(decel, 0.5).

With these changes, we manage to add diversity to the simulation in order to recreate a
realistic environment. And on top of that, we also introduced different types of vehicles
to the simulation by adding buses, vans, and motorcycles. In table 3 we can see a list of
the types of vehicles selected and their main parameters.
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Vehicle
Class

Shape
Dimensions

[m]
mingap

[m]
accel
[m/s2]

decel
[m/s2]

emergency
decel [m/s2]

Max
speed

Speed
Deviation

passeger 5 x 1.8 x 1.5 2.5 2.6 4.5 9 200 0.1

delivery 6 x 2.16 x 2.86 2.5 2.6 4.5 9 200 0.05

bus 12 x 2.5 x 3.4 2.5 1.2 4 7 85 0

motorcyce 2.2 x 0.9 x 1.5 2.5 6 10 10 200 0.1

moped 2.2 x 0.9 x 1.5 2.5 1.1 7 10 45 0.1

Table 3: Types of vehicles used in the SUMO scenario.

Now, we need to create the routes for all these vehicles, and we decided to use a tool
of SUMO called RandomTrips. This tool is based on TraCI and also can be executed
through a python script. RandomTrips is used to create vehicles with random routes over
the whole scenario, but since we have already defined the type of vehicles we want, we
only use it to obtain the generated routes. To run this script, we introduced the following
parameters:

• -n: to indicate the input network file, with all the roads and intersections of the
scenario. (extension .net.xml).

• -r: to indicate the output file, with all the randomly generated routes in the scenario.
The length of the routes is also random. (extension .rou.xml).

• -e: to specify the execution time of the simulation. If we simulate a longer time, we
generate more random routes. Value set to 7200.

• -p: time in seconds between the generation of consecutive vehicles. Value set to 0’8.

• --intermediate: to specify the number of intermediate points that will be added
to the route. So we can create longer or shorter routes for the vehicles. Value set to
8.

• --fringe-factor: parameter from 0 to 10, to increase the possibility that the routes
start/end at the frontiers of the simulated network. Value set to 10.

With this tool, we manage to create around 5000 different routes which will be selected
randomly for each generated vehicle.

Finally, with all the types of vehicles and the routes defined, we can use TraCI to insert the
vehicles into the simulation. In this case, we start adding vehicles to the simulation until
reach a constant value of 150 vehicles. All the vehicles introduced are selected randomly
with a different type of vehicle and a different route, so when TraCI needs to add a new
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vehicle it selects one of the 100 types of vehicles predefined, and one of the 5000 routes
also predefined.

Types of Collisions

Now, we have all the basic elements for the simulation (the network, the vehicles, and the
routes) we need to study how to make collisions happen on running time. To simplify the
possible types of collisions we identify only frontal collisions and lateral collisions.

Frontal Collisions : Normally, frontal collisions appear on straight roads near some in-
tersection or crossing, and occur because the front vehicle stops suddenly and/or
the back vehicle can not break in time. This kind of collision is already implemented
due to the parameters of the vehicles we used. Since there are cars with random
acceleration and deceleration values, different maximum speeds, and different val-
ues of temerity (sigma and tau), all that together generate possibilities for these
collisions to happen. Therefore, these collisions are easily found in the simulation.

Lateral Collisions : Now, generating lateral collisions is more complex, because these
could only happen at an intersection, and all the intersections are regulated by
traffic lights. In this case, we need to go one step further into the TraCI and modify
more elements related to the vehicles.

Our objective is that some cars could ignore a red traffic light and go into an
intersection generating a lateral collision. To achieve it, we need to change the state
of the vehicle by modifying the command “speed mode”. This command is a bitset
that forms an integer and each bit corresponds to a different check:

• bit0: Regard safe speed.

• bit1: Regard maximum acceleration.

• bit2: Regard maximum deceleration.

• bit3: Regard right of way at intersections (apply to approaching foe vehicles
outside the intersection).

• bit4: Brake hard to avoid passing a red light.

• bit5: Disregard right of way within intersections.

With this into account, some example modes could be:

• Speed mode: 31, [0 1 1 1 1 1]. Default value, all checks on.

• Speed mode: 32, [1 0 0 0 0 0]. All checks off.

• Speed mode: 55, [1 1 0 1 1 1]. Disable right-of-way check.

• Speed mode: 39, [1 0 0 1 1 1]. Run a red light even if the intersection is
occupied.

For our use case, we could select speed mode 39, which would be enough to cause
some lateral collisions at intersections. But, to generate some extra collisions, we
decided to ignore all the checks and use mode 32. Therefore, once we add a new
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vehicle into the simulation we choose one of the predefined types already created
and set its speed mode to 32. And to visualize these changes in the simulation, we
also changed the color of the vehicle to red, so it can be easily identified.

By making these changes we achieved to recreate different types of collisions in this
scenario. Now, we should decide how the system reacts when a collision occurs, and this
response can also be defined through TraCI. In this case, we decided that when two
vehicles collide they will remain in the collision’s position for 1 second, and afterward,
both vehicles will be removed from the simulation to avoid interfering with the rest of the
vehicles.

Finally, with all the elements of the simulation implemented, we can execute the complete
SUMO simulation and observe how the cars move through the network, and how the
collisions occur. The final simulation is shown in figure 17, where we can see different
types of vehicles and some red cars which drive more recklessly to create some collisions

Figure 17: SUMO simulation of the collision scenario.

3.2.2 OMNeT++ scenario

Create Scenario

For this scenario, we want to focus on studying the CAM messages sent between the
vehicles of the simulation. So we need a network capable of producing collisions between
the messages sent, also the map should contain buildings to study path loss effects.

To create this scenario we used a previously defined map from CARLA database, Town05.
This map is defined for CARLA, but it also contains all the network files needed to start a
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SUMO simulation: “Town05.net.xml”, “Town05.rou.xml” and “Town05.sumocfg”. Having
those files allows us to make a co-simulation with CARLA and SUMO, where after every
simulation step made by SUMO, it sends actualized information to CARLA, so both
simulations work simultaneously representing the same vehicles.

The network file for this scenario can be seen in figure 18, and we choose this scenario
because it has a little urban area in the center and an external highway that goes around
them which can be used to introduce more vehicles to saturate the network and create
more interferences among the messages sent.

Figure 18: Netedit view of Town05 scenario.

Since we already have the network files for this scenario, we only need to introduce the
vehicles and define their routes. In this case, we redid the routes from scratch on Netedit
so we can distribute the vehicles along the scenario.

First, to create new routes, we need to introduce “demand elements” with the option
“Demand¿Routes”, which allows us to select consecutive roads on the map to define the
final path, as can be seen in figure 19. Also, we have a menu on the left to modify some
parameters related to the route, such as changing the color, the number of repetitions on
that route, and if the roads need to be consecutive or not. Now, with the roads created, we
can add vehicles manually to a specific route with the option “Demand¿Vehicles”, which
allows us to select the type of vehicle that we want.
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Figure 19: Netedit interface to define new routes.

Next, we can add obstacles into the scenario which will act as buildings that will interfere
with vehicular communications. To do so, we used the CARLA map of Town05 to know
the exact location of the buildings and then we added the obstacles manually. To place
the obstacles on the map we used the option “Shapes” to define some polygonal shapes
where the building should be. All these shapes are stored on an XML file that must be
added to the Netedit configuration file, and after that, the type of material is selected on
the OMNeT++ simulator. With that, we finished creating the scenario, and an example
of the final simulation running can be seen in figure 20:
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Figure 20: Scenario Town05 running.

OMNeT++

Now that we have a scenario for the simulation, we need to configure OMNeT++ to define
all the elements regarding the communication between vehicles. The specifications of the
general configuration parameters are stored in the omnetpp.ini file, and some of the main
parameters are shown in the following table:
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Category Parameter Value

Operation mode 802.11

Carrier Frequency 5.9 GHz

Bandwidth 10 MHz

Channel number 180

Modulation QPSK

Bitrate 6 Mbps

Transmitter power 200 mW

Receiver sensitivity -85 dBm

Energy detection -85 dBm

Node

SNIR threshold 4 dB

Obstacle’s loss type DialectricObstacleLoss

Path loss type Rayleigh Fading

Path loss factor 3

Background noise type
IsotropicScalarbackground

Noise

Medium

Background noise power -110 dBm

CAM message period 100 ms

Simulation time limit 300 sScenario

Density of vehicles 25

Table 4: IEEE 802.11p, OMNeT++ simulation parameters.

The parameter values, used to model the individual nodes, were selected based on those
specified in the standards. A control channel (CCH) was used, with 10 MHz of bandwidth
centered at 5.9 GHz, a channel number of 180, and a default data rate of 6 Mbps. The
nodes were configured to transmit with a power of 200mW or 23 dBm, which was below the
33 dBm power limit. The receiver sensitivity was set to -85 dBm, based on the reference
from [8].

The radio medium was modeled using the Rayleigh fading profile, which allowed the
simulation of highly dense urban environments without direct line-of-sight between the
communicating nodes. The corresponding path loss factor value for urban areas, ranged
from 2.5 to 3.5, so we choose an arbitrary value of 3. On the physical environment, we
define the type of material of the buildings as a dielectric to compute the obstacle loss.

ROS

To use the ROS in the OMNeT++ simulator, we need to implement the necessary C++
tools, which will be responsible to create the ROS nodes and the topics corresponding
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to the messages sent. First of all, we need to start a ROS Master before running the
simulation, and once it starts OMNeT++ will create a single ROS node named “Artery”
which is our connection point to the OMNeT++/Artery simulation. This node publishes
all the information from the transmitted CAM messages and sends them through different
ROS topics.

The modifications made to the OMNeT++ simulator are characterized by the addition
of a new ROS module, which generates a new service in the simulation. This service is
called ”ProxyService” and is in charge of creating a personalized topic for each vehicle,
and all the CAM messages received on that vehicle will be also sent through this topic.

Therefore when the simulation starts, we have only 1 node corresponding to the simula-
tor, and it publishes all the messages through topics (specific for each vehicle). To better
understand this structure, we can see figure 21, where we have a small example with 2
vehicles (vehicle 0 and vehicle 1) that publish messages in their respective topics (called
”/artery/vehicle 0/cam rx” and ”/artery/vehicle 1/cam rx”). And for visualization pur-
poses, to close the communication, we have added two external nodes that have subscribed
to the specific topic they want to observe. Therefore each of these nodes can receive the
messages sent by the selected vehicle.

Figure 21: ROS scheme of the nodes and topics involved in the transmission of CAM messages.
Example with 2 vehicles.

ROS standard for CAM messages

CAM messages are standardized according to ETSI ITS with the ASN1 protocol. These
messages are divided into four main sections: the header, with generic information about
the packet; the basic container, with relevant information about the vehicle position; the
high-frequency container, with information about parameters that change rapidly over
time (such as vehicle speed and direction); and finally the low-frequency container, with
additional vehicle information about less frequent changes (such as activating the exterior
lights). In each of these sections, we can find several parameters, which are explained in
detail in the standard [9].

These messages are created using the ”ProxyService”, mentioned in the previous section,
and all containers and parameters are defined in a JSON format and then sent through
the corresponding ROS topic. An example of the messages that are sent and their values
would be the following:
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Figure 22: Example of CAM message in JSON format.

3.3 Results

3.3.1 Collisions scenario

First of all, before extracting results from the simulator, we need to specify how the
simulator will deal with these collisions. To do it we must change some parameters of
TraCI which are related to the security and the management of collisions. These are some
of the parameters that we modified to obtain our results:

• --collision.action = remove

Defines which actions are to be taken as a consequence of a collision. In this case,
both vehicles involved in the collision are removed so as not to affect the rest of the
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simulation.

• --collision.stoptime = 1

Waiting time after a collision. If two vehicles collide, both will remain stationary for
1 simulation step before being removed.

• --collision-output =scenario/collisions.xml

Specifies the name of the file that records all the collisions produced in the simula-
tion.

• --collision.check-junctions

Tag that enables lateral collision detection produced at an intersection.

• --collision.mingap-factor = 0

Minimum distance to detect a collision. Being equal to 0, only physical collisions
are registered.

With all these parameters set, we can start to retrieve results, which are stored in the file
“collisions.xml”, and contains the following parameters:

time Simulation time when the collision happens.

type
Type of collisions: “collision” referring to frontal collisions,

and “junction” referring to lateral collisions

lane SUMO lane ID where the collision happens

pos position inside the lane where the position happens

collider ID of the vehicle that produces the collision

victim ID of the vehicle that suffers the collision

colliderType Type of vehicle that produces the collision

victimType Type of vehicle that suffers the collision

colliderSpeed Velocity of the vehicle that produces the collision

victimSpeed Velocity of the vehicle that suffers the collision

Table 5: List of parameters in ”collisions.xml”.

However, some of these values are not practical for the interpretation of the results,
such as the ID of the roads and lanes, or the internal coordinates of the vehicle inside
the simulation. Consequently, we have decided to implement another kind of results file.
So we decided to record the positions of all vehicles in a single file called ”positions.csv”,
which stores the positions of all vehicles at each step of the simulation (every 0.1 seconds),
and in case of any collision, this one will also be recorded. In the following table we can
see a list of all the recorded parameters:

46



time Simulation time when the collision happens

vehicle id ID of the vehicle that produces the collision

victim id
ID of the vehicle that suffers the collision. By default

value if there are no collisions: -1

latitude Position of the vehicle in geographic coordinates: latitude

longitude Position of the vehicle in geographic coordinates: longitude

speed Velocity of the vehicle that produces the collision

heading Direction of the vehicle that produces the collision

collision
Collision indicator. Value equals to ”1” of there is a

collision, or ”0” otherwise

Table 6: List of parameters in ”positions.csv”.

Finally, with both files, we have enough information to create a database capable of
studying the movements and trajectories of the vehicles in order to predict or avoid
collisions. And if some collisions occur, we also have information about both vehicles
involved in order to have a detailed report of the scene.

These results have been used in the framework of the FEM-IoT project, where they were
used as a database to study urban mobility scenarios. In this case, we sent the results
to the CTTC (Centre Tecnològic de Telecomunicacions de Catalunya) research center,
which used this data to train Machine Learning algorithms to predict the movement of
the vehicles and detect possible collisions. An example of the files used can be seen in
Figure 23, where there are the collisions.xml file and the positions.csv file respectively.

Figure 23: Simulation results. Example of the collisions.xml and the positions.csv files.
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3.3.2 OMNeT++ scenario

As we have seen previously in section 3.2.2, we are able to extract CAM messages through
ROS topics. These messages can be listened to by other applications while OMNeT++ is
running, which enables it to establish a real-time synchronization with other simulators,
such as CARLA. In addition, ROS messages can be stored in ”ROS bags”. A ROS bag is
a ROS file format used to store ROS message data. This tool allows you to save, process,
analyze and visualize the stored messages, which are recorded at the same time as the
simulation is running, and can be recreated after the simulation ends. So if we execute
the simulation faster than in real-time, the messages are also stored according to that
velocity. The ROS bag only records the topics sent by the simulation (which contain
the transmitted CAM messages), so it follows the speed the simulator generates those
messages.

On the other hand, we are also able to extract specific parameters and save them in CSV
format once the simulation is finished. This allows us to extract additional parameters
other than the CAM ASN1 format, which facilitates the integration with other simula-
tors. For example, the position in the CAM messages is stored as geographic coordinates
(latitude and longitude), but in case of working on a SUMO scenario, it is more useful
to know the internal coordinates of the simulation, which can be used in other simulators
that use the same scenario (such as CARLA).

As a compilation, these are some parameters that we can extract from the simulations in
OMNeT++:

Vehicle ID: Vehicle identifier. We can distinguish between the ID used in the SUMO
and the internal ID of the OMNeT++.

Simulation time: Simulation instants related to the vehicle messages sent. We can iden-
tify when messages are generated, when they are sent, and when they are received
by each vehicle. This simulation time represents the real-time in which the messages
would be sent, which is different from the time the simulation takes to run (a fast
simulation may take 1 minute, but represent 5 minutes of real simulation).

Position: We also have several formats to locate the vehicle within the scenario. With
CAM messages we can obtain the positions in geographical coordinates (latitude
and longitude). But with OMNeT++ we can also obtain the cartesian coordinates
(X-axis and Y-axis) corresponding to the SUMO scenario.

Speed and Acceleration: As we have already seen, with CAM messages we can obtain
more specific information about the vehicle sending the message. One of these pa-
rameters is the speed and acceleration of the vehicle, which can be used to predict
the positions of other neighboring vehicles. In this case, the values can be given
in cartesian coordinates (by decomposing the velocities and accelerations into their
X-axis and Y-axis components), or give the same information based on the modulus
of the vehicle’s velocity and direction.

With all these parameters obtained from the simulator, we can create a lot of personalized
datasets, and an example can be seen in table 7, where we made a personalized Local
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Dynamic Map (LDM). An LDM is a local database stored on each vehicle that collects the
information received from other vehicles. In our case, the LDM contains a list of all the
CAM messages that a vehicle receives, so it has information about all the vehicles nearby
without the need to have a direct line of sight with them. The OMNeT++ simulator
already creates an LDM for each vehicle, but it only stores the last CAMmessages received
on a specified time window. However, we combined the information obtained from the
CAM messages and the OMNeT++ simulator to create these LDMs, which contain the
main parameters of the messages and their references to the SUMO scenario (like the
identifiers or the positions of the vehicles).

LDM of the vehicle SUMO ID of the vehicle that receives the messages

LDM Simulation Time

Time when the LDM of the vehicle is actualized.

Matching the time of the last CAM message received.

[Unidades: s]

Vehicle Identifier SUMO ID of the vehicle that sends the messages.

Generated time Time when the CAM message is generated

Received time Time when the CAM message is received

Position X
Position of the vehicle that sends the CAM:

SUMO Cartesian coordinates : X Axis [Units: m]

Position Y
Position of the vehicle that sends the CAM:

SUMO Cartesian coordinates : Y Axis [Units: m]

Speed X
Velocity of the vehicle that sends the CAM:

X Axis [Units: m/s]

Speed Y
Velocity of the vehicle that sends the CAM:

Y Axis [Units: m/s]

Acceleration X
Acceleration of the vehicle that sends the CAM:

X Axis [Units: m/s²]

Acceleration Y
Acceleration of the vehicle that sends the CAM:

Y Axis [Units: m/s²]

Table 7: Personalized parameters of the LDM.

These results are stored in a CSV file that contains the LDMs of all the vehicles of the
simulation. So, if we want to extract the LDM of a specific vehicle we just need to filtrate
the results by the column “LDM of the vehicle”.

The resulting LDM is used in the CPSoSAware project, in collaboration with a Greece
research center called ISI (Industrial Systems Institute). This center is working on a use
case to prevent and detect GPS spoofing attacks, where a drone could send false GPS
coordinates to an autonomous vehicle, in order to progressively change its trajectory.
Their approach to preventing it is to get information about the position of the neighbor
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vehicles to double-check the position of the ego-vehicle (vehicle under the GPS attack). To
implement this knowledge of the surrounding vehicles, V2X messages are an improvement
compared to previously implemented systems like cameras or radars. In this case, we used
CAM messages to broadcast the position of each vehicle, so the ego-vehicle can collect
them and create an LDM of their surroundings. For this reason, we simulated and collect
all the CAM messages sent to create a personalized LDM for this use case. An example
of the resulting file can be seen in figure 24, where there is shown all the parameters
explained in table 7.

Figure 24: Simulation results. A csv file with the actualized LDM from all the vehicles on the
simulation.
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4 Performance Evaluation. 802.11p and LTE-PC5

This chapter is devoted to comparing the 802.11p and the LTE-PC5 technologies. First, we
create a new scenario where we can easily congest the network by increasing its density of
vehicles. Then, we modify some main parameters of these technologies so we can compare
them under similar conditions. In this case, we focus on comparing the performance of
the MAC layer, so we changed some parameters of the PHY layer to achieve a similar
coverage on both technologies. Finally, we obtain results and compare the strengths and
weaknesses of these technologies.

4.1 Highway scenario

To compare these technologies we decided to use the map of a highway, since it allows
us to easily increase the number of vehicles in the simulation, and all the vehicles will be
driving in the same direction (along the X-axis), which will be more precise to compare
the range coverage between technologies.

In this scenario, we defined a bidirectional highway with a length of 5000 m and a to-
tal of four lanes, two lanes in each direction. The lanes have a width of 3.2 m, so the
whole highway covers 12.8 m. A representation of the scenario can be seen in figure 25,
which contains a reduced version of the highway built in the SUMO simulator. And for
statistical purposes, we will only analyze the communication done in the central region
of the highway, covering only the 3 km in the middle (the vehicles in the extremes of
the highway would suffer lower interferences since they are not completely surrounded by
other vehicles).

Figure 25: 5 km highway scenario.

And last by not least, to add vehicles to the scenario, we defined some simple routes
following the highway. But, in order to distribute the vehicles along the highway, we
defined four different spawn points, two in the extremes, and two in the middle of the
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highway. Doing that makes it easier to add a high density of vehicles in the simulation,
since the cars are added faster, and it produces a more realistic environment.

4.2 Simulation Parameters

Once defined the scenario used in the simulations, we can discuss the configuration pa-
rameters used for both technologies: IEEE 802.11p, and LTE PC5 Mode 4.

4.2.1 Standard Configuration

The first approach taken is to compare the performance of each technology using the
configuration parameters defined in the standard. And, considering that our objective is
to compare the performance of the MAC layer protocol, the first simulation will be done
with only two vehicles. These simulations are done to analyze the capabilities of the PHY
layer in a controlled environment without interferences.

IEEE 802.11p

The main configuration parameters used for 802.11p are the same ones used in Chapter
3, since all the OMNeT++ simulations were done with this technology.

Category Parameter Value

Operation mode 802.11p

Carrier Frequency 5.9 GHz

Bandwidth 10 MHz

Channel number 180

Modulation QPSK

Bitrate 6 Mbps

Transmitter power 23 dBm

Receiver sensitivity -85 dBm

Energy detection -85 dBm

SNIR threshold 4 dB

Node

DCC restriction false

Path loss type Rayleigh Fading

Path loss factor 3

Background noise type
IsotropicScalarbackground

Noise
Medium

Background noise power -110 dBm

CAM message period 100 ms

Simulation time limit 1000 sScenario

Number of vehicles 2

Table 8: OMNeT++ configuration parameters for IEEE 802.11p standard.
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All the parameters related to PHY and the MAC layer are defined by the standards
and were explained in section 3.2.2. The only significant changes are related to the new
scenario, which only has two vehicles. Also, to obtain more values from the simulation we
also increased the simulation time, so the vehicles interact more with each other.

LTE-PC5

On the other hand, implementing the C-V2X technology into the OMNeT++ simula-
tor was more challenging. First of all, we added a new module to the simulator called
OpenCV2X [7], which specifically implements the 3GPP standard C-V2X (Rel. 14) Mode
4. This module is an extended version of the SimuLTE OMNeT++ simulator which en-
ables LTE network simulations. Then, once added the OpenCV2X module we replicated
the same code as before to extract results from the simulation. The main parameters to
be extracted are a collection of all the CAM messages sent and received, which will be
used to compute several Key Performance Indicators (KPIs) and compare the technologies
used.

In table 9 we gathered the main configuration parameters related to the 3GPP C-V2X
Mode 4 standard, which will be used as the basic configuration for all the LTE simulations
of this chapter.

The main parameters related to the highway scenario have the same values as the IEEE
802.11p technology. The duration of the simulation is set to 1000 seconds in order to
increase the number of interactions with the only two vehicles of the simulation, which
will be transmitting CAM messages periodically every 100ms (10 pps). The channel is
configured to work at a frequency of 5.91 GHz with a bandwidth of 10 MHz. Moreover,
the grid resource is divided into 3 subchannels with 16 RBs per subchannel, resulting in
a total of 48 RBs per channel. The packet size of the CAM messages transmitted is 190
B, which is a typical size for short messages in V2X communications. Also, despite the
standard allowing transmissions with more than one channel, with these short messages,
we decided to limit the number of channels to just one. The transmission power of the
vehicle is 23 dBm (as defined in the standard for D2D communications), and the RSSI
and RSRP thresholds are set to -92 dBm and -128 dBm respectively.

Now, regarding the modulation used, the standard defines a Transport Block Size (TBS)
Index of 7, which corresponds to a modulation of order 2 like QPSK. The value of the
TBS Index will limit the number of bits that fit inside a single TB. Since we transmit
packets of 190 B (i.e. 1520 bits), we need a minimum of 13 RBs for each TB, which, with
a TBS Index of 7, provides us 1608 bits (see Table 1 in [10]), enough to cover the size
of the packets. Taking these values into account, the subchannels used have a total of 16
RBs, where 2 of them are used to transmit the SCI, and the TB is composed with 13 RBs
more, which only leaves 1 RB to spare. The subchannelization scheme used is adjacent
PSCCH + PSSCH, explained in section 2.4.
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Category Parameter Value

Operation mode LTE PC5 Mode 4

Carrier Frequency 5.91 GHz

Bandwidth 10 MHz

packetSize 190 Bytes

subchannelSize 16

numSubchannels 3

TBS Index 7

Modulation QPSK

adjacencyPSCCHPSSCH true

probResourceKeep 0.8

RC [5, 15]

useCBR false

packetDropping false

DCC false

Transmitter power 23 dBm

RSRP Threshold -128 dBm

LTE

Node

RSSI Threshold -92 dBm

Path loss type Rayleigh Fading

Path loss factor 3

Background noise type
IsotropicScalarbackground

Noise
Medium

Background noise power -110 dBm

CAM message period 100 ms

Simulation time limit 1000 sScenario

Number of vehicles 2

Table 9: OMNeT++ configuration parameters for C-V2X LTE Mode 4 standard.

The resource selection is done following the SPS scheme. The Resource Counter is chosen
randomly with the standard values between 5 and 15, and the probabiliy to keep the
same resource is set to 0.8. Regarding the congestion control mechanisms, like the DCC
protocol and the Channel Busy Ratio (CBR), by default they are not used in order to
increase the congestion of the network.

4.3 Results

This section presents the results obtained from the simulations done with both IEEE
802.11p and LTE-PC5 technologies. All the configuration parameters are explained in
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the previous section, and the aim of this study is to analyze the performance of these
technologies while varying only the density of vehicles in the simulation. In this case, we
computed several simulations with the following number of vehicles in the simulation: 2,
100, 200, and 400. Also, in the cases of 100, 200, and 400 vehicles, we reduced the duration
of the simulation, since we already transmitted more messages due to the additional
vehicles. Therefore, we defined a setup time of 200 s, which is enough time for the vehicles
to get distributed along the whole map, and then run the simulation for 50 s more.

To compare the results, a number of performance metrics had been designed and employed,
including the computation of the Packet Error Rate, the distance errors produced between
the actual vehicles and the positions sent by CAM messages, and the Neighbor Awareness
Ratio.

4.3.1 Packet Error Rate

The Packet Error Rate (PER) is an ITS access layer metric conventionally used to evaluate
the link reliability of a network. The resulting PER is computed as the total number of lost
packets divided by the total sent packets that have arrived at the receiver with a signal
value above the Signal to Noise Ratio (SNR) threshold, so it is computed as follows.

PER =
Not received packets

Total received packets above the SNR threshold
(1)

The CAM messages sent in the simulator will be correctly received if they reach the MAC
layer without error, so they must have surpassed the receiver sensitivity, and energy
detection thresholds established in the PHY layer. Otherwise, if any of these thresholds
are not achieved, we consider the packet lost.

Additional Modifications

The first simulations done to analyze the 802.11p and the LTE-PC5 technologies only had
2 vehicles and used the configuration parameters defined by their standards. However,
once we analyzed the initial results, we observed a huge difference regards their coverage
range. Despite transmitting the same power, with IEEE 802.11p we only achieve a coverage
slightly bigger than 100 m, however, with C-V2X we reach a maximum coverage of 1100
m. Also, this difference is further enhanced due to the sensitivity values defined by the
standards, since 802.11p sensitivity is 8 dB lower than LTE-PC5. These results can be
observed in figure 26, where we computed the PER for both technologies.

As it can be seen, with 802.11p, at around 70 m we already have lost 50 % of the messages,
but with LTE-PC5, to lose the same amount of packets we reach a distance larger than
700 m.
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(a) 802.11p - 2 vehicles (b) LTE-PC5 - 2 vehicles

Figure 26: PER results with standard configurations and 2 vehicles.

Seeing these results, we observed that the implementation of the PHY layer of C-V2X
is remarkably better than with 802.11p. However, we decided to modify some of the
parameters in order to achieve a similar coverage range for both technologies. By doing
so, we would remove some limitations of the PHY layer, allowing us to focus on the
protocols of the MAC layer. Therefore, to increase the coverage of IEEE 802.11p we
increase the transmitted power from 23 dBm to 30 dBm and changed the value of the
receiver sensitivity to the same one used in C-V2X. And last, to reduce the coverage of the
LTE protocol we decreased its transmitted power from 23 dBm to 13 dBm. Finally, with
these modifications, we manage to achieve a similar coverage of 550 m for both protocols.

(a) 802.11p - 2 vehicles (b) LTE-PC5 - 2 vehicles

Figure 27: PER results with modified configurations and 2 vehicles.
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IEEE 802.11p LTE PC5 Mode 4
Parameters

Standard (old) New Standard (old) New

Transmitted Power 23 dBm 30 dBm 23 dBm 13 dBm

Receiver Sensitivity -85 dBm -92 dBm -92 dBm -92 dBm

Max Coverage 110 m 550 m 1100 m 550 m

Table 10: Coverage modifications to compare 802.11p and LTE PC5 technologies.

After these changes, we found an optimal configuration of parameters that allows us to
analyze the MAC layer of both technologies, avoiding the limitations of the PHY layer.
As shown in figure 27, if we use the OMNeT++ configuration of table 10, we manage to
reach a really similar coverage range with both 802.11p and LTE-PC5.

Once modified these parameters, the only value that needs to be changed is the number of
vehicles in the simulation, which will be increased until we manage to congest the network.
These are the obtained results comparing both technologies with different densities of
vehicles.

(a) 802.11p - 2 vehicles (b) LTE-PC5 - 2 vehicles
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(c) 802.11p - 100 vehicles (d) LTE-PC5 - 100 vehicles

(e) 802.11p - 200 vehicles (f) LTE-PC5 - 200 vehicles

(g) 802.11p - 400 vehicles (h) LTE-PC5 - 400 vehicles

Figure 28: PER results.

As can be observed in the generated results, the simulations done with only 2 vehicles are
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more irregular than the others, which is due to a lack of samples in those scenarios (there
are only 2 vehicles on a highway of 5 km length). This same effect can also be perceived
in the lower distances of the LTE-PC5 simulations, specifically in the range below 100 m.
In this case, since the vehicles travel through the highway at high velocity, the amount
of messages received at that short distance range is notably lower compared to longer
distances, where are received the majority of the messages. Also, this irregularity is not
shown in the case of LTE-PC5 and 400 vehicles, since we managed to obtain more samples
for those shorter distances.

With a high number of vehicles, we observe that the LTE-PC5 performs better that
the 802.11p, meaning that the MAC layer manages better the congestion of the network.
However, despite the overall number of lost packets is lower with LTE-PC5, it is also more
irregular than 802.11p, in particular for lower distances. This effect is mainly explained
by the different implementations of the MAC layers on both technologies. 802.11p is more
stable in shorter distances since it listens to the channel and only transmits when it is free.
On the other hand, LTE-PC5 selects a specific channel resource and uses it on several
consecutive transmissions. If two vehicles have randomly chosen the same subchannel, the
interference produced will last longer and more packets will be lost.

And as we had expected, if we increase the number of vehicles in the simulation, the
congestion of the network increases, and therefore, the resulting PER has slightly lower
values, which have decreased uniformly in the whole range of distances. With 802.11p we
observe a progressive increase in the PER values. With only 2 vehicles, we lose 10 % of
the packets at 200m, but if we congest the network this distance is reduced to 100 m,
80 m, and 60 m, respectively for 100, 200, and 400 vehicles. Nonetheless, with LTE-PC5
that effect is not that clear. With distances larger than 200 m, the PER remains nearly
the same, and with shorter distances, there is a little increase in the errors produced, but
it is hard to compare due to the irregularity in figures 28d and 28f.

From these results, we could conclude that 400 vehicles are enough to congest the 802.11p
network. But the LTE-PC5 technology does better management of the channel resources
allowing a higher density of vehicles in the same scenario. As we have seen, there would
be needed even more vehicles to completely saturate the LTE-PC5 network.

4.3.2 Distance errors

For this KPI we collect the positions errors made between the perceived position of a
vehicle (the position sent on the CAM messages), and the actual position of that vehicle.
This metric is a significant value to study in V2X communications since it defines the
maximum error that a vehicle could have while recording the position of its surrounding
vehicles.

Whenever a correct CAM message is received, the vehicle stores the position of the corre-
sponding transmitting vehicle. Because of this, in the time interval between consecutive
messages (100 ms), the record of that position won’t be updated until the next message
is also correctly received. Therefore, the difference between the position sent in the first
CAM, and the actual position of the vehicle (right before sending the next CAM), is what
we have defined as a “distance error”, which is also represented in figure 29. So, usually,
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that distance will be the displacement of the transmitter vehicles during the 100 ms taken
to transmit another CAM, which defines a strong correlation between this metric and the
velocity of the vehicles. Moreover, that distance error could also be increased if some of the
following CAM messages were lost, increasing the error each time a CAM message is lost.
As an example, if two consecutive messages are lost, but the third is correctly received,
the total distance error is the difference between the actual position of the vehicle (before
sending the third CAM), and its position sent 3 messages earlier, 300 ms ago. And if that
effect is repeated, we could reach quite a large distance error, potentially affecting some
safety applications.

Figure 29: Error distance perceived by vehicle 1 before receiving the 2n CAM from vehicle 2.

(a) 802.11p - 2 vehicles (b) PC5 - 2 vehicles
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(c) 802.11p - 100 vehicles (d) PC5 - 100 vehicles

(e) 802.11p - 200 vehicles (f) PC5 - 200 vehicles

(g) 802.11p - 400 vehicles (h) PC5 - 400 vehicles

Figure 30: Distance error results.
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Analyzing these results, we observe that with only 2 vehicles in the simulation, their
distance errors are extremely low, corresponding to the minimum displacement of the
vehicles in a 100 ms interval (frequency transmission of CAM messages). And regarding
the higher outliers (the values with a higher distance error shown above the boxes), we
observe that they only appear when the vehicles are too far apart, at a distance greater
than 200 m. In this case, the values with 802.11p have a larger variance and smaller outlier
errors. However, with LTE-PC5 and large distances, we maintain a lower variance with
the majority of the values, but their outliers are much larger.

To analyze the results of the distance errors, is crucial to consider the velocity of the
vehicles, since larger velocities will translate into greater distance errors. In this case,
the scenario used is a straight-line highway which allows the vehicle to drive at elevated
velocities. In the simulation, the exact velocity of the vehicles can vary depending on their
surroundings. If a vehicle pretends to overtake another one, it will speed up, but if it is
enclosed among other vehicles, it will decelerate. Despite that, the average velocity of
the vehicles is 105 km/h (29.4 m/s). Consequently, if CAM messages are sent every 100
ms, the typical minimum distance error achieved would be 2.94 m, corresponding to the
majority of samples taken in our simulations.

Now, if we analyze the simulations done with a large number of vehicles, we observe that
the 802.11p is more stable, and the distance error increases progressively with the distance
between vehicles. Also, as it happens in the case of two vehicles, the variance of the errors
is bigger for longer distances, but now, some outliers appear for shorter distances. On the
contrary, with LTE-PC5, we achieve a great reduction of the variance of the errors (all the
mean values are close to 3 m, matching with the minimum distance error computed for
this scenario). Nevertheless, we also observe an increase in all the outliers independently
of the distance. With higher distances, there are significantly more outliers than with
shorter distances, but all of them reach really high values. With LTE-PC5 we can find a
maximum distance error of 200 or 300 m on really short distances, however, with 802.11p
those values are only achieved for long distances. It is really important to analyze these
effects, since a large distance error between vehicles that are really close to one another,
is critical for any safety application. Consequently, despite having fewer outliers with
LTE-PC5, their higher values could be a critical problem if they happened at shorter
distances.

This particular behavior is the result of the different implementations of the MAC layer in
both technologies. 802.11p uses CSMA/CA, which tries to avoid collisions by sensing the
channel and transmitting only when it is idle. Therefore, the transmitter needs to check
the status of the channel after any transmission, and if the channel is highly congested, it
is easier to keep increasing the errors, due to longer distances or a huge amount of vehicles.
On the other side, LTE-PC5 uses the sensing-based SPS scheme, which first senses the
channel for a long time (a Sensing Window of 1000 subframes), and then it assigns a
channel resource that will be used on several consecutive transmissions (defined by the
RC). This approach makes a more efficient selection of the resources used, which helps to
reduce the congestion and the errors produced. Even so, a drawback of that system is the
rare cases when two vehicles choose to transmit in the same subchannel, which produces
interference that could last several transmissions. These worst cases are the outlier values
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that can be seen in the short distances of the LTE-PC5 simulations, which are also more
critical for safety applications.

To sum up, this metric is really useful to analyze the effects of the MAC layer in both
technologies. As we have seen, 802.11p provides us with better results while transmitting
at close distances, however, LTE-PC5 manages to reduce the overall errors on longer
distances.

4.3.3 Neighborhood Awareness Ratio

The Neighbor Awareness Ratio (NAR) is a measure of the cooperative awareness achieved
by the vehicles in a scenario. This statistic is taken from all the vehicles in the simulation
every 100 ms (the transmission frequency of the CAM messages), and is computed as
follows.

NAR =
Perceived number of vehicles

Actual number of vehicles
× 100 (2)

Once a vehicle correctly receives a CAM message, it stores the position of the transmitter
vehicle in a database and adds that vehicle to a list of neighbors which are in range.
While receiving messages from that vehicle, it will remain in the list of neighbors, but if
a defined expiry time is passed without receiving new messages, it will be removed from
that list. For instance, if the expiry time is defined as 2 s, the received would have to miss
20 CAMs in order to remove the vehicle from the list. Therefore, the NAR is computed by
dividing the perceived number of vehicles (number of elements in the list), by the actual
number of vehicles, defined as all the vehicles in the sensitivity range (close enough to
surpass the receiver sensitivity threshold).

For the analysis of this metric, we decided to compare the performance of several expiry
values, so we used the following time intervals: 0.5 s, 1 s, and 2 s.

(a) 802.11p - 2 vehicles (b) PC5 - 2 vehicles
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(c) 802.11p - 100 vehicles (d) PC5 - 100 vehicles

(e) 802.11p - 200 vehicles (f) PC5 - 200 vehicles

(g) 802.11p - 400 vehicles (h) PC5 - 400 vehicles

Figure 31: NAR results.

These results are similar to the PER results. With the PER we focused on studying the
lost packets inside a sensitivity range, while the NAR is centered in collect the correctly
received messages inside that sensitivity range (with the addition of the expiry time to
define the neighbor awareness).

As seen in the previous sections, the results with only 2 vehicles tend to have higher
values (caused by a low congested network), but there are more irregular due to a lack of
samples. Also, we can not see any significant variation regards the different expiry values
used. Since nearly all the transmissions done with lower distances are always correctly
received, the changes in the expiry time don’t have any effect.

Now, analyzing the results of a high density of vehicles, we clearly observe how the con-
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gestion of the network increases with the number of vehicles, since the graphs tend to have
a lower slope. Also, this reduction of the NAR is more relevant on the 802.11p, where the
values tend to decrease more rapidly. If the number of vehicles is increased from 100 to
400, the required distance to achieve a NAR over 80 % is reduced from 150 m to 60 m.
However, as seen in the PER analysis, the NAR with LTE-PC5 remains essentially the
same independent of the number of vehicles. It maintains a NAR over 80 % for distances
up to 280 m, in all simulations. Consequently, we come to the same interpretation as
section 4.3.1, the MAC protocol from LTE-PC5 does better management of the channel
resources when the network is congested, allowing it to support a scenario with more
vehicles.

Despite obtaining a narrow increase in the NAR at longer time intervals (especially seen
in middle and longer distances), we don’t observe any relevant effect. As we expected, if
we allow a longer time for the vehicles to remain in the list of neighbors, it is easier to
receive a correct packet after several lost ones, which increases the NAR value. However,
these cases are extremely unusual, so when we start losing packets, it will be rare to
correctly receive a new one after a short time. Therefore, using expiry times between 0.5
and 2 s, does not really make a difference in this scenario.
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5 Conclusions and future development:

After an elaborate study of several simulators related to V2X technologies, we managed
to comprehend the process needed to create a personalized scenario in SUMO, and all the
network elements involved in an OMNeT++ simulation. Also, we managed to introduce
two different technologies inside OMNeT++: IEEE 802.11p and C-V2X LTE-PC5, which
have been the basis for this thesis.

The focus of this project is to analyze and compare the performance of the MAC layer
of two principal V2X technologies. One of the main advantages of the C-V2X compared
to the 802.11p are its improvements in the PHY layer, which manages to transmit pack-
ets nearly ten times further than 802.11p. For that matter, we decided to modify some
configuration parameters to ignore the limitations of the PHY layer and define several
KPIs to analyze its performance in the MAC layer, where both technologies had the same
coverage conditions.

With the results obtained from the PER and the NAR performance metrics, we conclude
that LTE-PC5 is highly effective in selecting the channel resources of a congested network,
minimizing the possible interferences between vehicles. The errors produced in 802.11p
increase gradually while increasing the density of vehicles. However, LTE-PC5 succeeds in
balancing the network load and reducing the errors produced on shorter distance ranges
(under 200 m). That allows LTE-PC5 technologies to support scenarios with higher den-
sities of vehicles. Also, the NAR results offer a visual representation of the awareness
achieved by each technology. In this case, both technologies have a similar performance
with a low density of vehicles, but when the network is congested, 802.11p worsens rapidly.

With these initial metrics, LTE-PC5 outperforms 802.11p in nearly all features. Never-
theless, we obtained some interesting results from the distance error metric. In that case,
802.11p manages to maintain a really low error on close distances (up to 20 or 50 m),
which then increases progressively in larger distances. On the other hand, LTE-PC5 has a
really low mean error, but there are some unusual cases when the errors reach extremely
large values, both at shorter and longer distances. The main drawback is that the distance
errors produced on shorter distances are critical values that could endanger the safety of
the vehicles. Therefore, in the framework of safety applications, 802.11p could be a better
solution, despite their limitation in the PHY layer. This effect can be explained due to
the different MAC layer mechanisms used in both technologies. Since 802.11p uses CS-
MA/CA algorithm to access the channel resources, it is easier to correctly transmit a
packet at close distances, which will be transmitted once the channel es sensed idle. How-
ever, LTE-PC5 uses a sensing-based SPS scheme that first senses the channel for a long
time (a Sensing Window of 1000 subframes), and then it assigns a channel resource that
will be used on several consecutive transmissions. For this reason, in the rare cases when
two vehicles randomly decided to transmit at the same sub-channel, that communication
will suffer continuous interferences until one of the vehicles finished its RC, and reselects
a new resource with probability 1 − Pk. So, during that time, several consecutive CAM
messages will be lost, producing those high values of distance errors.

After seeing these results, there are a lot of recommendations for continuing with this
research study. To obtain optimal results from the KPIs used, the simulation time could
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be increased in order to reduce some of the irregularities shown in the shorter distances of
the LTE-PC5, specifically in the PER results. Another option would be to increase even
more the density of vehicles in the simulation in order to find the maximum load that
could be supported with LTE-PC5 technology (since 400 vehicles did not seem enough to
fully saturate the channel). In addition, despite these few changes, it would be interesting
to analyze these same metrics in a different scenario. A Manhattan grid or some urban
scenario could be a good option to test the presence of buildings, which would add extra
attenuation to the messages.

And finally, a last idea that could be approached would be the addition of other tech-
nologies into the analysis. For instance, the later releases of the 3GPP are developing the
standard 5G New Radio, which aims to use 5G technologies focused on mobility enhance-
ment applications. This topic is highly related to vehicular communications, and could be
the starting point to add 5G technologies into the OMNeT++ simulator.
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